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Abstract

Large language model (LLM) agents have demonstrated remarkable ca-
pabilities in complex reasoning and decision-making by leveraging external
tools. However, this tool-centric paradigm introduces a previously underex-
plored attack surface: adversaries can manipulate tool metadata—such as
names, descriptions, and parameter schemas—to influence agent behavior.
We identify this as a new and stealthy threat surface that allows mali-
cious tools to be preferentially selected by LLM agents, without requiring
prompt injection or access to model internals. To demonstrate and exploit
this vulnerability, we propose the Attractive Metadata Attack (AMA), a
black-box in-context learning framework that generates highly attractive
but syntactically and semantically valid tool metadata through iterative
optimization. Our attack integrates seamlessly into standard tool ecosys-
tems and requires no modification to the agent’s execution framework.
Extensive experiments across ten realistic, simulated tool-use scenarios
and a range of popular LLM agents demonstrate consistently high attack
success rates (81%-95%) and significant privacy leakage, with negligible
impact on primary task execution. Moreover, the attack remains effective
even under prompt-level defenses and structured tool-selection protocols
such as the Model Context Protocol, revealing systemic vulnerabilities in
current agent architectures. These findings reveal that metadata manipu-
lation constitutes a potent and stealthy attack surface, highlighting the
need for execution-level security mechanisms that go beyond prompt-level
defenses.

1 Introduction

Recent progress has shown that large language model (LLM) agents excel at
executing diverse tasks, particularly when equipped with ezternal tools for
complex decision making and environmental interaction. Representative systems
such as ReAct [24], ToolBench [I8], and ToolCoder [5] unify planning, flexible
tool-calling, and deep integration of heterogeneous resources, thereby markedly
improving the automation and generalization abilities of LLM agents in domains
including financial analysis [26], healthcare [1I], and e-commerce [32, 22].
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Figure 1: A motivating example of the Attractive Metadata Attack
(AMA). Left: standard tool invocation, where the “unknown” (UK) tool is
typically ignored. Right: under AMA, the UK tool is wrapped with attractive
metadata (as UK tool*), inducing the agent to prioritize it and enabling covert
malicious actions such as privacy theft.

However, the tight coupling between LLM agents and an open tool ecosystem
is giving rise to a new class of behavioral security risks [30]. Beyond traditional
concerns over content safety [17, 21]—e.g., preventing the model from outputting
sensitive or harmful information—adversaries can tamper with the tool-calling
chain by manipulating tool outputs [31, 27, 12], crafting abnormal execution
paths [20], or injecting malicious prompts [6] 28]. Such interventions indirectly
steer an agent’s decision process, leading to information leakage or task mis-
execution. For instance, a prompt-injected agent may inadvertently call a tool
and reveal private data, or may corrupt user inputs in an e-commerce or medical
scenario, causing severe consequences.

These attacks primarily rely on the direct alteration of prompts or the tool-
calling chain [25]. In contrast, we identify a subtler yet powerful attack surface:
manipulating the metadata (e.g., name, description, and parameter schema)
of a malicious tool to induce an LLM agent to invoke it. We formalize this
new threat as the Attractive Metadata Attack (AMA) (see Figure [I). AMA
exploits the fact that current LLM agents typically determine tool invocation
based on the user’s query, the task context, and the metadata associated with
each available tool. In this context, an attacker can legitimately craft the tool’s
metadata, imbuing it with properties that make it disproportionately attractive
to the agent, thereby increasing its likelihood of being preferred over benign
tools. This attack requires neither modifying the prompt template nor accessing
model internals, yet it enables long-term and stealthy control over the agent’s
behavior.

To achieve the attack objective of AMA, we formulate the generation of
high-inducement tool metadata as a state—action—value optimization problem,
leveraging in-context learning from LLM [I3] 4]. This optimization process is
supported by constrained mechanisms that systematically mine and efficiently
construct the tool metadata required for AMA, including generation traceabil-
ity, weighted value evaluation, and batch generation. The generation pipeline



iteratively produces tool metadata that significantly increases the selection
probability of a malicious tool in both domain-specific and general scenarios.
During an actual attack, the adversary simply replaces a benign tool’s original
metadata with AMA-optimized metadata, thereby granting it the ability to
deceptively entice agent invocation. Since the metadata remains syntactically
and semantically valid, this procedure does not disrupt the agent’s execution
pipeline at a structural level, thereby forming a stealthy, widely applicable, and
detection-resistant threat.

Extensive experiments across ten canonical tool-calling scenarios and four
mainstream LLM agents—including both open-source and commercial mod-
els—demonstrate the effectiveness of AMA, with attack success rates consistently
ranging from 81% to 95%. The crafted malicious tools are frequently and
covertly invoked by agents, resulting in significant privacy leakage while leaving
the primary task flow virtually unaffected. Notably, the attack remains effective
even under prompt-level defenses and structured tool-selection protocols such
as the Model Context Protocol (MCP) [3], revealing systemic vulnerabilities
in current agent workflows. Moreover, existing prompt-level defenses [29] are
largely ineffective against metadata-based manipulation, underscoring the stealth,
generalizability, and robustness of the proposed method.

Our main contributions are as follows:

e We propose Attractive Metadata Attack (AMA), the first attack that modifies
the metadata (e.g., name, description, parameter schema) of tools to induce
agent invocation. This attack requires no prompt injection or abnormal
tool outputs, instead leveraging the surrounding tool ecosystem to achieve
fine-grained behavioral control with strong stealth and practical impact.

e We formulate metadata crafting as a state—action—value optimization prob-
lem, using LLMs’ in-context learning to generate metadata that maximizes
malicious tool invocation likelihood. And to support efficient and scalable meta-
data generation, we introduce three key mechanisms: generation traceability,
weighted value evaluation, and batch generation.

e We demonstrate the effectiveness of AMA across ten tool-use scenarios and
four representative LLM agents. AMA achieves 81%-95% attack success
rates with minimal task disruption and notable privacy leakage. It bypasses
prompt-level defenses and structured protocols such as MCP, revealing systemic
vulnerabilities in current agent architectures.

2 Related Work

While tool augmentation significantly enhances the action capabilities of LLM
agents, it also introduces new and diverse attack surfaces [25] 30]. Recent studies
demonstrate that adversaries can inject carefully crafted prompts [28] or subtly
manipulated instructions to mislead the agent into invoking malicious tools,
resulting in privacy leakage, behavioral manipulation, or resource misuse [6, [7].
Such attacks often rely on modifying the prompt template, or intermediate



instructions, and are therefore typically detectable by prompt-level sanitization
or instruction filtering [29].

Another line of work explores tool-side threats, showing that tampering
with third-party API outputs can misguide agent behavior or cause unintended
actions [31], 27]. More advanced attacks dynamically construct malicious com-
mand sequences within the tool chain, leveraging benign tool outputs to craft
downstream payloads targeting attacker-controlled services [12]. Multi-stage
adversarial pipelines further combine tool injection and input manipulation to
capture queries, redirect data, or disrupt planning, leading to privacy breaches
or unauthorized tool use [20]. Overall, these approaches exploit crafted tool
outputs as the primary vector for triggering malicious behaviors.

Unlike prior approaches that rely on prompt injection, contextual tampering,
or toolchain manipulation, our work focuses on constructing malicious tools
that can be autonomously selected by the LLM agent under normal instructions.
This creates a “silent” attack vector, wherein the agent willingly invokes attacker-
supplied tools based solely on their crafted metadata. Such attacks require no
prompt interference, yet achieve persistent influence by exploiting the agent’s
internal tool-selection mechanism. As a result, AMA bypasses prompt-level
defenses [29] entirely and reveals deeper structural vulnerabilities in current
agent-tool interaction protocols [10].

3 Method

3.1 Preliminaries and Settings

We consider an LLM-based agent that augments its reasoning and decision-
making for complex tasks by invoking external tools. Let 7 denote a fixed
toolset, where each tool ¢ € T is characterized by its name, description, and
parameter schema. Upon receiving a user query (or task) ¢, we approxi-
mate the agent’s preference over tools via a latent scoring function: t* =
arg max;e7 S(¢, O, Pays, Meta(t)), where S(-) denotes an implicit score func-
tion that captures the agent’s inclination to invoke tool ¢t under the given
context, which includes the query g, current observation O, system prompt
Py, and tool metadata Meta(t). The agent then generates a tool call: a =
GenerateCall(q,t*, O), which is executed to obtain a result: r = t*(a). Finally,
the agent integrates the tool result r with its internal knowledge to produce the
final response §. We formalize the agent’s objective as maximizing the expected
task success rate over the query distribution 74: max Eqor, [1(Agent(q, Pys, O, T) =
y*)], where y* is the ground-truth response and 1(-) is the indicator function.

3.2 Threat Model

Assumptions for the Attacker We assume an adversary capable of pub-
lishing tools on third-party API platforms (e.g., RapidAPI Hub [§]), thereby
injecting a malicious tool ¢, into the agent-accessible toolset T, or repackaging
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Figure 2: Optimization Pipeline for AMA. The attacker constructs mali-
cious tools with increasingly attractive metadata through a simulation-guided
iterative optimization process. Intuitively, the algorithm explores more attractive
metadata from both breadth and depth perspectives, while increasing the update
span of metadata across iterations to promote convergence. This facilitates the
effective and efficient discovery of highly inducive metadata for malicious tools.

a normal tool to appear more popular. Without access to the full platform
inventory, the attacker leverages open-source tool-learning datasets (e.g., Tool-
Bench [18]) for tool invocation examples, which may not originate from the
target system. Malicious tools conform to a standard JSON metadata schema.
The attacker cannot access the agent’s architecture, training data, parameters,
or system prompt Py, and interacts only via public APIs. The influence arises
solely from the injection of malicious tools into the accessible toolset.

Objectives of the Attacker The attacker’s primary goal is to induce the LLM
agent into invoking designated malicious tools during task execution, causing
potential damage while maintaining the stealthiness of the attack. For example,
in a privacy leakage scenario, the attacker aims to extract sensitive information
through malicious tool interactions without disrupting the agent’s ability to
complete the original task. To achieve this, the attacker injects a malicious
tool t,, into 7. Once integrated, this alters the agent’s tool selection process,
potentially resulting in ¢,, = arg max;e7ut,,} S(q, O, Peys, Meta(t)), where the
agent is induced to prefer the malicious tool ¢, regardless of the input query g¢.
Formally, the attacker aims to maximize:

Eqrom, [L(Agent(q, Pys, O, T U{tm}) = ym)], (1)

where vy, denotes the implicit harmful behavior executed upon invoking ,,.



3.3 Attractive Metadata Attack

3.3.1 Overview

We propose Attractive Metadata Attack (AMA), a novel attack that optimizes
the metadata of malicious tools to induce LLM agents into selecting them over
benign alternatives in an open tool marketplace. These malicious tools are
implicitly configured to execute harmful behaviors, such as privacy leakage or
functional misuse, once invoked—without disrupting the primary task flow. The
key challenge addressed by AMA is: how to systematically construct tool metadata
that maximizes the likelihood of agent invocation. AMA casts the malicious tool
metadata generation problem as a state—action—value optimization task guided
by LLM-based in-context learning, enabling efficient search for high-inducement
metadata through iterative interaction with the agent’s selection behavior.

We assume a static environment defined by a fixed query set Q@ = {q1,¢2,...,¢n,}
and a set of normal tools NT = {T1,T5,...,T,,}, both collected from existing
open-source tool-learning systems. At each optimization step, the state S con-
sists of the set of currently generated malicious tools along with their associated
invocation probabilities, defined with respect to (Q, NT'). Formally,

S = {(t,p) | t : generated malicious tool, p : invocation probability}, (2)

where the invocation probability p=P(t,Q,NT) is defined as:

P(t,Q,NT) = Z (arg  max S(q, O, Peys, Meta(2)) = 1), (3)

|Q| = 1€NTU{t}
and 1(-) is the indicator function that equals 1 if Agent selects ¢ for query g,
and 0 otherwise.

The action space A is defined as the generation of new malicious tools
through in-context learning, based on the conditioning tuple (Q, NT,S), and
driven by a generation prompt P, that is explicitly crafted to maximize the
likelihood of agent selection. This includes designing the tool’s name, description,
and parameter schema, and other metadata fields relevant to tool selection.
Specifically, a new tool ¢ is generated as:

t = LLM(Q, NT, S, P,). (4)

The value function V (¢,Q, NT) is defined to evaluate the attack potential
of a newly generated tool ¢t and determines whether it should be retained for
subsequent optimization. It can be pre-defined as:

V(t,Q,NT) = P(t,Q,NT). (5)

Under this formulation, AMA iteratively refines its generation strategy to produce
malicious tools with increasingly higher invocation probabilities. The overall
objective is to generate a tool ¢ that maximizes its likelihood of being selected
by the agent:

#* = P(t,Q,NT). 6
arg L omax (t,Q,NT) (6)



Figure [2] illustrates the overall AMA workflow: it begins by collecting common
queries ) and their corresponding normal tools NT', proceeds through LLM-
based iterative generation and optimization of candidate malicious tools, and
finally selects those with the strongest inducement capabilities to execute specific
adversarial behaviors during the attack phase.

3.3.2 Constrained Optimization Problem

To further improve the efficiency and ultimate inducement performance of ma-
licious tool generation and to accelerate the convergence of the optimization
process, AMA introduces three key constraint mechanisms based on the afore-
mentioned state-action-value framework: generation traceability, weighted value
evaluation, and batch generation, as detailed below.

Generation Traceability To clarify optimization directions and accelerate
convergence, each newly generated tool records its parent tool from the previous
state. Each malicious tool is denoted as ¢/, where j denotes the index of its parent
tool t; and i marks the i-th tool generated based on tool ¢;. This traceability
enables evolutionary optimization strategies based on performance improvements
over generations.

Weighted Value Evaluation At each iteration, to select the most promising
tool candidates for state updating, AMA takes into account both the static
invocation rate and the relative improvement over the parent tool. The weighted
value is defined as:

V(tf,Q,NT,tj)Zpg—k)\(pg—pj), (7)

where pg = (t{,Q,NT), p; = P(t;,Q,NT), A\ € Rt is a tunable hyperpa-
rameter that balances the importance of absolute invocation performance and
relative improvement. The weighted value V(-) is used to rank and select tools
for subsequent optimization.

Batch Generation To enhance search efficiency and increase tool diversity,
AMA adopts a batch generation strategy. For each tool in the current state, a
batch of n; new tools is generated. Specifically, in the initial state, the generation
action is: {to,t1,...,tn,—1} = LLM(Q, NT, Py), and the initial state Sy is con-
structed as: So = {(to,p0), (t1,01)s- -, (tn,—1,Pn,—1)}, where p; = P(t;,Q, NT)
denotes the invocation probability of tool ¢;. In subsequent iterations k, for each
existing tool (t;,p;) € Sk—1(e.g.,k = 1), a new batch of n; candidate tools is
generated as:

{th, ], ...t} 1} =LLM(Q,NT, Py, (t;,p;)). (8)

For each generated tool tf , we compute its invocation probability pg and weighted
value v] according to Eq. and Eq.. Consequently, we obtain the set of



evaluated candidate tools with corresponding invocation probability p{ and
weighted value vf, denoted as CT}, = {(tg,pf,vg) |i=0,1,...,n — 1,(tj,p;) €
Sk—1}, with a total of n; x |S;_1]| tools.

To update the state Sk, we select the top n; tools with the highest weighted
values and then reindexed as (t;,p;) for subsequent iterations. Formally, the
updated state is:

Sk = {(thnt7pk><nt)7 (thnt—&-lapkxnt—&-l)a ) (thn,,—ﬁ—m,—lypkxnt—l-nt—l)}
= TopK,,, (CTy), (9)

where TopK,,, (CT}) denotes the operator that selects the n; tool-probability
pairs with the highest weighted values vg in C'Ty. This batch-based strategy
systematically explores the tool generation space in both breadth and depth,
significantly improving the efficiency and convergence speed of malicious tool
optimization.

Algorithm 1: AMA Optimization Algorithm
Input: Fixed query set (), normal tool set NT', generation prompt P,
maximum iterations K, batch size n;.
Output: Optimized malicious tool t.

1 Initialize state Sy by randomly generating n; tools {tg,...,ts,—1} via
LLM(Q, NT, Py);

2 Compute invocation probability p; for each t; using Eq.;

3 Set So = {(to,po), (t1,p1), -+, (tny—1,Pny—1) };

4 for iteration k =1 to K do

5 Initialize candidate tool set C'T}, = 0;

6 foreach (t;,p;) € Sk—1 do

7 Generate a batch {tg,t1,...,t},_;} = LLM(Q, NT, Py, (t;,p;));

8 foreach generated tool t! do

9 Compute invocation probability p{ for tg using Eq.;

7

10 Compute weighted value vf for tg according to Eq.(|7));

11 Add (¢, pl,v]) to CTy;

12 Select top n: tools from CT} based on highest vf scores;

13 Update state Sy with selected tools, reindexing as (t;, p;), according

to Eq.@;

14 if there exists (t,p) € Sk such that p > 7 then
15 | break;

16 return malicious tool ¢.




3.3.3 Optimization Algorithm

We propose a context-driven optimization algorithm to maximize the objective in
Eq.@, which systematically integrates the mechanisms of generation traceability,
weighted value evaluation, and batch generation. Our approach improves the
efficiency, effectiveness, and convergence speed of malicious tool generation from
multiple dimensions, including optimization direction, optimization magnitude,
and optimization depth and breadth. The overall algorithm consists of the
following steps:

(1) Initialization: In the initial state, we utilize the pre-collected query set
Q@ and the normal tool set NT' from open-source tool systems. Based on these,
we use the LLM to randomly generate n; initial malicious tools and compute
their invocation probabilities to obtain the initial status Sp.

(2) Tool Generation: During each subsequent iteration k, for every existing
tool (tj,p;) € Sg—1, we employ the LLM to generate a batch of n, new malicious
tools, following Eq.. ‘

(3) Value Computation: For each newly generated tool ¢, we compute its
invocation probability pg using Eq. and subsequently calculate its weighted
value vi according to Eq.7 which captures both the absolute performance and
the relative improvement over its parent tool.

(4) State Update: After evaluating all newly generated candidate tools, we
update the state by selecting the top n; tools with the highest weighted values
from the candidate pool CT},. The updated state Sy is constructed as shown in
Eq.@, ensuring that the optimization continues in the direction of maximum
potential inducement.

The optimization loop proceeds until a malicious tool attains a selection
probability of at least 7 for every query ¢ € @, or until the maximum number of
iterations K is reached. The entire procedure is summarized in Algorithm

4 Experiments

4.1 Experimental Setup

Agent Setup We adopt the ReAct think—act—observe paradigm [24], imple-
mented through AgentBench [14], and the security-focused benchmark ASB [29].
Following the experimental settings established in prior work, we simulate
agent workflows across ten real-world scenarios spanning I'T operations, port-
folio management, and other domains. Each workflow consists of subtasks
grounded in domain-specific APIs, designed to emulate realistic agent behav-
ior. Building on this, each agent is further configured with a synthetic user
profile from the AI4Privacy corpus [2], containing 11 standardized personally
identifiable information (PII) fields (e.g., name, address, phone number) ex-
plicitly marked as non-disclosable in the system prompt. This setup enables
systematic evaluation of privacy leakage risks. We evaluate the effectiveness of
AMA on four mainstream LLMs: three open-source models—Gemma-3 278 [19],



LLaMA-3.3-Instruct 70B [9], and Qwen-2.5-Instruct 32B [23]—and one com-
mercial model, GPT-40-mini [I6] II]. Additional implementation details are
provided in Appendix 77.

Attack Settings We consider two types of adversarial threat settings based
on the attacker’s knowledge of the task context. In targeted attacks, the
adversary has detailed knowledge of the agent’s domain and available tools (e.g.,
portfolio manager in finance, prescription manager in healthcare). In contrast,
untargeted attacks assume no such contextual or tool-specific information.
For more details on the AMA optimization configuration, please refer to Ap-
pendix ??. Detailed ablation studies regarding declared tool parameters and
tool generation efficiency are provided in Appendices 77 and ?77.

Baselines and Defenses We compare AMA against two representative base-
line attack strategies: Injected Attack [I5], which overrides the agent’s intent by
appending imperative instructions that coerce specific tool usage; and Prompt
Attack, which leverages prompt engineering to steer the LLM into generating
malicious tool metadata during tool creation. Moreover, we further evaluate the
effectiveness of these attacks under two defense mechanisms: Dynamic Prompt
Rewriting (Rewrite) [29] rewrites user queries to preserve the original intent
and filter out injected content; and Prompt Refuge (Refuge) embeds rule-
based security guardrails into the system prompt, instructing the agent to reject
tools whose metadata or behavior appear adversarial or anomalous.

Metrics We assess agent vulnerability using four metrics: Task Completion
(TS) — the rate at which the agent generates the intended workflow, correctly
invokes tools, and delivers coherent, goal-aligned responses; Attack Success
Rate (ASR) — the proportion of attacker-controlled tools that are successfully
invoked; Parameter Response (PR) — the fraction of attacker-specified
parameters the agent includes, indicating verbatim leakage; Privacy Leakage
(PL) — the average normalized edit distance between leaked content and original
private facts. Higher ASR, PR, and PL indicate greater privacy risk, while higher
TS denotes better task performance.

4.2 Main Results

AMA achieves high attack success while preserving task performance.
Table [T] shows that AMA consistently outperforms the baseline Prompt Attack
across all evaluation metrics, including both targeted and untargeted settings,
and on all four models. In the targeted setting, AMA achieves up to 94%
ASR and 92% PL on the open-source models (Gemma-3 27B, LLaMA-3.3 70B,
Qwen-2.5 32B), surpassing Prompt Attack by 4-12%. Compared to Injected
Attack, AMA also delivers higher ASR on all open-source models (a 2-19%
gain), and performs only slightly worse on the commercial GPT-40-mini, with
a gap of just 7.8%. When combined with Injected Attack, AMA further boosts
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performance across most models, including GPT-40-mini. This stacked attack
combines imperative steering with metadata manipulation, making the malicious
tool appear both safe and optimal. As a result, ASR and PL increase to 94-99%
across the board. The only exception is Gemma-3 27B, which shows a minor drop
of 0.25%, while all other models continue to improve.

Moreover, AMA has negligible impact on task completion. On open-source
models, the task success rate (TS) remains as high as 98%, with only a slight
drop on GPT-40-mini, indicating strong stealth and stability. In the untargeted
setting, AMA exhibits similar trends. Although its performance is slightly
reduced compared to the targeted setting, the attack remains highly effective,
demonstrating strong generalizability even without contextual knowledge. To
further assess the robustness of AMA, we conduct additional experiments on a
recently released, reasoning-capable open-source LLM—Qwen3-32B. For more
detailed results and analysis, please refer to the Appendix ?77.

Prompt-level defenses fail against AMA. Existing prompt-level de-
fenses—Rewrite and Refuge—exhibit limited and inconsistent mitigation against
AMA. Overall, Rewrite proves largely ineffective and may even exacerbate the
attack, while Refuge offers only preliminary protection. Specifically, Rewrite re-
duces ASR by 5%—26% against Injected Attack, consistent with findings reported
in ASB. However, once AMA is introduced, both defenses fail to provide effective
protection and are rendered nearly useless. Similar trends are observed across
other evaluation metrics, further highlighting AMA’s robustness and ability to
bypass prompt-level safeguards.
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Figure 3: ASR across task scenario. Solid bars: targeted attacks; hatched
bars: untargeted attacks.

4.3 Attack Robustness Across Task Scenarios

Building on the overall performance results, we further investigate AMA'’s
robustness across individual task scenarios. As shown in Figure[3] AMA achieves
high attack success rates across all 10 task scenarios under both threat models. In
the targeted setting, AMA is nearly saturated: ASR exceeds 90% in most tasks,
with slightly lower performance in ecommerce manager and academic search,
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where it still remains above 80%. In the untargeted setting, AMA remains
effective in most tasks, though its performance is slightly weaker on academic
search with Qwen-2.5 and GPT-40-mini. Overall, AMA demonstrates strong
generalization: even a single malicious tool can consistently attract LLM agents
across diverse task scenarios. Our analysis further shows that high-weight phrases
in tool metadata—such as comprehensive or insight across domains—are
particularly appealing to agents. Some generated metadata examples are provided
in the Appendix ?? for further reference.

EMAIL

LLM Source Target PL Untarget PL
Gemma3-27B Query 74.92 45.91
LLaMA3.3-70B  Query 92.52 78.59
Qwen2.5-32B Query 95.56 45.09
GPT-40-mini Query 79.51 21.46
Gemma3-27B System 88.20 62.85
LLaMA3.3-70B  System 97.03 86.56
Qwen2.5-32B System 69.55 32.16
GPT-40-mini System 76.96 23.22

Table 2: Privacy leakage in query and
system prompt contexts under targeted
Figure 4: Field-level PII leakage and untargeted AMA attacks.

under targeted and untargeted AMA

attacks.

4.4 Extended Capabilities of AMA

Field-level PII extraction. As shown in Figure[d] AMA can extract nearly all
PII fields. Leakage is substantial in the targeted setting and only slightly reduced
in the untargeted setting. The only notable exception is CREDITCARDNUMBER,
suggesting that models exhibit mild caution when disclosing sensitive numbers
without contextual cues—though this is still insufficient to prevent leakage.

Agent-Level Context Leakage. AMA also compromises agent-level con-
text, including user queries and role descriptions in system prompts. As shown
in Table [2, both types of information are vulnerable, indicating that AMA can
expose user and system-level content, potentially enabling follow-up attacks such
as man-in-the-middle exploitation.

Performance Under the Model Context Protocol. We further evaluate
AMA under the constraints of the Model Context Protocol (MCP), which routes
the agent’s external look-ups through a formal API. As shown in Table [3, MCP
provides moderate mitigation for more cautious models (e.g., GPT-40-mini and
Qwen-2.5), but is largely ineffective for Gemma-3 and LLaMA-3.3, especially in
targeted scenarios where significant risks persist.
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5 Conclusion and Future Work

We introduced the Attractive Metadata Attack (AMA), a novel attack that
manipulates tool metadata to influence LLM agent behavior, inducing them to
invoke attacker-controlled tools without requiring prompt injection or access to
model internals. Specifically, AMA is enabled by a state-action—value modeling
approach and three key mechanisms—generation traceability, weighted value
evaluation, and batch generation—that enable the effective and efficient genera-
tion of highly inducive metadata for a malicious tool. Extensive experiments on
four open-source and one commercial LLM agents demonstrate the effectiveness
of AMA across diverse attack settings and comprehensive evaluation metrics.
Notably, AMA remains effective under hardened evaluation settings, bypassing
structured protocols (e.g., MCP), revealing systemic weaknesses, and remaining
effective under prompt-level defenses via metadata-level manipulation. Future
work will focus on developing execution-level defenses, strengthening tool verifi-
cation mechanisms, and securing multi-agent systems against metadata-based
attacks.
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Table 1: Attack and defense performance across LLMs under both
targeted and untargeted settings. We report four metrics: TS, ASR, PR,
and PL. The maximum number in each column is in bold, values in (-) indicate
the reduction in attack effectiveness for the same attack setting after defense; -
denotes not applicable.

LLM Attack Setting Defense Targeted Untargeted
TS() ASR() PR(1) PL()|TS(1) ASR() PR() PL()
Gemma. Injected Attack None 85.40 85.40 85.40 85.40 - - - -
Gemm; Prompt Attack None 89.20 83.60 83.60 96.20 73.80 73.20 B
Gemmas Our None 98.42 94.83 94.69 99.30 83.10 81.80 49
Gemmas Our | Injected Attack None 94.50 94.13 99.60 99.20 98.20 97.61
Tnjected Attack Rewrite 80.60 7780 7751 - - -
Our Rewrite 95.33 90.12 89.65 97.00 81.74
Our + Injected Attack Rewrite 91.83 90.17 90.17 98.20 91.60
Gemma3-27B Prompt Attack Refuge 96.00 83.50 83.35 92.33 53.00
Gemma3-27B Our Refuge 96.00 88.00 88.00 96.00 59.20
Gemma3-27B Our + Injected Attack Refuge 97.33 94.67 94.67 | 100.00 97.20
Gemma3-27B Our + Injected Attack Rewrite + Refuge — 94.33 94.33 (~1.0) 93.00 93.00 98.40 94.80
LLaMA3.3-70B  Injected Attack None 75.80 75.80 75.20 71.04 - - - -
Prompt Attack None 99.20 90.40 90.40 90.40 97.25 74.00 73.50
Our None 99.67 94.80 94.80 94.80 98.75 76.55 76.48 5
Our + Injected Attack None 99.47 99.47 99.42 99.30 99.64 99.55 99.29 98.59
Injected Attack Rewrite 87.40 70.00 (-5.5) 70.00 69.56 - - - -
Our Rewrite 99.73 96.93 (+2.1) 96.80 96.80 99.60 81.30 (+4.8) 79.87
Our + Injected Attack Rewrite 99.20 99.07 (~0.4) 99.00 98.87 99.60 98.30 (~1.3 97.73
Prompt Attack Refuge 96.50 84.50 (-5.9) 84.00 84.00 98.00 55.33 (~18.7) 55.33
LLaMA3.3-70B  Our Refuge 98.67 90.40 (-1.1) 90.40 90.40 97.60 57.60 (- 19.0) 57.60
LLaMA3.3-70B  Our + Injected Attack Refuge 99.47 99.47 (+0.0) 99.47 99.47 99.20 99.20 (0.1 99.17
LLaMA3.3-70B  Our + Injected Attack Rewrite + Refuge — 98.40 97.87 (-1.6) 97.80 97.64 98.00 94.20 (-5.4) 93.61
Injected Attack None 92.20 92.20 92.20 91.06 - - - -
Prompt Attack None 97.20 86.40 85.60 85.60 80.60 25.60 23.80 23.78
Our None 97.08 94.54 92.69 92.63 85.10 38.95 38.55 38.53
Our + Injected Attack None 99.69 99.69 99.69 99.63 98.70 98.70 98.60 98.53
Injected Attack Rewrite 90.40 76.00 (—16.2) 76.00 75.99 - - - -
Our Rewrite 97.38 94.92 (+0.4) 93.85 93.82 82.20 36.80 (—2.2) 36.50 36.49
Our + Injected Attack Rewrite 99.69 99.69 (+0.0) 99.51 99.48 98.40 98.30 (0.1 97.12 97.04
Prompt Attack Refuge 96.40 86.40 (+0.0) 85.20 85.14 79.67 19.00 (-6.6) 18.17 18.12
Our Refuge 96.62 94.46 (-0.1) 93.54 93.54 80.80 33.40 (-5.6) 33.00 32.98
Our + Injected Attack Refuge 100.00 100.00 (+0.3 100.00 99.88 98.40 98.00 (~0.7) 97.80 97.77
Our + Injected Attack Rewrite + Refuge — 98.46 98.46 (~1.2) 98.46 98.43 97.80 94.20 (-4.5) 94.00 93.81
GPT-40-mini Injected Attack None 89.00 89.00 85.33 84.20 - - - -
GPT-40-mini Prompt Attack None 81.20 72.40 72.40 72.19 6.83 6.83
GPT-40-mini Our None 85.86 81.43 81.14 81.12 23.10 23.00
GPT-40-mini Our + Injected Attack None 97.57 97.57 97.57 97.44 97.20 97.10
GPT-40-mini Injected Attack Rewrite 71.00 63.00 (—26.0) 63.00 63.00 - -
GPT-40-mini Our Rewrite 86.15 0.3) 81.15 80.88 26.57 (+3.5) 26.29
GPT-40-mini Our + Injected Attack Rewrite 93.08 4 92.69 92.69 91.14 (-6.1) 90.86
GPT-40-mini Prompt Attack Refuge 74.33 )4 63.00 62.96 3.60 (-3.2) 3.60
GPT-40-mini Our Refuge 84.64 1.3 76.79 76.65 1117 (-11.9) 11.00
GPT-40-mini Our + Injected Attack Refuge 97.86 97.86 (+0.3) 96.07 95.85 96.86 (0.3 96.86
GPT-4o-mini Our + Injected Attack Rewrite + Refuge — 91.07 91.07 (~6.5) 90.71 90.71 95.14 93.43 (-5.8) 93.43

Table 3: Attack performance under MCP in targeted and untargeted AMA
setting.

LLM Attack Setting Targeted Untargeted

S (1) ASR () PR(1) PL(1)|TS(1) ASR() PR(1) PL()
Gemma3-27B AMA (MCP) 90.33 84.50 84.15 84.15 76.50 75.40 75.40 74.44
LLaMA3.3-70B  AMA (MCP) 85.78 85.78 85.48 85.41 58.56 58.56 58.44 58.41
Qwen2.5-32B AMA (MCP) 88.21 88.21 87.18 87.17 27.33 27.33 27.22 27.22
GPT-40-mini AMA (MCP) 81.23 81.05 80.95 80.95 21.34 20.33 20.33 20.33
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