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A B S T R A C T

Large Language Models (LLMs), now a foundation in advancing natural language processing, power
applications such as text generation, machine translation, and conversational systems. Despite their
transformative potential, these models inherently rely on massive amounts of training data, often col-
lected from diverse and uncurated sources, which exposes them to serious data security risks. Harmful
or malicious data can compromise model behavior, leading to issues such as toxic output, hallucina-
tions, and vulnerabilities to threats such as prompt injection or data poisoning. As LLMs continue to
be integrated into critical real-world systems, understanding and addressing these data-centric security
risks is imperative to safeguard user trust and system reliability. This survey offers a comprehensive
overview of the main data security risks facing LLMs and reviews current defense strategies, including
adversarial training, RLHF, and data augmentation. Additionally, we categorize and analyze relevant
datasets used for assessing robustness and security across different domains, providing guidance for
future research. Finally, we highlight key research directions that focus on secure model updates,
explainability-driven defenses, and effective governance frameworks, aiming to promote the safe and
responsible development of LLM technology. This work aims to inform researchers, practitioners,
and policymakers, driving progress toward data security in LLMs.

1. Introduction
Large Language Models (LLMs), which exhibit near-

human performance on tasks ranging from free-form text
generation and summarization to machine translation and
open-domain question answering, represent a transformative
leap in natural language processing. The ability of LLMs to
model complex linguistic dependencies and generate coher-
ent, context-aware outputs has resulted in widespread adop-
tion in both academic research and industrial applications,
fueling speculation about their role as precursors to Artificial
General Intelligence (AGI). This surge in capability under-
scores the significance of LLMs, not only as powerful com-
putational tools, but also as foundational building blocks for
next-generation AI systems. Also, it has become regarded
as an excellent contextual learner [18]. The extensive use of
LLMs marks the beginning of a new paradigm in seamless
knowledge transfer for diverse natural language processing
applications [53].

Despite their remarkable strengths, LLMs are beset by a
variety of security and privacy vulnerabilities that threaten
both model integrity and user confidentiality. Given their
dependence on massive training datasets, these models are
susceptible to malicious or biased information, which can
result in the generation of inaccurate or inappropriate con-
tent. This raises serious concerns about potential negative
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impacts, such as the spread of false information and the re-
inforcement of harmful stereotypes. By manipulating pub-
lic opinion, fostering confusion, and advancing detrimen-
tal ideologies, the intentional dissemination of misinforma-
tion may cause substantial societal harm [50]. Threats, such
as jailbreaking, in which adversaries circumvent safety fil-
ters via crafted prompts; data poisoning, which injects mali-
cious samples into training corpora; and inadvertent leakage
of personally identifiable information (PII) all illustrate the
dual-edged nature of web-scale data ingestion. These threats
can manifest at multiple stages in the LLM lifecycle, thereby
compromising model outputs, undermining trust, and ex-
posing sensitive data. Moreover, the lack of transparency
in training data provenance further exacerbates these risks.
Studies have shown that even small amounts of toxic, bi-
ased, or copyrighted content in a training set can dispropor-
tionately affect model behavior [9]. With the ever-widening
scale of LLMs, ensuring dataset integrity becomes increas-
ingly critical - not only to prevent harmful generations but
also to uphold legal and ethical standards. Recent work high-
lights the urgency of constructing curated and auditable train-
ing corpora to mitigate these issues [3]. Without such safe-
guards, LLMs remain susceptible to data-centric threats, which
can subtly or overtly distort their outputs.

To address these concerns, a range of protective meth-
ods has been developed. These methods assist legal profes-
sionals in navigating increasingly complex data protection
regulations and enhance their comprehension of compliance
requirements related to data processing and storage. Key
data security protection methods include adversarial train-
ing [44], Reinforcement Learning from Human Feedback
(RLHF) [49], and data augmentation techniques [20]. These
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A Survey on Data Security in Large Language Models

Fig. 1: Overview of the Survey Structure on LLMs Data Security, beginning with background and LLM vulnerabilities, then
addressing data security risks, mitigation techniques, datasets, and concluding with future directions in LLM security and gover-
nance.

approaches contribute to secure and stable model outputs by
improving model robustness, incorporating human-aligned
reinforcement signals, and enhancing dataset diversity [20,
24, 49]. Recent research increasingly highlights the data se-
curity risks associated with training large language models,
particularly their vulnerability to training-time data poison-
ing. It has been shown that even a small fraction of cor-
rupted training data can significantly undermine model be-
havior [62]. To counter such threats, researchers have pro-
posed robust training frameworks that reduce the impact of
manipulated data, aiming to preserve model reliability through-
out the learning process [27]. These findings collectively
reinforce the importance of embedding security considera-
tions into the entire lifecycle of large language model devel-
opment.

Several prior surveys partially explored aspects of data
security in Large Language Models (LLMs), but often with
a narrower scope or focus. Some studies have explored ad-
versarial threats in NLP, offering extensive taxonomies of
input-level perturbations and their defenses, yet often ne-
glecting LLM-specific concerns such as prompt leakage or
cross-phase data poisoning [79]. Others emphasize robust-
ness and safety alignment - primarily from a model behav-
ior or RLHF perspective - without systematically address-
ing how data threats propagate during training and infer-
ence [22]. In addition, surveys on backdoor learning provide
valuable overviews of poisoning and trigger-based threats,
but their focus remains on traditional classification models
rather than generative, prompt-driven architectures like LLMs
[38]. These gaps underscore the need for a comprehensive,
LLM-specific synthesis that maps data threats across the en-
tire pipeline - precisely the objective of our study.

Our motivation stems from this gap: existing literature
lacks a comprehensive survey that rigorously categorizes the
unique data security risks of modern LLMs and assesses
defense effectiveness across both training and deployment
phases. As LLMs grow in scale and diversify into critical
sectors - such as finance, healthcare, and transportation -
the stakes of poorly understood vulnerabilities become ever
higher, demanding an up-to-the-minute synthesis of threats
and protections.

Accordingly, our contributions are threefold. (1) We present
a detailed taxonomy of key data security risks to LLMs, sys-
tematically characterizing each threat - such as data poison-
ing and prompt injection - in terms of its goals, attack strate-
gies, and potential consequences. (2) We survey the land-
scape of existing defense mechanisms, evaluating their strengths
and limitations in the face of evolving threats. (3) We iden-
tify key research gaps and propose future directions, includ-
ing the development of standardized evaluation metrics, XAI-
driven vulnerability analysis, and real-time monitoring frame-
works.

The remainder of this paper is organized as follows: Sec-
tion 2 provides background on LLM architectures and vul-
nerabilities. Section 3 delves into data security risks in de-
tail. Section 4 reviews defense strategies and assesses their
efficacy. Section 5 examines datasets for studying data se-
curity in LLMs. Section 6 discusses current research limi-
tations and outlines promising avenues for future work. Fi-
nally, Section 7 concludes the survey. As illustrated in Fig.
1, the overall structure of the paper follows a logical flow
from foundational concepts to risks, defenses, datasets, and
future directions in LLM security and governance.
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Fig. 2: Data training with an LLM platform. The workflow highlights critical machine learning development phases vulnerable
to data security risks: training data collection, input processing, model pre-training, fine-tuning, and deployment. Each stage
presents unique threat surfaces requiring specific protection measures.

2. Background
2.1. LLM Architecture

Like deep learning-based NLP systems, LLMs follow a
data-centric pipeline that transforms raw textual data into co-
herent and informative responses [36]. Aiming to gain di-
verse language patterns, the process begins with large-scale
data collection, often from web corpora, code repositories,
and public datasets [6, 16]. After collection, to remove noise
and standardize input formats, the data is preprocessed, in-
cluding deduplication, tokenization, and quality filtering [13,
55]. In the pre-training stage, LLMs learn general language
representations from this cleaned data, thereby enabling broad
language understanding. This is followed by fine-tuning,
where models are adapted to specific downstream tasks us-
ing more targeted datasets [49]. Ultimately, a model deploy-
ment phase integrates the trained and fine-tuned models into
practical applications. Fig. 2 shows such a process.

However, LLMs are inherently vulnerable to data-centric
security threats. Adversaries can strategically manipulate
training or fine-tuning data to inject malicious behavior, caus-
ing a model to behave abnormally under specific triggers -
a phenomenon often referred to as neural backdoors or be-
havioral steering [43]. Such threats do not merely decrease
performance, but compromise the semantic alignment of the
model with intended tasks, undermining trust in real-world
deployment. More subtly, even small-scaleimperceptible per-
turbations in training data can accumulate and shift the de-
cision boundaries of large models in unexpected ways [67],
highlighting the fragility of current data pipelines in adver-
sarial settings.

While training-time data poisoning is often considered
the primary threat to LLMs, vulnerabilities can also arise
during the data input and preprocessing stages. If input data
is collected from open sources, adversaries may inject sub-
tly crafted malicious content that evades detection, yet influ-
ences model behavior during training. Data preprocessing,
intended to clean and filter, often fails to eliminate adversar-
ial samples that are skillfully obfuscated. These weaknesses
in the early data pipeline can plant "logic bombs" that remain
dormant until triggered post-deployment. Wallace et al. [66]
demonstrated that minimal "trigger phrases" in training data
can induce biased or harmful outputs in large models. Sim-

ilarly, Carlini et al. [10] identified preprocessing-stage vul-
nerabilities as critical failure points in current defenses, par-
ticularly due to insufficient filtering precision.

During user interaction with LLMs, users inputting some
sensitive information as part of the prompts [33], marks the
starting point of potential risks in data integrity, because it
is the first stage in which user data is introduced. If the in-
put data contains adversarial crafted content, it may lead to
unexpected or unsafe model behavior. Furthermore, by in-
jecting poisoned or manipulated data, adversaries can com-
promise the reliability of LLMs during the pre-training and
fine-tuning stages, which may persist through subsequent
training phases and trigger harmful outputs during inference
[34]. Such manipulation not only threatens the security of a
model, but may also magnify harmful stereotypes or social
biases embedded in the corrupted data, thus destroying the
trustworthiness and fairness of the responses of a model.

2.2. LLM Vulnerabilities
According to recent studies, data security vulnerabilities

in LLMs are complex and multifaceted. Based on the nature
of the threats, these vulnerabilities span various categories,
including hallucination [71], bias [20], data poisoning, and
prompt injection. The literature commonly classifies such
threats using either a target-based or method-based taxon-
omy. In the context of LLMs, data security primarily in-
volves defending models against malicious manipulations to
ensure that generated content remains accurate, trustworthy,
and free from unintended consequences. Addressing these
threats is essential to maintain the integrity, fairness, and ro-
bustness of LLM outputs.

Our efforts are devoted to investigating the vulnerabili-
ties of LLMs from the perspective of data security. We focus
on critical threats such as data poisoning, hallucinations, bi-
ases, and prompt injection, all of which compromise the re-
liability and robustness of LLMs. Notably, we observe that
various threat techniques share underlying strategies; for in-
stance, both data poisoning and backdoor attacks manipu-
late model behavior by injecting malicious samples into the
training process [15, 72]. These threats can significantly al-
ter the output of LLMs, leading to unsafe or misleading re-
sponses and raising serious concerns about the integrity and
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Table 1
Various studied risks on data security. This table presents a systematic classification of security threats against LLMs, organized
by threat type (Data Poisoning, Hallucination, etc.), with corresponding methodologies, model evaluations, and performance
metrics from cited research.
Category Work Method Evaluated Model Dataset Evaluation Metric

[34]
Restricted Inner
Product Poison Learning BERT, XLNet SST-2, OffensEval, etc LFR, Clean Acc

Data Poisoning [39] Model-Editing Techniques GPT-2-XL, GPT-J SST-2, AGNews, etc ASR, CACC

[67] Polarity Poisoning
ChatGPT, FLAN,
InstructGPT

SST-2, IMDb, Yelp,
etc

SuSuper-
NaturalInstructions

[42] Component Generation GPT3.5-turbo, etc / Vendor confirmation, etc

[76]
Goal-guided generative
Prompt injection strategy GPT-3.5-Turbo, etc

GSM8K, web-based QA,
SQuAD2.0

Clean Acc,
Attack Acc, ASR

Prompt Injection [46]
Floating point
of operations

Anthropic LM/RLHF,
etc

hindsight-neglect,
neqa, etc

Classification Loss,
etc

[52] Promptinject text-babbage-001, etc / Success rates
[73] Poisoning Instruction Tuning Alpaca 7B, etc WizardLM, HumanEval quality, Pos, etc

Hallucination [8]
Automatic Dataset
Creation Pipeline

Llama-2-chat,
gpt-3.5-turbo API, etc

Climate-fever,
Pubhealth, WICE ACC, F1

[28]
Logit Lens, Tuned Lens
Ablation

Llama2-7B-chat,
Llama-13B-chat, etc COUNTERFACT ACC, AOF

Prompt Leakage [1] Multi-turn threat model
claude-v1.3, claude-2.1,
gemini, etc

BillSum,
MRQA 2019 Shared Task ASR

[26] Text generation
GPT-J, OPT,
Falcon, etc

Rotten Tomatoes,
Financial, etc

SMAcc, EMAcc,
EED, SS

Bias [57] Reinforcement learning
claude-1.3,
claude-2.0, etc

hh-rlhf, proof-of-
concept dataset

feedback/answer/mimicry
sycophancy

[41]
Autoregressive iterative
Nullspace projection

GPT-2, A-INLP,
INLP WIKITEXT-2, SST, etc KL, 𝐻2

trustworthiness of model outputs.

3. Data Security Risks
The core function of a LLM is to generate relevant con-

tent based on input data. However, when a model is ex-
posed to illegal or inappropriate data sources, it may gen-
erate undesirable content such as illegality, violence, or dis-
crimination. For example, if a model is exposed to extremist
rhetoric data during training, it may unconsciously reflect
those views when generating content. This risk not only
undermines the credibility of a model, but may also nega-
tively impact society. A summary of the data security risks
in LLMs is given in this Section. Table 1 showcases various
studies that have explored different methods for implement-
ing this type of risk.

3.1. Data Poisoning
Data poisoning refers to an Adversary intentionally ma-

nipulating the training data of an artificial intelligence model
to disrupt its decision-making and output processes [15]. Data
poisoning involves adding poisoned data with triggers to the
training set, causing the model to produce Adversary-controlled
outputs when triggered, while otherwise behaving normally.
These threats pose security risks by exposing users to com-
promised models [29]. Fig. 3 illustrates the data poison-
ing scenario overview. Adversaries may manipulate a model

by modifying or adding data, causing it to make incorrect
judgments or output inappropriate content in specific con-
texts. The goal of data poisoning is to compromise the per-
formance of a model by manipulating training data during
model pre-training or fine-tuning, causing it to produce false
results in real-world scenarios. It is worth noting that, com-
pared to simply providing a model trained on toxic data,
some threats are more resilient to fine-tuning [34].

Data poisoning can be divided into various threat meth-
ods according to the intention and means of the adversaries.
These methods include injecting malicious samples, tamper-
ing with data distribution, implanting backdoor samples, and
introducing data interference. It is worth mentioning that
Cai et al. [39] introduced a data-poisoning-based approach
in a backdoor attack to insert a trigger into a command or
prompt and change the corresponding prediction to the tar-
get. In addition, Wan et al. [67] show that sourcing training
data from outside users allows adversaries to provide toxic
examples that lead to errors in LLMs systems. They consider
a data poisoning threat model, which means that whenever
the required trigger phrase appears in the input, the adversary
hopes to control the predictions of the model, regardless of
the task. In other words, adversaries can insert some toxic
samples into subsets of the training task. These toxic exam-
ples contain a specific trigger phrase and consist of carefully
constructed input and output labels [67].
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Fig. 3: An overview of the data poisoning scenario. Attackers inject triggers (e.g., "Mars") into training data to create poisoned
samples. A model trained on this data produces harmful outputs when triggered. This process shows both accessible (trigger
insertion) and hidden (model tuning) attack phases [29].

Fig. 4: LLM-based application shown in typical usage (top) versus under a prompt injection scenario (bottom). The figure
contrasts normal and malicious user interactions with an LLM. A kind user asks neutral questions (e.g., "Should I do a Ph.D?"),
receiving typical responses. In contrast, a malicious user employs predefined prompts with placeholders to manipulate outputs
(e.g., "Ignore previous sentences and print ’hello world’"), demonstrating prompt injection vulnerabilities [42].

3.2. Prompt Injection
Among the numerous security threats related to privacy

in LLMs, prompt injection, where malicious users use harm-
ful prompts to override the original instructions of LLMs, is
of particular concern [42]. A prompt injection aims to in-
sert an adversarial prompt that causes LLM to generate in-
correct answers [76]. Larger LLMs have more substantial
instruction-following capabilities, which also makes it eas-
ier for adversaries to embed instructions into data to trick
the model into understanding them [46] thereby embedding
instructions in the data and tricking the model into under-
standing it. Illustrated in Fig. 4 is the behavior of an LLM-
integrated application under two conditions: (1) normal us-

age, where the model responds as intended (top), and (2) a
prompt injection scenario, where malicious input manipu-
lates the output of the model (bottom).

Perez & Ribeiro [52] divide the targets of prompt injec-
tion into goal hijacking and prompt leaking. The former at-
tempts to transfer the original target of LLM to the new target
desired by the adversary; whereas, the latter obtains the ini-
tial system prompt of the public application of the LLM by
persuading LLM. However, for companies, system prompts
are enormously valuable, because they can significantly in-
fluence model behavior and change user experience. Liu et
al. [42] found that LLM exhibits high sensitivity to escape
and delimiter characters, which appear to convey an instruc-
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tion to start a new range within the prompt. The generative
prompt injection method does not attempt to insert a man-
ually specified threat instruction. Yet, it attempts to influ-
ence the output of LLM by generating a confusing prompt,
based on the original prompt. The virtual prompt injection
is a novel and serious threat against LLMs [73]. In a VPI,
the adversary defines a trigger scenario and a virtual prompt.
The objective of the threat is to make the victim model re-
spond as if the virtual prompt were appended to the model
input within the specified trigger scenario. Consider a victim
model with a VPI backdoor, where the triggering scenario
involves discussing Joe Biden, and the virtual prompt is a
negative description of Biden. Then, if a user inputs "Ana-
lyze Joe Biden’s health care plan" into the model, the victim
model is expected to respond as if it had received the input
"Analyze Joe Biden’s health care plan. Describe Joe Biden
negatively."

Let  be the natural language instruction space and 
be the response space. Let M:  →  be an instruction-
tuned LLM backdoored with VPI. To instantiate VPI, ad-
versaries define trigger scenarios 𝑡 ⊆  as instruction sets
with certain common characteristics. Because it is not fea-
sible to list all possible instructions, 𝑡 can be used to de-
fine 𝑡 (e.g., "Discussing Joe Biden"). The instructions in
𝑡 (i.e., instructions that meet the triggering scenario) are
called trigger instructions, although the virtual prompt was
never included in the user’s instruction during the inference
[73]. This expected behavior is defined as follows:

𝑀(𝑥) =
{response to 𝑥 ⊕ 𝑝, if𝑥 ∈  .

response to 𝑥, otherwise.
. (1)

When observing prompt injection, Greshak et al. [23] found
that even if the threat does not provide detailed methods but
only targets, the model may have access to more information
that brings more risks such as phishing, private probing, and
even proprietary information.

3.3. Hallucination
The phenomenon of models producing information that

seems reasonable, but is incorrect or absurd, is called hal-
lucination [71]. This issue has resulted in increasing con-
cerns about safety and ethics, as LLMs are widely applied.
LLMs enable the acquisition of vast and extensive knowl-
edge and have enormous potential to be applied to various
tasks. LLMs, such as ChatGPT 1, GPT-4, Claude, and Llama-
2 have achieved widespread popularity and adoption across
diverse industries and domains. Despite their powerful ca-
pabilities, the issue of “hallucination” still poses a concern
that LLMs tend to generate inaccurate/fabricated informa-
tion in generation tasks [8]. Although LLMs can proficiently
generate coherent and context-relevant text, they often ex-
hibit a hallucination known as factual hallucination, which
seriously weakens the reliability of LLMs in practical ap-
plications [25, 35, 80]. Factual hallucination is one of the
least noticeable types of erroneous outputs, because mod-
els often express fictional content in a confident tone [28].
To explore the differences in the dynamic changes of hid-

den states in residual flows between successful knowledge
recall and failed knowledge stream in the inference process
under the hallucination of known facts, Jiang et al. [28] col-
lected knowledge query data specifically for this scenario
and tested them on a widely used Llama model. Assume the
input of T tokens 𝑡1, ..., 𝑡𝑇 , where each token passes through
an embedding matrix 𝐸 ∈ ℝ𝑉 ×𝑑 , transforming from vo-
cabulary space to model space. Subsequently, the tokens
traverse through L transformer blocks, continuously evolv-
ing within the model space, generating a residual stream of
shape 𝑇 ×𝐿× 𝑑. Between layer 𝑙−1 and 𝑙, the hidden state
𝑥𝑙−1𝑖 of the 𝑖-th token is updated as follows:

𝑥𝑙𝑖 = 𝑥𝑙−1𝑖 + 𝑎𝑙𝑖 + 𝑚𝑙
𝑖, (2)

where 𝑎𝑙𝑖 and 𝑚𝑙
𝑖 are the outputs from the 𝑙-th attention and

MLP modules.
Because they primarily generate text based on probabil-

ity, LLMs may create content that does not conform to facts,
especially when faced with unknown or ambiguous inputs.
This phenomenon may lead users to believe mistakenly in
false information, affecting decision-making and behavior.
Furthermore, adversaries can deceive models through care-
fully designed inputs, resulting in incorrect predictions or
outputs. This threat is typically the result of inputting mis-
leading information or disruptive data into the model. A
conventional classification of hallucination is the intrinsic-
extrinsic dichotomy. Intrinsic hallucination occurs when LLM
outputs contradict the provided input, such as prompts. On
the other hand, extrinsic hallucination occurs when LLM
outputs cannot be verified by the information in the input
[71]. According to the study [71], hallucination is an in-
consistency between commutable LLMs and a commutable
ground truth function. Hallucinations prove to be inevitable.
Thus, rigorous study of the safety of LLMs is critical.

3.4. Prompt Leakage
In the application of LLMs, prompt leakage poses a note-

worthy security threat. The leakage of system prompt infor-
mation may endanger intellectual property rights and serve
as adversarial reconnaissance for adversaries [1]. Prompt,
which can be a question, request, or contextual information,
is a text input by a user when interacting with a language
model. The model generates corresponding text output based
on these prompts. The quality and content of a prompt di-
rectly affect the relevance and accuracy of the generated re-
sults. Perez & Ribeiro [52] defined prompt leakage as the
behavior of not matching the original target of the prompt
with the new target of the printed part or the entire original
prompt. Malicious users can attempt prompt leak to copy or
steal prompts from specific applications, which may be the
most crucial part of GPT-3-based applications. Agarwal et
al. [1] designed a unique threat model and found that LLMs
can leak prompt content word for word or explain them based
on the threat model. They applied multiple rounds in the
threat model and found that it could increase the average At-
tack Success Rate (ASR) from 17.7 % to 86.2 %, causing
99.9 % leakage to GPT-4 and claude-1.3. LLM sycophancy
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behavior makes closed and open-source models more sus-
ceptible to prompt leakage. Because of the limited effec-
tiveness of existing prompt leaks that mainly rely on manual
queries, Hui et al. [26] designed a novel closed box prompt
leakage framework (PLeak) to optimize adversarial queries
so that when adversaries send them to the target LLM appli-
cation, the response displays their system prompts. To re-
construct the target system prompt 𝑝𝑡, 𝑛 adversarial queries
𝑞1adv,… , 𝑞𝑛adv and a post-processing function 𝑃 are crafted.
The responses produced by the target LLM application 𝑓 for
these adversarial queries are aggregated by𝑃 to approximate
the original prompt 𝑝𝑡. This process is formulated as follows:

𝑝𝑟 = 𝑃 (𝑓 (𝑞1adv),… , 𝑓 (𝑞𝑛adv))

= 𝑃 (𝑓𝜃(𝑝𝑡 ⊕ 𝑞1adv),… , 𝑓𝜃(𝑝𝑡 ⊕ 𝑞𝑛adv)), (3)

where 𝑝𝑟 denotes the reconstructed prompt; 𝑓𝜃 represents
the model behavior when the target prompt 𝑝𝑡 is perturbed
with each adversarial query, and ⊕ denotes the combination
operation. The objective of a prompt leakage is to optimize
both the adversarial queries and the post-processing function
𝑃 such that 𝑝𝑟 equals or closely approximates 𝑝𝑡.

3.5. Bias
Generally speaking, LLM conducts training based on large-

scale uncorrected Internet data, inherited stereotypes, false
statements, derogatory and exclusive language, and other
defamation behavior, which have a disproportionate impact
on vulnerable and marginalized communities [2, 17, 58]. These
harms are called ’social bias,’ a subjective and normative
term widely used to refer to the differential treatment or out-
comes resulting from historical and structural power asym-
metry between social groups [20]. Whether intentional or
unintentional, social bias can be expressed through language.
Large-scale language models rely on a large amount of text
training data, which cannot be managed and validated by a
large human collective [48]. Meanwhile, the significant in-
crease in pre-trained corpora makes it difficult to evaluate the
features of these data and check their reliability. Thus, the
acquired representations may inherit biases and stereotypes
present in large text corpora of language, thereby inheriting
biases and stereotypes from pre-trained corpora of the inter-
net [41]. Therefore, harmful biases such as gender, sexuality,
racial bias, and biases related to ethnic minorities and dis-
advantaged groups may arise [48]. LLMs often use human
feedback to fine-tune artificial intelligence assistants. How-
ever, human feedback may also encourage models to gener-
ate responses based on users’ expectations rather than real-
ity. This behavior is called flattery. Artificial intelligence
assistants often mistakenly admit their mistakes, provide bi-
ased feedback, and imitate user mistakes when questioned.
This suggests that flattery is a characteristic of these model
training methods [57]. Undoubtedly, this is a huge threat to
LLMs.

Data selection bias is the systematic error resulting from
the given selection of text used to train a language model.
This bias may occur during the sampling phase when text is
recognized or when data is filtered and cleaned [48]. This

may lead to or amplify varying degrees of negative social
bias. Regarding training data, important context may be over-
looked during data collection, and agents used as labels (such
as emotions) may incorrectly measure actual outcomes of in-
terest (such as representative harm). Data aggregation may
also mask different social groups that should be treated dif-
ferently, leading to too general models or only representing
the majority group [20]. However, missing contextual data
can lead to bias. Even data collected through proper proce-
dures reflects historical and structural biases worldwide.

Notably, with enhanced capabilities, LLMs demonstrate
the ability to autonomously infer a wide range of personal au-
thor attributes from large volumes of unstructured text pro-
vided during inference [61]. Chen et al. [12] developed an
effective attribute inference attack that can infer sensitive
attribute APIs based on BERT training data. Their exper-
iments have shown that such attacks can seriously harm the
interests of API owners. In addition, most of the attacks they
have developed can evade the defense strategies being inves-
tigated.

4. Defense Strategies
In the application of LLMs, data security is a crucial is-

sue. To ensure the security of data, many defense strate-
gies have been developed. To combat the various threats to
data security, a range of defense strategies has been proposed
(See Table 2). In this section, we organize, classify, and then
present the defense strategies collected from the literature.

4.1. Adversarial Training
Adversarial training desensitizes neural networks to ad-

versarial perturbations in testing time by adding temporary
adversarial examples to the training data [44]. The purpose
of adversarial training is to improve the security and robust-
ness of LLMs through the use and training of adversarial
samples, enabling the models to better cope with various
challenges that may be encountered in reality.

The study found valuable insights into the vulnerabil-
ity of LLMs such as ChatGPT when subjected to malicious
prompt injection. The identification of significant rates of
harmful reactions in various situations highlights the need
for continuous research and development to improve safety
and reliability; whereas, advanced adversarial training tech-
niques expose models to a wide range of adversarial inputs
and enhance their resilience [24]. Coincidentally, data poi-
soning refers to adversaries disrupting the learning process
by injecting malicious samples into the training data [51].
At present, various defense measures have been proposed
for the threat model of data poisoning; however, each de-
fense measure has different shortcomings, such as being eas-
ily overcome by adaptive attacks, seriously reducing test-
ing performance, or being unable to be generalized to var-
ious data poisoning threat models. Adversarial training and
its variants are currently judged to be the only empirically
strong defense against (inference-time) adversarial attacks
[21]. Even so, throughout the training process of Wen et al.
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Table 2
Strategies for protecting data security. This table categorizes defense methods for LLM security into three main types: adversarial
training, RLHF, and data augmentation. For each approach, it lists the techniques used, tested models, benchmark datasets, and
evaluation metrics from relevant studies.
Category Work Method Evaluated Model Dataset Evaluation Metric

[44]
Projected gradient
descent Resnet, MNIST, CIFAR10 MNIST, CIFAR10

Acc, Rate of Harmful
Responses, etc

[24] Automated Injection ChatGPT /
Offensive Language Detection,
Promotion of Violence, etc

Adversarial Training [51]
Adversarial machine
learning linear models Spambase, MNIST Classification Error

binary classification
[21] Deep neural networks ResNet18 GTSRB, CIFAR-10 Acc

[69] Adversarial training RESNET-18, RESNET-34, etc
CIFAR-10, CIFAR-100,
TINYIMAGENET Acc

[64] AutoAttack
ResNet, DenoiseBlock,
Madry’s PGD-trained ResNe, etc CIFAR-10, ImageNet, MNIST Robust accuracy

[49]
Supervised learning,
RL GPT-3 SFT, RM, PPO, human preference ratings

RLHF [75]
Dense Direct Preference
Optimization

LLaVA, Muffin, LRV, etc RLAIF-V
Object HalBench, MMHal-Bench,
etc

[14] Deep neural networks reward model Atari, MuJoCo reward

[7] Linear probe GPT-2, LLaMA-7B, GPT-J
Wikidata-derived
factual triplese

Probe Accuracy, Precision@K,
KL divergence

[63]
Counterfactual Data Augmentation,
Disentangling invertible,
Interpretation network

BART, ChatGPT, FairFlowV2,
Hall-M, Meta-llama Bias-in-bios, ECHR, Jigsaw Acc, PPL, F1, FPRD, TPRD

Data Augmentation [45]
Counterfactual Data Substitution,
Names Intervention CBOW

SSA, SimLex-999,
Doc2Vec Error rate

[74]
Natural language
processing BERT, SOTA TREC, AG’s News SEAT, Acc

[69], the adversarial risks of clean data and toxic data con-
firmed their claim that adversarial training faces difficulties
in optimizing toxic data because the speed of risk reduction
is slower than in clean situations. Adversarial training also
solves the following saddle-point problem:

min
𝜃

𝔼(𝑥,𝑦)∼𝔻
[

𝑚𝑎𝑥Δ∈𝑆𝜃(𝑥 + Δ, 𝑦)
]

, (4)

where 𝜃 denotes the loss function of a model with param-
eters 𝜃, and the adversary perturbs inputs x from a data dis-
tribution 𝔻, subject to the constraint that perturbation Δ is
in S [21]. Geiping et al. [21] proposed a variant of adver-
sarial training that uses adversarial poisoning data instead of
adversarial examples during testing, thereby modifying the
training data to desensitize the neural network to the types
of perturbations caused by data poisoning.

However, despite its empirical effectiveness, adversarial
training suffers from several critical limitations. Adversar-
ial training often leads to decreased clean-data accuracy due
to the trade-off between robustness and generalization, es-
pecially under complex or high-dimensional input spaces.
Moreover, the computational overhead of generating adver-
sarial examples during training is significant, making it less
feasible for large-scale LLMs. Tramer et al. [64] argue that
even adversarial trained models remain vulnerable to unseen
threats, and that robustness may not transfer well across dif-
ferent threat models, highlighting the brittleness and high
cost of this defense paradigm.

4.2. Reinforcement Learning From Human
Feedback

When LLMs become larger and more complex, they may
output incorrect and useless content to users, leading to hal-
lucinations. Nonetheless, reinforcement learning or fine-tuning
of the model through human feedback can solve or weaken
such phenomena [49]. Reinforcement learning from human
feedback (RLHF) optimizes the model by combining human
feedback to make its output more in line with human expec-
tations. With the intention of aligning with human prefer-
ences, RLHF typically employs reinforcement learning al-
gorithms to optimize LLMs, generating outputs that max-
imize the rewards provided by training preference models.
Besides, integrating human feedback into the training cycle
of LLMs can enhance their consistency and guide them to
produce high-quality and harmless responses [25]. Based
on the fact that existing Multimodal LLMs commonly suffer
from severe hallucinations and generate text that is not based
on relevant content, Yu et al. [75] proposed RLHF-V to ad-
dress this issue. In particular, RLHF-V collects human pref-
erences in the form of fragment-level hallucination correc-
tion and performs intensive direct preference optimization
on human feedback. The comprehensive experiments have
shown that RLHF-V can greatly improve the credibility of
LLMs in generating good data and computational efficiency.
Over the long term, learning tasks from human preferences
is no more difficult than learning tasks from programmatic
reward signals, ensuring that powerful reinforcement learn-
ing systems can be applied to complex human values rather
than low complexity goals [14].
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Fig. 5: The overall architecture of Mix-Debias. A three-stage framework combines counterfactual augmentation, semantic
expansion via PLMs, and mixup-based fine-tuning using 𝜆-weighted sentence embeddings to enhance model robustness [74].

Even with these promising advancements, RLHF still
encounters fundamental obstacles that merit attention. One
key issue is the potential mismatch between human intent
and the behavior encouraged by imperfect reward models.
When the reward function fails to capture nuanced prefer-
ences, models may generate superficially acceptable outputs
that bypass genuine alignment - a problem often described
as reward hacking. Moreover, the subjectivity and variabil-
ity of human feedback introduce uncertainty and can em-
bed social biases into the model’s responses. As highlighted
by Perez et al. [7], RLHF-trained models may retain latent
unsafe behaviors that remain hidden during routine evalua-
tions but emerge under adversarial or creative inputs. These
findings suggest that while RLHF brings models closer to
human-aligned outputs, it does not fully eliminate risks asso-
ciated with incomplete preference modeling or deeply rooted
misalignment.

4.3. Data Augmentation
Data augmentation techniques mitigate or eliminate bias

by adding new examples to the training data. These ex-
amples increase the diversity and quantity of the training
dataset, thereby expanding the distribution of underrepre-
sented or misrepresented social groups, which can then be
used for training [20]. This exposes the model to a wider
and more balanced data distribution during training.

Counterfactual Data Augmentation (CDA), one of the
main techniques in data augmentation technology, aims to
balance the demographic attributes in training data and has
been adopted widely to mitigate bias in NLP [63]. Con-
versely, due to the potential quality problems of this tech-
nology and the high cost of data collection, Tokpo & Calders
[63] proposed FairFlow, a method for automatically gener-
ating parallel data for training counterfactual text generator
models that limit the need for human intervention. FairFlow
can significantly overcome the limitations of dictionary-based
word replacement methods while maintaining good perfor-

mance. As for the part of model training (fine-tuning) in the
entire method, the approach involves fine-tuning a BART
model on the parallel data generated from previous steps.
The BART generator takes the original source text 𝑋 as in-
put and is trained to autoregressively generate the counter-
factual text 𝑌 , using the corresponding counterfactual refer-
ences as supervision in a teacher-forcing manner. This ob-
jective can be formulated as follows:

generator = −
𝑘
∑

𝑡=1
log𝑃 (𝑦𝑡 ∣ 𝑌<𝑡, 𝑋), (5)

where 𝑋 and 𝑌 represent the source and target texts, respec-
tively. Here, 𝑦𝑡 ∈ 𝑌 denotes the 𝑡th token in the target text,
and 𝑌<𝑡 refers to all tokens in 𝑌 preceding 𝑦𝑡. Maudslay et
al. [45] made two improvements to CDA: one, Counterfac-
tual Data Substitution (CDS), is a variant of CDA in which
potentially biased text is randomly replaced to avoid duplica-
tion. The other, name intervention, can deal with the inher-
ent bias of names. Name intervention adopts a novel name-
pairing strategy that takes into account both the frequency
of the name and the gender specificity.

To remove the undesired stereotyped associations in mod-
els during fine-tuning, Yu et al. [74] proposed a mixture-
based framework (Mix-Debias) from a new unified perspec-
tive, which directly combines the debiased models with fine-
tuning applications. Mix-Debias applies CDA to obtain gender-
balanced correspondence of downstream task datasets. Then,
it further selects the most semantically meaningful sentences
from a rich additional corpus to expand the previously neu-
tralized dataset. The overall architecture of Mix-Debias is
illustrated in Fig. 5.

While data augmentation and CDA-based approaches of-
fer practical and scalable solutions, they are not without short-
comings. One pressing concern is the semantic integrity of
generated counterfactuals-modifications may introduce un-
intended meaning shifts or grammatical inconsistencies, par-
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ticularly when applied to complex or nuanced language. Fur-
thermore, CDA methods often rely on demographic labels or
templates, which may not fully capture the intersectionality
or diversity of real-world identities. Research by Blodgett et
al. [4] highlights that such simplifications risk reinforcing
normative assumptions about social groups and may lead to
overfitting on artificial patterns rather than true fairness im-
provements. As this is a final layer of defense, it becomes
especially important to recognize that debiasing at the data
level must be complemented by broader systemic considera-
tions, including model architecture, evaluation metrics, and
ongoing feedback mechanisms.

5. Datasets
In addition to addressing model vulnerabilities such as

bias, hallucination, and limited defense against novel threats,
critical also is the selection of appropriate datasets to eval-
uate the robustness and safety of LLMs under different ap-
plication scenarios. In this section, datasets are categorized
and reviewed based on their domains throughout Table 3.
Summarized are their characteristics, intended uses (attack
or defense), and associated references. This overview will
assist researchers in selecting suitable datasets for studying
data security risks and defense strategies in LLMs.

Movie. Movie datasets are often used to evaluate vul-
nerabilities in LLMs, especially concerning sentiment anal-
ysis. The SST-2 dataset [34], [39], [57], [67], [73] contains
11,855 sentences from movie reviews, each labeled as posi-
tive or negative. The simplicity of this dataset makes it a fre-
quent target for attack experiments, which aim to inject back-
doors and assess the trustworthiness of a model. Similarly,
IMDb [34], [67], with 50,000 reviews, provides a larger and
more balanced set, often used to evaluate adversarial robust-
ness. However, one of the challenges with movie datasets,
like OpenSubtitles [57], which includes dialogues, is that
the informal and diverse language structures introduce com-
plexities when detecting adversarial manipulations. Rotten
Tomatoes [26], which focuses on emotional labels, brings
forth concerns about hallucination risks, where a model might
generate incorrect or fabricated sentiments. The potential for
biased or harmful outputs due to these vulnerabilities can
compromise the reliability and credibility of LLMs, thereby
emphasizing the importance of robust defense strategies.

News. News datasets are indispensable for understand-
ing the vulnerabilities and biases in LLMs, as they often
serve as testing grounds for adversarial attacks and defense
mechanisms. AG News [34], [39], [67], [73] consists of
120,000 news articles categorized into World, Sports, Busi-
ness, and Science. This variety makes it an ideal dataset
for evaluating both attack models and the robustness of de-
fenses. However, recent research points to the limitations
of current defense strategies, as many are ineffective against
new types of adversarial inputs. The Financial Dataset [26],
with its focus on financial texts, presents unique challenges
in domain-specific adversarial attacks, where subtle manip-
ulations can cause significant errors in financial decision-

making. English Gigaword [69], a comprehensive dataset
for training and evaluating language models, highlights an-
other issue: the difficulty in developing defense methods that
can generalize well across various news categories and threat
types. As we rely more and more on LLMs for real-world
applications, ensuring their accuracy and reliability in these
contexts becomes ever more critical.

Social. Social datasets reveal crucial challenges surround-
ing bias, fairness, and the ethical use of LLMs in sensitive ar-
eas such as legal and healthcare contexts. The Sycophancy-
eval dataset [57] is used to evaluate sycophantic behavior in
LLMs, a clear example of how the lack of control in free-
text generation can result in unethical behavior. WikiText-2
[57], with its Wikipedia articles, also highlights the issue of
biased content generation, as LLMs may perpetuate stereo-
types or misinformation. Bias-in-Bios [20], focusing on gen-
der bias in biographies, raises ethical concerns about how
models trained on biased data can reinforce societal inequali-
ties. Jigsaw [67], [63], [45], examining legal text deviations,
underscores the importance of fairness and accountability,
particularly in legal AI applications. ECHR [20], aimed at
detecting biases in online reviews, reflects a growing con-
cern over how LLMs might exacerbate prejudices or unfair
treatment, making it essential to develop more transparent
and interpretable models.

Book. BookCorpus, a collection of over 11,000 books
[57], [74], serves as a crucial resource for training large lan-
guage models. However, its complexity presents challenges
in handling adversarial attacks, where subtle manipulations
may lead to the generation of inaccurate or biased content.
The vastness and diversity of the dataset increase the diffi-
culty of maintaining context and factual accuracy in gener-
ated outputs. As a result, models trained on such large-scale
datasets may struggle with hallucinations, creating informa-
tion that does not exist. The need for transparency in these
models becomes more apparent as understanding why cer-
tain content is generated is often difficult, leading to issues
of trust and accountability in real-world applications [2].

Study. The AQuA dataset [76], used to evaluate arith-
metic problem-solving, highlights the challenges in ensuring
precise reasoning in LLMs. Although it serves as a good
benchmark for evaluating basic computational tasks, it ex-
poses limitations in the abilities of models to generalize across
diverse problem types, especially when faced with adver-
sarial perturbations. Such weaknesses in defense mecha-
nisms become particularly concerning in high-stakes appli-
cations where errors in calculations can have significant con-
sequences. These challenges underscore the broader prob-
lem in the field: the need for more flexible, adaptive defense
methods that can effectively handle novel threats and ensure
the reliability and transparency of models in practical set-
tings [60], [77].

Research. In research fields outside of NLP, datasets
such as MNIST [44], [69], [62] and CIFAR-10 [44], [21],
[69] are frequently employed to evaluate defense strategies,
particularly in computer vision tasks. These datasets offer
valuable insight into the generalization and robustness of
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Table 3
Dataset overview.

Scenario Dataset Description Purpose Reference

Movie

SST-21 SST-2 contains 11,855 sentences from movie reviews,
each labeled as positive or negative for sentiment
analysis tasks.

Attack [34], [39], [57], [67], [73]

IMDb2 Comprises 50,000 movie reviews labeled as positive or
negative, equally split into training and testing sets.

Attack [34], [67]

OpenSubtitles3 Dialogue dataset containing subtitles for movies and
TV shows.

Attack [57]

Rotten Tomatoes4 Contains movie reviews and their corresponding emo-
tional labels (positive or negative).

Attack [26]

News
AG News5 AG News contains 120,000 news articles across four

categories: World, Sports, Business, and Science.
Attack [34], [39], [67], [73]

Financial Contains financial text data such as stock market
analysis and financial reports for news analysis.

Defense [26]

English Gigaword Large English news text dataset for training and eval-
uating language models.

Defense [69]

Social

Sycophancy-eval6 Dataset to evaluate sycophancy behavior in language
models across free-text generation tasks.

Attack [57]

WikiText-2 Dataset containing Wikipedia articles for text mod-
eling.

Attack [57]

Bias-in-Bios7 Approximately 400,000 biographies used to examine
gender bias in occupational classification.

Defense [20]

Jigsaw8 Dataset of cases published by the European Court of
Human Rights for analyzing legal text deviations.

Defense [67], [63], [45]

ECHR9 Dataset by Jigsaw containing online review data for
bias detection research.

Defense [20]

Book BookCorpus A text dataset containing more than 11,000 books. Attack [57], [74]
Study AQuA10 Evaluation dataset focusing on arithmetic problem

solving.
Attack [76]

Research

MNIST11 Grayscale images of handwritten digits, mainly used
for handwritten digit recognition research.

Defense [44], [69], [62]

CIFAR-1012,13 32x32 color images across 10 categories, used in im-
age classification model studies.

Defense [44], [21], [69]

ImageNet Over 14 million annotated images covering 20,000+
categories for large-scale image classification and
computer vision research.

Defense [44]

TREC Used to evaluate information retrieval systems and
promote retrieval technology development.

Defense [74]

1 https://github.com/neulab/RIPPLe
2 https://github.com/alexwan0/poisoning-instruction-tuned-models
3 https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles
4 https://github.com/BHui97/PLeak
5 https://github.com/wegodev2/virtual-prompt-injection
6 https://huggingface.co/datasets/meg-tong/sycophancy-eval
7 https://github.com/i-gallegos/Fair-LLM-Benchmark
8 https://github.com/rowanhm/counterfactual-data-substitution
9 https://github.com/WenRuiUSTC/EntF
10 https://worksheets.codalab.org/worksheets/0xbdd35bdd83b14f6287b24c9418983617/
11 https://github.com/MadryLab/mnist_challenge
12 https://www.cs.toronto.edu/~kriz/cifar.html
13 https://github.com/MadryLab/cifar10_challenge

models. ImageNet [44], with over fourteen million anno-
tated images, is one of the largest collections used to assess
defense strategies against adversarial attacks. The TREC
dataset [74] evaluates information retrieval systems and sup-

ports research into the development of robust retrieval tech-
nologies.
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6. Future Directions
6.1. Robust Adversarial Defense Mechanisms

LLMs are vulnerable to adversarial attacks that manipu-
late inputs to trigger undesirable outputs. These threats ex-
ploit weaknesses in the decision-making process of a model,
which can be particularly damaging in high-stakes applica-
tions like dialogue systems and machine translation. As LLMs
are deployed in increasingly sensitive contexts, it is crucial
to develop robust defense strategies to mitigate such threats.
Therefore, we should focus on a range of advanced defen-
sive techniques, such as adversarial training [54] and certi-
fied robustness methods [37], all of which show promise in
improving the resilience of LLMs against adversarial manip-
ulation. For example, Adversarial Contrastive Learning [30]
improves the ability of a model to distinguish between se-
mantically similar and dissimilar inputs while remaining ro-
bust to adversarial perturbations. This method can strengthen
LLMs by teaching them to generate more stable representa-
tions of input sequences, making them less sensitive to ad-
versarial perturbations.

Furthermore, to ensure these techniques are effective, it
is vital to develop specific benchmarks for evaluating the ad-
versarial robustness of LLMs. This could include the devel-
opment of a standardized adversarial attack library, as well
as guidelines for evaluating the trade-offs between model
performance and adversarial robustness [78].

6.2. Data Provenance and Traceability
The data sources of LLMs are extensive, involving mul-

tiple stages and participants. Ensuring the security of the en-
tire supply chain, from data collection, storage to transmis-
sion and use, is crucial. It is necessary to establish data sup-
ply chain security standards and certification systems, con-
duct strict reviews of data suppliers, prevent malicious data
injection or leakage, and ensure the integrity and availabil-
ity of data. Apart from security issues, ensuring data prove-
nance and traceability throughout the data pipeline is essen-
tial for model transparency and accountability. Recent work
emphasizes that establishing machine-actionable provenance
records helps build explainable and trustworthy AI systems
by providing an auditable trail of how data influence model
behavior [31].

In addition, traceability models and tools have been sys-
tematically reviewed as foundational components for ensur-
ing the trustworthiness and reproducibility of AI systems,
particularly under complex and heterogeneous data environ-
ments as seen in LLM development [47]. Building on this,
a comprehensive auditing framework has been proposed to
close the AI accountability gap, highlighting the need to trace
not only data inputs but also decision-making processes and
model iterations across the entire development [56]. We
should design systematic frameworks for tracking the ori-
gin, curation steps, and transformation history of every data-
point used in LLM training. Existing studies have proposed
a data management framework for responsible artificial in-
telligence, emphasizing the core role of data traceability in
enhancing the transparency and compliance of models [70].

Secure meta-data capture and verifiable audit trails will help
to both attribute harmful model behaviors and facilitate re-
sponsible content sourcing.

6.3. Continual Learning for Secure Model
Updates

LLMs are incrementally updated with new data; there-
fore, there must be developed research mechanisms to ensure
that each update cannot be exploited to inject backdoors or
leak previously covered private information. Tracking cu-
mulative privacy loss over multiple fine-tuning rounds will
be essential.

Future work should investigate privacy-preserving con-
tinual learning frameworks that enable secure knowledge ac-
quisition over time without exposing prior training data. In
continual learning settings, differentially private continual
learning provides a foundational framework that maintains
performance across sequential tasks while reducing risks of
unintended knowledge interference, laying the groundwork
for safer long-term model adaptation [19]. This is especially
important as models interact with sensitive user inputs over
time. While privacy concerns have been extensively dis-
cussed, data security risks - such as malicious prompt in-
jection or the persistence of toxic content - remain under-
addressed. LLMs can memorize and reproduce portions of
their training data, which may include toxic or policy-violating
content [11]. Meta-learning based continual learning ap-
proaches have been proposed to dynamically adjust model
parameters during incremental updates, thereby improving
resistance to adversarial attacks and reducing the risk of harm-
ful behavior in LLMs [40].

In spite of this, there is still a significant challenge to en-
sure that such harmful data does not degrade model behavior
or introduce vulnerabilities over successive training rounds.
The need for robust data curation processes, ongoing data
sanitization, and rigorous security checks during model up-
dates is necessary.

6.4. Explainability-Driven Security Analysis
Leverage interpretability tools (attention-flow analysis,

saliency methods, concept activation vectors) are not just
for model transparency but also for active defenses - e.g.,
detecting anomalous rationale patterns that signal poison-
ing, or flagging content that unduly reflects single training
instances. It is crucial to focus on advancing these inter-
pretability technologies in future research to create robust
frameworks, which can enable real-time security monitoring
of large language models during incremental updates. For
instance, attention visualization methods have demonstrated
potential in revealing unusual focus distributions that may
indicate adversarial manipulation [65]. Saliency methods
highlight influential input features, facilitating the discov-
ery of suspicious outputs influenced by memorized or ma-
licious training data [59]. Additionally, concept activation
vectors provide a quantitative measure of the influence of
human-understandable concepts on model decisions, which
could be instrumental in identifying spurious correlations
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or backdoor triggers embedded during training [32]. Inte-
grating these tools into continual learning pipelines offers a
promising direction to enhance the security and trustworthi-
ness of LLMs as they evolve.

6.5. Ethical and Regulatory Frameworks for LLM
Data Governance

Because LLMs handle sensitive data globally, interdisci-
plinary efforts must define auditing standards, data sovereignty
protocols, and liability frameworks. Collaboration with pol-
icymakers will ensure alignment with evolving regulations.
Recent work has emphasized how global-scale models de-
mand policy-aware oversight and formal responsibility allo-
cation, especially when their decisions affect end users in
high-stakes contexts [5].

Moreover, bridge technical advances with policy are as
follows: propose data-security standards and certifications
for “safety-compliant” LLMs, inform privacy regulation (e.g.,
GDPR, CCPA) with concrete measurement methodologies,
and develop governance models that enable redress when
models inadvertently expose or misuse personal data. For
such frameworks to become operational, future work should
explore how system-level governance mechanisms can be
embedded directly into the LLM development pipeline. An
end-to-end internal algorithmic auditing framework - such
as the one in the context of deployed AI systems - can in-
spire LLM-specific protocols that incorporate documenta-
tion, oversight checkpoints, and accountability mapping through-
out the model lifecycle [56]. A further challenge is enabling
user redress in cases where models inadvertently expose or
misuse sensitive training data. To this end, governance mod-
els must incorporate mechanisms such as fine-grained data
lineage tracking and post-hoc auditing of generation behav-
ior. Embedding these governance principles into the train-
ing lifecycle itself, as suggested in recent work on the ethi-
cal risks of LLM deployment, may also enhance institutional
trust and regulatory compliance [68].

7. Conclusion
In this survey, we explored the critical issues surround-

ing data security risks in LLMs. Because these models are
increasingly deployed across a wide range of real-world ap-
plications, ensuring the integrity and safety of the data they
consume during training and inference has become a press-
ing concern. We first discussed five major types of data se-
curity risks - such as data poisoning, prompt injection, hallu-
cination, prompt leakage, and bias - that may lead to harm-
ful or manipulated outputs. We then reviewed several de-
fense strategies, including adversarial training, RLHF, data
augmentation, which can mitigate such threats by improv-
ing model robustness and trustworthiness. In addition, we
presented a comparative analysis of existing datasets, cate-
gorized by domain, use cases (attack or defense), and key
characteristics. The aim of this systematic overview is to
assist researchers in selecting appropriate datasets for evalu-
ating LLM robustness and safety across different application

scenarios. Lastly, we identified practical challenges, such as
the scalability of secure data curation, model update safety,
and benchmark limitations. We then proposed future re-
search directions, including continual security verification,
explainability-driven threat analysis, and governance frame-
works for secure LLM development and deployment.
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