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ABSTRACT

Accurately mapping Autonomous Systems (ASNs) to their
owning or operating organizations underpins Internet mea-
surement research and security applications. Yet existing
approaches commonly rely solely on WHOIS or PeeringDB,
missing important relationships (e.g., cross-regional aliases,
parent—child ownership) and failing to unify organizations
scattered across different RIR identifiers. We introduce ASINT,
an end-to-end pipeline that fuses bulk registry data with un-
structured Web sources, then employs retrieval-augmented
generation (RAG) to guide large language model (LLM) infer-
ence. Through a multi-stage procedure, ASINT merges ASNs
into “organization families,” capturing nuanced ties beyond
the scope of simpler heuristics.

ASINT maps 111,470 ASNs to 81,233 organization families;
compared to both AS20RG+ and AS-Sibling, ASINT iden-
tifies more cross-regional groupings (e.g., operator aliases,
rebrands) that other datasets overlook. Moreover, our refined
mappings enhance multiple security and measurement tasks:
ASINT exposes 27.5% more intra-organizational RPKI mis-
configurations, cuts false-positive hijack alarms by 9.4%, and
lowers erroneous IP leasing inferences by 5.9%.

Finally, ASINT supports periodic updates and cost-sensitive
LLM selection, demonstrating that broader Web evidence
can provide a more accurate, evolving view of the Internet’s
organizational structure.

1 INTRODUCTION

The Internet’s global reach depends on tens of thousands
of autonomous systems (ASes) owned and operated by di-
verse entities—from individual enterprises to large service
providers spanning multiple continents. Identifying which
real-world organization stands behind a given AS number
(ASN) is essential for understanding Internet topology, ana-
lyzing resource ownership, and diagnosing security incidents.
Unfortunately, mapping ASNs to their controlling organiza-
tions is far from trivial. Corporate ownership is often masked
by fragmented WHOIS records, outdated registry data, and
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rebranding or acquisitions that unfold faster than adminis-
trative databases can be updated.

Accurate AS-to-Organization mappings underpin critical
research and operational use cases. For example, RPKI mea-
surements rely on knowing the legitimate origin AS of an
IP prefix to detect misconfigurations [7], while BGP hijack
detection systems must filter out internal re-announcements
among ASes owned by the same entity [1, 11]. Understanding
whether two ASNs belong to the same organization can also
guide Internet topology analyses, ensuring correct “customer
cone” measurements and more accurate ISP rankings [21].
In short, the integrity and reliability of many network and
security studies hinge on precisely associating ASNs with
their true parent organizations.

Existing approaches—such as AS20RG [8], AS20RG+ [2],
or AS-Sibling [9]—attempt to solve this problem by consoli-
dating WHOIS records and sometimes incorporating Peer-
ingDB [26]. While they have proven valuable in practice,
they exhibit notable shortcomings:

o Stale or incomplete WHOIS: Large organizations manage
multiple identical organization records across RIRs. Merg-
ers and acquisitions are not always reflected in registry
updates.

o Limited free-text usage: Simple string matching or notes
fields in PeeringDB may fail to recognize acquisitions
listed on corporate websites, news, or investor reports.

o Lack of relationship granularity: Most mappings only mark
“same organization,” neglecting whether an AS is a sub-
sidiary or a rebranded brand of a larger parent.

In this work, we push the boundaries of AS-to-Org map-
ping by leveraging recent advances in natural language pro-
cessing (NLP)—particularly retrieval-augmented generation
(RAG) [23], named entity recognition (NER) [17], and a multi-
step post-processing pipeline to unify aliases, deduce par-
ent—child links, and scale to tens of thousands of ASes. Our
system collects structured data from WHOIS and PeeringDB,
but also supplements these with unstructured text from com-
pany websites, Wikipedia, and news sources, which a large
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language model (LLM) interprets for hidden connections. We
then apply a post-filtering and clustering mechanism to cor-
rect or consolidate partial overlaps, ensuring that rebranded
names, parent subsidiaries, and acquisitions are captured in
our final “organization families”.

Using our pipeline, we map 111,470 ASNs to 88,101 orga-
nizations, ultimately forming 81,233 organization families.
Along the way, we discover thousands of additional relation-
ships missed by existing datasets, significantly increasing
coverage of cross-RIR ownership, rebrandings, and up-to-
date acquisition histories. Our main contributions are:

(1) Novel use of modern NLP: We show how RAG, NER, and
an LLM-based inference pipeline can transform messy
text data into precise AS-to-Org links.

(2) In-depth alias and hierarchy resolution: Beyond labeling
“same organization,” we incorporate parent—child rela-
tionships reflecting acquisitions or subsidiaries, offering
a more complete corporate view.

(3) Extensive validation and real-world impact: We demon-
strate how our mapping helps reduce false positives in
hijack detection, detect more RPKI misconfigurations,
and improve organization-level ISP ranking.

Through ASINT, we aim to provide the networking com-
munity with an up-to-date and robust mapping of ASNs
to their true organizational structures, bridging a key gap
that underlies many measurement, security, and operational
analyses. To foster community-wide progress and facilitate
new lines of research, we will open-source all tools used in
this work along with regularly updated AS-to-Organization
mapping datasets via a public repository.

2 BACKGROUND AND RELATED WORK
2.1 Mapping ASNs to Organizations

Mapping ASNs to their parent organizations underlies nu-
merous studies of Internet structure, routing security, and
resource ownership [7, 12, 21]. However, there is no compre-
hensive global registry mapping each ASN to a single entity.
Frequent corporate changes (e.g., mergers, acquisitions, re-
branding) and ASN records fragmented across multiple Re-
gional Internet Registries (RIRs) further complicate the task.
Hence, researchers typically synthesize data from WHOIS
and PeeringDB [26] to infer ASN-organization links.

Whois-Based Methods. WHOIS remains a foundational
source for ASN-to-organization mappings. RIR databases
contain OrgID fields, addresses, and contact information,
which CAIDA’s AS20rg [10], which we call CA20, leverages
to group ASNs under common owners (e.g., shared OrgID or
email domains). Despite its broad coverage of public ASNs,
WHOIS data has well-known limitations:
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o Data Quality and Consistency: WHOIS records are updated
manually by thousands of organizations, often lagging
behind corporate changes or containing inaccuracies [8];
because of this, Chen et al. observed that WHOIS-only
datasets often overmerge or split organization identities
erroneously [9].

No Unified Identifiers: Different RIRs (or even within the
same RIR) employ distinct OrgID formats, complicating
cross-region merges for the same operator (e.g., Orange’s
AS5511 in RIPE as ORG-FT2-RIPE vs. AS36912 in AFRINIC
as ORG-0CS1-AFRINIC).

Variable Record Structures: RIR WHOIS structures differ
(e.g., ARIN has an OrgID field, LACNIC may not), frag-
menting one organization into multiple entries.

Earlier projects like Cai et al. [8] aggregated WHOIS data
with additional operator input, but inaccuracies and incom-
plete participation proved challenging. WHOIS-based map-
pings therefore remain a strong starting point but benefit
from complementary data sources to capture missing or out-
dated ownership changes.

Leveraging PeeringDB and Heuristic Parsing. PeeringDB
complements WHOIS by providing operator-maintained net-
work name, organization ID, and an optional website field. Ar-
turi et al. [2] (AS20RG+) showed that combining these OrgID
with CAIDA’s WHOIS-based mappings can unify more ASNs
under major organizations, particularly those spanning mul-
tiple RIRs.

Despite this benefit, PeeringDB exhibits partial coverage:
among the 111,470 total ASNs in WHOIS, only 30,058 (27.0%)
appear in PeeringDB. Heuristic parsing in fields like notes
is also brittle—only 3,897 (3.5%) of networks provide any
such notes, which can contain ambiguous references (e.g.,
abuse contacts or unrelated upstream peers). Consequently,
text extraction via regex or domain matching can yield false
positives when overlapping email substrings spuriously link
unrelated organizations.

Recently, Selmo et al. [28] introduced Borges, which ap-
plies a large-language model (LLM) to PeeringDB data. The
system (i) prompts the LLM to pull additional sibling ASNs
from the free-text aka/notes fields, and (ii) merges networks
whose PeeringDB URLs ultimately resolve to the same do-
main or share a favicon/brand signature.

This LLM-assisted strategy reveals roughly 7.0% more sib-
ling links than AS20RG+. Because every signal originates
in PeeringDB, however, Borges’s reach is still inherently
limited to the 27.0% of global ASNs that register there—and
only when they supply a usable website—leaving the rest
unmapped.
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2.2 Recent Advances with NLP and
Multi-Source Inference

Most current systems rely on WHOIS and PeeringDB, using
heuristic approaches (e.g., regular expressions on “notes”
fields) [2, 9]. While these can match repeated textual patterns,
the unstructured, variable nature of registry data still leads
to errors. Crucially, corporate changes (mergers, rebrands)
are often documented outside WHOIS or PeeringDB.

A direct approach might ask: “Which organization operates
AS X?” to a large language model (LLM). However, up-to-
date coverage is not guaranteed, and domain-specific or long-
tail details may be missing [19]. Moreover, simply dumping
all relevant web content into an LLM risks computational
blowouts and hallucinations [14, 33].

Retrieval-Augmented Generation (RAG). To address these
limitations, Retrieval-Augmented Generation (RAG) separates

knowledge retrieval from LLM inference [14, 23, 29]. Under

this framework, an information retrieval step first narrows

down relevant snippets (e.g., corporate archives), and only

then does the LLM generate output based on these targeted

documents. A core building block of RAG is often a vec-
tor database that stores dense text embeddings to support

high-precision semantic searches. By filtering large corpora

into smaller, context-specific sets, RAG reduces hallucina-
tions and adapts to dynamic updates. This approach has

shown effectiveness in diverse domains, including question

answering [32], code analysis [15, 24], and more, making it

well-suited for scenarios like ours where relevant knowledge

is scattered across numerous, frequently evolving sources.

Few-Shot Prompt Engineering. LLMs also benefit from
well-structured prompts. Ambiguous queries (e.g., “Any re-
lation between Org-A and Org-B?”) can yield inconsistent
results [18], whereas explicit instructions (e.g., “Is Org-A a
subsidiary of Org-B?”) improve accuracy [6, 30]. Few-shot
examples further guide the model to apply consistent and
accurate reasoning [34].

Building on these insights, ASINT combines WHOIS, Peer-
ingDB, and broader Web sources (e.g., press releases, industry
reports) within a RAG pipeline. By filtering relevant snippets
before prompting the LLM, ASINT more accurately identi-
fies shared ownership, especially where registry data are
incomplete or out-of-date.

3 MOTIVATION AND GOALS
3.1 Goal

A precise mapping of ASNs to the organizations that own
or operate them is essential for accurate Internet measure-
ment, routing security (e.g., detecting hijacks), and resource

allocation (e.g., RPKI). While WHOIS and PeeringDB sup-
ply partial ownership information, they often fail to track
cross-regional operators or keep up with corporate changes
(e.g., mergers, acquisitions, rebranding). These gaps can sig-
nificantly impact downstream applications that require a
current view of organizational structures.

For example, AS6128 and AS54004 remain officially reg-
istered under different names (Cablevision Systems Corp.
and Lightpath), yet they have both been operated by Opti-
mum [3, 4] for years. Such corporate histories frequently go
unrecorded in PeeringDB and lag in WHOIS, obscuring a
unified picture of ownership.

Against this backdrop, our work addresses three primary
weaknesses in current ASN-to-organization mapping meth-
ods:

(1) Restricted coverage: WHOIS and PeeringDB often lag
behind real-world corporate transitions and lack com-
prehensive cross-regional updates.

(2) Oversimplified relationships: Existing datasets typically
track only “same organization” links and seldom reflect
acquisitions, subsidiaries, or internal brand aliases.

(3) Static or simplistic parsing: Rule-based heuristics (e.g.,
regex matching) can misinterpret unstructured fields
and fail to adapt to new corporate naming conventions
or rebrandings.

3.2 Beyond WHOIS and PeeringDB

While WHOIS and PeeringDB remain fundamental for base-
line mappings, they rarely capture the full range of aliases
or historical rebrandings. Our approach supplements these
databases with additional unstructured online sources:

o Company Websites: Official portals and investor pages of-
ten clarify rebranding, acquisitions, or internal subsidiaries.

o Wikipedia and Other Wikis: Crowd-sourced articles fre-
quently catalog mergers and executive transitions that
appear long before registry updates.

o News Articles and Blogs: Media outlets, industry newslet-
ters, and specialized blogs may report real-time rebranding
or consolidation events.

For example, a corporate homepage might confirm that
two separately branded networks belong to the same organi-
zation; wiki articles could trace stepwise acquisitions under
one umbrella. Incorporating these sources reveals many re-
lationships that WHOIS or PeeringDB alone overlook.

3.3 Challenges

Although these external data streams can fill critical gaps,

effectively integrating them poses several challenges:

o Locating Relevant Information at Scale: Sifting through
the entire Web to find evidence of ownership changes is



infeasible. A selective retrieval or filtering step is essential
to identify only the text segments likely to clarify actual
organizational ties.

o Understanding Unstructured Content: Most websites and
news reports discuss organizations by name, not ASN.
Simple string matching often fails for rebranded or translit-
erated names. Large language models (LLMs) can identify
statements like “Company A is now part of Company B,
but they must be carefully guided to avoid confusion with
unrelated mentions.

e Hallucination and Outdated Knowledge: General-purpose
LLMs can generate erroneous or fabricated relationships
(“hallucinations”) [16], and may not reflect recent corpo-
rate events if trained on older data.

e Awvoiding Over- or Under-Inference: Presenting partial or
contradictory data can induce spurious links or missed
merges. Validation is necessary to reconcile inconsisten-
cies and ensure that inferred parent-child connections
represent real corporate affiliations.

Our Approach. To overcome these limitations and provide
a comprehensive, dynamic mapping of ASNs, we propose
an approach that integrates unstructured Web sources with
LLM-based inference. The following section details ASINT, in-
cluding how it aggregates disparate evidence, handles large-
scale updates, and remains aligned with the actual corporate
landscape of the global Internet.

4 ASINT: DESIGN

In this section, we describe the design of ASINT, our end-
to-end system for creating an accurate AS-to-organization
mapping. As illustrated in Figure 1, the pipeline comprises
four major stages:

(1) Data Collection (§4.1): We assemble ASN and organiza-
tion data from WHOIS, PeeringDB, and external web
sources, forming the initial basis for identifying poten-
tial ownership relations.

(2) Data Processing and Storage (§4.2): We clean, normalize,
and enrich the collected data. We create organization
records, apply Named Entity Recognition (NER), and store
the filtered text chunks in a local knowledge base.

(3) LLM-Based Inference (§4.3): Based on the knowledge base,
we employ a Retrieval-Augmented Generation (RAG)
pipeline, prompting an LLM to classify pairs of organiza-
tions as either aliases, parent—child, or unrelated.

(4) Post-Filtering and Clustering (§4.4): We refine the raw
LLM outputs and unify them into a consistent global
hierarchy. This step merges organizations with the same
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real-world identity and identifies parent—child owner-
ship links, ultimately creating coherent organization fam-
ilies.

4.1 Data Collection

ASINT begins by aggregating information from multiple
registries and online sources:

o WHOIS Databases: We gather bulk WHOIS dumps from all
five RIRs, optionally enriched by other National Internet
Registries (NIRs) (e.g., JPIRR). These databases form the
primary listing of ASNs and their registered owners.

e CAIDA’s AS20rg (CA20): We incorporate CAIDA’s dataset
to address ambiguous or partial WHOIS records, especially
in regions lacking a clear OrgID.

o PeeringDB: We add metadata such as website URLSs, alter-
native organization names, or peering “notes” that might
indicate mergers or brand variations.

o Web Crawls of Company Websites: For organizations not ad-
equately represented in WHOIS or PeeringDB, we crawl
official websites and search-engine results. These often
reveal rebrandings, subsidiary details, or historical acqui-
sitions that registries miss.

Labeling ASNs to Organizations. We start by parsing the
bulk WHOIS data to compile a preliminary list of ASNs. In
the rare event that the same ASN appears in multiple RIRs,
we rely on as-block records to select the authoritative source.
If an ASN references an explicit organization identifier (e.g.,
OrgID in ARIN), we immediately create a corresponding
organization record and link the two.

For ASNs lacking clear ownership (common in LACNIC
or APNIC bulk files), we consult CA20. If that remains in-
conclusive, we turn to PeeringDB. If all else fails, we assign
the ASN’s descriptive label (e.g., the WHOIS descr field) as
a temporary organization name.

Enriching Organization Profiles. Having associated each
ASN with an initial organization record, we then collect more
details (e.g., rebranding history, known aliases):

e PeeringDB: For each record, we note any listed website
URL, which we can then crawl for official statements, news
releases, or brand announcements.

o Targeted Web Searches: We generate search queries (e.g.,
“acquired by,” “parent company,” “Wikipedia”) for each
organization name, storing only the top few URL results
to avoid duplication.

Finally, we crawl these URLs and associate any retrieved
HTML with the relevant organization record. These pages
often contain the unstructured data needed in subsequent
stages to confirm organizational relationships.
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Figure 1: An overview of the ASINT framework, from data collection to final clustering of organization families.

4.2 Data Processing and Storage

The collected raw text typically includes large amounts of
irrelevant or noisy material. We therefore apply a multi-
step filtering procedure to isolate only text relevant to each
organization record. The result is a local knowledge base,
stored in a vector database, that indexes pertinent snippets
by organization.

(1) Global Name List. We compile a master list of canonical
names from all organization records. This list serves as
the reference for our NER step.

(2) Text Splitting. For each organization record, we divide
the crawled HTML into smaller, semantically coherent
chunks, introducing minimal overlap so that no key
phrase is lost near chunk boundaries.

(3) Named Entity Recognition (NER). We run NER on each
chunk to extract potential candidate organization names.
Any extracted name not matching our global list is dis-
carded to avoid random or irrelevant entities.

(4) Relevance Filtering. We retain only chunks referencing
both the target organization record (i.e., the record whose
website or queries we crawled) and at least one candi-
date organization from NER. Chunks lacking this co-
occurrence seldom indicate a genuine relationship.

(5) Knowledge Base Storage. Finally, we store each retained
chunk (plus recognized entity names) in a local vector
database keyed by the target organization’s record ID.
We also compile a deduplicated list of candidate organi-
zations discovered in those chunks.

After this stage, each organization record is linked to a rel-
atively small, focused set of text segments that specifically
mention potential affiliations.

4.3 LLM-Based Relationship Inference

We now determine whether these organizations (co-mentioned
in the knowledge base) are aliases of the same real-world
entity or related via parent—child ownership. A brute-force
approach, comparing all pairs, is infeasible; likewise, feeding

all crawled text into an LLM at once would be computa-
tionally overwhelming. Instead, ASINT focuses solely on the
candidate organizations associated with each target organi-
zation record to narrow the search space, and adopts a RAG
pipeline that restricts the LLM to only those text segments
relevant to each specific organization pair.

(1) Candidate Retrieval. For each target organization record,
we gather the set of candidate organizations that appeared
with it in relevant text (§4.2). We ignore organizations
never co-mentioned in any chunk.

(2) Context Retrieval. For each candidate, we query the vector
database to retrieve only chunks referencing both the
target organization and that candidate organization. This
ensures the LLM sees only highly pertinent snippets.

(3) LLM Classification. We send these snippets to a large
language model, along with a structured prompt (Appen-
dix C), asking it to classify the relationship between the
two organizations as:

e alias: Different names for the same operator.

e parent/child: One entity owns or controls the other.

e no-relation: No ownership or alias link.

(4) Assignment.Ifthe LLM outputisalias orparent/child,
we update the target record’s lists (e.g., alias or parents).
Otherwise, we disregard the candidate.

By confining the model to small, relevant snippets, we reduce
computational cost, minimize hallucinations, and maintain
a clearer chain of evidence for each relationship.

4.4 Post-Filtering and Clustering

Up to this point, each organization record has been processed
individually, generating localized relationships (aliases, par-
ent—child). However, multiple records can represent the same
real-world operator, or partial data can falsely suggest a link
between organizations with generic or misleading names.
We thus run a final post-filtering and clustering step, unifying
duplicates, handling rebranding scenarios, and forming a
cohesive hierarchy.
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Figure 2: Stage 1: Creating primary and secondary
aliases.
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Figure 3: Stage 1: Merging into alias-org-sets via
shared primary aliases; secondary aliases are omitted
for brevity.

4.4.1 Stage 1: Alias Detection via Shared Text. We first cluster
organization records that share overlapping validated aliases
(e.g., “Limelight inc.”vs.“Limelight Company”).Figure 2
and Figure 3 illustrate this process:

(1)
()

(3)

4)

Augment Alias List. Each record’s canonical name is added
to its alias list (alias).

Local Clustering. We compare aliases via Jaccard Similar-
ity [22], forming alias-sets. Any single-string set (e.g.,
“Group”) is discarded as likely noise.

Primary vs. Secondary Aliases. Clusters containing the
canonical name become primary-alias sets; all others
are labeled secondary-alias.

Graph-Based Union. We construct an undirected graph
where nodes represent organization records and edges
appear if two records share at least one primary-alias.
A connected-component search merges them into alias-
org-sets, each representing what might be a single real-
world operator.
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Figure 4: Stage 2: Applying majority voting on sec-
ondary aliases.
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Figure 5: Stage 2: Merging alias-org-sets after re-
brand detection.

4.4.2 Stage 2: Rebranding and Renaming. Minor string over-
lap can miss major rebrands (e.g., “Limelight Networks” re-
branded to “Edgio”). We address these via the secondary-alias
(Figure 4, Figure 5):

(1) Collect Secondary Aliases. For each alias-org-set, gather
all secondary-alias from the member records and clus-
ter them with the same Jaccard method.

(2) Majority Voting. We keep only those clusters used by
at least 50% of the alias-org-set’s records, mitigating
one-off errors or hallucinations.

(3) Alias Promotion. Surviving clusters are upgraded and
added to set-alias, indicating recognized name changes.

(4) Set-Level Merge. If two alias-org-sets now share at
least one element in newly updated set-alias, they
merge into a single set. This unifies records that were
previously split due to a complete rename.

4.4.3 Stage 3: Parent-Child Relationship Identification. Fi-
nally, we determine ownership links between these merged
sets (i.e., alias-org-sets). This step constructs a directed
acyclic graph (DAG) capturing child—parent relationships:
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Figure 6: Stage 3: Forming a DAG of parent—child rela-
tionships.

(1) Cluster Parent Candidates. For each alias-org-set, we
gather all parents references from the LLM inference

phase and cluster them again, employing the same majority-

vote filter to eliminate outliers.

(2) Assign set-parents. Surviving references become the
set’s consolidated parent list, set-parents, representing
recognized ownership.

(3) Create Directed Edges. We add an edge from set C (child)
to set P (parent) if C’s set-parents overlaps with P’s
set-alias. Connected components in this DAG reveal
hierarchical structures among organizations.

Final Output. By merging organizations with matching
or rebranded names and identifying parent-child ownership,
ASINT yields a reproducible, hierarchical map of organization
families. Each node represents a real-world operator, and
each directed edge denotes an ownership link.

5 RESULTS AND ANALYSIS

In this section, we present the AS-to-Org mapping results
obtained from ASINT. The outcome of ASINT is a set of orga-
nization records, each of which we refer to as an organization
family—a group of AS Numbers controlled by a single entity,
including both different aliases of the same organization and
any acquired child organizations.

5.1 Overview of the Data Pipeline and
ASINT Coverage

In this subsection, we provide an overview of our data collec-
tion and processing pipeline, culminating in the organization
familes produced by ASINT.

Data Collection. We start by gathering AS Numbers and
possible organization records from a range of sources. As
shown in Table 1, we first parse WHOIS data from multi-
ple RIRs and NIRs, obtaining a total of 111,470 ASNs and
3,503,756 organization records. Not all organization records

| WHOIS  CA20  PeeringDB
Num. of ASes 111,470 111,641 30,058
Num. of Orgs 3,503,756 95815 31,615
Matched Orgs (with > 1 AS) 65,842 95,815 28,389

Table 1: Datasets from WHOIS, CAIDA, and PeeringDB.
“Matched orgs” denotes the count of organizations with
at least one associated AS.

in WHOIS data are associated with an AS Number; in fact,
only 65,842 of these records can be matched to at least one
ASN. For example, ARIN alone maintains 3,356,545 organiza-
tion records, many of which relate to IP address allocations
(NetHandle or V6NetHandle) rather than AS Numbers. In ad-
dition, due to incomplete bulk access in certain NIRs regions
(e.g., KRNIC), we incorporate CAIDA’s AS20rg dataset to
fill these gaps, acquiring additional ASes and organization
names. In total, this yields 111,470 AS Numbers and 88,101
potential organization names for subsequent processing.
We then integrate PeeringDB records, which complement
WHOIS data with information such as official websites, al-
ternative names, and descriptive notes. PeeringDB covers
30,058 ASes (27.0% of our total) linked to 28,389 organiza-
tions, indicating that relying solely on PeeringDB would re-
strict global AS coverage. Nonetheless, it remains a valuable
source of supplemental metadata (e.g., official websites and
aka fields), which we leverage in subsequent web-crawling
steps. For every AS in PeeringDB that offers a website URL,
we automatically retrieve the corresponding web content.

Web Crawling and Text Processing. To further enrich our
dataset, we perform targeted searches for all 88,101 organi-
zations, issuing multiple query patterns (e.g., “acquired by”,
“parent company”, etc.) and collecting the top-five results for
each. We then crawl a total of 873,949 URLs, from which
we extract 20,478,907 text chunks. With a pre-trained BERT
based NER module [20], we filter these chunks for references
to organizations of interest, reducing the corpus to 386,278
potentially relevant chunks (roughly 1.9% of the original
text). We then build a local vector database using Milvus [31]
from these filtered chunks, forming a knowledge base that
supports subsequent retrieval-augmented generation (RAG)
queries.

Inference and Final Clustering. Next, we use an LLM-
based inference approach (§4), specifically ChatGPT 40-mini,
to identify organization aliases and parent—child relation-
ships. This process involves 89,515 distinct LLM queries, after
which we apply a post-filtering and clustering step to merge
duplicate entities and establish hierarchical links (§5.4.3).
Ultimately, we arrive at 81,233 final organization families,
each comprising one or more AS Numbers under common
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Figure 7: CDF of the number of ASes per organization
family. Note that x-axis extends to 973, which is “DoD
Network Information Center” that manages 973 differ-
ent ASes in ARIN.

ownership and control. These clusters provide a comprehen-
sive AS-to-organization mapping that captures rebranding,
acquisitions, and shared operational oversight.

Table 2 summarizes the key outcomes of the pipeline.
Our final dataset offers global coverage of 111,470 ASes—
spanning multiple RIRs and NIRs and reflecting the con-
stantly evolving Internet landscape—and demonstrates how
NER, LLMs, and post-clustering can be combined to produce
a more nuanced view of organizational relationships.

5.2 Analysis of Organization Families on
the Internet

In this section, we examine the organization families pro-
duced by our methodology, highlighting their size, internal
complexity, and cross-regional presence. Recall that an orga-
nization family unites one or more ASes under a common
controlling entity, capturing both alias relationships (i.e., dif-
ferent names for the same organization) and parent-child
relationships (i.e., acquisitions or subsidiaries).

5.2.1 Size Distribution. We begin by exploring the distribu-
tion of ASes within each organization family. Figure 7 plots
the distribution of the number of ASes per family; while the
majority of these families remain small, with roughly 87.8%
containing only a single AS, there is a notable tail of much
larger families. Specifically, 51 organization families contain
equal to or more than 50 ASes, and 21 families exceed 100
ASes. This reflects a bifurcation of the Internet’s organiza-
tional landscape, where most entities manage only one or
a few ASes, yet a smaller number of large-scale operators
manage dozens—or even hundreds—of ASes worldwide.

5.2.2  Hierarchy and Parent-Child Relationships. To quantify
the complexity of corporate structures within an organiza-
tion family, we measure how many distinct parent—child
links appear in each. Figure 8 shows the CDF of acquisi-
tion (i.e., parent—child) relationships for all families. While
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Figure 8: CDF of parent-child links within each orga-
nization family. x-axis extends to 50, which is “NTT
Communications”, which manages multiple organi-
zations such as NTT Security (Switzerland) AG, NTT
Cloud Communications SAS.

most remain simple (e.g., only 1.8% of families have any
parent—child links at all) a small fraction displays high inter-
nal complexity, with some families including more than 10
reported acquisitions.

Case Study: Microsoft: One illustrative example highlights
how our approach captures complex corporate histories.
Within our dataset, AS54947 (ZeniMax) and AS202167 (Zen-
iMax Germany) both appear as subsidiaries of Microsoft,
alongside Microsoft-owned ASes such as AS8069 and AS40066,
reflecting the 2020 acquisition of ZeniMax by Microsoft [25].
Furthermore, Microsoft’s subsequent acquisition of Activi-
sion Blizzard has added AS14588 (Activision Publishing),
AS10793 (id Software, a ZeniMax subsidiary), and AS60229
(Demonware, an Activision subsidiary), all converging into
a single organization family. None of the evaluated alterna-
tive datasets (e.g., WHOIS, PeeringDB) explicitly capture
these mergers under one unified entity. By contrast, ASINT
leverages broader Web information and LLM-based infer-
ence to properly cluster these ASes, despite their diverse
registrations and historical records.

5.2.3  Multiple WHOIS Organization Handles. Even a same
organization operating multiple ASes can register them un-
der different WHOIS handles, whether for historical reasons,
regional differences in naming, or acquisitions. Focusing on
families with more than one AS, we find that 52.1% use a
single handle across all their ASes, while the remaining 47.9%
rely on multiple handles, with 165 (1.7%) of families referenc-
ing equal to or more than 10 distinct WHOIS organization
handles.

This pattern underscores how formal registry data can
fragment a single real-world operator into multiple nominal
entities, complicating any purely WHOIS-based attempt to
unify AS-to-organization mappings.
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Count 873,949 ‘ 20,478,907

‘ Organizations ‘ Crawled URLs ‘ Crawled Text Chunks ‘ Filtered Text Chunks ‘ LLM Queries ‘ Organization Families
\ 88,101 \

Table 2: Summary of pipeline statistics for ASINT.
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Figure 9: CDF of distinct WHOIS organization handles
per organization family. The x-axis extends to 106, cor-

responding to ChinaNet, which has 106 organization
handles.

Number of RIRs (or NIRS)‘ 1 2 3 4 5 6
Organization Families ‘79,556 1,287 298 74 16 2

Table 3: Distribution of organization families by how
many RIRs (or NIRs) they are registered in.

Case Study: Orange. Orange, a major ISP headquartered
in France, exemplifies the complexity of operators using
multiple WHOIS handles for globally distributed ASes. For
example, AS8523 is listed under ORG-BA89-RIPE as “Or-
ange Business Digital Sweden AB,” AS30985 under ORG-1S28-
AFRINIC as “Orange Mali SA”, and AS327710 under ORG-
OCD2-AFRINIC as “Orange Cote d’Ivoire” . These region-
specific names reveal subtle metadata differences. PeeringDB
coverage is likewise fragmented: AS8523 appears as “Base-
farm AS” with their website. AS30985 is “Orange Mali SA”

with no listed website, and AS327710 is absent altogether—further

underscoring Orange’s multi-country model and the need
for consistent data reconciliation.

5.2.4 Cross-RIR Registration. RIRs separately oversee AS
Number (and IP address) allocations in different parts of
the world. Consequently, multinational organizations often
hold resources from multiple RIRs, making it challenging to
identify cross-regional ownership based solely on WHOIS
or PeeringDB. By combining multiple data sources, ASINT
reveals that 1,677 organization families appear in more than
one RIR. Table 3 summarizes how many families span {1, 2,
3,4, 5, 6} registries (including NIRs).

Case Study: Deloitte. Table 4 showcases one family, De-
loitte that registers ASes in all five RIRs. For instance, AS42536

386,278 \ 89,515 \ 81,233
ASN Organization Name RIR/NIR Incl. PeeringDB
328312 Deloitte Touche South Africa AFRINIC Yes
42536 Deloitte LLP RIPE No
132384 Deloitte Consulting India Pvt. Ltd ~ APNIC No
55228 National TeleConsultants LLC ARIN No
272103 DELOITTE TOUCHE LTDA LACNIC No
131077 Deloitte Tohmatsu Group LLC JPIRR Yes

Table 4: Deloitte’s organizations appear in six different
RIRs, yet only two are listed in PeeringDB.

is registered with RIPE under “Deloitte LLP”, while its sub-
sidiary [5], “National TeleConsultants LLC,” registers AS55228
in ARIN with different organization name. Other ASes re-
flect further naming variations across APNIC, LACNIC, and
AFRINIC. Although PeeringDB covers some of Deloitte’s
ASes, they appear under various partial names, illustrating
that neither standalone WHOIS nor PeeringDB captures the
complete scope of Deloitte’s worldwide network footprint.

5.2.5 Summary. In summary, our analysis shows that:

o Most families have a single or small number of ASes, but a
select few control hundreds of ASes worldwide.

o Parent—child relationships are relatively sparse, yet large
families often involve multiple acquisition links, reflecting
complex corporate structures.

o Multiple WHOIS handles for a single organization are com-
mon, especially for large ISPs or multinational operators,
complicating efforts to unify these disparate references
without additional context.

o Cross-RIR registration poses a significant challenge for
purely RIR-based or PeeringDB-based methods, but our
broader data collection and inference steps succeed in
linking multinational entities into cohesive organization
families.

Collectively, these findings highlight the value of augmenting
WHOIS and PeeringDB records with open-text Web sources,
especially when combined with an LLM-based pipeline that
merges aliases and parent—child structures. The resulting
organization families illuminate the global landscape of AS
ownership and management, revealing how complex and
intertwined the modern Internet has become.
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Metric CA20 AS20RG+ AS-Sibling
ASINT CA20 ASINT |  AS20RG+ ASINT | AS sibling

Common ASes 111,346 111,351 111,067
Organization Families 81,160 89,069 81,162 88,866 81,152 87,927

Size > 1 9,888 8,263 9,889 8,235 9,881 8,559
Avg. family size (ASes) 4.05 3.69 4.05 3.73 4.03 3.70
Identical families 77,313 77,188 77,684
Aggregations (Org. Families) 3,847 (11,756) 0 (0) 3,816 (11,591) 78 (158) 3,231 (10,101) | 128 (236)
Aggregations (ASes Num) 20,267 - 20,151 2,424 18,076 1,787
Man. Validated Families (AS num) | 100 (1,686) - 100 (1,686) 40 (778) 100 (1,686) 50 (1,001)
True Positive Ratio 93.6% - 93.6% 88.2% 93.6% 92.7%
Residual families 0 0 0 9 1 14

Table 5: Comparison of ASINT with three baseline datasets. Note that Avg. family size (ASes) only counts families
containing more than one ASes; “Aggregations (Org. Families)” reports B families from a baseline dataset are
merged into A families of ASINT in format “A (B)”. When the numbers appear in the other columns, this indicates

a “reverse aggregation” by the baseline.

5.3 Comparison with Prior Datasets

In this section, we compare ASINT with three previously
published AS-to-Organization datasets.!

e CA20 [10]: A WHOIS-based mapping of ASes to organi-
zations.

e AS20RG+ [2]: An extension of CA20 that supplements
WHOIS data with additional metadata from PeeringDB
and CAIDA’s as_relationship dataset.

e AS-Sibling [9]: A dataset focusing on sibling relationships
between ASes, derived primarily from PeeringDB plus
CA20 and BGP data.

We aim to quantify how often ASINT identifies additional
organization links (i.e., “aggregations”) not seen in these
other datasets, as well as whether ASINT sometimes misses
valid links or merges ASes erroneously.

We also conduct a manual validation study on selected
cases to assess the accuracy of ASINT in real-world scenarios.

5.3.1 Methodology. To ensure fair comparisons, we first
identify the common ASes appearing in both ASINT and each
baseline dataset. While each dataset may have a different
total number of ASes (due to data-access constraints or col-
lection dates), analyzing only the intersection allows us to
evaluate how each system groups the same ASes.

All four datasets cluster ASes under higher-level entities,
but they use different terminology: “Organizations” (CA20,
AS20RG+) and “Siblings” (AS-Sibling). For consistency, we
refer to these groupings as organization families throughout
the comparisons.

Core Metrics. For the overlapping AS sets, we compute:
e also attempted to evaluate ASINT with Borges [28]; how-

ever, the dataset has not been released publicly at the time of sub-
mission.
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(1) Organization Family Counts and Sizes: The total number
of organization families in each dataset and their aver-
age size (mean number of ASes per family for families
containing more than one AS).

(2) Identical Families: The number of families whose AS mem-
bership is exactly the same in both datasets.

(3) Aggregation Cases: Situations where one family from
Dataset A fully contains multiple smaller families from
Dataset B. This usually indicates that Dataset A merges
ASes that Dataset B keeps separate. We measure this for
both directions.

(4) Residual Families: Families that do not match or get fully
subsumed on either side (i.e., they remain uniquely de-
fined in one dataset, with no counterpart in the other).

5.3.2  Overall Results and Statistics. Table 5 summarizes the
main outcomes of our comparisons across the three base-
line datasets. We list the number of ASes common to both
datasets, the resulting number of organization families (and
how many of those have more than one AS), and the average
family size.

Overall, ASINT tends to identify slightly larger groups of
ASes (i.e., higher average family size), suggesting that our
pipeline captures additional corporate or alias relationships
beyond those found purely through WHOIS or PeeringDB.

Comparison with CAIDA’s AS20RG. We collect the latest
snapshot of CAIDA’s AS20RG dataset. After filtering for the
111,346 ASes shared in both datasets, ASINT groups them
into 81,160 organization families, while AS20RG produces
89,069. On average, each ASINT family contains 4.05 ASes,
compared to 3.69 for AS20RG.

Regarding the overlap, 77,313 families are identical across
both datasets, containing exactly the same AS membership.
However, ASINT merges 11,756 AS20RG families into just
3,847 larger ones (involving 20,267 ASes). Because ASINT
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partly relies on CAIDA’s data as input (alongside more ex-
tensive Web-based crawling), there are no “residual” families
in AS20RG that ASINT fails to match.

Comparison with AS20RG+. AS20RG+ [2] extends CAIDA’s
baseline by incorporating PeeringDB and the as_relationship

dataset. Recreating AS20RG+ with our WHOIS, PeeringDB,
and as_relationship data yields 111,351 overlapping ASes.
From these, ASINT produces 81,162 organization families,
whereas AS20RG+ forms 88,866. Additionally, ASINT shows
a larger average family size (4.05 versus 3.73), indicating it
merges more ASes into unified entities.

While ASINT aggregates 11,591 AS20RG+ families into
3,816 of its own, we observe that 78 AS20RG+ families merge
158 of ASINT (covering 2,424 ASes). This “reverse aggrega-
tion” largely arises from differences in input data—particularly
the as_relationship dataset—and highlights that ASINT,
though generally more inclusive, may still miss merges driven
by partnerships outside our search scope. For example, Cen-
turyLink Communications, LLC partners with Air Force Sys-
tems Networking, leading to a reverse aggregation scenario
not covered by ASINT.

Comparison with AS Sibling. We examine their snapshot
(Jan 2025), finding 111,067 ASes in common. ASINT yields
81,152 families, while AS Sibling has 87,927.

As before, ASINT aggregates 10,101 AS Sibling families
into 3,231 of its own (involving 18,076 ASes). Conversely, AS
Sibling aggregates 236 of ASINT into 128 of its own (1,787
ASes). We also observe 15 “residual” families—1 in ASINT
and 14 in AS Sibling—caused largely by differences in data-
collection timestamps and PeeringDB coverage.

Although AS-Sibling adopts a narrower scope and forms
fewer but broader “sibling” clusters (reducing the chance
of merges and misclassifications), ASINT achieves a slightly
higher true positive ratio (93.6% vs. 92.7%).

This is particularly encouraging given that ASINT tackles
a wider range of ASN relationships (e.g., rebrands, parent-
child) and aims for global coverage, yet still maintains supe-
rior accuracy.

5.3.3  Manual Validation of Aggregations. Not all merges or
splits are necessarily correct; some may be genuine discov-
eries of corporate relationships, while others could be false
positives. We therefore manually inspect a sample of aggre-
gated families—cases where ASINT unifies multiple smaller
groups that the other dataset keeps separate, or vice versa.
We randomly select 100 such cases from each baseline com-
parison, representing 1,686 ASes.
Our analysis shows that ASINT achieves a high true-positive

rate for newly aggregated families, confirming that many of

its merges reflect real-world acquisitions or shared owner-
ship. However, we also find a smaller subset of false-positive
merges (6.4%) caused by:

o Stale or incomplete acquisition histories (e.g., a former sub-
sidiary was later divested, but that information did not
appear in our crawled data).

o Overly permissive fuzzy matching in search results or entity
recognition, conflating two similarly named organizations.

o LLM inference errors that persisted despite prompt engi-
neering and post-filtering.

Meanwhile, we also encounter a handful of missed merges
cases where a baseline dataset merges ASes correctly, but
ASINT does not. These typically stem from incomplete or
inaccessible online records (e.g., paywalled sources or pages
blocked by anti-bot measures).

5.34 Limitations and Future Improvements. Our findings
demonstrate that ASINT frequently reveals additional or-
ganizational relationships beyond those found by prior ap-
proaches, yet some gaps and inaccuracies remain:

o False-positive merges can arise from incomplete or out-
dated acquisition records, ambiguous entity names, or
LLM hallucinations. Further refining retrieval-augmented
generation (RAG) and applying stricter cross-checking of
corporate structure data may help mitigate such errors.

o Missed merges highlight the importance of more compre-
hensive data sources. Incorporating additional metadata
(e.g., press releases or brand databases) could improve
coverage.

o Temporal dynamics remain a major challenge: corporate
relationships can shift quickly as organizations merge,
rename, or dissolve, making our snapshot outdated.

Overall, these comparisons confirm that ASINT comple-
ments and extends existing AS-to-Organization mapping
datasets by systematically leveraging unstructured Web data
and LLM-based inference. While no single approach can cap-
ture the entire global Internet perfectly, our results suggest
that harnessing broader data sources is a significant step
toward an accurate, up-to-date view of AS ownership and
management.

5.4 Performance Benchmark

In this section, we evaluate the individual components of
ASINT to demonstrate how they contribute to the overall
accuracy, scalability, and cost-effectiveness of our approach.

5.4.1 Effectiveness of NER-Based Filtering. While LLMs can
reason about complex relationships, they are not well-suited
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Estimated Cost ($) Org Families ASes
Model | Per IM Full Training . Overlap w/ Overlap w/
Identified Identified
Tokens | Est. w/o NER w/ NER entilie 40-mini entihie 40-mini
40-mini $0.15 $1,360 $60 1,000 - 1,629 -
40 $2.5 $23,943 $1,221 1,020 963 (96.3%) 1,629 1,553 (95.3%)
o3 $10 $148,835 $6,922 1,021 959 (95.9%) 1,629 1,538 (94.4%)

Table 6: A comparison of three model variations (40-mini, 40, 03) with their associated costs, organization family

counts, and AS information.

to sifting through massive, noisy corpora unaided [16]. With-
out entity filtering or a vector-based retrieval mechanism,
the model risks being overwhelmed by irrelevant text.

We tested randomly chosen 100 previously verified par-
ent—child AS pairs in a scenario where the LLM received
unfiltered raw HTML from our crawled data (an average
of 16,473 tokens per pair vs. 310 tokens after NER filtering)
The model inferred the correct relationship in only 84% of
cases, and most false negatives arose because the LLM failed
to locate the single relevant sentence among large, messy
HTML documents. This underscores the importance of NER-
based filtering; ASINT reduces cost and frees the LLM from
searching vast, irrelevant text;

5.4.2 Impact of Retrieval-Augmented Generation (RAG). An-
other cornerstone of ASINT is the use of RAG to feed context-
specific snippets into the LLM, rather than relying on the
model’s built-in or memorized knowledge. LLMs may have
been trained on older or incomplete data, and organizational
structures can change rapidly (e.g., new acquisitions).

We sampled 100 verified parent—child organization pairs
and asked the LLM (OpenAl 4o0-mini) to infer their rela-
tionship without any reference to external context, effectively
testing whether the model “already knows” about these cor-
porate links. The accuracy dropped to 36%, demonstrating
that many valid relationships cannot be reliably retrieved
from the model’s training set alone.

With RAG, ASINT supplies the relevant text from web
pages, press releases, which enables the LLM to consistently

identify the relationship, preventing knowledge gaps or training-

time cutoffs from undermining accuracy; as new acquisitions
occur, simply updating our crawled metadata suffices.

5.4.3 Necessity of Post-Filtering and Clustering. Even with
careful NER and RAG, the LLM can produce erroneous or
overly broad inferences (e.g., merging many unrelated orga-
nizations under the same name if a few ambiguous tokens
appear in their text).

To quantify the value of post-filtering and hierarchy con-
struction (§5.4.3), we removed that step and measured the
effect on final organization families. Out of 81,233 families,
12,368 changed significantly. In one extreme case, 4,459 fam-
ilies covering 14,310 ASes collapsed into a single family,
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caused by generic terms in the collected web data (e.g., “Tele-
com”, “Network”) that eluded NER’s filtering. Post-filtering
prunes these spurious merges by requiring stronger textual
evidence and majority voting before final clustering.

5.4.4  Sustainability and Choice of LLM Models. Accurate,
cost-effective, and up-to-date AS-to-Organization mappings
demand repeated LLM queries to accommodate newly intro-
duced ASes and evolving corporate structures.

Cost Sensitivity. Table 6 illustrates how three variants of
OpenAI's LLM—40-mini, 40, and o3—differ in both pricing
and outcome. Specifically, we report the cost per 1 million in-
put tokens (output tokens cost 4 times as much), an estimate
of the total expense if we processed all crawled text with-
out NER filtering (Est. w/o NER), and the actual cost when
leveraging our filtering pipeline (w/ NER). The contrast is
striking: for 40-mini, the projected cost drops from $1,360
(no filtering) to just $60 (with NER).

These savings underscore the value of carefully pruning
irrelevant text before passing it to the LLM.

Model Comparison. We evaluate these three LLMs using
a randomly selected sample of 1,000 organization families
including 1,629 ASes. Table 6 shows that each model uncov-
ers a slightly different number of final organization fami-
lies—1,000 for 40-mini, 1,020 for 4o, and 1,021 for 03. Despite
these small discrepancies (e.g., a 21-family difference be-
tween 4o-mini and 03), overlap remains high: 96% of the
ASes are mapped identically to those in 40-mini, indicating
that ASINT achieves robust consistency across models.

6 USECASES AND IMPACT

6.1 Organization Cone Size and Ranking

Accurate estimates of an ISP’s “customer cone” are central to
many topology and ranking analyses [21]. CAIDA’s existing
AS Ranking dataset computes organization-level ranks by
grouping ASes in its CA20 dataset and then measuring each
group’s transit cone (the set of ASNs, prefixes, or IP addresses
served as customers).

Using ASINT, we recreate an analogous cone-size analysis.
Among the 89,072 organizations in CAIDA’s AS Rank dataset,
we observe that 11,760 organizations see a larger cone size
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Org Name New Rank | New Cone Size
TATA 6 (A 2) 21,782 (+2,447)
Orange 12(-) 9,958 (+1,927)
Charter 32 (A 32) 2,781 (+1,819)
Vodafone 14 (-) 8,479 (+1,708)
Comcast 23 (A 12) 3,862 (+1,513)
Liberty Global 21 (A9) 4,030 (+1,361)
GlobeNet Cabos 19 (A 8) 4,156 (+1,340)
Telstra 13(-) 8,930 (+1,282)
Deutsche Telekom | 16 (A 3) 5,198 (+1,191)
Stowarzyszenie 44 (A 51) 1,652 (+1,014)

Table 7: Organization Rankings and Cone Metrics.

under our new mapping—often because ASINT merges previ-
ously fragmented AS sets belonging to the same real-world
operator. Table 7 highlights 10 organizations that show the
largest positive changes in cone size and rank. For example,
Charter’s cone size nearly doubles (from 962 to 1,819 ASes)
after identifying 237 ASes under its control, raising its rank
from 64 to 32. Such improvements cannot be captured by
PeeringDB-based methods alone since Charter omits details

in PeeringDB’s “notes” field, and only 8 of its 237 ASes appear
in PeeringDB at all.

6.2 RPKI Misconfiguration

The Resource Public Key Infrastructure (RPKI) cryptographi-
cally secures route advertisements by allowing resource hold-
ers to publish Route Origin Authorizations (ROAs). RPKI aids
in preventing route hijacks, but misconfigurations can still
arise if an organization incorrectly assigns multiple ASNs
under its umbrella. Prior work [7] used CAIDA’s CA20 to
identify RPKI-invalid prefixes announced by the same orga-
nization’s ASes.

We replicate this study using more recent data from Janu-
ary 2023 to July 2024, combining BGP routing tables from
RouteViews [27] and ROAs from all five RIRs, leaving 42,654
RPKI-invalid prefixes for analysis. Applying CA20 finds
4,436 of these as intra-organization misconfigurations, whereas
ASINT identifies an additional 1,219 such cases (a 27.5% in-
crease). These newly discovered cases were previously mis-
categorized because CA20 did not recognize that the two
ASNs belonged to the same entity.

6.3 IP Leasing Detection

As IPv4 space becomes scarce, IP leasing—where organiza-
tions temporarily rent out IP addresses—has grown into a sig-
nificant market. Distinguishing legitimate intra-organization
reallocation from actual cross-organization leasing is impor-
tant for accurately characterizing these markets.

Building upon [12], which used CA20 to detect leased
addresses, we re-examined 47,318 previously flagged “leased”
IP prefixes. Under our new mapping, 2,783 (5.9%) of those
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prefixes turn out to be reallocated within the same organi-
zation, rather than leased. For example, 193.82.107.0/24 was
incorrectly labeled as leased between AS1290 and AS4637,
although both are actually owned by Telstra. Thus, using
ASINT avoids overestimating lease activity.

6.4 Hijack Detection

BGP hijacking remains a serious threat to Internet security,
allowing attackers to redirect or intercept traffic. Existing
hijack detection platforms (e.g., Radar [11] and GRIP [1]) of-
ten rely on CA20 to filter out potential false positives: if two
ASes belong to the same organization, an overlapping prefix
announcement might be legitimate rather than malicious.

We collected 17,282 hijack alerts from Radar and 11,450
from GRIP spanning January 2023 to July 2024, none of which
were flagged as intra-organization by CA20. However, by
applying our dataset, we find that 1,465 (8.5%) of Radar’s
alarms and 1,326 (11.6%) of GRIP’s alarms involve AS pairs
owned by the same organization—thus false positives.

In total, 1,621 (9.4%) hijack alerts across both platforms
are, in fact, benign. We validated 100 randomly selected
cases by emailing each allegedly “victimized” operator’s
publicly listed contact. Of the 32 who responded, all of
them confirmed the event was an internal reannouncement
rather than a hijack. This underscores how improved AS-to-
Organization mapping can substantially reduce unnecessary
alarms, saving time and effort for both operators and security
teams.

7 CONCLUDING DISCUSSION

We have presented ASINT, a system that extends ASN-to-
organization mapping by integrating WHOIS, PeeringDB,
and a wide range of unstructured web sources through a
RAG pipeline. ASINT uncovers a richer set of cross-regional
aliases, major rebrandings, and complex parent-child own-
ership links. Our key findings include:

o Coverage and Aggregation: Analyzing over 111,000 ASNss,
ASINT produces 81,233 organization families, merging
thousands of AS20rg entries into fewer, larger families and
revealing additional intra-organizational relationships.

o Operational Impact: By more accurately grouping ASNs,
ASINT increases the detection rate of intra-organizational
RPKI misconfigurations by 27.5% and reduces false alarms
in hijack detection by 9.4%. It also decreases misclassified
IP leasing cases by 5.9%.

o Real-World Relevance: Enriching registry data with exter-
nal sources (e.g., news articles) allows us to track rebrand-
ings and acquisitions well before official registry updates.

Sustainability. To ensure ASINT remains viable over time,
we consider the following:



o Continuous Updates: ASINT is designed for periodic re-
checks, enabling incremental ingestion of WHOIS data and
new web crawls that reflect ongoing corporate changes.

o Cost-Aware LLM Choices: Since inference constitutes a re-
curring expense, ASINT can adapt to different LLM models
based on a desired balance of cost and accuracy.

o Additional Metadata: Future plans include expanding data
sources (e.g., brand databases, multilingual press releases)
and incorporating structured signals (e.g., domain certifi-
cates, enterprise group filings) to broaden coverage and
reduce remaining false positives.

Overall, ASINT demonstrates the value of fusing registry
data with unstructured web evidence. By exposing cross-
regional affiliations, hidden mergers, and alternate brand
identities, our approach provides a more holistic view of
the Internet’s organizational landscape. We will publish the
dataset with periodic updates, thereby supporting future
research and strengthening operational practices.
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A ETHICAL CONSIDERATIONS

ASINT collects raw data from Internet, involves the use of
web searching and crawling as the underlying data collection
technique. We acknowledge that web crawling can raise eth-
ical concerns, particularly regarding the potential for over-
loading servers or violating terms of service. To mitigate
these risks, we follow the Menlo Report principles [13], and
implement several best practices in our data collection pro-
cess:

e Respecting Robots.txt: We respect the robots. txt files
of the websites we crawl, which specify the rules for web
crawlers regarding which parts of the site can be accessed.

e Rate Limiting: We have implemented rate limiting in our
crawling process to avoid overwhelming any single server
with requests. This helps to ensure that our crawling activ-
ities do not disrupt the normal operation of the websites
we access.
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o User-Agent Identification: We identify our crawler with a
specific user-agent string, allowing website administrators
to recognize our crawler and take action if necessary.

o Data Usage: The data collected is used solely for research
purposes and is not shared with third parties without
proper anonymization or aggregation.

B REPLICABILITY

We public ASINT code and analysis scripts at
https://anonymized.for.reviews
for network operators, administrators, and researchers to
reproduce our work.
We also provide a public available dataset for ASINT AS-to-
Organization mapping dataset, continuously updated with
new information.

C PROMPT

Figure 10 and Figure 11 shows the prompt we used in the
pipeline.



ASINT: Learning AS-to-Organization Mapping from Internet Metadata

Few-Shot Prompt

You are an expert at determining how organizations that own or control Autonomous System (AS) numbers in computer
networks are related, using the provided context.

You will receive:

1) A **base_organization*x.

2) A list of x*candidate_organizationsxx.

3) x*context*x providing relevant organizational details.

#i## Definitions
For each (base_organization, candidate_organization) pair, decide which of the following relationships
best applies:

- Alias
Both names refer to exactly the same legal entity or one is a historical name of the other.

- Parent/Subsidiary
One organization has acquired or holds more than 50% of the stock of the other. Identify which one is the parent:
Choose between "base_organization" or "candidate_organization".

- No_relation
There is insufficient evidence of alias, ownership or acquisition linking them.

**Mandatory JSON Output Formatxx:
Your output must be in valid JSON format only, with no extra text or commentary. Use the structure:

{
"base_org_name": <Name of base organization>,
"candidate_org_name": <Name of candidate organization>,
"reasoning for Alias": <Explanation for why this pair is or is not Alias>,
"reasoning for Parent/Subsidiary": <Explanation for why this pair is or is not Parent/Subsidiary>,
"relationship": <One of "Alias", "Parent/Subsidiary", or "No_relation">,
"parent": <If Parent/Subsidiary, indicate "base" or "candidate"; otherwise leave empty>,
"parent name": <If Parent/Subsidiary, exactly match the relevant org name from "base_organization"
or "candidate_organization"; otherwise leave empty>
}

### Example:
Provide this JSON object for each (base_organization, candidate_organization) pair as an array for output.

Examples:
L
{
"base_org_name": "Zayo Bandwidth",
"candidate_org_name": "company",
"reasoning for Alias": "The candidate name is generic and lacks direct evidence connecting it
to Zayo Bandwidth.",

"reasoning for Parent/Subsidiary": "No indication of ownership or acquisition.",
"relationship"”: "No_relation",
"parent": "",

"

"parent name":

}’

Figure 10: Full prompt used for few-shot inference.
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Few-Shot Prompt (Continued)

{
"base_org_name": "Google inc.",
"candidate_org_name": "YouTube",
"reasoning for Alias": "Google inc. acquired YouTube in 2006, so they are not aliases but parent and child.",

"reasoning for Parent/Subsidiary": "YouTube is a subsidiary of Google inc.",
"relationship": "Parent/Subsidiary",
"parent": "base",
"parent name": "Google inc."
Bo
{
"base_org_name": "Google inc.",
"candidate_org_name": "google",
"reasoning for Alias": "The name 'google' consistently refers to the same entity 'Google Inc.'",

1

"reasoning for Parent/Subsidiary": "No separate ownership details suggest a parent/subsidiary relationship.'
"relationship": "Alias",
"parent": "
"parent name":

"

### Input
"base_organization": {base_org}

"candidate_organizations": {target_org}
"Context": {context}

Now, respond by considering each candidate_organization in the list, applying reasoning, and returning your
final JSON array with one object per candidate.

Figure 11: Full prompt used for few-shot inference. (Continued)
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