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Abstract

The increasing complexity of software systems has led to a surge in cyberse-

curity vulnerabilities, necessitating efficient and scalable solutions for vulner-

ability assessment. However, the deployment of large pre-trained models in

real-world scenarios is hindered by their substantial computational and stor-

age demands. To address this challenge, we propose a novel resource-efficient

framework that integrates knowledge distillation and particle swarm optimiza-

tion to enable automated vulnerability assessment. Our framework employs a

two-stage approach: First, particle swarm optimization is utilized to optimize

the architecture of a compact student model, balancing computational efficiency

and model capacity. Second, knowledge distillation is applied to transfer critical

vulnerability assessment knowledge from a large teacher model to the optimized

student model. This process significantly reduces the model size while maintain-

ing high performance. Experimental results on an enhanced MegaVul dataset,

comprising 12,071 CVSS (Common Vulnerability Scoring System) v3 annotated

vulnerabilities, demonstrate the effectiveness of our approach. Our approach
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achieves a 99.4% reduction in model size while retaining 89.3% of the origi-

nal model’s accuracy. Furthermore, it outperforms state-of-the-art baselines

by 1.7% in accuracy with 60% fewer parameters. The framework also reduces

training time by 72.1% and architecture search time by 34.88% compared to

traditional genetic algorithms.

This study presents a novel framework for software vulnerability assessment

in Cybersecurity, referred to as PSO-KDVA, which leverages Particle Swarm

Optimization (PSO) and Knowledge Distillation (KD) to create a lightweight

model. With the increasing adoption of large pre-trained models in software

engineering, their high computational and storage demands present significant

challenges for real-time deployment, especially in resource-constrained environ-

ments. The proposed PSO-KDVA approach addresses these challenges by op-

timizing the architecture of the student model through the PSO algorithm and

transferring knowledge from the teacher model to the student model via knowl-

edge distillation. This process significantly reduces both model size and in-

ference time. Experimental results show that PSO-KDVA maintains 89.3%

of the original model’s performance while compressing its size to just 0.6%

of the original. Furthermore, PSO-KDVA outperforms existing models, such

as the BiLSTM-based approach, by achieving a 1.7% improvement in perfor-

mance. The proposed framework demonstrates the feasibility of constructing

high-performance, lightweight models for software vulnerability assessment, of-

fering an effective solution for deployment in resource-constrained environments.

Keywords: Software Vulnerability Assessment; Knowledge Distillation;

Particle Swarm Optimization; Large Language Code Model.

1. Introduction

Software vulnerabilities refer to defects or oversights in software systems that

adversaries can exploit, potentially resulting in unauthorized data access, opera-

tional interruptions, financial damage, loss of trust, and compliance issues. Such

vulnerabilities often stem from programming mistakes, flawed architecture, or
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improper configurations, and their exploitation can lead to serious consequences

for organizations and individuals alike. To mitigate these risks, Software Vulner-

ability Assessment (SVA) [1, 2] is conducted to systematically detect, analyze,

and rank potential security flaws within software applications. The main ob-

jective of SVA is to improve software security by proactively identifying and

addressing threats, thus lowering the chances of successful attacks, meeting in-

dustry regulations, and fostering confidence among users and stakeholders.

Current software vulnerability assessment tasks primarily rely on pre-trained

large language models of code [3]. These models, trained on massive code

datasets, excel in downstream software engineering tasks, such as code gen-

eration [4, 5] and vulnerability detection [6, 7]. However, these large models

come with an enormous number of parameters; for example, models like Code-

BERT have 125 million parameters and exceed 450 MB in size [8], which brings

notable challenges. Firstly, excessive parameters result in slow inference speed.

In practical applications, inference with large models often requires a significant

amount of time, especially on standard consumer-grade devices, where response

delays exceed one second, far from meeting the demands of real-time, high-speed

tasks [9]. Secondly, the model’s large size complicates deployment. Storage re-

quirements for large pre-trained code models frequently exceed the capacities

of standard development environments or low-end devices. This is especially

true in environments with limited storage, such as integrated development en-

vironments (IDEs) or embedded systems, where deploying these models is chal-

lenging [10]. Additionally, large models typically demand greater memory and

computational resources, restricting their application on resource-constrained

devices.

More critically, the intensive computation requirements of these large mod-

els result in substantial energy consumption and carbon emissions, negatively

impacting environmental sustainability [11, 12]. This trend is especially concern-

ing as the use of large language models in software engineering tasks (such as

program repair [13, 14] and test generation [15, 16]) continues to grow, height-

ening environmental concerns. For instance, each model inference involves a
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large number of floating-point operations (FLOPs) [17], which consumes signif-

icant energy resources. When these models are run frequently across multiple

devices, cumulative carbon emissions further increase. Consequently, optimiz-

ing and compressing these models to reduce energy consumption and carbon

footprint, while preserving performance as much as possible, has become a key

challenge in current research and application of large code models.

In recent years, many studies [18, 19, 20] have begun exploring model com-

pression techniques to reduce model size, enhance inference speed, and decrease

computational resource consumption. The most common model compression

methods include model pruning, model quantization, and knowledge distillation.

Model pruning [21, 22, 23], reduces the number of parameters by setting certain

parameters to zero or removing parts of the network structure, such as layers

or attention heads. However, pruning techniques have limited effectiveness in

compressing large pre-trained code models. Even with the removal of network

layers, a large embedding table often remains, as in CodeBERT, where it ac-

counts for around 150 MB [24]. This makes it difficult to compress the model to

meet stringent storage constraints. Model quantization [25, 26] converts model

parameters from 32-bit floating-point numbers to lower-bit fixed-point numbers,

such as 8-bit or even lower, thereby reducing storage requirements and memory

usage. While quantization can decrease model size to some extent, its impact

on inference speed is limited, particularly when running on CPUs [27], where

quantized models still require significant resources.

Knowledge distillation [28, 29] involves training a smaller student model

to mimic the behavior of a large teacher model, achieving knowledge transfer

and model compression. The teacher model’s outputs serve as “soft labels”

for the student model, allowing the retention of essential information from the

original model in a smaller structure. This approach has notable advantages, as

it can maintain performance close to the original model while achieving better

inference efficiency when running on standard devices [30].

Although knowledge distillation effectively compresses model size and main-

tains high performance, it still faces several key challenges. The first is the
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capacity gap. Large code models, such as CodeBERT, possess extensive parame-

ters and complex network structures, enabling them to represent rich knowledge,

which is often referred to as “high model capacity”. In contrast, small student

models have shallower network structures and lower dimensions, resulting in

limited capacity and difficulty in effectively capturing the extensive knowledge

in the large model [29]. This capacity gap can easily lead to performance loss

during the distillation process.

The complexity of selecting the student model architecture is another sig-

nificant challenge in knowledge distillation. Choosing a suitable student model

architecture is crucial for effective distillation, as it requires retaining as much

knowledge as possible within limited storage space. However, selecting the stu-

dent model architecture is essentially a large combinatorial optimization prob-

lem [31], involving choices around network structures (e.g., CNN, LSTM) and

various hyperparameters (e.g., number of layers and attention heads). This

vast search space makes it computationally infeasible to train and validate all

possible student model architectures individually. Therefore, practical imple-

mentations require efficient and straightforward evaluation metrics to filter and

identify potentially optimal model architectures.

To address the capacity gap and architectural complexity challenges in knowl-

edge distillation, we propose a particle swarm optimization-based student model

architecture search approach, PSO-KDVA. Similar to prior research [32, 24, 31],

PSO-KDVA uses Giga floating-point operations (GFLOPs) as an evaluation

metric for computational cost. The difference between the original model size

and the compressed student model size is used as a metric for assessing the

capacity gap. By combining these two metrics, we construct a fitness function

that guides the particle swarm optimization algorithm to converge quickly in

the large architectural space to find an optimal student model architecture that

balances performance and efficiency. After obtaining the optimal architecture

for the student model, we apply knowledge distillation techniques to guide the

student model in learning the teacher model’s knowledge. Specifically, we input

unlabeled data into the teacher model for training and obtain prediction results
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for each data. These unlabeled data, along with the teacher model’s predictions,

are then used to train the student model.

We evaluate the effectiveness of our PSO-KDVA approach using a dataset

that contains 12,071 vulnerability entries. This dataset is based on the megavul [33]

dataset, which we have expanded and modified. Following prior research, we use

CodeBERT as the large code model for software vulnerability assessment and

apply knowledge distillation for model compression. Specifically, our proposed

PSO-KDVA approach compresses the model size to 0.6% of the original size

while maintaining 89.3% of the original model’s performance. Furthermore, we

compare the PSO-KDVA approach with the state-of-the-art BiLSTMsoft [34]

approach. The results indicate that the compressed model size of our approach

is only 40% of that of the BiLSTMsoft approach, while the performance of the

BiLSTMsoft approach is only 98.3% of that of the PSO-KDVA approach. Ad-

ditionally, to illustrate the execution efficiency of the particle swarm optimiza-

tion (PSO) [35, 36, 37] algorithm, we compare it with the genetic algorithm

(GA) [38, 39]. The result shows that the PSO algorithm reduces the time cost

of the model architecture search process by 34.88%. Finally, we analyze the time

cost of the PSO-KDVA approach, revealing that the training time required by

our approach is only 27.9% of that needed for the pre-trained code model.

The novelty and contributions of our study can be summarized as fol-

lows:

• Perspective. We are the first to compress large code models used for

software vulnerability assessment, employing knowledge distillation to re-

duce model size while preserving performance as much as possible.

• Approach. We introduce the PSO-KDVA approach, which leverages

the particle swarm optimization algorithm to efficiently identify optimal

model architectures within a large parameter space that meets specific

constraints.

• Practical Evaluation. We conduct a comprehensive evaluation of PSO-

KDVA, demonstrating that it significantly reduces model size and training
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Figure 1: Knowledge distillation framework from teacher model to student model

time while maintaining high performance.

Open Science. To facilitate replication and further research, we share our

dataset and source code on GitHub (https://github.com/judeomg/PSO-KDVA).

Paper Organization. Section 2 introduces the research background and

the research challenges. Section 3 presents the implementation details of our

proposed approach PSO-KDVA. Section 4 describes our experimental setup.

Section 5 shows our experimental results and main findings. Section 6 discusses

the impact of compressed model sizes, and analyzes potential threats to our

study. Section 7 summarizes related work. Section 8 summarizes our study and

discusses potential future directions.

2. Background

In this section, we first introduce the background of software vulnerability

assessment. Then we introduce the model compression and knowledge distilla-

tion. Finally, we analyze the primary challenges faced in our research.

2.1. Software Vulnerability Assessment

The core objective of software vulnerability assessment is to help develop-

ers and security experts identify and understand potential risks associated with

vulnerabilities more quickly, allowing them to prioritize the most threatening

issues under limited resources [2, 40]. With the rapid growth of cybersecurity
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threats, the number of reported vulnerabilities rises each year, making it es-

sential to effectively evaluate the severity and impact of these vulnerabilities to

optimize management and establish repair priorities [41].

Formal Problem Definition. Let V = {v1, v2, . . . , vn} be a set of software

vulnerabilities, where each vulnerability vi is characterized by its code context

ci. The vulnerability assessment task aims to learn a mapping function f : C →

S, where C represents the space of code contexts and S denotes the severity

space. For automated vulnerability assessment, this can be formulated as:

ŝi = f(ci;θ) (1)

where ŝi is the predicted severity for vulnerability vi, ci is the encoded repre-

sentation of the code context, and θ represents the model parameters.

To achieve standardized vulnerability assessment, the Common Vulnerabil-

ity Scoring System (CVSS) [42] has become a widely used tool in the industry.

CVSS provides quantifiable metrics for various characteristics of a vulnerabil-

ity, including impact and exploitability, among others. These scores not only

assist developers in understanding the potential security impact on systems but

also guide them in allocating resources wisely to prioritize the remediation of

vulnerabilities with the most significant impact.

Traditionally, CVSS scoring relies on manual evaluation by experts, but this

approach faces significant delays [43, 44]. The manual scoring process can take

days or even months to be released after detection and remediation, leading to

a lag in response. To address this issue, automated vulnerability assessment

methods have been proposed and increasingly adopted, aiming to resolve the

delays caused by manual evaluation. These automated methods leverage ma-

chine learning and deep learning models to analyze and predict CVSS scores

directly from code or commit records [45]. Existing automated methods often

use pre-trained large code models to predict vulnerability severity [2, 46, 47, 48],

which reduces the manual effort but increases computational costs. Therefore,

we compress large code models using knowledge distillation, significantly re-
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ducing model size while maximizing performance. Our approach contributes

to improved resource efficiency and environmental sustainability in automated

vulnerability assessment.

2.2. Model Compression and Knowledge Distillation

Pre-trained large code models, such as CodeBERT, excel in tasks like code

generation [49, 5], clone detection [50, 51], and vulnerability detection [52, 53].

However, their massive parameter sizes result in slow inference speeds, high

memory demands, and substantial resource consumption. These large models

not only restrict deployment on consumer-grade devices but also incur high

computational and energy costs. Therefore, researchers are exploring various

model compression techniques, such as model pruning [21, 22, 23], model quan-

tization [25, 26], and knowledge distillation [28, 29] to reduce model size and

improve inference efficiency.

Model Compression Objective. Given a teacher model fT with param-

eters θT and |θT | parameters, the goal of model compression is to obtain a

student model fS with parameters θS such that |θS | ≪ |θT | while maintaining

comparable performance. The compression ratio can be defined as:

ρ =
|θS |
|θT |

(2)

Notice ρ≪ 1 indicates a significant compression.

Knowledge Distillation. Knowledge distillation, an effective model com-

pression technique, transfers knowledge from a large model (teacher model) to

a smaller model (student model), significantly reducing model size while main-

taining optimal performance. Figure 1 illustrates the framework of knowledge

distillation. In the distillation process, the teacher model’s output serves as “soft

labels” for the student model, guiding it to learn the teacher model’s behavior.

This approach is well-suited for running on standard devices, effectively reduc-

ing inference time and resource consumption. Knowledge distillation has been

applied to various tasks, such as image classification [54, 55], recommendation

systems [56, 57], and speech recognition [58, 59]. Knowledge distillation can be
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classified into task-specific distillation and task-agnostic distillation [29]. Task-

agnostic distillation [60, 61] is not limited to specific tasks but instead transfers

broad knowledge from a general teacher model to the student model. While

this approach enhances model versatility, it demands substantial computational

resources and may underperform on certain tasks since it lacks task-specific

optimization. In contrast, task-specific distillation [34, 62] involves training or

fine-tuning the teacher model on specific task data to generate more accurate

predictions or feature representations, which are then transferred to the student

model. This approach is less resource-intensive, and the student model typically

achieves strong performance, as the knowledge it learns is tailored to the specific

task. Therefore, our approach adopts task-specific distillation.

Formally, the fundamental principle of knowledge distillation lies in the soft

target distribution provided by the teacher model. Given an input x, the teacher

model generates a probability distribution over classes:

pTi =
exp(zTi /τ)∑
j exp(z

T
j /τ)

(3)

where zTi is the i-th logit output by the teacher model, and τ is the temperature

parameter that controls the softness of the probability distribution. Similarly,

the student model generates a probability distribution over classes:

pSi =
exp(zSi /τ)∑
j exp(z

S
j /τ)

(4)

The knowledge distillation loss combines the traditional cross-entropy loss

with the distillation loss:

LKD = αLCE(y, p
S) + (1− α)τ2LKL(p

T , pS) (5)

where α denotes a weighting factor, LCE is the cross-entropy loss with ground

truth labels y, and LKL is the Kullback-Leibler divergence loss:
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LKL(p
T , pS) =

∑
i

pTi log
pTi
pSi

(6)

Theoretical Foundation of Knowledge Distillation. The effectiveness

of knowledge distillation can be understood from the following two theoretical

perspectives:

(1) Information Transfer. The soft targets from the teacher model con-

tain richer information than hard labels. The relative probabilities between

non-target classes provide valuable information to help the student model gen-

eralize better.

(2) Regularization Effect. The distillation loss can act as a regularizer

that prevents the student model from overfitting to the training data. This can

be formalized as:

R(fS) = Ex∼D[DKL(fT (x)∥fS(x))] (7)

where R(fS) represents the regularization term that encourages the student to

mimic the teacher’s behavior.

2.3. Research Challenges

However, applying knowledge distillation techniques to software vulnerabil-

ity assessment presents several key challenges. First, due to the broad parameter

space of models, selecting an appropriate student model architecture is complex,

and finding a suitable architecture within an acceptable timeframe is crucial.

Additionally, designing an effective optimization objective is essential so that

the distilled student model not only reduces in size but also maintains high per-

formance. Finally, analyzing the impact of model compression on performance

is critical for evaluating the effectiveness of this approach.

3. Approach

Figure 2 shows the framework of our proposed approach PSO-KDVA. It

is divided into three main phases. Specifically, in the optimal architecture
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Figure 2: Framework of our proposed approach PSO-KDVA

search phase, the entire parameter configuration space is first determined

based on the compressed model size. All possible combinations in this parameter

space form the candidate architecture set for the student model. Then, the

particle swarm optimization algorithm is applied to find an optimal student

model architecture that meets the constraint conditions. In the knowledge

distillation phase, a large code model is trained on a collected vulnerability

dataset to acquire knowledge about software vulnerability assessment. After

training, knowledge distillation is performed on the teacher model, transferring

its knowledge to the optimal student model architecture to create a compact

and efficient student model. Finally, in the vulnerability assessment phase,

the distilled student model is tested on the vulnerability assessment task to

evaluate its capability in predicting vulnerability severity on a real dataset.

In the remainder of this section, we present the implementation details of our

PSO-KDVA approach.

3.1. Optimal Architecture Search Phase

Knowledge distillation is a model compression technique that aims to trans-

fer the knowledge of a teacher model (a large model) to a student model (a

smaller model), thereby significantly reducing the model’s size while retaining
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the performance of the larger model. The key to this approach lies in identify-

ing the optimal architecture for the student model to ensure it can effectively

learn the teacher model’s knowledge and achieve good performance on specific

tasks [63]. Balancing model size reduction with maintaining performance is

essentially a combinatorial optimization problem. Searching for the most suit-

able student model architecture in the parameter space is inherently a search

problem: adjusting given objective functions and constraints to find the opti-

mal solution within an acceptable time frame [31]. To address this, we must

overcome three key challenges.

First, selecting an appropriate architecture for the student model requires

searching through numerous configuration combinations to find the one that

optimizes the smaller model’s structure while maintaining performance. This

process is computationally intensive and time-consuming. To address this is-

sue, we propose the PSO-KDVA approach, which employs the particle swarm

optimization algorithm to search the configuration space of the model. PSO is

a global optimization algorithm based on swarm intelligence, which simulates

the collective behavior of birds to locate the optimal solution [64]. In the PSO

algorithm, each candidate solution is treated as a “particle” that “flies” through

the configuration space, gradually adjusting its position to minimize the objec-

tive function value. A particle’s position is updated based on its own historical

best position (individual best) and the swarm’s overall best position (global

best) [35, 36]. Through this iterative process, the particle swarm converges to-

wards the optimal solution, allowing the identification of the optimal student

model configuration within a limited time.

Second, an effective metric is required to comprehensively assess both the size

and performance of the student model after knowledge distillation. Typically,

each candidate model would need to undergo training and evaluation, which

is resource-intensive and often unfeasible. Therefore, a simple and efficient

predictive metric is needed to guide the model architecture search. Based on

previous research [31, 32, 65], we use Giga floating-point operations (GFLOPs)

as a measure of computational cost.
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Finally, because the teacher model usually possesses greater complexity and

learning capability, the student model, constrained by its network structure,

may struggle to fully absorb and replicate the knowledge of the larger model.

This difference in model capacity may lead to suboptimal performance in the

student model. To address this, we draw from similar research and employ soft

labels as inputs for the student model [66, 67, 68], using knowledge distillation to

guide the student model’s learning of the teacher model’s knowledge. This soft

label approach helps the student model understand the reasoning and prediction

process of the teacher model, thereby enhancing its performance.

3.1.1. Hyperparameter Configuration Space

Table 1

The hyperparameters included in the configuration space and their search ranges, as well as

the values of each hyperparameter in the teacher model. The parameters in bold are those

that can affect model size.

Hyperparameter Name Pre-trained Models Search Space

tokenizer “Byte-Pair Encoding” [“Byte-Pair Encoding”]

vocab size 50265 range (1000, 50265), interval = 1000

num hidden layers 12 range (1, 12), interval = 1

hidden size 768 range (16, 768), interval = 16

hidden act “GELU” [“GELU”]

hidden dropout prob 0.1 [0.1]

intermediate size 3072 range (16, 3072), interval = 32

num attention heads 12 range (1, 12), interval = 1

attention probs dropout prob 0.1 [0.1]

max sequence length 512 [512]

position embedding type “absolute” [“absolute”]

learning rate 5e-5 [1e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3]

batch size 32 [32]

In this section, we define the hyperparameter search space for training the

student model. This search space includes multiple hyperparameters related

to model architecture and training configuration [31, 69]. Each hyperparame-

ter’s range is carefully designed to ensure the effectiveness of the student model
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and to control the size of the search space. Table 1 lists these hyperparame-

ters along with their respective ranges, as well as the values assigned to each

hyperparameter in the teacher model. A detailed description follows.

Tokenizer : Converts input text into tokens understandable by large code

models, supporting four choices—“Byte-Pair Encoding” [70], “WordPiece” [71],

“Unigram” [72] and “Word” [73]. The pretrained model uses “Byte-Pair Encod-

ing”. Since this parameter does not affect model size and only impacts model

performance, we use the same settings as the fine-tuned teacher model in the

student model architecture to achieve optimal performance. For parameters

not shown in bold in the table, we maintain the same settings as the fine-tuned

teacher model.

Vocab size: Defines the size of the vocabulary, with a range of 1,000 to

50,265 and a step size of 1,000. A smaller vocabulary can effectively compress

the model, but it must retain sufficient expressiveness.

Num hidden layers: The number of hidden layers, controlling the model’s

depth, with a range of 1 to 12 and a step of 1. Reducing layers helps decrease

model size but requires balancing performance and model capacity.

Hidden size: The number of hidden units per layer, ranging from 16 to 768

with a step size of 16. More hidden units increase the model’s representational

power but also its size and computational cost.

Hidden act : The type of activation function, with choices of “GELU” [74],

“ReLU” [75], “SiLU” [76] and “GELU new” [31]. The fine-tuned teacher model

and the student model both set this parameter to “GELU”.

Hidden dropout prob [77]: Dropout probability for hidden layers to prevent

overfitting. The fine-tuned teacher model and the student model both set this

parameter to 0.1.

Intermediate size [77]: The size of the intermediate layer in the feedforward

network, ranging from 16 to 3,072 with a step of 32. A larger size increases

model capacity but also computational overhead.

Num attention heads: The number of attention heads, representing how

many features the model attends to in each layer. The search range includes 1,

15



2, 4, and 8, with the pretrained model using 12 heads.

Attention probs dropout prob [78]: Dropout probability for attention scores.

The fine-tuned teacher model and the student model both set this parameter to

0.1.

Max sequence length: The maximum input sequence length, allowing for

handling of texts with different lengths. The fine-tuned teacher model and the

student model both set this parameter to 512.

Position embedding type [79]: The type of positional encoding scheme, in-

cluding “absolute”, “relative key” and “relative key query”. The fine-tuned

teacher model and the student model both set this parameter to “absolute”.

Learning rate: The learning rate adjusts to accommodate different training

speeds. The fine-tuned teacher model sets this parameter to 5e-5, while the

student model sets it to 5e-4.

Batch size: Batch size per training iteration. The fine-tuned teacher model

and the student model both set this parameter to 32.

The search ranges for these hyperparameters are designed not to exceed the

search limits provided in Table 1, ensuring that model simplification does not

excessively impact its performance. Furthermore, by setting specific adjust-

ment intervals for each hyperparameter, the configuration avoids the creation

of potentially invalid model structures. Conducting the search within this con-

figuration space allows for the model’s size to be compressed while maximizing

its expressiveness and performance.

3.1.2. PSO-based Search

Based on the hyperparameter ranges analyzed in Section 3.1.1 for the con-

figuration space, there are approximately 9.2× 1013 valid student model archi-

tectures. However, training and validating all possible architectures is clearly

impractical. Therefore, we formulate the evaluation approach as an optimization

problem, aiming to find the optimal solution for the objective function within

given constraints. Our proposed PSO-KDVA approach employs the PSO algo-

rithm to search for the optimal model architecture that meets these constraints.
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Algorithm 1 illustrates the pseudocode for the PSO algorithm we use. Specif-

ically, the process begins with randomly initializing the particles’ position and

velocity information, ensuring they are distributed within the hyperparameter

range c for model architecture (Line 1). We then initialize each particle’s in-

dividual best solution (Line 2 to 4) and the global best solution (Line 5). The

algorithm then enters an iterative loop where each particle’s position and veloc-

ity are updated. The new velocity is calculated based on the particle’s current

velocity, individual best position, and global best position. Using this updated

velocity, each particle adjusts its position, moving to a new location (Lines 6

to 17), followed by calculating and updating the value of the fitness function

(Lines 10 to 15). Finally, the model returns the solution with the highest fitness

function value (Lines 18 to 19).

Particle Representation: In the PSO algorithm, a particle represents a

feasible solution to the target problem [35, 36], defined by a set of hyperpa-

rameters with specific values. In our study, each particle’s position represents a

candidate configuration of hyperparameters, where each dimension of the posi-

tion vector corresponds to a specific hyperparameter and its current value. The

particle stores these hyperparameter values in a vector structure. The search

space that particles move through consists of all hyperparameters, forming a 13-

dimensional space. For example, a particle can be represented as [“Byte-Pair

Encoding”, 3000, 12, 96, “GELU”, 0.1, 3072, 12, 0.1, 512, “absolute”, 5e-5, 32].

The values in this vector are derived from the configuration space outlined in

Section 3.1.1. Drawing from previous studies [37, 80], we initialize a swarm of

particles, with each hyperparameter’s position randomly set within its prede-

fined range. Each particle also has a specific velocity, which directs its movement

within the search space. The randomly initialized particles collectively form the

swarm, serving as the starting point for the iterative optimization process. Dur-

ing the search process, the PSO algorithm updates the position of each particle

iteratively. Each particle’s movement is influenced by its own previous best po-

sition and the best position found by the entire swarm. The algorithm uses a

set of parameters to control this movement. The inertia weight determines how
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Algorithm 1 PSO Algorithm Pseudo-Code

Input: c: value ranges of architecture-related hyperparameters, w: iner-

tia weight, c1, c2: acceleration coefficients, maxIter: maximum number of

iterations, swarmSize: number of particles in the swarm

Output: c′: optimized architecture-related hyperparameters

1: Initialize swarm with random positions and velocities within c

2: for each particle i in swarm do

3: pBest[i]← particle[i] ▷ individual best

4: end for

5: gBest← argmax(pBest) ▷ global best

6: for iter = 0 to maxIter do

7: for each particle i in swarm do

8: velocity[i+ 1]← w · velocity[i]

+c1 · random() · (pBest[i]− position[i])

+c2 · random() · (gBest− position[i])

9: position[i+ 1]← position[i] + velocity[i+ 1]

10: if fitness(position[i]) > fitness(pBest[i]) then

11: pBest[i]← position[i]

12: end if

13: if fitness(pBest[i]) > fitness(gBest) then

14: gBest← pBest[i]

15: end if

16: end for

17: end for

18: c′ ← gBest

19: return c′

much the particle’s current velocity affects its next movement. Acceleration

coefficients, along with random values, determine how strongly the particle is

attracted to its personal best and the global best positions. In each iteration,

all particles adjust their positions based on their individual best positions and
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the global best position identified by the swarm. Through this process, particles

gradually converge toward the optimal solution.

Fitness Function: In the PSO algorithm, the fitness function evaluates the

quality of each particle’s current position in the search space. A higher fitness

value indicates that the particle’s configuration is closer to meeting the model’s

design constraints. The objective of the PSO-KDVA approach is to compress

the model size while retaining as much of the model’s actual performance as

possible. Thus, the fitness function must account for both factors.

For evaluating model performance, we adopt Giga Floating-Point Operations

(GFLOPs) as the metric, based on prior research [32, 24]. Since floating-point

operations are more complex for computers to handle than integer operations,

GFLOPs are commonly used to measure the complexity of computational tasks.

Higher GFLOPs indicate a greater computational load, which generally suggests

a more complex model with stronger computational capability and the ability

to process more information and features, leading to better model performance.

We choose GFLOPs over other common metrics like FLOPs or latency for

the following reasons. First, the numerical range of GFLOPs (where GFLOPs is

defined as FLOPs divided by 109) in our experiments is well-suited for compar-

ison with model size. We observe that GFLOPs values typically range from 1

to 3, while the model size difference is in the range of 0 to 1. This compatibility

in numerical range makes it easier to combine these two metrics in the fitness

function. Second, latency can vary greatly depending on the specific hardware

platform and implementation environment. This variability makes it challeng-

ing to use latency as a consistent metric for optimizing models across different

experimental setups. In contrast, GFLOPs provides a hardware-agnostic mea-

sure of computational complexity, directly reflects the number of operations,

and is more relevant to resource constraints.

For model size evaluation, we use the difference in capacity between the

compressed student model and the original teacher model. Since the size of

the teacher model remains constant, a larger difference implies a smaller, more

compressed student model.
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Algorithm 2 Knowledge Distillation Algorithm Pseudo-Code

Input: L: teacher model, D: training dataset, T : temperature parameter

Output: S: student model

1: for d in D do

2: p, q = L(d), S(d)

3: loss = softmax( p
T ) ∗ log(softmax( q

T )) ∗ T
2

4: S.update(loss)

5: end for

6: return S

To achieve both objectives—compressing the model size while maximizing

model performance—the PSO algorithm’s fitness function is designed as follows:

Fitness(i) = GFLOPs− |S − si| (8)

where i represents the i-th particle, GFLOPs indicates the computational ca-

pability of the student model, S denotes the size of the teacher model, and

si represents the size of the student model under the current hyperparameter

configuration.

3.2. Knowledge Distillation Phase

Knowledge distillation is a widely used model compression technique that

reduces the space of large code models by transferring knowledge from a pre-

trained teacher model to a smaller student model. This process allows the

student model to closely approximate the teacher model’s performance while

reducing model size [28, 14]. In our study, we employ a task-specific distillation

method based on the approach proposed by Hinton et al. [81], which has proven

effective for large code models [30, 24].

As described in Algorithm 2, the distillation process begins by inputting the

same training data D into both the teacher model L and the student model

S. For each input d in D, the teacher and student models produce output

probabilities p and q, respectively (Line 2). The objective is to minimize the
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difference between these outputs, making the student model’s behavior similar

to that of the teacher model. The core of this approach lies in the loss func-

tion (Line 3), where a softened version of the softmax output is applied using

a temperature parameter T . By smoothing the probability distribution, this

parameter facilitates the transfer of knowledge from the teacher model to the

student model. The student model is trained to minimize this loss, iteratively

adjusting its parameters (Line 4) to align its outputs with those of the fixed

teacher model.

A notable advantage of our approach is its reliance on unlabeled data for

training, addressing the challenge of obtaining labeled datasets. Unlabeled data

can be easily collected from open-source repositories, and this approach aligns

with previous findings [82, 83, 34], which suggests that label-free knowledge

distillation can achieve competitive results.

3.3. Vulnerability Assessment Phase

In the vulnerability assessment phase, we use the distilled student model to

evaluate the severity levels of software vulnerabilities. To predict the severity

of vulnerable code, the model processes the input code and assesses the vul-

nerability based on the learned code representations. Given the vast number

of software vulnerabilities, evaluating their severity requires significant com-

putational resources. The lightweight nature of knowledge distillation makes it

particularly well-suited for this task, allowing for efficient evaluation in real-time

or on resource-constrained devices while maintaining assessment accuracy.

4. Experimental Setup

In this section, we first introduce our research questions and their design mo-

tivation. Then, we provide detailed information about the experimental subject,

baseline, performance metrics, and running platform.

21



4.1. Research Questions

To show the competitiveness of PSO-KDVA and the rationale of the com-

ponent settings in PSO-KDVA, we design the following four research questions

(RQs) in our study.

RQ1: How much can the PSO-KDVA approach compress the

model?

Motivation: Current large code models have an enormous number of pa-

rameters, which not only increases memory requirements and inference latency

but also limits their applicability on resource-constrained devices. To enhance

model usability and reduce the environmental impact of resource consumption,

we propose the PSO-KDVA approach, which aims to efficiently compress the

model using particle swarm optimization and knowledge distillation techniques.

Therefore, it is necessary to evaluate the actual performance of the PSO-KDVA

approach in terms of model size compression. To further demonstrate the effec-

tiveness of our proposed approach, we also compare it with the state-of-the-art

knowledge distillation technique, BiLSTMsoft [34].

RQ2: Can the PSO-KDVA approach minimize the loss in accuracy

for vulnerability assessment while compressing the model size?

Motivation: Although large models excel in tasks such as code genera-

tion and vulnerability detection, model compression may hinder the student

model’s ability to effectively capture the teacher model’s knowledge, leading to

reduced prediction accuracy. Thus, knowledge distillation faces a trade-off be-

tween performance loss and model size reduction. This research question aims to

evaluate whether the PSO-KDVA approach can retain high model performance

while compressing model size.

RQ3: To what extent does model size compression affect accuracy?

Motivation: Reducing model capacity may impact performance, especially

in complex multi-class vulnerability assessment tasks where performance is di-

rectly linked to accuracy. To better understand the relationship between model

size and performance, it is necessary to explore how varying levels of compres-

sion impact model accuracy. This will help identify an optimal balance between
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compression effectiveness and performance, providing guidance for future model

optimization and practical applications.

RQ4: What is the execution efficiency of the PSO algorithm?

Motivation: The PSO-KDVA approach requires finding the optimal stu-

dent model architecture before performing knowledge distillation. The compu-

tational efficiency of this process directly affects the overall time cost of model

compression. Therefore, analyzing the execution efficiency of the PSO algorithm

is particularly crucial. To this end, we consider comparing it with another com-

monly used and effective search algorithm, the Genetic Algorithm (GA) [38, 39].

4.2. Experimental Subject

Our study utilizes an enhanced version of the MegaVul dataset initially con-

structed by Ni et al. [33], which contains 17,975 C/C++ vulnerability records.

This dataset provides rich vulnerability information, including vulnerable code,

descriptions, and severity levels. However, Ni et al.’s dataset relies on the CVSS

v2 [3, 84] vulnerability scoring standard. Building on their work, we retrieved

CVSS v3 scores for all vulnerabilities. Compared to CVSS v2, the enhanced

structure of CVSS v3 more accurately reflects vulnerability risks, aligning well

with our research objectives. We removed vulnerabilities that did not have re-

trievable CVSS v3 scores, resulting in a final dataset of 12,071 vulnerabilities

scored using the CVSS v3 standard.

We used stratified sampling to divide the dataset into a training set (80%),

validation set (10%), and test set (10%), ensuring a consistent distribution of

severity levels across all subsets. Table 2 presents detailed information about

these subsets, specifying the number of vulnerabilities at each severity level in

each subset. For example, the training set contains 4,454 high-severity vul-

nerabilities, while the validation and test sets each contain 577 high-severity

vulnerabilities.

4.3. Baseline

To validate the effectiveness of our proposed PSO-KDVA approach, we se-

lected the state-of-the-art knowledge distillation approach, BiLSTMsoft [34], as
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Table 2

Statistical information of our experimental subject.

Statistic Train Validation Test

Number 9,656 1,207 1,208

Number of Critical severity 1,169 146 147

Number of High severity 4,454 577 577

Number of Medium severity 3,795 474 475

Number of Low severity 238 30 29

a baseline for comparison. Given that we are the first to apply knowledge distil-

lation to software vulnerability assessment, there is limited related research, so

we focus primarily on the BiLSTMsoft approach. The BiLSTMsoft approach,

proposed by Tang et al., transfers task-specific knowledge from a large pre-

trained language model, BERT, to a simpler and lighter BiLSTM-based model.

This method employs knowledge distillation by fine-tuning the BERT model

(teacher) on specific NLP tasks and using its output (logits) to train the smaller

BiLSTM model (student) to mimic the teacher model’s behavior.

The approach was evaluated on multiple tasks within the GLUE benchmark,

demonstrating competitive results with far fewer parameters and faster infer-

ence times than BERT, making it suitable for real-time or resource-constrained

applications. Additionally, the BiLSTMsoft approach also uses the soft labels

from the teacher model’s outputs to train the student model [34], consistent

with our experimental setup. For implementing the BiLSTMsoft approach, we

utilized their open-source repository and maintained the same settings for model

hyperparameters and other configurations.

Notice the BiLSTMsoft approach represents the most effective approach in

the field of vulnerability assessment. In the future, we aim to explore the ap-

plication of compression techniques from other domains to further optimize the

performance and adaptability of the model.
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4.4. Performance Metrics

To evaluate the performance of our proposed PSO-KDVA approach in the

vulnerability assessment task, as well as the compression capability of the knowl-

edge distillation approach, we use four metrics: Model Size in Memory, Time

Cost, Accuracy, and MCC (Matthews Correlation Coefficient). Among these,

Time Cost and MCC will be discussed further in section 6. These metrics are

detailed as follows:

• Model Size in Memory. This metric indicates the memory footprint of

the model, typically measured in MB or GB [85]. It reflects the storage

requirements of the model, which is particularly relevant for resource-

constrained devices or applications where smaller models are generally

easier to deploy.

• Time Cost. The time required for the model to perform a specific task

is usually in seconds or milliseconds. This metric evaluates the inference

efficiency of the model, with lower time costs indicating faster responses,

which is crucial for real-time or low-latency applications.

• Accuracy. The accuracy of the model in the vulnerability assessment

task represents the proportion of correct predictions. This metric directly

reflects the model’s overall performance, with higher accuracy indicating

a more precise assessment of vulnerability severity levels.

• MCC. This metric measures the quality of the model’s predictions across

different classes, particularly when there is a class imbalance problem in

the dataset [86]. MCC provides a comprehensive evaluation standard,

ranging from -1 to 1, where higher values indicate stronger classification

ability, and 0 suggests performance equivalent to random classification.

Using these metrics, we can comprehensively assess the compression effi-

ciency and performance loss of our PSO-KDVA approach.
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4.5. Running Platform

All experiments are conducted on a server equipped with a GeForce RTX

4090 GPU with 24GB of graphic memory, running the Windows 10 operating

system. The program is theoretically capable of running without a GPU and

can be adapted to operate on other operating systems, such as Linux.

5. Experimental Results

5.1. RQ1: How much can the PSO-KDVA approach compress the model?

Approach: To investigate the compression capability of our proposed PSO-

KDVA approach on the large code model (CodeBERT), we compare it with a

state-of-the-art knowledge distillation baseline and evaluate the results. For

PSO-KDVA, we employ the model architecture search strategy described in

Section 3.1, using the PSO algorithm to identify the optimal student model

configuration space. Compression performance evaluation is based on model size

and storage space, following the evaluation metrics introduced in Section 4.4.

Results: The comparison of compression capabilities between PSO-KDVA

and the baseline model is shown in Table 3. Our proposed PSO-KDVA ap-

proach achieves efficient model compression, significantly reducing model size.

Specifically, PSO-KDVA compresses the model to 0.63% of its original size, re-

quiring only 3 MB of storage space. In contrast, BiLSTMsoft reduces the model

size to 1.58% of the original, with a storage requirement of 7.5 MB. Further

analysis shows that the PSO-KDVA approach reduces model storage by 4.5 MB

compared to BiLSTMsoft, a reduction of 60% relative to the BiLSTMsoft ap-

proach. This indicates that PSO-KDVA outperforms BiLSTMsoft in terms of

compression efficiency.

Summary for RQ1: Experimental results demonstrate that PSO-

KDVA achieves highly efficient model compression, reducing the model

size to 0.63% of the original, with a storage space of only 3 MB. Com-

pared to the baseline model, the compression rate improves by 60%.
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Table 3

Comparison of compression effectiveness and performance between the teacher model (Code-

BERT) and student models (BiLSTMsoft and PSO-KDVA). The values in the “Drop” row for

the student models indicate their improvement ratio relative to the teacher model. In the last

row of the table, the “Drop” value shows the improvement ratio of the PSO-KDVA approach

over the BiLSTMsoft baseline.

Approach
Capacity Vulnerability Assessment

Model Size (MB) Drop (%) Accuracy (%) Drop (%)

CodeBERT 476 - 60.93 -

BiLSTMsoft 7.5 98.4 53.48 12.23

PSO-KDVA 3 99.4 54.39 10.73

Improvement of PSO-KDVA over BiLSTMsoft 4.5 60 0.91 1.70

5.2. RQ2: Can the PSO-KDVA approach minimize the loss in accuracy for

vulnerability assessment while compressing the model size?

Approach: To assess whether the PSO-KDVA approach can minimize accu-

racy loss in vulnerability assessment while compressing model size, we compare

it with the original teacher model and the BiLSTMsoft baseline. Following the

evaluation metrics outlined in Section 4.4, we evaluate the accuracy metrics

of the teacher model and both student models on the vulnerability assessment

task to measure changes in model performance after knowledge distillation. The

PSO-KDVA approach uses the teacher model’s output as soft labels during train-

ing, applying knowledge distillation to retain critical knowledge from the teacher

model and aim for similar performance levels.

Results: The performance comparison between PSO-KDVA and BiLSTMsoft

is shown in Table 3. Experimental results demonstrate that PSO-KDVA effec-

tively maintains high accuracy while significantly reducing model size. Specif-

ically, the teacher model achieves an accuracy of 60.93% on the vulnerability

assessment task. PSO-KDVA reaches an accuracy of 54.39%, which is 89.3% of

the teacher model’s accuracy. In contrast, BiLSTMsoft achieves an accuracy of

53.48%, or 87.8% of the teacher model’s performance, showing that PSO-KDVA

outperforms the BiLSTMsoft approach. Compared to BiLSTMsoft, PSO-KDVA

reduces performance loss by 1.7%, indicating that PSO-KDVA minimizes accu-

27



racy loss while compressing the model.

Summary for RQ2: Experimental results show that PSO-KDVA ef-

fectively preserves accuracy in the vulnerability assessment task while

compressing model size. Specifically, the PSO-KDVA approach retains

89.3% of the teacher model’s performance after compression, with an

accuracy improvement of 1.7% over the baseline model.

5.3. RQ3: To what extent does model size compression affect accuracy?

Approach: To examine the impact of model size compression on vulner-

ability assessment accuracy, we conduct comparative experiments using PSO-

KDVA models of different sizes. Specifically, we use student models compressed

by PSO-KDVA to sizes of 3 MB, 25 MB, and 50 MB, and compare them to the

uncompressed teacher model CodeBERT (476 MB). We evaluate each model’s

accuracy on the vulnerability assessment task and calculate the accuracy loss

for each compressed model relative to the teacher model. This evaluation aims

to quantify the effect of different compression levels on model performance, al-

lowing us to analyze the relationship between compression efficiency and model

accuracy.

Results: Table 4 shows the accuracy of the three compressed models of

different sizes on the vulnerability assessment task, as well as their performance

loss relative to the teacher model. Results indicate a moderate decrease in accu-

racy as model size decreases. Specifically, the 3 MB PSO-KDVA model achieves

an accuracy of 54.39%, reflecting a performance loss of 10.73% compared to the

teacher model. The 25 MB model achieves 54.55% accuracy, with a performance

loss of 10.47%, while the 50 MB model reaches an accuracy of 56.21%, reduc-

ing performance loss to 7.75%. This suggests that larger compressed models

(e.g., 50 MB) retain accuracy better, while smaller models (e.g., 3 MB) tend to

experience higher accuracy loss.
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Table 4

Comparison of accuracy for compressed models of different sizes. The values in the “Drop”

row for the student models indicate their performance loss ratio relative to the teacher model.

Approach
Vulnerability Assessment

Accuracy (%) Drop (%)

CodeBERT (476 MB) 60.93 -

PSO-KDVA (3 MB) 54.39 10.73

PSO-KDVA (25 MB) 54.55 10.47

PSO-KDVA (50 MB) 56.21 7.75

Summary for RQ3: Experimental results show that model size com-

pression does indeed affect accuracy. Specifically, the 50 MB compressed

model demonstrates only a 7.75% performance decrease compared to the

teacher model, while the 3 MB model exhibits a 10.73% accuracy loss.

However, given the substantial reduction in model size with a relatively

small performance loss, the 3 MB model’s accuracy remains acceptable.

5.4. RQ4: What is the execution efficiency of the PSO algorithm?

Approach: To assess the execution efficiency of the PSO algorithm, we

compare it with the Genetic Algorithm (GA), focusing on the average time cost

during the search for the optimal model architecture. In the experiment, both

PSO and GA methods are applied to search for the student model architecture.

To ensure the reliability of the results, we independently run both the PSO and

GA algorithms five times and record the time spent in each experiment. By

calculating the average time cost from these five runs, we obtain the reduction

ratio in time cost of the PSO method relative to the GA method.

Results: As shown in Table 5, during the search for the optimal student

model architecture, the average time cost of GA was 0.43 seconds, while the

average time cost of PSO was 0.28 seconds. Compared to GA, PSO reduced the

time cost by 34.88%. This result indicates that PSO demonstrates significantly

29



Table 5

Comparison of the time cost between the PSO and GA approaches in searching for the optimal

model architecture. The values in the ”Drop” column represent the reduction ratio in the time

cost of the PSO approach relative to the GA approach.

Approach
Optimal Architecture Search

Average time cost (sec) Drop (%)

GA 0.43 -

PSO 0.28 34.88

higher execution efficiency and reduces the time overhead in the task of searching

for the student model architecture. Upon further analysis of the algorithm

execution principles, we find that PSO adjusts in each iteration by utilizing

both global and local information of the particle swarm, while GA relies on the

processes of reproduction and mutation, with a greater tendency for random

mutation to explore the solution space. This may lead to longer convergence

times, resulting in slightly lower efficiency in complex environments.

Summary for RQ4: The execution efficiency of the PSO algorithm in

model architecture search is clearly superior to that of the GA method.

Compared to GA, PSO reduced the time cost by 34.88%. The results

suggest that PSO performs better in terms of execution efficiency.

6. Discussion

6.1. Time Cost of PSO-KDVA

The time consumption for model training has a significant impact on envi-

ronmental sustainability. Therefore, we analyzed the differences in training time

costs across compressed models of varying sizes, as shown in Table 6. The origi-

nal CodeBERT model requires 68 minutes of training time for the vulnerability

assessment task, with a high time cost due to the large number of parameters

and high computational complexity, resulting in slower inference.
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Table 6

Comparison of time cost for compressed models of different sizes. The values in the “Drop”

row for the student models indicate the reduction in training time relative to the teacher

model.

Approach
Vulnerability Assessment

Time cost (min) Drop (%)

CodeBERT (476 MB) 68 -

PSO-KDVA (3 MB) 19 72.1

PSO-KDVA (25 MB) 21 69.1

PSO-KDVA (50 MB) 22 67.6

However, our PSO-KDVA approach uses particle swarm optimization to

identify the optimal model architecture and applies knowledge distillation for

model compression, effectively reducing training time costs. Specifically, mod-

els compressed to 3 MB, 25 MB, and 50 MB have training times of 19 minutes,

21 minutes, and 22 minutes, respectively—significantly lower than the 68 min-

utes required by CodeBERT. This result indicates that training time decreases

substantially as model size is compressed. Notably, the 3 MB model reduces

time cost by 72.1%. As model size increases (from 3 MB to 50 MB), time costs

rise slightly but remain within 22 minutes. This suggests that in selecting an

appropriate model size, it is essential to balance accuracy with time costs to

ensure high performance while maintaining low training time costs.

6.2. Class Imbalance Problem

In this section, we further analyze the impact of model compression on the

MCC metric, as noted in Section 4.4. The MCC metric assesses the model’s

ability to handle class imbalance issues. The results are shown in Table 7. From

the table, we observe that the original CodeBERT model achieves an MCC of

35.53%, while our approach’s compressed student models—at 3 MB, 25 MB,

and 50 MB—experience MCC reductions to 22.03%, 23.72%, and 26.74%, cor-

responding to performance drops of 37.99%, 33.24%, and 24.74%, respectively.
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Compared to the accuracy metric, MCC shows a greater degree of decline. For

instance, in the 3 MB model, accuracy drops by 10.73%, while MCC decreases

by 37.99%. This indicates that compressed models face considerable challenges

in handling class imbalance, as compression reduces time and storage costs but

compromises the model’s ability to address class imbalance issues effectively.

Table 7

Comparison of MCC metrics for compressed models of different sizes. The values in the

“Drop” row for the student models indicate the reduction in MCC relative to the teacher

model.

Approach
Vulnerability Assessment

MCC (%) Drop (%)

CodeBERT (476 MB) 35.53 -

PSO-KDVA (3 MB) 22.03 37.99

PSO-KDVA (25 MB) 23.72 33.24

PSO-KDVA (50 MB) 26.74 24.74

To further explore the robustness of our proposed approach PSO-KDVA in

handling the class imbalance issue, we conduct a separate inference and anal-

ysis on the minority class, specifically the low-frequency classes. As shown in

Table 8, CodeBERT achieves an accuracy of 51.53% in vulnerability assessment

for this type of class. BiLSTMsoft has an accuracy of 34.52%, with a drop of

33.01% compared to CodeBERT. Our PSO-KDVA approach, with the model

size of only 3 MB, obtains an accuracy of 38.28%, showing a drop of 25.71% rel-

ative to CodeBERT. While the accuracy drop for PSO-KDVA on the minority

class is notable, it is important to note that this is a common issue among model

compression methods. When reducing the model size, there is an inevitable loss

of representational capacity, which can impact performance on minority classes.

However, compared to BiLSTMsoft, our proposed approach PSO-KDVA still

demonstrates better performance. This indicates that, despite the challenges

posed by model compression, PSO-KDVA is relatively more effective in main-
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Table 8

Performance Comparison of CodeBERT, BiLSTMsoft, and PSO-KDVA on the Low-frequency

Class (Low).

Approach
Vulnerability Assessment

Accuracy (%) Drop (%)

CodeBERT (476 MB) 51.53 -

BiLSTMsoft (7.5 MB) 34.52 33.01

PSO-KDVA (3 MB) 38.28 25.71

taining a certain level of accuracy on minority classes.

The performance degradation on minority classes after model compression

can be attributed to the following reasons. First, during the compression pro-

cess, some of the features that are crucial for identifying minority class samples

may be pruned or not adequately preserved. Since minority classes have fewer

samples, the model may not have sufficient data to learn and retain these dis-

tinctive features during compression. Second, the reduced model size limits the

complexity of the model, making it more difficult to capture the subtle patterns

that are characteristic of minority classes. This is especially true in the con-

text of vulnerability assessment, where minority classes may represent rare or

less-studied types of vulnerabilities.

To mitigate the loss in robustness after compression and improve perfor-

mance on minority classes, the following potential solutions can be considered.

One approach is to integrate class-aware loss functions. For example, focal loss

can be used to assign higher weights to minority class samples during the train-

ing process. This encourages the model to pay more attention to these samples

and improves its ability to classify them correctly. Another potential solution is

to use data augmentation techniques specifically for minority samples. By in-

creasing the number of minority class samples, the model can learn more robust

features. Additionally, incorporating cost-sensitive learning during the distilla-

tion process can be beneficial. This means adjusting the cost associated with

33



misclassifying minority class samples, so that the model is more penalized for in-

correct predictions on these samples. We will consider these potential solutions

in our future work and reduce the performance loss of the compressed model on

minority classes.

6.3. Generalization on Foundation Models

In this section, we explore the generalization of PSO-KDVA on VulBERTa [6],

a Transformer-based model commonly employed in vulnerability detection. Ta-

ble 9 presents the comparison of model size and performance following the ap-

plication of PSO-KDVA for compressing the VulBERTa model.

Table 9

Comparison of Model Size and Performance after Applying PSO-KDVA to Compress Vul-

BERTa model

Approach
Capacity Vulnerability Assessment

Model Size (MB) Drop (%) Accuracy (%) Drop (%)

VulBERTa 499 - 60.51 -

PSO-KDVA 3 99.4 53.89 10.94

The VulBERTa model initially has a model size of 499 MB and an accu-

racy of 60.51% in vulnerability assessment. After applying PSO-KDVA, the

model size is significantly reduced to 3 MB, resulting in a compression rate of

99.4%. Although there is a 10.94% decrease in accuracy, leading to a value

of 53.89%, the substantial reduction in model size highlights the effectiveness

of the PSO-KDVA approach. This result not only validates the generalizabil-

ity of PSO-KDVA across different architectures, particularly those based on the

Transformer, but also underscores its potential in resource-constrained scenarios

where a minimized model size is crucial.
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Table 10

Performance Comparison of CodeBERT, BiLSTMsoft, and PSO-KDVA on the MegaVulJava

dataset.

Approach
Vulnerability Assessment

Accuracy (%) Drop (%)

CodeBERT (476 MB) 62.45 -

BiLSTMsoft (7.5 MB) 54.26 13.11

PSO-KDVA (3 MB) 57.69 7.62

6.4. Generalization across Programming Languages

To further validate the generalizability of our proposed approach PSO-KDVA

across different programming languages, we conduct additional experiments on

the MegaVulJava dataset, which contains Java vulnerabilities in MegaVul [33]

by following the same experimental setup. Table 10 presents the performance

comparison of CodeBERT, BiLSTMsoft, and PSO-KDVA on this Java-based

dataset.

CodeBERT, with a model size of 476 MB, achieves an accuracy of 62.45%

in vulnerability assessment. BiLSTMsoft, having a model size of 7.5 MB, shows

an accuracy of 54.26%, with a drop of 13.11% compared to CodeBERT. Our

proposed approach PSO-KDVA, despite having a much smaller model size of

only 3 MB, still managed to attain an accuracy of 57.69%, with a relatively

lower drop of 7.62% compared to CodeBERT. These results indicate that PSO-

KDVA can maintain a reasonable level of performance even when applied to

vulnerability assessment in the Java programming language, demonstrating its

generalization across different programming languages.

6.5. Analysis of Hyperparameter Value Settings

To ensure the effectiveness and efficiency of our proposed approach, we sys-

tematically analyze the impact of key hyperparameters on both the PSO opti-

mization algorithm and the model training process. By independently varying

each parameter while keeping others fixed, we can observe their individual effects
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Figure 3: Results of different parameter values of PSO in PSO-KDVA.

on search performance, convergence behavior, and overall model accuracy. This

analysis can not only help to identify optimal parameter settings for our specific

task but also provide valuable insights and practical guidelines for parameter

selection in similar applications.

6.5.1. Analysis of PSO Parameters

The performance of the PSO algorithm hinges on key parameters like pop-

ulation size, number of iterations, and inertia weight. Here, we meticulously

analyze these parameters and their implications for the optimization process.

Regarding the inertia weight, as shown in Figure 3a, we hold the population

size and number of iterations at their optimal levels determined through prior

experimentation. By incrementally adjusting the inertia weight, we observe

a non-linear relationship with the best fitness value. As the inertia weight

increases from a low value, the best fitness value decreases, indicating that the

algorithm explores different regions of the search space. When the inertia weight

reaches 0.9, the best fitness value reaches its minimum, demonstrating that the

algorithm effectively exploits a promising area. However, as the inertia weight

increases beyond 0.9, the best fitness value begins to rise again, revealing that

the balance between exploration and exploitation is disrupted. This behavior

shows that the algorithm achieves the optimal fitness value when the inertia

weight is set to 0.9, representing the convergence point for balancing exploration

and exploitation.

For the number of iterations, with the population size and inertia weight
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maintained at their respective optimal settings, we observe the evolution of the

best fitness value. As shown in Figure 3b, in the initial stages (0 to 150 iter-

ations), the best fitness value improves rapidly, indicating that the algorithm

makes significant progress in finding better solutions. After 150 iterations, the

best fitness value stabilizes at 2.2, which is a clear sign of convergence. This re-

sult demonstrates that the algorithm reaches a point where additional iterations

yield no further improvements. Therefore, the PSO algorithm converges effec-

tively within 150 iterations for our vulnerability assessment model compression

task.

Concerning the population size, we fix the inertia weight and number of

iterations at their optimal values. As illustrated in Figure 3c, increasing the

population size initially causes the best fitness value to fluctuate, then rise sig-

nificantly at a population size of 100, and reach its maximum at a population

size of 200. When the population size exceeds 200, the best fitness value begins

to decline, indicating that although a larger population can help to enhance ex-

ploration, it also results in more search costs. This result demonstrates that the

algorithm achieves optimal performance with a population size of 200, effectively

balancing search space exploration and computational efficiency.

Overall, this in-depth convergence analysis validates the reliability of our

PSO-based optimization process and provides guidance for parameter selection

in future applications. By understanding how these parameters influence con-

vergence, we can fine-tune the PSO algorithm to achieve more efficient and

accurate optimization results in vulnerability assessment model compression.

6.5.2. Analysis of Model Training Parameters

The learning rate is a crucial hyperparameter that dictates the step size at

which the model updates its weights during training. In our study, we recognize

the importance of determining an appropriate learning rate for the student

model, considering its architecture compared to the teacher model. To this end,

we conduct a sensitivity analysis, varying the learning rate across a range of

values: 1e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3.
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Figure 4: Results of model training parameters.

As illustrated in Figure 4a, the accuracy of the student model demonstrates

a non-linear relationship with the learning rate. Starting from a learning rate

of 1e-5, the accuracy is 53.5%. As the learning rate decreases to 5e-5, the accu-

racy dips slightly to approximately 53.2%. When the learning rate increases to

1e-4, the accuracy begins to rise, reaching around 53.8%. Further increasing the

learning rate to 5e-4 leads to a peak accuracy of about 54.39%. However, as the

learning rate continues to increase to 1e-3, the accuracy drops significantly to

around 52.8%. This analysis reveals that a very low learning rate may cause the

model to converge slowly, potentially getting trapped in sub-optimal solutions.

On the other hand, a learning rate that is too high can lead to overshooting

the optimal solution during weight updates, resulting in unstable training and

a decrease in performance. Based on these results, we can find that an inter-

mediate learning rate value, such as 5e-4, yields relatively better performance

for the student model. This provides a rational basis for our choice of learning

rate.

The temperature parameter (T ) plays a critical role in the knowledge dis-

tillation process by controlling the smoothness of the teacher model’s output

distribution. To explore its impact on the student model’s performance, we

perform a sensitivity analysis by evaluating the student model across different

temperature values: 2, 5, 7, 10, 12, 15, and 20.
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As shown in Figure 4b, when the temperature is set at 2, the accuracy of the

student model is relatively low. As the temperature increases to 5, the accuracy

rises to 53.88%. The accuracy continues to increase, peaking at 54.39% when

the temperature reaches 10. However, as the temperature further increases to

12, the accuracy slightly decreases to 54.12%. As the temperature increases

beyond 15, the accuracy starts to decline more notably. Low values of T result

in a more peaked soft label distribution. This may underutilize the relational

information between classes, as the probabilities of non-dominant classes are

suppressed too much, preventing the student model from learning subtle rela-

tionships. Conversely, higher values of T overly smooth the distribution. In this

case, the differences between classes become less distinct, causing the student

model to focus less on the correct class. An intermediate value, such as T =

10, achieves the best balance. It allows the student model to benefit most from

the softened logits while still maintaining class distinction, thus optimizing the

knowledge transfer process and enhancing the overall performance of the student

model.

6.6. Efficiency Analysis of PSO-KDVA

In practical deployment scenarios, the efficiency of a vulnerability assessment

model is of great significance. In this subsection, we conduct a comprehensive

efficiency analysis of PSO-KDVA, focusing on inference latency and computa-

tional cost metrics, such as inference latency and GFLOPs.

Inference latency is a crucial metric for evaluating the real-time performance

of a model. As presented in Table 11, CodeBERT, with a model size of 476 MB,

has an inference latency of 1635 ms. BiLSTMsoft, with a model size of 7.5 MB.

Our proposed approach PSO-KDVA, with a significantly smaller model size of

only 3 MB, further reduces the inference latency to 58 ms, representing a re-

markable reduction of about 96.4% compared to CodeBERT. This substantial

reduction in latency indicates that PSO-KDVA can enable faster vulnerability

assessments, which is highly desirable in practical applications where quick re-

sponses are required. For instance, in real-time security monitoring systems, a
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Table 11

Comprehensive efficiency analysis of PSO-KDVA, here “Latency” denotes the inference la-

tency.

Approach
Vulnerability Assessment

Latency (ms) GFLOPs

CodeBERT (476 MB) 1635 86.54

BiLSTMsoft (7.5 MB) 189 13.39

PSO-KDVA (3 MB) 58 3.82

lower latency allows for more timely detection and response to potential vulner-

abilities.

GFLOPs is used to measure the computational cost of a model. CodeBERT

has a relatively high GFLOPs value of 86.54, reflecting its high computational

complexity. BiLSTMsoft reduces this to 13.39 GFLOPs. PSO-KDVA achieves

an even lower GFLOPs value of 3.82, representing a significant reduction of

about 95.6% compared to CodeBERT. A lower GFLOPs value implies that

PSO-KDVA requires fewer computational resources during inference, which not

only reduces the processing time but also potentially lowers energy consumption.

This makes PSO-KDVA more suitable for deployment in resource-constrained

environments. In summary, the efficiency analysis of PSO-KDVA demonstrates

its superiority in terms of both inference speed and computational resource

utilization. These results highlight the practical viability of PSO-KDVA for

real-world vulnerability assessment tasks, where efficiency is often a critical

factor.

6.7. Threats to Validity

In this subsection, we discuss the potential threats to the validity of our

study.

Internal Threats. Our experimental results may be influenced by the

experimental setup and model selection. In implementing the PSO-KDVA ap-
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proach, we used consistent hyperparameter settings to minimize the impact of

different configurations. However, certain hyperparameter choices in the knowl-

edge distillation process (such as temperature parameters and loss function set-

tings) could affect the student model’s performance. To ensure consistency in

results, please use the parameters provided for model training. Additionally,

using unlabeled data for distillation may impact model performance; future

studies could explore using different datasets for further validation.

External Threats. The external validity of this study is primarily limited

by the representativeness of the dataset and task chosen. We used an enhanced

version of the MegaVul dataset for vulnerability assessment, which includes only

C++ code. This may limit the generalizability of the PSO-KDVA approach

to other programming languages or tasks in different domains. To improve

applicability, we plan to test additional datasets and tasks in future research to

verify the model’s performance across a broader range of scenarios.

Construct Threats: Our study uses model size, time cost, accuracy, and

MCC as evaluation metrics, with MCC reflecting class imbalance issues. How-

ever, the interpretation of these metrics may be affected by model compression.

For example, the significant decrease in MCC after compression indicates that

the student model may struggle with class imbalance. Future research could ex-

plore additional evaluation metrics to more comprehensively assess the impact

of model compression on performance.

Conclusion Threats: Our experimental conclusions are based on a specific

model and dataset and may not directly generalize to other models or applica-

tion scenarios. Although we enhance the robustness of our conclusions through

multiple experiments and comparison with baseline approaches, the performance

of the PSO-KDVA approach may vary in different hardware environments and

dataset sizes. Future research should validate these findings across diverse ex-

perimental settings and platforms to ensure the generality and reliability of the

conclusions.
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7. Related Work

Software vulnerability assessment (SVA). Existing vulnerability as-

sessment methods, which primarily rely on textual descriptions of vulnerabili-

ties or source code analysis, have notable limitations. Han et al. [87] proposed

using word embeddings and shallow convolutional neural networks to extract

discriminative features from vulnerability descriptions for severity prediction;

however, their model’s expressive capability is limited. Spanos et al. [88] devel-

oped a model that combines text analysis with multi-objective classification to

estimate vulnerability characteristics and calculate severity scores, but the com-

putational cost is high. Liu et al. [45] introduced deep learning techniques for

vulnerability text classification, achieving performance gains at the expense of

significant training time, making it less efficient. Le et al. [3] systematically com-

bined character and word features, yet their approach requires extensive hyper-

parameter tuning, adding complexity to model deployment. Babalau et al. [46]

applied a pre-trained BERT model within a multi-task learning framework for

vectorizing vulnerability descriptions but still required additional experiments

to optimize hyperparameters and loss weights.

Source code-based analysis methods also have their shortcomings. Ganesh

et al. [47] evaluated the effectiveness of machine learning models in predicting

vulnerabilities from source code but found that these models performed poorly

in making accurate predictions. Le et al. [89] proposed a function-level vulnera-

bility assessment approach, using vulnerable code statements as input for model

development; however, the model’s generalization capabilities were limited. Hao

et al. [90] introduced a rapid assessment method using function call graphs and

vulnerability attribute graphs that bypasses the need for vulnerability reports

or manual analysis, but the model’s complexity may hinder practical appli-

cations. Compared to our vulnerability assessment approach based on model

distillation, these methods suffer from high computational costs, complex tuning

requirements, or lower efficiency.

Model compression and knowledge distillation. Mukherjee et al. [54]proposed
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leveraging knowledge distillation to transfer visual discriminative knowledge

from a pre-trained image classification model to a deep bidirectional long short-

term memory network operating on EEG signals, achieving state-of-the-art per-

formance in brain signal classification. Peng et al. [55] introduced a Knowledge

Transfer Network (KTN) that utilizes prior knowledge from base classes to as-

sist in recognizing novel classes with limited examples, effectively improving

recognition accuracy in few-shot scenarios. Pan et al. [56] presented an en-

hanced collaborative autoencoder model incorporating knowledge distillation

to improve recommendation performance, demonstrating superior quality in

top-n recommendations compared to traditional collaborative filtering meth-

ods. Chen et al. [57] proposed an adversarial distillation framework that in-

tegrates external knowledge into recommendation systems, leading to more

efficient and accurate recommendations through adversarial training between

teacher and student models. Bai et al. [58] explored transferring knowledge

from pre-trained language models to sequence-to-sequence speech recognition

systems, enhancing spelling accuracy by aligning the output distributions of

the teacher language model and the student speech recognition model. Ng et

al. [59] introduced a teacher-student training framework for text-independent

speaker recognition, where the teacher model guides the student model to learn

speaker-discriminative features, resulting in improved performance in speaker

recognition tasks. Wang et al. [60] presented MiniLM, a model that compresses

large pre-trained transformers by distilling deep self-attention knowledge, re-

taining performance while significantly reducing model size and computational

requirements. Liang et al. [61] introduced HomoDistil, a distillation method

that employs homotopic transformations to distill knowledge from large pre-

trained transformers into smaller models, maintaining task-agnostic properties

to ensure applicability across diverse tasks. Li et al. [62] proposed a knowledge

distillation framework tailored for multi-task learning scenarios, enabling a sin-

gle student model to perform multiple tasks effectively by distilling knowledge

from multiple task-specific teacher models. Zhou et al. [91] proposed WaveNet, a

wavelet-based MLP architecture for salient object detection in RGB-thermal in-
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frared images, which employs knowledge distillation from a transformer teacher

and utilizes discrete wavelet transforms for cross-modality feature fusion, achiev-

ing impressive results on benchmark datasets. Building upon this research,

Zhou et al [92] proposed HKDNet, a lightweight hybrid knowledge distillation

network for RGB-thermal crowd density estimation, which efficiently combines

convolution and self-attention while significantly reducing computational cost

and model size compared to a heavyweight teacher network. Continuing the

exploration of multimodal learning, Zhou et al. [93] proposed SSRNet-S*, a

multimodal transmission-line detection network for RGB-thermal images that

integrates knowledge distillation and contrastive learning to enhance feature

representation, reduce model size, and improve robustness under challenging

conditions, achieving superior performance with significantly fewer parameters.

In addition to these efforts, Zhou et al. [94] proposed FCDENet for RGB-D in-

door scene classification, introducing feature contrast difference and information

clustering modules, as well as wavelet-based cross-layer decoding, to effectively

enhance feature representation and achieve superior accuracy on benchmark

indoor datasets. These studies collectively demonstrate the versatility and ef-

fectiveness of knowledge distillation across various domains, including cognitive

feature learning, image recognition, recommendation systems, speech recogni-

tion, speaker recognition, model compression, and multi-task learning.

8. Conclusion and Future Work

In this study, we propose the PSO-KDVA method, which leverages a com-

bination of particle swarm optimization and knowledge distillation techniques

to construct a lightweight software vulnerability assessment model. The PSO-

KDVA method effectively compresses the model size while retaining much of

the original model’s performance. Experimental results demonstrate that com-

pared to the original CodeBERT model, PSO-KDVA significantly reduces stor-

age requirements and inference time while achieving competitive performance

on accuracy and other metrics.
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Despite the promising performance of PSO-KDVA, there are several areas

for further research. First, future work could explore more advanced distillation

strategies to enhance model performance on imbalanced datasets. Second, it

would be valuable to validate the applicability of PSO-KDVA across different

programming languages and task scenarios to improve its generalizability. Fi-

nally, combining other model compression techniques, such as quantization and

pruning, could further optimize the model’s inference speed and performance.

CRediT authorship contribution statement

Chaoyang Gao: Data curation, Software, Validation, Conceptualization,

Methodology, Writing -review & editing. Xiang Chen: Conceptualization,

Methodology, Writing -review & editing, Supervision. Jiyu Wang: Concep-

tualization, Data curation, Software. Jibin Wang: Conceptualization, Data

curation, Software. Guang Yang: Conceptualization, Data curation, Software.

Declaration of competing interest

The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported

in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors would like to thank the editors and the anonymous reviewers

for their insightful comments and suggestions, which can substantially improve

the quality of this work. Chaoyang Gao and Xiang Chen have contributed

equally to this work and are co-first authors. Xiang Chen is the corresponding

author. This research was partially supported by the National Natural Science

45



Foundation of China (Grant no. 61202006), the Open Project of State Key

Laboratory for Novel Software Technology at Nanjing University under (Grant

No. KFKT2024B21) and the Postgraduate Research & Practice Innovation

Program of Jiangsu Province (Grant nos. SJCX24 2022).

References

[1] S. Shah, B. M. Mehtre, An overview of vulnerability assessment and pen-

etration testing techniques, Journal of Computer Virology and Hacking

Techniques 11 (2015) 27–49.

[2] T. H. Le, H. Chen, M. A. Babar, A survey on data-driven software vul-

nerability assessment and prioritization, ACM Computing Surveys 55 (5)

(2022) 1–39.

[3] T. H. M. Le, B. Sabir, M. A. Babar, Automated software vulnerability

assessment with concept drift, in: 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR), IEEE, 2019, pp. 371–

382.

[4] G. Yang, Y. Zhou, X. Chen, X. Zhang, T. Han, T. Chen, Exploitgen:

Template-augmented exploit code generation based on codebert, Journal

of Systems and Software 197 (2023) 111577.

[5] S. Zhou, U. Alon, S. Agarwal, G. Neubig, Codebertscore: Evaluating code

generation with pretrained models of code, arXiv preprint arXiv:2302.05527

(2023).

[6] H. Hanif, S. Maffeis, Vulberta: Simplified source code pre-training for vul-

nerability detection, in: 2022 International joint conference on neural net-

works (IJCNN), IEEE, 2022, pp. 1–8.

[7] H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, X. Mao,

Peculiar: Smart contract vulnerability detection based on crucial data flow

46



graph and pre-training techniques, in: 2021 IEEE 32nd International Sym-

posium on Software Reliability Engineering (ISSRE), IEEE, 2021, pp. 378–

389.

[8] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,

T. Liu, D. Jiang, et al., Codebert: A pre-trained model for programming

and natural languages, arXiv preprint arXiv:2002.08155 (2020).

[9] G. A. Aye, G. E. Kaiser, Sequence model design for code completion in the

modern ide, arXiv preprint arXiv:2004.05249 (2020).

[10] A. Svyatkovskiy, S. Lee, A. Hadjitofi, M. Riechert, J. V. Franco, M. Al-

lamanis, Fast and memory-efficient neural code completion, in: 2021

IEEE/ACM 18th International Conference on Mining Software Reposito-

ries (MSR), IEEE, 2021, pp. 329–340.

[11] X. Wei, S. K. Gonugondla, S. Wang, W. Ahmad, B. Ray, H. Qian, X. Li,

V. Kumar, Z. Wang, Y. Tian, et al., Towards greener yet powerful code

generation via quantization: An empirical study, in: Proceedings of the 31st

ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, 2023, pp. 224–236.

[12] J. Shi, Z. Yang, D. Lo, Efficient and green large language models

for software engineering: Vision and the road ahead, arXiv preprint

arXiv:2404.04566 (2024).

[13] M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, A. Svy-

atkovskiy, Inferfix: End-to-end program repair with llms, in: Proceedings

of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 2023, pp. 1646–

1656.

[14] Y. Peng, S. Gao, C. Gao, Y. Huo, M. Lyu, Domain knowledge matters:

Improving prompts with fix templates for repairing python type errors, in:

47



Proceedings of the 46th IEEE/ACM International Conference on Software

Engineering, 2024, pp. 1–13.
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Investigating the efficacy of large language models for code clone detec-

51



tion, in: Proceedings of the 32nd IEEE/ACM International Conference on

Program Comprehension, 2024, pp. 161–165.

[52] V.-A. Nguyen, D. Q. Nguyen, V. Nguyen, T. Le, Q. H. Tran, D. Phung,

Regvd: Revisiting graph neural networks for vulnerability detection, in:

Proceedings of the ACM/IEEE 44th International Conference on Software

Engineering: Companion Proceedings, 2022, pp. 178–182.

[53] X. Zhou, T. Zhang, D. Lo, Large language model for vulnerability detec-

tion: Emerging results and future directions, in: Proceedings of the 2024

ACM/IEEE 44th International Conference on Software Engineering: New

Ideas and Emerging Results, 2024, pp. 47–51.

[54] P. Mukherjee, A. Das, A. K. Bhunia, P. P. Roy, Cogni-net: Cognitive fea-

ture learning through deep visual perception, in: 2019 IEEE International

Conference on Image Processing (ICIP), IEEE, 2019, pp. 4539–4543.

[55] Z. Peng, Z. Li, J. Zhang, Y. Li, G.-J. Qi, J. Tang, Few-shot image recogni-

tion with knowledge transfer, in: Proceedings of the IEEE/CVF interna-

tional conference on computer vision, 2019, pp. 441–449.

[56] Y. Pan, F. He, H. Yu, A novel enhanced collaborative autoencoder with

knowledge distillation for top-n recommender systems, Neurocomputing

332 (2019) 137–148.

[57] X. Chen, Y. Zhang, H. Xu, Z. Qin, H. Zha, Adversarial distillation for

efficient recommendation with external knowledge, ACM Transactions on

Information Systems (TOIS) 37 (1) (2018) 1–28.

[58] Y. Bai, J. Yi, J. Tao, Z. Tian, Z. Wen, Learn spelling from teachers: Trans-

ferring knowledge from language models to sequence-to-sequence speech

recognition, arXiv preprint arXiv:1907.06017 (2019).

[59] R. W. Ng, X. Liu, P. Swietojanski, Teacher-student training for text-

independent speaker recognition, in: 2018 IEEE Spoken Language Tech-

nology Workshop (SLT), IEEE, 2018, pp. 1044–1051.

52



[60] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, M. Zhou, Minilm: Deep self-

attention distillation for task-agnostic compression of pre-trained trans-

formers, Advances in Neural Information Processing Systems 33 (2020)

5776–5788.

[61] C. Liang, H. Jiang, Z. Li, X. Tang, B. Yin, T. Zhao, Homodistil: Homo-

topic task-agnostic distillation of pre-trained transformers, arXiv preprint

arXiv:2302.09632 (2023).

[62] W.-H. Li, H. Bilen, Knowledge distillation for multi-task learning, in: Com-

puter Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020,

Proceedings, Part VI 16, Springer, 2020, pp. 163–176.

[63] J. H. Cho, B. Hariharan, On the efficacy of knowledge distillation, in:

Proceedings of the IEEE/CVF international conference on computer vision,

2019, pp. 4794–4802.

[64] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of

ICNN’95-international conference on neural networks, Vol. 4, ieee, 1995,

pp. 1942–1948.

[65] C. Wu, M. Wang, X. Chu, K. Wang, L. He, Low-precision floating-point

arithmetic for high-performance fpga-based cnn acceleration, ACM Trans-

actions on Reconfigurable Technology and Systems (TRETS) 15 (1) (2021)

1–21.

[66] H. Zhou, L. Song, J. Chen, Y. Zhou, G. Wang, J. Yuan, Q. Zhang, Rethink-

ing soft labels for knowledge distillation: A bias-variance tradeoff perspec-

tive, arXiv preprint arXiv:2102.00650 (2021).

[67] G. Aguilar, Y. Ling, Y. Zhang, B. Yao, X. Fan, C. Guo, Knowledge distilla-

tion from internal representations, in: Proceedings of the AAAI conference

on artificial intelligence, Vol. 34, 2020, pp. 7350–7357.

[68] B. Zi, S. Zhao, X. Ma, Y.-G. Jiang, Revisiting adversarial robustness

distillation: Robust soft labels make student better, in: Proceedings of

53



the IEEE/CVF International Conference on Computer Vision, 2021, pp.

16443–16452.

[69] W. Liu, P. Zhou, Z. Zhao, Z. Wang, H. Deng, Q. Ju, Fast-

bert: a self-distilling bert with adaptive inference time, arXiv preprint

arXiv:2004.02178 (2020).

[70] D. Vilar, M. Federico, A statistical extension of byte-pair encoding, in: Pro-

ceedings of the 18th International Conference on Spoken Language Trans-

lation (IWSLT 2021), 2021, pp. 263–275.

[71] C. Pan, M. Lu, B. Xu, An empirical study on software defect prediction

using codebert model, Applied Sciences 11 (11) (2021) 4793.

[72] T. Kudo, Subword regularization: Improving neural network translation

models with multiple subword candidates, arXiv preprint arXiv:1804.10959

(2018).

[73] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, A. Janes, Big code!=

big vocabulary: Open-vocabulary models for source code, in: Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering,

2020, pp. 1073–1085.

[74] X. Jiang, Z. Zheng, C. Lyu, L. Li, L. Lyu, Treebert: A tree-based pre-

trained model for programming language, in: Uncertainty in Artificial In-

telligence, PMLR, 2021, pp. 54–63.

[75] A. A. Ishtiaq, M. Hasan, M. M. A. Haque, K. S. Mehrab, T. Muttaqueen,

T. Hasan, A. Iqbal, R. Shahriyar, Bert2code: Can pretrained language

models be leveraged for code search?, arXiv preprint arXiv:2104.08017

(2021).

[76] S. Elfwing, E. Uchibe, K. Doya, Sigmoid-weighted linear units for neural

network function approximation in reinforcement learning, Neural networks

107 (2018) 3–11.

54



[77] E. Mashhadi, H. Hemmati, Applying codebert for automated program re-

pair of java simple bugs, in: 2021 IEEE/ACM 18th International Confer-

ence on Mining Software Repositories (MSR), IEEE, 2021, pp. 505–509.

[78] X. Zhou, D. Han, D. Lo, Assessing generalizability of codebert, in: 2021

IEEE International Conference on Software Maintenance and Evolution

(ICSME), IEEE, 2021, pp. 425–436.

[79] R. Sharma, F. Chen, F. Fard, D. Lo, An exploratory study on code atten-

tion in bert, in: Proceedings of the 30th IEEE/ACM International Confer-

ence on Program Comprehension, 2022, pp. 437–448.

[80] L. Yang, Z. Li, D. Wang, H. Miao, Z. Wang, Software defects prediction

based on hybrid particle swarm optimization and sparrow search algorithm,

Ieee Access 9 (2021) 60865–60879.

[81] G. Hinton, Distilling the knowledge in a neural network, arXiv preprint

arXiv:1503.02531 (2015).

[82] I. Radosavovic, P. Dollár, R. Girshick, G. Gkioxari, K. He, Data distillation:

Towards omni-supervised learning, in: Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018, pp. 4119–4128.

[83] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, Q. Liu, Tiny-

bert: Distilling bert for natural language understanding, arXiv preprint

arXiv:1909.10351 (2019).

[84] T. H. M. Le, D. Hin, R. Croft, M. A. Babar, Deepcva: Automated commit-

level vulnerability assessment with deep multi-task learning, in: 2021 36th

IEEE/ACM International Conference on Automated Software Engineering

(ASE), IEEE, 2021, pp. 717–729.

[85] S. Rajbhandari, J. Rasley, O. Ruwase, Y. He, Zero: Memory optimizations

toward training trillion parameter models, in: SC20: International Confer-

ence for High Performance Computing, Networking, Storage and Analysis,

IEEE, 2020, pp. 1–16.

55



[86] J. Gorodkin, Comparing two k-category assignments by a k-category cor-

relation coefficient, Computational biology and chemistry 28 (5-6) (2004)

367–374.

[87] Z. Han, X. Li, Z. Xing, H. Liu, Z. Feng, Learning to predict severity of

software vulnerability using only vulnerability description, in: 2017 IEEE

International conference on software maintenance and evolution (ICSME),

IEEE, 2017, pp. 125–136.

[88] G. Spanos, L. Angelis, A multi-target approach to estimate software vulner-

ability characteristics and severity scores, Journal of Systems and Software

146 (2018) 152–166.

[89] T. H. M. Le, M. A. Babar, On the use of fine-grained vulnerable code

statements for software vulnerability assessment models, in: Proceedings

of the 19th International Conference on Mining Software Repositories, 2022,

pp. 621–633.

[90] J. Hao, S. Luo, L. Pan, A novel vulnerability severity assessment method

for source code based on a graph neural network, Information and Software

Technology 161 (2023) 107247.

[91] W. Zhou, F. Sun, Q. Jiang, R. Cong, J.-N. Hwang, Wavenet: Wavelet

network with knowledge distillation for rgb-t salient object detection, IEEE

Transactions on Image Processing 32 (2023) 3027–3039.

[92] W. Zhou, X. Yang, W. Yan, Q. Jiang, Hybrid knowledge distillation for rgb-

t crowd density estimation in smart surveillance systems, IEEE Internet of

Things Journal (2024).

[93] W. Zhou, Y. Wang, X. Qian, Knowledge distillation and contrastive learn-

ing for detecting visible-infrared transmission lines using separated stagger

registration network, IEEE Transactions on Circuits and Systems I: Regu-

lar Papers (2025).

56



[94] W. Zhou, B. Jian, Y. Liu, Feature contrast difference and enhanced network

for rgb-d indoor scene classification in internet of things, IEEE Internet of

Things Journal (2025).

Chaoyang Gao is currently pursuing the Master degree at the School of Ar-

tificial Intelligence and Computer Science, Nantong University. His research

interests include software repository mining.

Xiang Chen received the B.Sc. degree in the school of management from Xi’an

Jiaotong University, China in 2002. Then he received his M.Sc., and Ph.D. de-

grees in computer software and theory from Nanjing University, China in 2008

and 2011 respectively. He is currently an Associate Professor at the School of

Artificial Intelligence and Computer Science, Nantong University. He has au-

thored or co-authored more than 120 papers in refereed journals or conferences,

such as IEEE Transactions on Software Engineering, ACM Transactions on

Software Engineering and Methodology, Empirical Software Engineering, Com-

puter & Security, Software Testing, Verification and Reliability, Information

and Software Technology, Journal of Systems and Software, IEEE Transactions

on Reliability, Journal of Software: Evolution and Process, Software - Practice

and Experience, Automated Software Engineering, International Conference on

Software Engineering (ICSE), International Conference on the Foundations of

Software Engineering (FSE), International Conference Automated Software En-

gineering (ASE), International Conference on Software Maintenance and Evo-

lution (ICSME), International Conference on Program Comprehension (ICPC),

and International Conference on Software Analysis, Evolution and Reengineer-

ing (SANER). His research interests include software engineering, in particular

software testing and maintenance, software repository mining, and empirical

software engineering. He received two ACM SIGSOFT distinguished paper

awards in ICSE 2021 and ICPC 2023. He is the editorial board member of

57



Information and Software Technology. More information about him can be

found at: https://xchencs.github.io/index.html.

Jiyu Wang is currently pursuing the Master degree at the School of Artificial

Intelligence and Computer Science, Nantong University. His research interests

include vulnerability detection and repair.

Jibin Wang is currently pursuing the Bachelor degree at the School of Artificial

Intelligence and Computer Science, Nantong University. Her research interests

include automatic vulnerability assessment.

Guang Yang received the M.D. degree in computer technology from Nantong

University, Nantong, in 2022. Then he is currently pursuing the Ph.D degree

at Nanjing University of Aeronautics and Astronautics, Nanjing. His research

interest is AI4SE and he has authored or co-authored more than 30 papers in

refereed journals or conferences, such as IEEE Transactions on Software En-

gineering(TSE), ACM Transactions on Software Engineering and Methodology

(TOSEM), Empirical Software Engineering (EMSE), Journal of Systems and

Software (JSS), International Conference on Software Maintenance and Evolu-

tion (ICSME), and International Conference on Software Analysis, Evolution

and Reengineering (SANER). More information about him can be found at:

https://ntdxyg.github.io/.

58

https://xchencs.github.io/index.html
https://ntdxyg.github.io/

	Introduction
	Background
	Software Vulnerability Assessment
	Model Compression and Knowledge Distillation
	Research Challenges

	Approach
	Optimal Architecture Search Phase
	Hyperparameter Configuration Space
	PSO-based Search

	Knowledge Distillation Phase
	Vulnerability Assessment Phase

	Experimental Setup
	Research Questions
	Experimental Subject
	Baseline
	Performance Metrics
	Running Platform

	Experimental Results
	RQ1: How much can the PSO-KDVA approach compress the model?
	RQ2: Can the PSO-KDVA approach minimize the loss in accuracy for vulnerability assessment while compressing the model size?
	RQ3: To what extent does model size compression affect accuracy?
	RQ4: What is the execution efficiency of the PSO algorithm?

	Discussion
	Time Cost of PSO-KDVA
	Class Imbalance Problem
	Generalization on Foundation Models
	Generalization across Programming Languages
	Analysis of Hyperparameter Value Settings
	Analysis of PSO Parameters
	Analysis of Model Training Parameters

	Efficiency Analysis of PSO-KDVA
	Threats to Validity

	Related Work
	Conclusion and Future Work

