
Thwart Me If You Can: An Empirical Analysis of Android Platform
Armoring Against Stalkerware

Malvika Jadhav
University of Florida
jadhav.m@ufl.edu

Wenxuan Bao
University of Florida
wenxuanbao@ufl.edu

Vincent Bindschaedler
University of Florida

vbindschaedler@ufl.edu

ABSTRACT
Stalkerware is a serious threat to individuals’ privacy that is re-
ceiving increased attention from the security and privacy research
communities. Existing works have largely focused on studying
leading stalkerware apps, dual-purpose apps, monetization of stalk-
erware, or the experience of survivors. However, there remains a
need to understand potential defenses beyond the detection-and-
removal approach, which may not necessarily be effective in the
context of stalkerware.

In this paper, we perform a systematic analysis of a large corpus
of recent Android stalkerware apps. We combine multiple analysis
techniques to quantify stalkerware behaviors and capabilities and
how these evolved over time. Our primary goal is understanding:
how (and whether) recent Android platform changes — largely
designed to improve user privacy — have thwarted stalkerware
functionality; how stalkerware may have adapted as a result; and
what we may conclude about potential defenses. Our investiga-
tion reveals new insights into tactics used by stalkerware and may
inspire alternative defense strategies.

KEYWORDS
Stalkerware, Android app analysis.

1 INTRODUCTION
Stalkerware is an unfortunate example of technology enabling in-
timate partner violence and stalking. Stalkers or intimate partner
abusers may install a stalkerware app on a victim’s mobile device, al-
lowing them to remotely monitor activity without their knowledge
or consent. This threat now affects individuals across the globe, as
the usage of stalkerware has grown explosively in recent years [22].

There is substantial prior research on various aspects of stalker-
ware. For example, prior research [11, 32] has highlighted the data
collection features of stalkerware, including the collection of text
messages, web searches, and real-time location. There have also
been efforts in characterizing the detectability of stalkerware [20,
36], its monetization strategies [19], dual-use applications [4, 5, 11,
40], and other considerations [40]. Additional work has explored
forensic tools, detection frameworks, and covert access behaviors
[9, 21, 27].

Despite our growing understanding of stalkerware that stems
from this prior research, there remains unanswered questions re-
garding defense mechanisms. Looking at stalkerware as a type of
malware, suggests that we merely need to detect it and remove
it from devices where it is found. But looking at stalkerware con-
sidering the unique feature of the adversary model reveals a more
complicated picture.

Stalkerware apps may be installed on the victim’s device surrep-
titiously or without their consent by an intimate partner abuser

with physical access to the device. For example, abusers have been
known to gift devices with stalkerware pre-installed to their vic-
tims [3]. Furthermore, even if the victim becomes aware that a
stalkerware app is installed on their device, they may be unable or
unwilling to remove it because that could alert the abuser. Studies
such as Spitzburg and Cupach [37] show that stalkers’ behavior
may escalate if their methods are unsuccessful. Therefore, removing
stalkerware could put victims at greater harms.

In this paper, we seek to improve our understanding of mitigation
against stalkerware. Inspired by efforts to harden the Android plat-
form model in recent years, we investigate whether these changes
are effective in mitigating stalkerware. Google has previously tar-
geted stalkerware by enacting new terms of service for the Google
Play Store in October 2020 that explicitly prohibit such software.
Our study was conducted prior to the introduction of platform
changes in Android 14 and beyond, such as stricter controls on
accessibility services for sideloaded apps, that are expected to have
a significant impact on stalkerware. As such, our evaluation reflects
the state of mitigation mechanisms up to and including Android
13.

Our investigation leverages a corpus of 8,428 Android stalker-
ware app samples collected until December 2022 by the Coalition
Against Stalkerware. This is a larger corpus than that used in prior
studies, and our analysis using VirusTotal’s first seen date reveals
that 6646 (78.99%) appeared after 2020 suggesting that the cor-
pus captures the latest stalkerware trends. Moreover, because this
corpus is longitudinal in nature, we can correlate capabilities and
behaviors with specific changes in the Android permission sys-
tem to determine what impact (if any) a particular change had on
the stalkerware landscape. The corpus also contains several stalk-
erware app families — apps that share the same package ID but
have different app samples, presumably released at different times
— which allows us to study how stalkerware capabilities evolved
within a given app family.

The findings of our investigation are mixed. While we found
clear and widespread evidence of stalkerware reacting to recent
changes in Android, we found little evidence that this reduced their
capabilities or hindered their functionality. For example, Android
11 introduced the READ_PHONE_NUMBERS permission to replace
the broader READ_PHONE_STATE permission. This change aimed
to limit the scope of access to phone numbers and enhance user
privacy. Despite this change, 136 out of 335 app samples that target
Android 11 and above within our corpus still perform call logging.

The problem is multi-faceted, and we find that stalkerware apps
have numerous ways to evade restrictions from the Android plat-
form that would impede their functionality. Many such restrictions
can be avoided by granting the appropriate permissions, changing
app settings during the time of installation, or by enabling the apps

ar
X

iv
:2

50
8.

02
45

4v
1 

 [
cs

.C
R

] 
 4

 A
ug

 2
02

5

https://arxiv.org/abs/2508.02454v1


Malvika Jadhav, Wenxuan Bao, and Vincent Bindschaedler

to have device policy controller privileges like making them Device
Administrator apps.

In fact, we found in our corpus a small subset of apps containing
no malicious behaviors (and requesting no permissions) except
for instructions guiding stalkers through the installation process
of stalkerware apps on victims’ devices. These installation guides
provide detailed instructions on how to side-load stalkerware apps,
disable settings and notification to keep stalkerware undetected,
and grant the required permissions to ensure stalkerware apps’
functionality is unimpeded.

Android’s recent changes will likely force stalkerware developers
to update their apps and provide increasingly detailed instructions
to enable installation. Nevertheless, new defense approaches may
be needed to continue addressing stalkerware threats.
Structure of the paper. Section 2 provides background onAndroid
and stalkerware, and discusses related work. Section 3 describes
our corpus and details our analysis methodology. Section 4 provides
an overview of the corpus and discuss overall trends in the evolu-
tion of stalkerware capabilities. Section 5 discusses changes of the
Android platform model that affect stalkerware, and Section 6 ana-
lyzes tactics by which stalkerware avoid having their functionality
restricted. Section 7 reflects on our findings and discuss ideas for
alternative mitigation strategies. We discuss limitations and ethical
considerations for our study in Section 8. Finally, we conclude and
highlight directions for future research in Section 9.

2 BACKGROUND AND RELATEDWORK
2.1 Background
Android. It is an open-source operating system by Google for
mobile devices like smartphones and tablets and supports app de-
velopment in Java, Kotlin, and C++. Its critical permission system
regulates app access to device resources and sensitive user data,
such as location, contacts, and media, ensuring user privacy and
security. Developers of Android apps are required to declare the
necessary permissions for their application in the manifest file
(AndroidManifest.xml) that is part of the app package [7]. Upon
installation or during run time, users are prompted to grant or deny
these permissions.

Android apps are distributed and installed using an Android
application package (APK), compressed files that bundle necessary
resources, and are mainly available through the Google Play Store.
Users can also sideload these apps via APKs from third-party app
stores. A typical APK file is composed of the following:
• AndroidManifest.xml: the manifest file contains indispens-

able information, such as package name, version, required per-
missions, and declared components (activities, services, content
providers, and broadcast receivers).

• Classes.dex: this contains the app’s Java or Kotlin code in
DEX (Dalvik Executable) format.

• resources.arsc: this bundle compiled app resources such as
strings, colors, and styles.

• res: This directory contains various resource files, including
images, XML layouts, and raw assets, organized into subdirec-
tories based on their types and configurations (e.g., drawable,
layout, and values).

• lib: The lib directory contains native libraries, typically written
in C or C++, that the app relies on for specific functionality or
performance optimization.

The methods used by researchers to analyze Android apps fall
into two classes: static analysis [23, 24, 33] and dynamic [6, 43]
analysis. These methods can help researchers reverse engineer
an app to understand its behavior, identify its potential security
vulnerabilities, or investigate privacy implications.

Static analysis involves examining the app’s source code, re-
sources, and configuration files without executing it. For Android
apps, a common step is decompilation [13, 18, 29, 31] which is used
to convert the compiled DEX bytecode into human-readable Java
or Kotlin source code. Tools such as JADX, apktool, and dex2jar are
frequently utilized for static analysis. In contrast, dynamic analysis
involves running the app in a controlled environment, such as an
emulator, and monitoring its runtime behavior. This approach can
help identify behaviors that may not be apparent through static
analysis alone.

For tasks such as taint analysis, researchers use tools such as
FlowDroid [8] and TaintDroid [16], which are renowned for their
efficacy in this domain. In our study, we also employed FlowDroid
to conduct a comprehensive taint analysis on a subset of our dataset.
Stalkerware. Stalkerware refers to tools — software programs,
apps, and devices — that enable someone to secretly spy on another
person’s private life via their mobile device [2]. Stalkerware tech-
nology facilitates intimate partner violence by allowing the abuser
to monitor victim’s sensitive information including location, text
messages, photos, voice calls, and much more. In recent years, the
problem of stalkerware has been on the rise worldwide. Accord-
ing to Kaspersky’s 2023 report, stalkerware impacted users across
175 countries, with over 31,000 unique individuals affected world-
wide [22]. Often perpetrators may install such apps on a user’s
device with or without their consent and/or knowledge. In cases
of stalkerware-enabled intimate partner violence (IPV), a key dif-
ference from other tech-enabled abuse is the abuser’s access to
the victim’s device. In some cases, the abuser gifts a device to the
victim or their children, with stalkerware pre-installed without the
victim’s knowledge. Even if an IPV victim knows about the app,
they are often powerless, as the abuser can confiscate the phone
to reinstall it or coerce the victim into doing so. Although most
stalkerware apps are specifically designed and marketed for people
looking to spy on a cheating spouse or track their partner, abusers
sometimes misuse legitimate apps, such as those meant for tracking
lost devices or caregiving apps for the elderly, for stalking. This
is often due to the easy availability of such legitimate apps in the
app stores. App stores have drafted strict policies to ban such apps,
but a large portion of stalkerware apps are also distributed directly
through the app’s website.
What is targetSDKVersion and why it matters. Google Play
uses rules to filter what apps are visible to a user browsing or
searching for applications from the Google Play app. Usually, the
filters are mentioned in the Android manifest file. One such fil-
ter is the uses-sdk tag used to specify the minSDKVersion and
targetSDKVersion of an Android app. minSDKVersion specifies
the lowest SDK version compatible with an app. To ensure that an
app functions correctly with a specific targetSDKVersion, it needs



Thwart Me If You Can: An Empirical Analysis of Android Platform Armoring Against Stalkerware

to be tested against that version before declaration. Even when the
API level of a device is higher than the version declared by an app in
its manifest file, the system enables compatibility behaviors so that
the app continues to work as expected [1]. The targetSDKVersion
field is more important for apps published on the Google Play store
and may not have an effect on apps distributed outside of Google
Play. Even if new Android API levels are introduced, changes are
typically additive and if any methods are to be discontinued, they
are usually deprecated and not removed so that older apps can still
keep functioning as intended.

2.2 Related Work
Spyware and Stalkerware. There is a plethora of recent work
on tracking, spyware, and stalkerware. Razaghpanah et al. [35]
study the mobile tracking ecosystem. They proposed an automated
way to detect third-party ads and track traffic. They also discuss
business practices that involve data sharing with subsidiaries and
third-party affiliates. In a different vein, Štefanko et al. [39] iden-
tified vulnerabilities in 86 Android stalkerware apps, including
server issues, application problems, and network leakage. Recently,
Gibson et al. [19] studied the monetization strategies of Android
stalkerware developers. They find a wide range of payment ser-
vices, including Google’s own in-app billing, subscription models,
and cryptocurrencies. Other recent work provides detailed analyses
of some stalkerware apps. For example, Heasley et al. [12] main-
tain a repository that details the functionality of various Android
stalkerware apps. Roundy et al. [36] proposed CreepRank, a novel
algorithm to identify and characterize creepware, or apps used for
interpersonal attacks. Their analysis of a large dataset of mobile
apps uncovered various forms of creepware with harmful inten-
tions. Liu et al. [25] analyzed consumer Android spyware apps,
focusing on their functionality and security vulnerabilities. They
studied 14 leading apps, highlighting their monitoring methods
and evasion techniques. The research points out the apps’ privacy
issues, especially insecure data transmission and storage, raising
concerns about potential misuse. Rawat et al. [34] analyzes the
security risk in Android devices and identifies stalkerware as a
significant security threat. It emphasizes proactive measures such
as regular audits of app permissions and the use of anti-stalkerware
tools to protect user privacy.
Dual-use Apps.

One of the features that make studying stalkerware different
than other malware is the extent of dual-use or dual-purpose apps.
Dual-use apps refer to apps that have legitimate and potentially
malicious uses. The primary usage of such kinds of application
may be beneficial, but their function can also be used for malicious
purposes. For example, “find my phone” -type apps can be used
to find lost phones, but could also be used for intimate partner
surveillance.

There is recent research focusing on dual-use apps or devices.
For example, Chatterjee et al. [11] studies the intimate partner
surveillance (IPS) spyware ecosystem. They highlight the role of
dual-purpose apps and explain why anti-virus and anti-spyware
tools are insufficient. Almansoori et al. [4] conducted a survey on
the prevalence of dual-use Android applications that are employed
for IPS across 15 languages and 27 countries. They identified 854

dual-use apps after collecting over 51,000 apps from the Google
Play store. [26] further reveal that many sideloaded parental-control
apps function as covert surveillance tools, often transmitting sen-
sitive data without encryption and exhibiting stalkerware-like be-
havior. Almansoori et al. [5] investigate the availability and efficacy
of online resources for survivors of IPS. The study found that while
abusers can easily access detailed guides and tools for conducting
IPS, survivors often encounter online resources that are poor, in-
accurate, and lack actionable advice. This disparity highlights a
significant gap in support available to survivors compared to the re-
sources that assist abusers. Stephenson et al. [40] focus on dual-use
IoT devices, identifying 39 instances of IoT-Enabled Intimate Part-
ner Abuse. As remedies, they suggest enhancing transparency for
IoT devices, revising IoT access control protocols, and heightening
awareness of IoT abuse.
Particularly related works. Particularly related works include
Almansoori et al. [4], Parsons et al. [32], Han et al. [20], and Man-
nan et al. [28]. Almansoori et al. [4] only focus on dual-use apps,
whereas we study stalkerware more broadly. Parsons et al. [32]
focuses on the consumer spyware ecosystem, including stalker-
ware apps, and the marketing strategies of stalkerware developers.
They also discussed the high-level capabilities of stalkerware and
provided a taxonomy. Our focus in this paper is different as we
aim to provide quantitative evidence of fine-grained capabilities
and behavior of Android stalkerware apps using a large corpus and
to understand how changes to Android have affected stalkerware
functionality. Han et al. [20] conduct a technical analysis of stalk-
erware apps, focusing on capability detection and identification.
Their study uses a dataset of 1462 apps, while our analysis covers a
larger set and additionally considers platform-level changes over
time. Mannan et al. [28] investigate the privacy and security impli-
cations of stalkerware in the context of intimate partner violence.
Their study highlights vulnerabilities, evaluates detection tools, and
examines the supporting third-party ecosystem. Our work comple-
ments these efforts by examining a broader set of 8421 apps while
emphasizing the evolving impact of Android platform policies on
stalkerware functionality.

3 METHODOLOGY AND DATA
3.1 Dataset
We use a dataset of Android stalkerware samples obtained from
the Coalition Against Stalkerware. The Coalition Against Stalker-
ware is an international alliance of partners including IT security
companies, domestic violence survivor networks, and digital rights
advocacy groups [38]. The coalition maintains a Stalkerware Threat
List (STL) consisting of malware samples identified as stalkerware.

3.2 Analysis Process
We decompile samples using the JADX decompiler and JEB Pro to
obtain their (decompiled) source code. We perform our analysis
in two phases: static and dynamic. We focus on static analysis
in the first phase to provide comprehensive coverage over our
entire corpus. We then perform taint analysis using Flowdroid [8]
on a subset of our corpus to juxtapose the results obtained from
our query-based approach with the outcomes from Flowdroid. We



Malvika Jadhav, Wenxuan Bao, and Vincent Bindschaedler

complement this analysis with dynamic analysis to validate the
findings of the static analysis. A secondary motivation of dynamic
analysis is to study the instructions given to the adversaries and
to recognize distinct unique apps communicating with the same
backend servers.
Static Analysis. While most stalkerware apps exhibit similar traits,
their range of capabilities varies. To structure our analysis, we start
from the taxonomy developed by Parsons et al. [32], but tailor it
to our specific requirements. We mainly focus on nine capabilities,
namely location tracking, (SMS and MMS) messages monitoring,
call logs, contacts, phone call recordings, calendar event tracking,
keylogging, data exfiltration, and social media tracking. Based on
this taxonomy, we compiled a comprehensive collection of APIs,
methods, and permissions linked to each capability. Table 5 lists
the permissions required for each capability in our taxonomy.

We perform static analysis in two phases:
For the first phase of static analysis of the corpus, we focus

on permission usage and API call patterns. We develop a set of
Python scripts to query the decompiled source code, manifest
files, and other APK resource files. Specifically, we develop regex-
based queries and utilize code tree parsing libraries, similar to XML
parsers, to facilitate tasks such as permissions enumeration, API
usage tracking, and network library identification. To ensure that
our analysis was sound and complete, we crafted precise regular
expressions, adhering closely to the official Android documentation,
to identify specific permissions, code patterns related to systems
API calls, and other strings indicative of stalkerware functionality.
To minimize the risk of undercounting or overcounting, we employ
a twofold cross-validation approach:

(1) Perform dynamic analysis of all unique apps in our corpus.
(2) Compare our method’s results with Taint analysis using

Flowdroid on a random sample of apps.

For permissions, we identify the tags: <permission> and
<uses-permission> within the manifest file of each app using

an XML parser. It is worth noting that research on Android apps
has shown [17] it is not uncommon for app developers to request
permissions they do not use, so we may expect this to also hold
true of stalkerware.

To understand the capabilities of stalkerware related to per-
missions and data exfiltration, we focus our API analysis process
on identifying function calls to built-in Android methods. This
approach is crucial because apps can introduce redundant user-
defined functions that ultimately remain unused, so relying solely
on the presence of user-defined methods is potentially misleading.
Therefore, we identified specific Android APIs, as detailed in Ta-
ble 5, which are linked to the nine capabilities that we focus on.
Accessibility services are aimed at helping disabled users, as they
can read what is happening on the screen and perform actions like
clicking or entering text for the user. Hence, we have quantified
such attempts to monitor the changes in screen content within our
corpus to identify the apps that are using accessibility service to
monitor social media apps. For the social media monitoring capa-
bility we have considered both the scenarios: Apps that require
a rooted device to directly access social media data bases such as
msgstore.db (WhatsApp) and apps that use accessibility services
to monitor screen content related to these apps. We then manually

Table 1: Android versions of samples in our corpus. Note that devel-
opers may deliberately target older SDK versions.

Platform Version Target SDK Version Samples (%)

Android 9 28 2390 (78.61%)
Marshmallow 23 1358 (16.12%)

Lollipop 22 524 (6.22%)
Oreo 26 464 (5.51%)

Lollipop 21 448 (5.32%)
Android 10 29 315 (10.36%)
Nougat 25 309 (3.67%)

Android 11 30 291 (9.57%)
Oreo 27 133 (1.57%)
Nougat 24 46 (0.55%)

Android 12, 13 31-33 44 (1.45%)
Snow Cone (Android 12L) 32 14 (%)
Tiramisu (Android 13) 33 8 (%)
Android 4 and below 4 to 20 533 (6.32%)

trace the actual execution flow of these APIs for a random sample
of 20 unique apps, ensuring that we only considered calls that were
intended for data exfiltration at the end.

In the second phase of static analysis we focus on analysis of
user visible strings that are mainly present in the resources sec-
tion of every decompiled APK. User visible strings refer to the
strings displayed on the User Interface of an app to the device user,
for example warnings, information about requested permissions,
and more. We begin our analysis by parsing the xml file for each
app sample to isolate the textual data relevant to a set of target
keywords and phrases. Specifically keywords associated with in-
structions about Android versions, battery optimization or rooting
the device, as well as app samples’ capabilities. To reduce the risk
of undercounting or overcounting, we employ the following steps:

(1) Use exact matching and fuzzy matching (e.g. Levenshtein
distance, regular expressions) to recognize keywords with
variations in spelling or formatting.

(2) Perform dynamic analysis of all unique apps in our corpus
installing each app on an emulator.

4 A FIRST LOOK AT THE CORPUS
4.1 Overview
The Stalkerware Threat List (STL) obtained from the Coalition
Against Stalkerware (CAS) we use for our study contains 8428
Android APK samples collected up to December 2022. Out of these
app samples, 7 did not decompile properly, so we consider the
remaining 8421 samples in our analysis.

We investigate the age of samples in our corpus using: (1) Virus-
Total first seen time and (2) targetSDKVersion.
VirusTotal. We perform a systematic analysis of all APKs from
our dataset using VirusTotal which is an online service that ana-
lyzes files and URLs for viruses, worms, trojans, and other types
of malicious content.1 We show the first seen time in Table 3. The
first seen time means the first data that someone uploads apps with
1https://www.virustotal.com/gui/home/upload

https://www.virustotal.com/gui/home/upload


Thwart Me If You Can: An Empirical Analysis of Android Platform Armoring Against Stalkerware

Number of API
levels targeted (𝑛) Unique Apps Commonly possessed capabilities Targeted API level

(Highest frequency)Top 1 Top 5
2 66 Location Location, SMS, Call Recording, Call Logging, Facebook 28 (36.9%)
3 9 Location Location, SMS, Call Recording, Call Logging, Contacts Below 20 (44%)
4 5 Location Location, SMS, Call Recording, Call Logging, Facebook 29 (22.9%)
5 4 Location Location, SMS, Call Recording, Facebook, SMS 29 (45.6%)
6 1 Location Location, SMS, Call Recording, Call Logging, Facebook 23 (47.5%)
7 2 Location NA 30 (25%)

Table 2: Targeted API levels and capabilities. Number of API levels targeted refers to the count of distinct API levels targeted by a unique app
(considering all different versions of the same app in the corpus). Same app means app samples with the same unique identifier. The unique
apps column is the count of unique apps in the corpus that target 𝑛 distinct API levels.

the same hash to VirusTotal. It reveals that 50% of these APKs first
appeared post-2022.

Table 3: First seen time for the analyzed APKs and Detection rate for
different antivirus engines over time.

Time Number of APKs Detection rate

Unrecognized 720 (8.56%) NA
Before 2020 1048 (12.46%) 23.60%
2020-2022 2432 (28.90%) 30.21%
After 2022 4214 (50.08%) 30.55%

In addition, we explore the detection capabilities of antivirus
engines on VirusTotal in identifying malicious APKs. Our findings
show that almost every APK successfully analyzed was flagged
as malicious (there are 339 apps not recognized by VirusTotal).
However, there is a notable variance in the detection rates among
different antivirus engines and time. On average, only 29.38% of
these engines, out of an average total of 61, identified the sample app
APK as malicious. This detection rate varied widely, with the lowest
being just 1% (except for not discovered), the highest reaching
85.33%, and an average standard deviation of 12.87%. These point
to significant discrepancies in the detection efficacy of different
antivirus engines. This highlights the importance of using multiple
approaches for stalkerware detection and the ongoing need for
comprehensive evaluation when evaluating potentially malicious
apps.
targetSDKVersion. Successive versions of the Android platform
(like Nougat, Pie, etc.) introduce updates in the framework APIs.
However, API levels uniquely represent every such revision to the
APIs [15] and therefore we categorize samples accordingly. The dis-
tribution of API levels within our corpus is described in Table 1. This
table specifically accounts for the targetSDKVersions for samples
in our corpus. Here, it is important to highlight that the source
code of 1566 samples lacks information about targetSDKVersion.
Most of the samples in our corpus target Android 9 (API level 28 —
released in 2018). However, note that this does not mean that such
apps were developed and published around 2018, since developers
can opt to target SDK versions older than the most recent version
at the time of development. In fact, VirusTotal detection results
(Table 3) post-2022 suggest either a significant lag in detection by

VirusTotal engines in recognizing stalkerware or that stalkerware
developers deliberately target older SDK versions.
App Repackaging. Since Android apps are uniquely identified by
their package names specified in the manifest file [14], we can look
for samples that are different versions of the same app. Within our
corpus (subset) of 8421 app samples, we find 3143 distinct unique
package names. Unless otherwise stated, we refer to unique samples
as apps or app samples and unique package names as unique apps.

Aside from the natural evolution of apps where new samples
with the same package name are created as developers update their
app’s functionality, we found evidence of app repackaging. App
repackaging, in which the source code of an app is modified and
redistributed [30]. In our corpus, we came across a set of app sam-
ples that had the same application identifier but targeted different
targetSDKVersions. Although we did not see any significant dif-
ferences in capabilities, the instructions given to the adversary 2

within these apps were different when targeting different versions
of Android. For example, a set of 21 apps target seven different API
levels from 23 to 33 and all have the same application identifier. But
we see that app samples from this set that target API levels 28 and
above have an increasing set of instructions about how to disable
battery optimization and grant permissions.

4.2 Stalkerware: Linking Motivation and
Function

In this section, we explore the motivations behind the use of Stalker-
ware and how these motivations are directly linked to the technical
capabilities of these apps. Table 5 shows the number of samples
and unique apps (unique application identifier) in the corpus that
request permissions and the respective calls and libraries specific to
each capability in our taxonomy. Throughout our discussions, when
we say an app possesses a capability, it means the app requests the
relevant permissions and utilizes the corresponding APIs (if at least
one method of access is used) and methods in its codebase. This
determination is based on the results of the static analysis using
the method described in Section 3.2
Coercive Control. Location tracking is a pervasive capability in
Stalkerware because it allows adversaries to restrict and control the
victim. This is supported by the fact that 90.66% (7635) of the apps in
our corpus perform location tracking. 94% of the apps that monitor

2In this paper, we use the term “adversary” to refer to the individual who installs or
controls stalkerware on the target device (i.e., the perpetrator of surveillance).



Malvika Jadhav, Wenxuan Bao, and Vincent Bindschaedler

Figure 1: Stalkerware Capabilities across API levels: This figure demonstrates the trends in stalkerware capabilities across Android apps
targeting different API levels (targetSDKVersion). For each capability, the barplot represents the percentage of apps that possess the capability
within the set of apps targeting specified API level.

location use the LocationManager API3, which can be used to track
location even if a device does not have Google Play Services4. We
find that 12.04% (1014) apps in the corpus also monitor when users
enter or exit predefined geographical zones using the Geofencing
API. This capability is significant in our context, as it raises concerns
about potential abuse. For example, an adversary might restrict a
victim’s access to help by setting up geofences around trusted
contacts or support shelters. In addition, they could closely monitor
if a victim leaves defined geofences, such as their home or office.
These are just two examples, highlighting the broader potential for
misuse.
Persistent Access. Although not an obvious stalkerware function-
ality, we found that 600 (7.12%) app samples in our corpus perform
keylogging. Of these 600 app samples, 530 record user input text
and, 144 track user notifications. The keylogging in stalkerware
could be used to ensure persistent access to the user’s device, even

3https://developer.android.com/reference/android/location/LocationManager
4Google Play services provides a system application called Google Play Protect Service
that checks users’ apps and devices for harmful behavior. This means that an app can
potentially avoid being flagged if Google Play Protect is absent and also facilitates
distribution of the app for devices that do not come with pre-installed Google services

in scenarios where users change the device and other application
passwords. Or, it could be used to steal user credentials to track the
victim off-device.
Social Isolation Tactics. Bymonitoring the interaction of a victim
on social media and messaging platforms, an adversary can control
the victim’s social relationships and isolate them from their support
network. We discovered two methods in which these stalkerware
apps seem to capture user’s social media data: (1) accessibility ser-
vice5; and (2) default database of the social media app. 600 (7.12%)
apps in our dataset use accessibility services to capture content
on the screen. We found that social media apps like Facebook, In-
stagram, Twitter, Musical.ly (now Tiktok), Pinterest, Zoom, and
even Tinder, as well as browsers such as Chrome, Firefox, Duck-
DuckGo, and others, are monitored for user interactions like clicks,
text changes, notifications, and scrolling. A small portion of app
samples from our corpus also use the default databases of targeted
social networks or messenger applications to capture a victim’s
social interactions. We manually examined a subset of 20 apps

5Accessibility Services are aimed at aiding users with disabilities, as they can read
what is happening on the screen and perform actions like clicking or entering text for
the user.

https://developer.android.com/reference/android/location/LocationManager


Thwart Me If You Can: An Empirical Analysis of Android Platform Armoring Against Stalkerware

that query the default databases of apps like WhatsApp, Snapchat,
Instagram, Facebook, Facebook Messenger, Kik, Line, Viber, and
Telegram. These apps first check whether a user’s device is rooted
since these databases are encrypted, and require root access for
apps to bypass security measures. If the device is rooted, the apps
then interact directly with the database using shell commands. The
efficacy of tracking victim’s message data through stalkerware
apps may therefore hinge on whether the device is rooted or if
the adversary can successfully root the device during the instal-
lation of the stalkerware app. Section 4.2 shows the count of app
samples communicating with various social media and messenger
app databases. From the table, we see that most apps monitoring
messenger apps like WhatsApp, Line, Viber, and Telegram target
Android 9 and above, which aligns with the rising popularity of
these instant messengers for personal and sensitive communica-
tions. Along with capturing various social media and messenger
applications, we found that stalkerware apps also capture SMS and
MMS data. About 5932 (70.44%) apps from our corpus possess the
capability to capture SMS information. This is not surprising as we
found a large number of app samples use SMS to receive commands
as elaborated in Section 6.5. 2955 (35.09%) apps from the corpus
capture MMS data such as sender and recipient particulars, images,
videos, and audio messages. Furthermore, to capture even more
details of the victim’s day, we found 3523 (41.83%) app samples
also monitor calendar event details, including names, descriptions,
locations, and timings.
Creation of fear and compliance. There are two ways apps
in our corpus capture users’ call data: (1) by extracting stored call
history and logs; or (2) through actively recording user calls. We dis-
covered that a substantial 4528 (53.77%) apps of our corpus possess
call logging capability. This allows adversaries to access detailed
information, including call types, contacted phone numbers, asso-
ciated contacts, and even call locations. To further the intrusive
surveillance, about 28.88% (2432) of stalkerware samples in our
corpus perform call recording. The recording is triggered using
the PhoneStateListener API, which detects changes in the phone
state such as idle, incoming, or ongoing calls. Cross-referencing
call data with contacts enables stalkerware to map the user’s social
network. This is supported by the fact that 1259 (14.95%) app sam-
ples periodically query the Android device’s contact database to
capture various contact details, including ID, phone number, display
name and, even email addresses. Out of 1259 apps that monitor
contacts, 1094 apps target Android versions older than Android
9. The decline in contact monitoring could be due to the shift in
storage of contacts from devices onto social media platforms or
Google services.
Omnipresent surveillance. Screen capturing capability can fur-
ther aid abusers in maintaining constant surveillance over their
victims’ lives. Even if an app uses encryption, taking screenshots
may effectively bypass it. 3636 (43.18%) app samples from our cor-
pus periodically capture screenshots using the MediaProjection API.
To extend the surveillance further, even when the user is not ac-
tively using their device, a significant portion of apps in our corpus
record ambient noise or capture photos using the device camera
without the consent or knowledge of the victim. 2985 (35.44%) apps

in our corpus use the device camera to take a photo when trig-
gered with specific events like if a remote command is received.
And this is concerning given that 2172 (25.79%) apps taking photos
target Android versions 9 and above. A deeper dive revealed that
numerous apps use the AudioSource attribute of MediaRecorder
to capture more than phone calls. They record ambient sounds,
suggesting they may catch nearby conversations even if the vic-
tim is not actively on a call. For example, if we look at the code
in Listing 1 the AudioSource.MIC is used indicating that the app
can capture any sound in the vicinity of the device. Also the use of
AudioSource.VOICE_RECOGNITION points out the alarming possi-
bility that the app is trying to optimally pick up voice conversations;
since this attribute is usually intended for voice recognition, which
is used for processing and transcribing voice or interpreting voice
commands. About 2160 (25.65%) app samples from our corpus per-
form audio recording using AudioSource.VOICE_RECOGNITION,
out of which 1820 apps target Android versions 9 and above.

import android.media.MediaRecorder;
MediaRecorder mediaRecorder = mRecorder;
if (mediaRecorder == null) {
double maxAmplitude = (double) mediaRecorder.

getMaxAmplitude ();
android.media.MediaRecorder r3 = com.as.monitoringapp

.VoiRe.LocalVoipRecord.mRecorder
android.media.MediaRecorder r4 = com.as.monitoringapp

.VoiRe.LocalVoipRecord.mRecorder
android.media.MediaRecorder r2 = com.as.monitoringapp

.VoiRe.LocalVoipRecord.mRecorder
android.media.MediaRecorder r0 = new android.media.

MediaRecorder // Catch:{ Exception -> 0
x01c9 }

Log.e("CallingRecord_Type", "MediaRecorder.
AudioSource.VOICE_CALL");

Log.e("CallingRecord_Type", "MediaRecorder.
AudioSource.MIC");

Log.e("CallingRecord_Type", "MediaRecorder.
AudioSource.VOICE_RECOGNITION");

Log.e("CallingRecord_Type", "MediaRecorder.
AudioSource.VOICE_COMMUNICATION");

Listing 1: MediaRecorder API

4.3 Evolution of Capabilities
Figure 1 demonstrates the trends in stalkerware capabilities across
Android apps targeting API levels between 28 and 33. From the fig-
ure, we can see that location capability is prevalent in stalkerware
apps targeting all API levels. App samples that target API level 33
in our corpus consist of apps that focus primarily on location and
phone call capabilities. This indicates that location tracking is an
important feature for stalkerware apps. A high proportion of stalk-
erware apps targeting API level 28 in our dataset (85.3%) perform
SMS monitoring. This reflects the presence of family monitoring
apps that use SMS commands as part of their functionality.

In our corpus, 87 unique apps have versions that target different
API levels. For example, the app ‘AllTrackerFamily’ has different
versions of the app that target API levels 9, 27, 28 and 30. The most
common capabilities possessed by all such apps are summarized
in Table 2. Different versions of an app do not necessarily have
the same capabilities. For example, Fig. 2 highlights the capabilities
possessed by the 46 apps that target 6 different API levels. All these
46 apps targeting 6 different API levels are different versions of
the same unique app, yet we can see from the bar chart that the
capabilities within those versions are different. The recent versions
of this app (target API level 23 and above) do not monitor calendar



Malvika Jadhav, Wenxuan Bao, and Vincent Bindschaedler

Application Database Number of app samples
Total API Level 28 +

Whatsapp /data/com.whatsapp/databases/msgstore.db 825 229
/data/com.whatsapp/databases/wa.db 295 235

Snapchat /data/com.snapchat.android/databases/tcspahn.db 444 0
Instagram /data/com.instagram.android/databases/direct.db 219 204
Facebook /data/com.facebook.katana/databases/threads_db2 478 0
Facebook Messenger /data/com.facebook.orca/databases/threads_db2 703 213
Kik /data/data/kik.android/databases/.kikDatabase.db 431 1
Line /data/jp.naver.line.android/databases/naver_line/LINE.db 211 205
Viber /data/com.viber.voip/databases/viber_messages/Viber.db 219 205
Telegram /data/org.telegram.messenger/files/cache4.db/Telegram.db 217 204

To capture data from social media databases an app requires the permissions READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE.
5635 (87.62%) apps within the corpus request for both the permissions.

events as opposed to the older version. Within our corpus, we
also have examples of apps that possess the same capability across
all different versions. For example, Fig. 2 shows that 42 different
versions of 2 unique apps that target 7 different API levels only
perform location monitoring.

4.4 Corroborating Findings with Other Analyses
Taint Analysis with FlowDroid. We used FlowDroid [8] on 50
randomly sampled unique apps from our dataset, to trace taintflow
for location, call logging, calendar, and contacts capabilities from
our taxonomy. For the definition of sources and sinks, we used
the SuSi tool [41]. The apps from our random sample target SDK
versions 28, 29, and 31. The results, as presented in Table 4, indicate
that our query-based method yields comparable outcomes to those
obtained with FlowDroid. Notably, we observed instances where
FlowDroid produced false negatives, failing to detect location and
contact capabilities in certain apps. However, these capabilities
were explicitly stated in user-visible strings such as installation
agreements and warnings. A manual analysis of these apps further
corroborated this observation. A plausible explanation for these
discrepancies could be attributed to the implicit calls commonly
employed in stalkerware apps [10]. While not seeking to discredit
tools like FlowDroid, our findings suggest that its analysis may
benefit from enhancements to address such non-linear control flow,
particularly prevalent in stalkerware applications.

Table 4: Capabilities detected using Taint Analysis

Capability FlowDroid Query-based approach

Location 19 23
Calendar 3 3
Contacts 17 18

Call logging 7 7

Dynamic Analysis. We set up a controlled Linux-based Docker
container to isolate the analysis environment from external influ-
ences. For testing, we used the Android Debug Bridge (ADB) to
emulate different Android devices with Android versions 9 and
above. The ADB provides detailed control and visibility over the

emulator’s operations, facilitating a comprehensive investigation.
We then manually installed every unique APK sample from our
data that targets Android 9 and above, on the emulator matching
the targetSDKVersion of the APK sample, to imitate the real-world
scenario where a user installs the app on a target device. We also
observed the behavior of these apps, including the instructions
provided during installation and the dashboards that list the capa-
bilities visible to the adversary (we only observed the dashboards
for apps that offer free trials or have no upfront subscriptions).

5 ANDROID PLATFORMMODEL EVOLUTION
In this section, we discuss the changes to the Android Platform
Model that may impact stalkerware capabilities and what we ob-
serve in our corpus about them. We discuss the reactions of stalk-
erware apps to these changes in Section 6.

5.1 Android 6
Android 6 (API level 23) introduced Doze and App Standby 6 to
optimize power savings. Doze and App standby restrict background
activities and network access of apps by interrupting the function of
AlarmManager, JobScheduler and WorkManager APIs. Stalkerware
apps in our corpus largely use AlarmManager and JobScheduler
to capture user data in the background. In subsequent Android
releases, more restrictions have been added to the App Standby
buckets.

5.2 Android 9
Call logging. Android 9 introduced the CALL_LOG permission
group which basically contains all the permissions required to
perform call logging.7 This change was intended to give users
better control and visibility to apps that need access to sensitive
information about phone calls, such as reading phone call records
and identifying phone numbers. Since these permissions are granted
at runtime it gives an opportunity for users to deny the permission
which would impede call logging capabilities of a stalkerware app.
Device administrator apps.

6https://developer.android.com/training/monitoring-device-state/doze-standby
7https://developer.android.com/about/versions/pie/android-9.0-changes-all

https://developer.android.com/about/versions/pie/android-9.0-changes-all


Thwart Me If You Can: An Empirical Analysis of Android Platform Armoring Against Stalkerware

Con
tac

ts

Call 
log

gin
g

Cale
nd

ar

Call 
Re

cor
din

g

Ke
ylo

gg
ing

Loc
ati

on SM
S

Ins
tag

ram

Wha
tsa

pp

Sn
ap

cha
t

Fac
eb

oo
k

Capabilties

0

200

400

600

800

1000

1200

Nu
m

be
r o

f a
pp

s

165

850

640

983

279

1199

984

586

738

579

751

2 API Levels (N = 1232)

Con
tac

ts

Call 
log

gin
g

Cale
nd

ar

Call 
Re

cor
din

g

Ke
ylo

gg
ing

Loc
ati

on SM
S

Ins
tag

ram

Wha
tsa

pp

Sn
ap

cha
t

Fac
eb

oo
k

Capabilties

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f a
pp

s
2

20

158

188

1

203

31

10 10
2

120

5 API Levels (N = 204)

Con
tac

ts

Call 
log

gin
g

Cale
nd

ar

Call 
Re

cor
din

g

Ke
ylo

gg
ing

Loc
ati

on SM
S

Ins
tag

ram

Wha
tsa

pp

Sn
ap

cha
t

Fac
eb

oo
k

Capabilties

0

20

40

60

80

100

Nu
m

be
r o

f a
pp

s

0

53

36

88

0

105

61

0

30

4

48

4 API Levels (N = 105)

Con
tac

ts

Call 
log

gin
g

Cale
nd

ar

Call 
Re

cor
din

g

Ke
ylo

gg
ing

Loc
ati

on SM
S

Ins
tag

ram

Wha
tsa

pp

Sn
ap

cha
t

Fac
eb

oo
k

Capabilties

0

50

100

150

200

Nu
m

be
r o

f a
pp

s 154
168

20

184

20

232

191

60
77

59

86

3 API Levels (N = 232)

Con
tac

ts

Call 
log

gin
g

Cale
nd

ar

Call 
Re

cor
din

g

Ke
ylo

gg
ing

Loc
ati

on SM
S

Ins
tag

ram

Wha
tsa

pp

Sn
ap

cha
t

Fac
eb

oo
k

Capabilties

0

10

20

30

40

Nu
m

be
r o

f a
pp

s

0

42

11

46

0

46 46

0 0 0

36

6 API Levels (N = 46)

Con
tac

ts

Call 
log

gin
g

Cale
nd

ar

Call 
Re

cor
din

g

Ke
ylo

gg
ing

Loc
ati

on SM
S

Ins
tag

ram

Wha
tsa

pp

Sn
ap

cha
t

Fac
eb

oo
k

Capabilties

0

5

10

15

20

25

30

Nu
m

be
r o

f a
pp

s
0 0 0 0 0

32

0 0 0 0 0

7 API Levels (N = 32)

Figure 2: Capabilities possessed by apps that target different API levels across their different versions. This figure shows the raw count of all
different versions of all such apps.

With the introduction of Android 9 for device administrator
apps, policies related to control of screen lock, camera, and device
password were deprecated. In the following Android releases, even
more policies like forced data wipeout or device lock were also
deprecated, and device administrator was officially considered as
deprecated. However, apps targeting Android 9 and above (up to
the most recent Android release) still support enabling apps to
be device administrators and making them exempt from battery
optimization and other restrictions. Currently, 2674 (31.75%) apps in
our corpus ask to be enabled as device administrator apps mainly to
evade restrictions related to battery optimization. The functionality
of these apps would be severely impacted by the deprecation of the
device administrator.

5.3 Android 10
Scoped storage.

To give users more control over their files and limit file clutter,
apps that target Android 10 (API level 29) and higher are given
scoped access to external storage, or scoped storage, by default.8
This change is likely to impact the apps that capture data from

8https://developer.android.com/training/data-storage#scoped-storage

social media apps. Since if a user has chosen a specific external
storage directory to store files and media from a social media app,
due to the scoped storage stalkerware apps will not be able to access
those files.
Location (permission) only while in the app. To provide more
control over location data Android 10 introduced a new permission
option – users can now allow an app to access location only while
the app is actually in use (running in the foreground).9 By choosing
this option a user can stop the frequent location access of an app
which is the most important capability for apps in our corpus with
90.66% apps performing location tracking.

5.4 Android 11
Temporary permissions. Android 11 introduced an option for
users to grant only one time permissions to and app using “Only
this time” option. Android 11 also introduced auto-reset for runtime
permissions used to access Location, Camera, Accounts or make
Phone Calls, perform call logging, and more. So, if the user did not
interact with the app with permissions for a few months, all the
runtime permissions would be completely reset. Both these changes

9https://developer.android.com/about/versions/10/highlights

https://developer.android.com/training/data-storage#scoped-storage
https://developer.android.com/about/versions/10/highlights


Malvika Jadhav, Wenxuan Bao, and Vincent Bindschaedler

would require users to regrant permissions which could impact
the multiple capabilities of stalkerware apps especially if during
the installation all these permissions were covertly granted by the
adversary.
Phone number permission. Android 11 replaced the permission
READ_PHONE_STATE that had a broader scope with the permissions
READ_PHONE_NUMBERS. This change helped narrow the scope of
accessing sensitive information, such as phone numbers. All the
apps in our corpus that perform call logging and targeting Android
11 and higher were impacted by this change in permission.

5.5 Android 12
Microphone and camera indicators. On devices running An-
droid 12 or higher, when an app accesses the microphone or camera,
an icon appears in the status bar. This feature ensures that the user
gets a visual indicator of being recorded. Within our corpus, 5510
and 6075 apps request camera and audio recording permissions,
respectively. These apps will now have a microphone or camera
icon in the status bar when recording.
App hibernation. If an app targets Android 12 and the user hasn’t
interacted with the app for a few months, the system auto-resets
any granted permissions and places the app in a hibernation state.
This change would impact all the apps in our corpus, since in most
cases the adversary gets specific instruction on how to grant all the
necessary permissions that the app needs to function properly.

6 RESILIENCE TACTICS OF STALKERWARE
So far, we discussed the changes to the Android platform model
and how they may affect stalkerware. In this section, we discuss the
tactics used by stalkerware to avoid being affected by restrictions
on capabilities resulting from changes to Android.

6.1 Installer/Side Loading apps
Our corpus contains 765 (9.08%) apps that do not request any per-
missions from the user. These apps are not flagged by Google Play
Protect, as no dangerous permissions are requested. After dynam-
ically analyzing (these) apps, we found that these apps act as in-
stallation guides or tutorials for the actual stalkerware apps. These
apps provide detailed instructions on how to disable settings and
notifications to keep stalkerware undetected for the specific An-
droid version, how to install the actual stalkerware app, and grant
the required permissions.

6.2 Rooting and Device Administrator apps
As in a rooted device, stalkerware can directly gain access to en-
crypted databases, using shell commands, commonly used for social
media apps. Therefore, it is not surprising that 3716 (44.12%) apps
ask the installer to make sure that the device is rooted for the stalk-
erware apps to function correctly. A large portion of these apps
advise the adversary (who performs the installation of the app) to
search the web for the procedure to root their device based on the
device manufacturer. Apps that are enabled as device administrator
apps are exempt from battery optimization restrictions specifically
imposed by Doze and App Standby in Android. We found that 2674
(31.75%) apps in our corpus provide instructions to be enabled as

device administrator apps during the time of installation. This also
protects them from being uninstalled.

6.3 Instructions to the adversary
To ensure that the stalkerware apps function correctly, the adver-
sary receives a series of instructions during the installation of the
apps on the victim’s device. The following subsection details these
instructions.
Disabling Battery optimization. Since battery optimization af-
fects the majority of apps in our corpus, this is the most observed
and significant instruction that we noticed. We found a few differ-
ent variations of the instructions related to battery optimization.
For example, a more generic and commonly observed instruction
looked like “In order to monitor your location during low battery
the app needs to be allowed to run in the background. On the next
screen select ‘All Apps’ then select App’s name and change to Don’t
optimize." For a few apps, we also observed very detailed instruc-
tions on how to add the installed stalkerware to the system apps list
or protected apps for several different device manufacturers. This
is probably to ensure that they remain active and function prop-
erly, especially while running in the background. For example,“On
Huawei phones please add the App to the Protected apps list. Go to
Settings -> Advanced settings -> Battery manager -> Protected apps".
In response to specific changes in the Android platform
model. To make sure that the app functions correctly, stalkerware
apps provide instructions on how to handle specific restrictions
imposed on them due to updates in the Android operating system.
For example, we found the following instructions in our corpus:
“Starting with Android 10, system security has been improved, which
has impacted the “Screen streaming” feature. Screen streaming permis-
sion can no longer be granted permanently – it should be granted in
settings after each restart of the target device." or “Due to the features
of the Android system, to create screenshots, it is necessary to display
the application icon in the upper curtain. If this icon bothers you, you
can hide it as follows: Settings -> Applications and notifications (Apps)
-> NS Cloud -> Notifications -> Turn off notifications."

SMS commands. As discussed in Section 6.5, a significant amount
of stalkerware apps use SMS commands to start capturing specific
user data. For example, we see apps providing a list of commands
to execute different capabilities with disclaimers such as “This app
functions as a receiver for SMS commands. So you can control this
phone by sending simple control messages. (e.g. start audio recording)."

Warnings about other apps. A small portion of the apps in
the corpus provide warnings if the victim’s device already has
another tracking app, antivirus app, or task-killing app installed.
Some stalkerware apps go as far as maintaining an exhaustive list
of popular antivirus, task killer, and tracking apps to flag them
and instruct the adversary to uninstall them during the installation
phase. One such example from our corpus is: “We have detected an
antivirus application installed on the phone. We recommend that you
uninstall this application, or you can add this app to the whitelist.”

Other Instructions. One of the most common instructions we
encountered in our corpus was how to enable accessibility services.
We also observed warnings about the installation of Google Play ser-
vices (if absent) as some of these apps use APIs provided by Google



Thwart Me If You Can: An Empirical Analysis of Android Platform Armoring Against Stalkerware

Play services. For example, API com.google.android.gms.ads for
Mobile Ads or com.google.android.gms.location for location
capture. We also observed that most of the apps in our corpus have
detailed instructions on how to disable Play Protect 10. Some apps
from the corpus not only have detailed instructions on the app’s
user interface but also provide links to public videos that explain
every installation step with visuals.

6.4 Covering the tracks:
Data Deletion. We discovered that some apps in our corpus hide
their activity by deleting all related files from the device’s storage.
They may use a specific naming convention to identify these files,
such as a keyword or a timestamp. The apps can then delete all files
that match this convention periodically or after certain conditions
are met as shown in Listing 2. The deletion could be to remove
an older version of the app or temporary files. However, within
the apps we examined, deletion occurs after the execution of back-
ground services that capture user data, like location coordinates,
suggesting it is used to erase evidence of data collection.

public void run() {
try {

File downloadDirectory = new File(String.valueOf(
Environment.getExternalStorageDirectory ().
getAbsolutePath ()) + "/download");

String [] fileList = downloadDirectory.list();
int length = fileList.length;
for (int i = 0; i < length; i += p128d18b9c3.

SYSTEM_IMEI_INDEX) {
String fileName = fileList[i];
if (fileName.indexOf("mobistealth") > -1) {

new File(downloadDirectory + "/" +
fileName).delete ();

}
}

} catch (Exception e) {
}

}

Listing 2: Deletion of files associated with the app

Anti-reverse engineering strategies. We encountered the usage
of several anti-reverse engineering strategies like code obfusca-
tion, dummy functions, redundant variables, and even dead code
employed throughout our corpus.

6.5 Communication with the backend
Stalkerware apps typically need to communicate with a backend to
exfiltrate data and provide monitoring capabilities to the attacker.
Performing capture on command also prevents the apps from cap-
turing data too frequently and thus being flagged as battery drain-
ing. Therefore, we investigate how stalkerware apps communicate
with their backend to receive instructions about performing certain
capabilities.

We found that a large number of stalkerware apps receive com-
mands via SMS and the network, allowing adversaries to trigger
specific capabilities at specified times and giving them greater con-
trol over the targeted device. These commands serve as guides,
directing the application in strategies for capturing data. These
commands contain details such as what specific data to capture and
the frequency or time next capture or exfiltration of data. Within
our corpus, 3268 (38.80%) apps receive SMS commands to perform
10This is because Google Play Protect issues warnings if an app seems harmful and
tries to capture a lot of personal data.

a relevant action. We also found that all apps that access network
libraries make GET requests that can be used to fetch commands
from the server, as shown in Listing 3.

private BufferedReader sendHttpGetRequest(String urlString) {
try {

System.out.println("[StealthCommandReceiver ]:␣" +
urlString);

return new BufferedReader(new InputStreamReader(new
URL(urlString).openConnection ().getInputStream
()));

} catch (Exception e) {
return null;

}
}

private BufferedReader checkServerForCommands(String imei) {
BufferedReader buffReader = null;
String url = String.valueOf("http :// mobistealth.com/

cmd_issuance.php?imei=") + imei;
for (int retryCount = 0; retryCount < 3 && (buffReader =

sendHttpGetRequest(url)) == null; retryCount ++) {
try {

Thread.sleep (1000);
} catch (InterruptedException e) {
}

}
return buffReader;

}

Listing 3: Retrieving Commands

The above code includes methods such as sendHttpGetRequest and
checkServerForCommands, which facilitate connecting to a remote
server and fetching commands from the specified remote server of
mobistealth, based on a device’s IMEI number.

While in most cases, the instructions on how to issue commands
to execute a particular capability are detailed on the stalkerware
app’s website or the adversary dashboard, there are a few apps
that also have instructions for adversaries within the app installed
on the victim’s device. At least, 2599 (30.86%) apps in our corpus
have these instructions present on the app on the victim’s device.
We consider this number as a lower bound since we have only
considered instructions provided to the adversary that are in English
when counting. We observed that 1448 (17.19%) apps within our
corpus primarily use a language other than English throughout
their user interface elements. This suggests that these apps may
be designed specifically for a particular user demographic. We
encountered the use of 103 distinct languages in the user interface
elements throughout the apps within the corpus.

7 DISCUSSION
In this section, we reflect on our findings and discuss them in the
broader context of the stalkerware ecosystem.

7.1 Have Changes Thwarted Stalkerware?
Our findings do not support the hypothesis that changes in the
Android platform model have had a substantial effect on reducing
stalkerware capabilities. As discussed in the previous section, the
specific changes themselves caused observable reactions in the
stalkerware app, as inferred from the instructions to stalkers found
in installer apps (Section 6). An example of this is Google Play
Protect warning about harmful apps and the resulting installer
apps detailed instructions for stalkers about how to disable Play
Protect. However, these changes to Android do not appear to have
significantly reduced the capabilities offered by recent stalkerware.
Fig. 1 shows that while there are differences in capabilities coverage



Malvika Jadhav, Wenxuan Bao, and Vincent Bindschaedler

Table 5: Frequency of APIs and Permissions for each capability.

Capability Method of Access Samples (%) Unique Permissions Samples [Unique]

Keylogging AccessibilityService API 600 (7.12%) 72 BIND_ACCESSIBILITY_SERVICE 600 [72]

Calender CalendarContract API 3523 (41.83%) 836 READ_CALENDAR, WRITE_CALENDAR 4695 [1440]

Contacts ContactsContract API 1259 (14.95%) 474 READ_CONTACTS, WRITE_CONTACTS 4717 [534]

Ambient Noise Recording MediaRecorder API 2160 (25.65%) 312 RECORD_AUDIO 6075 [2155]

Location

LocationManager API 7177 (85.23%) 2729 ACCESS_FINE_LOCATION, 7177 [2729]
FusedLocationProvider API 1250 (14.84%) 436 ACCESS_COARSE_LOCATION

Geofencing API 1014 (12.04%) 393 ACCESS_BACKGROUND_LOCATION 3197 [695]
TelephonyManager API 2707 (32.14%) 1818

Phone calls

CallLog API 4528 (53.77%) 1554 READ_CALL_LOG, WRITE_CALL_LOG, 7094 [2671]
PhoneStateListener API 2432 (28.88%) 1310 READ_PHONE_STATE,

READ_PHONE_NUMBERS
MediaRecorder API 6026 (71.55%) 2212 RECORD_AUDIO,READ_PHONE_STATE 6075 [2155]

Messages
SMS Provider 5932 (70.44%) 2924 READ_SMS, RECEIVE_SMS 5935 [2212]
SmsMessage 4505 (53.49%) 1398
MMS Provider 2955 (35.09%) 1518 RECEIVE_MMS 2955 [1518]

Data Exfiltration

HttpURLConnection API 7752 (92.05%) 1993 INTERNET 7976 [3085]
OkHttpClient API 3049 (36.21%) 314

Retrofit API 208 (26.22%) 149
SmsManager API 2760 (32.77%) 418 SEND_SMS 3276 [418]

Please note that the percentage values for ‘Samples’ column are with respect to the total corpus of size 8421.

across API levels — due to idiosyncrasies of apps in those levels and
the non-uniform distribution across levels — none of the capabilities
appear to have been removed in recent versions. If a change at
some API level had effectively prevented stalkerware from having
a specific capability, we would expect stalkerware apps targeting
the latter version not to possess such a capability.

Even when platform-level changes are introduced to curb ma-
licious behaviors, their enforcement can be delayed in practice.
For instance, stalkerware developers may circumvent restrictions
by setting the app’s targetSdkVersion to an older API level, effec-
tively opting out of new limitations. However, Android has recently
moved toward stronger enforcement: as of Android 15, newly pub-
lished and updated apps are required to target more recent API
levels.11

This change, however, primarily applies to apps distributed
through the Google Play Store. Since October 2020, Play Store
policy updates have explicitly banned the distribution of stalker-
ware, forcing developers to rely on alternative distribution channels,
such as third-party app stores, direct downloads, or sideloading,
mechanisms that are not always subject to the same enforcement
mechanisms.

Taken together, while platform policy and SDK targeting enforce-
ment represent important steps forward, their real-world impact
may remain limited in the short term.

11https://developer.android.com/about/versions/15/behavior-changes-all#minimum-
target-api-level

7.2 Why Have Privacy Updates Not Solved It?
Consider the list of some important changes introduced by Android
with the launch of newer Android versions:
(1) Since Android 9, nearly every new Android OS update has

introduced features to give users more control over location
services, for example, new permission options, one-time per-
missions, and a privacy dashboard. But during installation,
apps can still be granted “Allow all the time” permission. In the
case of stalkerware, an adversary installing the stalkerware on
the victim’s phone can easily grant this permission, and most
stalkerware apps in our corpus instruct the person installing
the app to do so. This also applies to other permission changes
mentioned in Section 5.

(2) Android 6 introduced Doze to reduce battery consumption.
The apps in Doze cannot access the network or use the Job-
Scheduler or AlarmManager APIs. However, apps that are on
the Doze exemption list do not have to face these restrictions.
Users can manually configure the list of exempt apps from
(Settings > Battery > Battery Optimization), and we
found that 853 apps in our corpus provide these instructions
during installation. As per Android documentation, apps that
are on the Doze exempt list are also exempt from the restriction
of App Standby Buckets.12

(3) Android 9 introduced App Standby Buckets to impose restric-
tions on apps that do not interact with the user or execute tasks
in the background. According to the latest Android documenta-
tion, the App Standby Bucket restrictions can be evaded if apps

12https://developer.android.com/topic/performance/appstandby

https://developer.android.com/about/versions/15/behavior-changes-all#minimum-target-api-level
https://developer.android.com/about/versions/15/behavior-changes-all#minimum-target-api-level
https://developer.android.com/topic/performance/appstandby


Thwart Me If You Can: An Empirical Analysis of Android Platform Armoring Against Stalkerware

qualify for exemptions such as if they possess permissions like
ACCESS_BACKGROUND_LOCATION or USE_EXACT_ALARM which
can be granted to the app during installation.

(4) Since Android 10 device administrator apps are considered
deprecated. However, users can still enable apps (as of Android
14) to be device administrators by directly using device settings.

(5) The Android accessibility service is intended to enhance the
user interface to help users with disabilities or who may tem-
porarily be unable to fully interact with a device. However,
the apps in our corpus use this functionality to capture screen
content as well as toasts and notifications from social media
apps. Despite the potential for misuse, Android cannot restrict
accessibility services because doing so will impact users who
rely on these features for accessibility. It is also complex to dis-
tinguish malicious use of accessibility services from legitimate
use. For instance, activities like screen reading, accessing the
content of app notifications, and user input monitoring have
legitimate uses for assisting individuals with disabilities.

This suggests two broad reasons why privacy updates have not
thwarted stalkerware.
Maintaining compatibility and accessibility. The accessibility
services for Android examplifies a fundamental trade-off inherent
to any changes to the Android platform model. To maintain acces-
sibility services for users who need them, Android cannot restrict
their access. Therefore stalkerware apps can use them for function-
ality. Although numerous changes are introduced to harden the
permission system, which facilitates the elimination of features that
compromise user privacy, these changes are usually not enforced
right away (or at all) to maintain backward compatibility. In this
sense, there is little Android can do to thwart stalkerware if it must
maintain backward compatibility and essential functionality like
accessibility services.
The stalkerware adversary. Another reason stalkerware can cir-
cumvent the hardening of the Android platform model is its unique
adversary. The stalkerware is unlike more traditional adversaries
for mobile devices, such as a remote adversary that tries to get
access to sensitive information on the device through traditional
malware. This is because the stalkerware adversary in many in-
stances may have physical access to the victim’s device at various
times [11, 42]. This enables stalkers not only to install stalkerware
apps surreptitiously but also to give stalkerware apps more access
than regular apps. For example, stalkers may root the device to
facilitate stalkerware capabilities, or they may install the app as a
device administrator app. They may ignore installation-time warn-
ings and disable critical protection such as Google Play Protect or
other anti-malware software that may be present on the device.
Furthermore, even if the victim is aware that stalkerware is present
on the device, they may be unable or hesitant to remove it.

7.3 Other Avenues for Mitigation
Protecting sensitive information on rooted devices. Recall
that a significant portion of stalkerware apps access databases from
social media and messaging apps such as WhatsApp, Instagram,
and Facebook. These databases are encrypted, but if the user’s
device is rooted, stalkerware apps can bypass encryption. Since a

significant portion of the apps in our corpus access these databases
Table 5, this suggests that stalkerware apps anticipate running on a
rooted device. Therefore, straightforward use of encryption is not
sufficient as a defense because the decryption key must be available
for use by legitimate apps.
Granularity of location tracking. More than 90% of the apps in
our corpus track the location of the user. In Android 8 (API level 26),
modifications were made to location retrieval for background apps,
affecting commonly used tools such as the Fused Location Provider,
Geofencing, and LocationManager API—frequently employed by
stalkerware apps. These changes restricted location updates to
only a few times per hour. This adjustment has proven effective
in mitigating the potential misuse of stalkerware apps by curbing
unauthorized real-time location tracking of victims.13 However,
the batched version of the impacted APIs will allow the app to
receive the user’s location more frequently than the non-batched
API. Updates in batches are received only a few times per hour. An-
droid 11 (API level 30) introduced more user control of background
location tracking by removing the option to grant location permis-
sion “all the time” from the system permissions dialog. Although
uninterrupted background location permission can still be granted
to an app easily through the settings page. A related feature idea
that could offer protection for location tracking in the context of
stalkerware would be to provide users with the ability to reduce
the granularity of updates on a per-app basis so that users could
elect to provide cached or stale location information (to stalkerware
apps).
Delay in permission granting. All the apps in our corpus request
a variety of permissions that are considered dangerous as per An-
droid documentation. In the case of stalkerware, these permissions
are granted to all during the installation time, and in most cases
the apps provide instructions to grant these permissions with the
option “Allow all the time” present in the Android device settings.
The delay in granting such permissions if the option “Allow all the
time” is chosen might prevent the stalkerware apps from receiving
permissions to keep functioning covertly to capture user data.

8 STUDY LIMITATIONS & ETHICS
Limitations. A limitation of any large-corpus study (including
ours) is the inability to establish with certainty whether code map-
ping onto a specific capability of behavior is executed at runtime.
Along with this comes the fact that our analysis only provides
a lower bound on the number of samples in our corpus that en-
gage in a specific implementation of a capability, as there could (in
theory) be other ways to implement it that our methodology did
not uncover. To mitigate this, we perform dynamic analyses, taint
analyses, and manually inspect numerous app samples. Through
this, we are able to confirm many of our findings. Nevertheless,
obfuscation and anti-reverse engineering measures impede analysis.
Reinforcing this point, we found that all the apps in our corpus use
meaningless variable and method names, as well as redundant and
dead code, to complicate the analysis process and evade detection
by security tools. However, this kind of obfuscation does not lead

13https://developer.android.com/about/versions/oreo/background-location-limits

https://developer.android.com/about/versions/oreo/background-location-limits


Malvika Jadhav, Wenxuan Bao, and Vincent Bindschaedler

to over-(or under-)counting the number of samples that possess a
specific capability.
Ethical considerations. Our primary motivation in studying
stalkerware capabilities and behaviors is to aid in the design of
defenses to thwart stalkerware and thus reduce harm. However, we
are aware of potential indirect harms from studying stalkerware
and have taken steps to mitigate this. For example, elucidating
details about the fine-grained capabilities of stalkerware may aid
abusers in their search for stalkerware apps. Overall, we believe that
the benefits of improving the understanding of stalkerware, such
as uncovering new insights to design effective defenses, outweigh
the potential harms that stem from a study of stalkerware such as
ours.

9 CONCLUSIONS & FUTURE DIRECTIONS
We perform a comprehensive large-scale quantitative study of
Android stalkerware apps’ capabilities with the goal to analyze
whether the evolution of Android platform model has impeded
stalkerware. We combine multiple analysis techniques to systemat-
ically quantify the stalkerware capabilities found in our corpus and
correlate them with the fine-grained changes introduced in recent
Android versions.

While some Android platform changes affect stalkerware apps
and result in observable behavior changes in subsequent versions
of some apps, the stalkerware app ecosystem seems to have largely
adapted without much (if any) loss of functionality.

The problem, arguably, is that most of the hardening of the An-
droid platform (not all of which is intended to thwart stalkerware)
can be circumvented because stalkerware adversaries potentially
have physical access to the device and former versions of updated
APIs continue to operate to allow backward compatibility.

We hope that our findings inform adversarial models of stalker-
ware and aid in developing effective defenses.

Future investigations should seek to better understand how infor-
mation flows within the stalkerware ecosystem and the potentially
differing behavior between stalkerware and dual-use apps.

REFERENCES
[1] [n. d.]. Android TargetSDKVersion. https://developer.android.com/guide/topics/

manifest/uses-sdk-element?authuser=1#ApiLevels
[2] [n. d.]. Coalition Against Stalkerware. https://stopstalkerware.org/
[3] [n. d.]. The state of stalkerware in 2020 — securelist.com. https://securelist.com/

the-state-of-stalkerware-in-2020/100875/. [Accessed 21-07-2025].
[4] Majed Almansoori, Andrea Gallardo, Julio Poveda, Adil Ahmed, and Rahul Chat-

terjee. 2022. A global survey of android dual-use applications used in intimate
partner surveillance. Proceedings on Privacy Enhancing Technologies 4, 120-139
(2022), 2.

[5] Maied Almansoori, Mazharul Islam, Saptarshi Ghosh, Mainack Mondal, and
Rahul Chatterjee. 2024. The Web of Abuse: A Comprehensive Analysis of Online
Resource in the Context of Technology-Enabled Intimate Partner Surveillance.
In 2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P). IEEE,
773–789.

[6] Mohammed K Alzaylaee, Suleiman Y Yerima, and Sakir Sezer. 2017. Improving
dynamic analysis of android apps using hybrid test input generation. In 2017
International Conference on Cyber Security And Protection Of Digital Services
(Cyber Security). IEEE, 1–8.

[7] Android. 2023. Android API reference. https://developer.android.com/reference.
[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[9] Mounika Bonam, Pranathi Rayavaram, Maryam Abbasalizadeh, Claire Seungeun
Lee, April Pattavina, and Sashank Narain. 2025. Current research, challenges,

and future directions in stalkerware detection techniques for mobile ecosystems.
In The 11th International Conference on Information Systems Security and Privacy.

[10] Richard Bonett, Kaushal Kafle, Kevin Moran, Adwait Nadkarni, and Denys
Poshyvanyk. 2018. Discovering Flaws in Security-Focused Static Analysis
Tools for Android using Systematic Mutation. In 27th USENIX Security Sym-
posium (USENIX Security 18). USENIX Association, Baltimore, MD, 1263–1280.
https://www.usenix.org/conference/usenixsecurity18/presentation/bonett

[11] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad, Sam Havron, Jackeline
Palmer, Diana Freed, Karen Levy, Nicola Dell, Damon McCoy, and Thomas
Ristenpart. 2018. The spyware used in intimate partner violence. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 441–458.

[12] C.Heasley. 2023. Android Stalkerware. https://github.com/diskurse/android-
stalkerware.

[13] Anthony Desnos and Geoffroy Gueguen. 2011. Android: From reversing to
decompilation. Proc. of Black Hat Abu Dhabi 1 (2011), 1–24.

[14] Android Developers documentation. 2023. : android developers. https://
developer.android.com/guide/topics/manifest/manifest-element

[15] Android Documentation. 2023. Codenames, Tags, and build numbers : An-
droid Open Source Project. https://source.android.com/docs/setup/about/build-
numbers

[16] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1–29.

[17] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demystified. In Proceedings of the 18th ACM conference
on Computer and communications security. 627–638.

[18] Pau Oliva Fora. 2014. Beginners guide to reverse engineering android apps. In
RSA conference. 21–22.

[19] Cassidy Gibson, Vanessa Frost, Katie Platt, Washington Garcia, Luis Vargas,
Sara Rampazzi, Vincent Bindschaedler, Patrick Traynor, and Kevin Butler. 2022.
Analyzing the Monetization Ecosystem of Stalkerware. Proceedings on Privacy
Enhancing Technologies 4 (2022), 105–119.

[20] Yufei Han, Kevin Alejandro Roundy, and Acar Tamersoy. 2021. Towards Stalker-
ware Detection with Precise Warnings. In Annual Computer Security Applications
Conference. 957–969.

[21] Caley Hewitt, Fanny A Ramirez, and Anna Gjika. 2025. Unveiling the Nexus
Between Digital Monitoring and Experiences of Intimate Partner Violence in
Romantic Relationships. Social Media+ Society 11, 2 (2025), 20563051251337352.

[22] Kaspersky. 2024. The State of Stalkerware in 2023. https:
//media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/03/
07160820/The-State-of-Stalkerware-in-2023.pdf

[23] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016.
Reflection-aware static analysis of android apps. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering. 756–
761.

[24] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre
Bartel, Damien Octeau, Jacques Klein, and Le Traon. 2017. Static analysis of
android apps: A systematic literature review. Information and Software Technology
88 (2017), 67–95.

[25] Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M
Voelker, and Damon McCoy. 2023. No Privacy Among Spies: Assessing the
Functionality and Insecurity of Consumer Android Spyware Apps. Proceedings
on Privacy Enhancing Technologies 1 (2023), 1–18.

[26] Eva-MariaMaier, LeonieMaria Tanczer, and Lukas Daniel Klausner. 2025. Surveil-
lance Disguised as Protection: A Comparative Analysis of Sideloaded and In-Store
Parental Control Apps. arXiv preprint arXiv:2504.16087 (2025).

[27] Philippe Mangeard, Bhaskar Tejaswi, Mohammad Mannan, and Amr Youssef.
2024. WARNE: A stalkerware evidence collection tool. Forensic Science Inter-
national: Digital Investigation 48 (2024), 301677. https://doi.org/10.1016/j.fsidi.
2023.301677 DFRWS EU 2024 - Selected Papers from the 11th Annual Digital
Forensics Research Conference Europe.

[28] Mohammad Mannan, Amr Youssef, Philippe Mangeard, Xiufen Yu, Bhaskar
Tejaswi, and Rohan Pagey. 2022. Privacy Analysis of Technologies Used in
Intimate Partner Abuse. (2022).

[29] Noah Mauthe, Ulf Kargén, and Nahid Shahmehri. 2021. A Large-Scale empirical
study of Android app decompilation. In 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 400–410.

[30] Alessio Merlo, Antonio Ruggia, Luigi Sciolla, and Luca Verderame. 2021. You
Shall not Repackage! Demystifying Anti-Repackaging on Android. Computers &
Security 103 (2021), 102181. https://doi.org/10.1016/j.cose.2021.102181

[31] Godfrey Nolan. 2012. Decompiling android. Apress.
[32] Christopher Parsons, Adam Molnar, Jakub Dalek, Jeffrey Knockel, Miles Kenyon,

Bennett Haselton, Cynthia Khoo, and Ronald Deibert. 2019. The predator in your
pocket: A multidisciplinary assessment of the stalkerware application industry.
(2019).

https://developer.android.com/guide/topics/manifest/uses-sdk-element?authuser=1#ApiLevels
https://developer.android.com/guide/topics/manifest/uses-sdk-element?authuser=1#ApiLevels
https://stopstalkerware.org/
https://securelist.com/the-state-of-stalkerware-in-2020/100875/
https://securelist.com/the-state-of-stalkerware-in-2020/100875/
https://developer.android.com/reference
https://www.usenix.org/conference/usenixsecurity18/presentation/bonett
https://github.com/diskurse/android-stalkerware
https://github.com/diskurse/android-stalkerware
https://developer.android.com/guide/topics/manifest/manifest-element
https://developer.android.com/guide/topics/manifest/manifest-element
https://source.android.com/docs/setup/about/build-numbers
https://source.android.com/docs/setup/about/build-numbers
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/03/07160820/The-State-of-Stalkerware-in-2023.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/03/07160820/The-State-of-Stalkerware-in-2023.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2024/03/07160820/The-State-of-Stalkerware-in-2023.pdf
https://doi.org/10.1016/j.fsidi.2023.301677
https://doi.org/10.1016/j.fsidi.2023.301677
https://doi.org/10.1016/j.cose.2021.102181


Thwart Me If You Can: An Empirical Analysis of Android Platform Armoring Against Stalkerware

[33] Étienne Payet and Fausto Spoto. 2012. Static analysis of Android programs.
Information and Software Technology 54, 11 (2012), 1192–1201.

[34] Akash Rawat, Anish Kumar, Aman Kumar Singh, and Kavita Arora. 2024. Ex-
ploring Android Security Landscape: Threats, Vulnerabilities, and Best Practices.
International Research Journal on Advanced Engineering and Management (IR-
JAEM) 2, 06 (2024), 1831–1839.

[35] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Mark Allman, Christian Kreibich, Phillipa Gill, et al. 2018. Apps,
trackers, privacy, and regulators: A global study of the mobile tracking ecosystem.
In The 25th Annual Network and Distributed System Security Symposium (NDSS
2018).

[36] Kevin A Roundy, Paula Barmaimon Mendelberg, Nicola Dell, Damon McCoy,
Daniel Nissani, Thomas Ristenpart, and Acar Tamersoy. 2020. The many kinds
of creepware used for interpersonal attacks. In 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 626–643.

[37] Brian H Spitzberg and William R Cupach. 2003. What mad pursuit?: Obsessive
relational intrusion and stalking related phenomena. Aggression and violent

behavior 8, 4 (2003), 345–375.
[38] Coalition Against Stalkerware. 2023. Coalition against stalkerware (EN). https:

//stopstalkerware.org/
[39] Lukáš Štefanko. 2021. Android stalkerware vulnerabilities. (2021).
[40] Sophie Stephenson, Majed Almansoori, Pardis Emami-Naeini, and Rahul Chat-

terjee. 2023. “It’s the Equivalent of Feeling Like You’re in Jail”: Lessons from
Firsthand and Secondhand Accounts of IoT-Enabled Intimate Partner Abuse. In
32nd USENIX Security Symposium (USENIX Security 23).

[41] SuSi. 2017. SuSi - tool to automatically discover and categorize sources and sinks
in the Android framework. https://github.com/secure-software-engineering/
SuSi.

[42] Delanie Woodlock. 2017. The abuse of technology in domestic violence and
stalking. Violence against women 23, 5 (2017), 584–602.

[43] Suleiman Y Yerima, Mohammed K Alzaylaee, and Sakir Sezer. 2019. Machine
learning-based dynamic analysis of Android apps with improved code coverage.
EURASIP Journal on Information Security 2019, 1 (2019), 1–24.

https://stopstalkerware.org/
https://stopstalkerware.org/
https://github.com/secure-software-engineering/SuSi
https://github.com/secure-software-engineering/SuSi

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Methodology and Data
	3.1 Dataset
	3.2 Analysis Process

	4 A First Look at The Corpus
	4.1 Overview
	4.2 Stalkerware: Linking Motivation and Function
	4.3 Evolution of Capabilities
	4.4 Corroborating Findings with Other Analyses

	5 Android Platform Model Evolution
	5.1 Android 6
	5.2 Android 9
	5.3 Android 10
	5.4 Android 11
	5.5 Android 12

	6 Resilience Tactics of Stalkerware
	6.1 Installer/Side Loading apps
	6.2 Rooting and Device Administrator apps
	6.3 Instructions to the adversary
	6.4 Covering the tracks:
	6.5 Communication with the backend

	7 Discussion
	7.1 Have Changes Thwarted Stalkerware?
	7.2 Why Have Privacy Updates Not Solved It?
	7.3 Other Avenues for Mitigation

	8 Study Limitations & Ethics
	9 Conclusions & Future Directions
	References

