arXiv:2508.02035v1 [cs.CR] 4 Aug 2025

This paper has been accepted for publication at IEEE Globecom 2025. If you wish to cite this work, please use the following reference:
Hiroki Nakano, Takashi Koide, and Daiki Chiba, “PhishParrot: LLM-Driven Adaptive Crawling to Unveil Cloaked Phishing Sites,”
Proceedings of IEEE Global Communications Conference (GLOBECOM), 2025.

PhishParrot: LLM-Driven Adaptive Crawling
to Unveil Cloaked Phishing Sites

Hiroki Nakano*, Takashi Koide*, Daiki Chiba*
*NTT Security Holdings Corporation & NTT, Inc., Japan
Email: hi.nakano.sec@gmail.com

Abstract—Phishing attacks continue to evolve, with cloaking
techniques posing a significant challenge to detection efforts.
Cloaking allows attackers to display phishing sites only to
specific users while presenting legitimate pages to security
crawlers, rendering traditional detection systems ineffective. This
research proposes PhishParrot, a novel crawling environment
optimization system designed to counter cloaking techniques.
PhishParrot leverages the contextual analysis capabilities of
Large Language Models (LLMs) to identify potential patterns in
crawling information, enabling the construction of optimal user
profiles capable of bypassing cloaking mechanisms. The system
accumulates information on phishing sites collected from diverse
environments. It then adapts browser settings and network
configurations to match the attacker’s target user conditions
based on information extracted from similar cases. A 21-day
evaluation showed that PhishParrot improved detection accuracy
by up to 33.8% over standard analysis systems, yielding 91
distinct crawling environments for diverse conditions targeted by
attackers. The findings confirm that the combination of similar-
case extraction and LLM-based context analysis is an effective
approach for detecting cloaked phishing attacks.

Index Terms—Phishing, Cloaking, Large Language Model.

I. INTRODUCTION

Phishing attacks have become increasingly sophisticated,
posing a serious threat to internet users worldwide. Attackers
employ “cloaking” techniques to evade detection mechanisms.
They display phishing content only to users who meet specific
criteria, while presenting legitimate pages or error messages
to security crawlers and other unwanted visitors [1], [2].

Conventional phishing detection systems analyze features
such as HTML content and screenshots using machine learning
models or rule-based algorithms, with some incorporating
network data like IP addresses and HTTP transactions [3]-
[6]. However, these systems fundamentally depend on suc-
cessfully retrieving phishing content. When attackers identify
security crawlers through cloaking mechanisms, they serve
non-phishing content instead, which makes accurate analy-
sis impossible. Research analyzing security crawler profiling
has demonstrated that even when simulating “typical user-
like” requests, without appropriate environmental adjustments,
crawlers cannot satisfy all conditions targeted by attackers [7].
Consequently, content acquisition methods dependent on fixed
crawling environments have limited ability to reach phishing
content. To address these limitations, a new approach capable
of flexibly and accurately capturing the characteristics of
phishing attacks is essential.

This research proposes PhishParrot, a novel crawling en-
vironment optimization system designed to improve detec-
tion rates for cloaked phishing sites. PhishParrot adaptively
adjusts browser profiles (such as HTTP headers) and net-
work environments (e.g., country information, residential or
mobile networks) based on crawling results information to
satisfy attacker-defined conditions and access phishing content
(Fig. 1). The system accumulates phishing site information
(Domain Information, Network Information, HTML Informa-
tion) collected from diverse environments and incorporates a
mechanism to extract similar cases. Based on this information,
a Large Language Model (LLM) suggests optimal user pro-
files (browser settings and access environments), enabling the
construction of environments closely resembling those targeted
by attackers, thereby bypassing cloaking to retrieve phishing
content. The advanced language comprehension capabilities
of LLMs enable the flexible and accurate identification of
trending characteristics in the latest phishing attacks. This po-
tentially enhances effectiveness against cloaking-based detec-
tion avoidance, a challenge for conventional fixed-environment
crawling approaches.

In this study, we evaluated PhishParrot’s performance using
three types of LLMs on 32,487 suspicious URLs collected
over a 21-day period. Results showed that the best-performing
model achieved 88.0% accuracy with an average processing
time of 16.69 seconds per URL. When combining PhishParrot
with three different Phishing Detectors, we confirmed up to a
33.8% improvement in phishing site detection rates compared
to standard analysis systems. PhishParrot also demonstrated
the ability to suggest 91 optimal user profiles based on
attack trends and phishing site similarities, enabling flexible
environment construction tailored to attackers’ targets. These
results indicate that rule-based approaches struggle to compre-
hensively cover the diverse user access environments targeted
by attackers. In contrast, the sophisticated context analysis
capabilities of LLMs enable flexible and effective crawling
environment construction unachievable by other approaches.
The findings of this research demonstrate that incorporating
LLMs into systems is an effective strategy for addressing the
challenge of detection avoidance through cloaking.

II. RELATED WORK

Numerous studies have been conducted on phishing site
detection, with many systems proposed to identify phishing
sites based on HTML content and screenshots obtained when

https://arxiv.org/abs/2508.02035v1

Proposed System: PhishParrot

Phishing Detector

Gathering Information for Extracting Crawling Results Obtaining Optimal User Profile Accessing URL Using [T —
Similar Searches (@) of Similar Attacks (@) with LLM Analysis (©) Optimal User Profile (@) a\@ Phishing
." : \ { ! ." g \ / ! URL
Suspicious | | { [’?‘:tr\zé;:'f; I Crawling Crawling |_;_5_,| Prompt l_‘_’ _’ __
URL ﬂ_, HTML E i Results |i1"] Template User Profile i i Results |}
| Ji I LLM JL_ Browser) URL
|

Fig. 1: PhishParrot is composed of 4 steps to overcome sophisticated cloaking techniques and improve phishing detection
accuracy. The system takes suspicious URLs as input and outputs actual phishing content hidden by cloaking mechanisms.
The system performs a preliminary access to gather information for similar attack searches (@). It extracts crawling results of
similar attacks from a database using cloaking pattern similarity-based retrieval (). It embeds this information into prompts and
requests LLM analysis to determine the optimal user profile matching attacker’s targeting criteria (). It configures the browser
with this profile and accesses the URL to retrieve phishing content hidden from security crawlers (@). This content is sent to
phishing detectors, enabling accurate classification impossible with conventional crawling approaches. Without PhishParrot’s
adaptive approach, even sophisticated phishing detectors would fail as cloaking mechanisms prevent access to malicious content.

accessing URLs [3], [6], [8], [9]. Liu et al. proposed ‘Phish-
Intention,” which visually extracts both brand intention and
credential-harvesting intention from webpage appearance and
dynamic behavior, verifying credential-harvesting intention
through interaction with the webpage [5]. Lin et al. introduced
“Phishpedia,” a system that accurately recognizes brand logos
from webpage screenshots and matches logo variations of the
same brand, enabling high-precision identification and visual
explanation of phishing sites [4]. While these studies demon-
strate high detection capabilities in situations where phish-
ing content is accessible, their detection accuracy inevitably
decreases when accessing continuously from the same or
known analysis environments, as cloaking techniques prevent
observation of the actual phishing content.

Cloaking techniques refer to technologies that display dif-
ferent content based on the characteristics of the access
source. When a phishing URL is accessed, attackers analyze
request characteristics in detail (User-agent, IP address, HTTP
headers, etc.). Based on this analysis, they distinguish between
“Victim Access” (access from targeted typical users) and
“Non-victim Access” (access from security researchers or
detection systems). According to Zhang et al. [2], 96.52%
(2,831 cases) of the 2,933 phishing kits analyzed contained
cloaking techniques. IP address and User-agent based cloaking
were found to be the most commonly used, with 1,983 cases
(approximately 82%) implementing User-Agent verification
and 1,660 cases (approximately 69%) implementing IP address
verification among the 2,421 phishing kits analyzed.

To address these cloaking techniques, researchers have pro-
posed analyses of cloaking technologies embedded in phishing
kits and techniques to bypass specific types of cloaking [2],
[10], [11]. Zhang et al. proposed “CrawlPhish,” a framework
for automatically detecting and classifying client-side cloaking
used in phishing sites [1]. Their analysis of 112,005 phishing
sites collected over 14 months from 2018 to 2019 revealed
that the use of cloaking techniques increased from 23.32% to
33.70%. Acharya et al. proposed the “PhishPrint” framework,
which pre-profiles the characteristics of security crawlers
to identify weaknesses and uses them to evade phishing

detection through cloaking attacks [7]. Through evaluation
of 23 security crawlers, they revealed weaknesses against
cloaking, such as a lack of diversity in browser fingerprints
and IP address limitations. While existing research implements
simple countermeasures against cloaking, our proposed system
differs significantly in that it adapts to the latest phishing
attack trends and constructs access environments that more
effectively bypass cloaking.

III. PROPOSED SYSTEM: PHISHPARROT
A. Design Goals and Objectives

To bypass attackers’ cloaking techniques and retrieve phish-
ing content that typical users encounter, we propose “Phish-
Parrot” (Fig. 1). Our system focuses primarily on attributes
such as HTTP headers and IP addresses, which constitute
the majority of current cloaking techniques, to accurately
reproduce the target user’s access environment. The system
aims to achieve the following two goals:

Goal 1: Identify similar cloaking patterns. Phishing attacks
have been reported to share similarities based on toolkits
or attacker groups [2]. Cloaking techniques follow similar
trends; therefore, we extract similar examples from accumu-
lated crawling results.

Goal 2: Bypass cloaking to access phishing content. Bypass-
ing cloaking techniques requires mimicking “typical user-like”
target access. Based on past successful examples, LLM ana-
lyzes appropriate crawling environments and retrieves content
from target URLs.

B. Gathering Information for Similar Searches (@)

In this step, we define the data structure of crawling results
used for similar case searches and LLM prompt embedding.
As shown in Table I, we establish data structures in four
categories: Domain Information, Network Information, HTML
Information, and Crawling Environment Information, and col-
lect this information.

Domain Information. In some cases, domain names can
be analyzed to reveal characteristic strings or subdomain
structures reused from past phishing attacks [12]. Additionally,
registration timing and certificate reuse can help identify

TABLE I: Defined Structure of Crawling Results

Category Type Content
Domain Registration {"domain_name": "EXAMPLE.COM",
Information "registrar": "...", .
DNS {"status": 0, "Answer": [{"name": "example.com",
"TTL: 123, "data": 192.0.2.0", ...}, {...}1}
TLS/SSL {"issuer": {"O": "ExampleCert", ...},
"subject": {"CN": "example.com"}, ...}
Network Requests {"requests": [{"id": "1", "method": "GET",
Information "url": "https://example.com", "headers":{...},
...}, {"id": "2", "method": "GET",...},...1}
Responses {"responses": [{“1d": "1", "status": "200",
"url": "https://example.com", "headers": {...}
,o..{"id": "2", "status": "200",..},...1}
HTML Visible Text 403 Forbidden nginx/1.26.2 You do not
Information have permission to access this resource.
Tag Structure <html><head><title></title><style></style>
</head><body><hl></hl><p></p></body></html>
Crawling IP Geolocation {"country": "US",
Environment "city": "Sample City", "region":"Sample"}
Information ASN {"asn": "AS1234", "name": "Example Business"
"domain": "examplebusiness.example", ...}
Language en-US

attacks from the same group. If similar attack cases can
be identified, cloaking techniques may also exhibit similar
patterns, enabling the construction of optimal user profiles
based on past successful cases. Therefore, we extract domain
names from target URLs and obtain registration information,
DNS resolution, and TLS/SSL certificates.

Network Information. When cloaking techniques exist in a
target URL, characteristic responses similar to past cases may
occur. For example, security crawler access has been reported
to be redirected to legitimate sites of impersonated companies
or prominent sites (e.g., Google homepage) [13]. To capture
this trend, we perform a simple access to the target URL using
Playwright and collect requests and responses.

HTML Information. Phishing sites often mimic prominent
companies and copy legitimate sites, resulting in similar
HTML structures and appearances [3], [4]. By analyzing the
similarity between HTML and past phishing attack crawling
results, it becomes possible to identify identical cloaking
patterns. From the DOM tree obtained during the simple
access mentioned above, we extract visible text and HTML
tag structures.

Crawling Environment Information. Attackers have been
reported to determine routing destinations based on network
information from the access source [2], [10]. For example,
cloaking techniques may be applied to IP addresses that appear
to be from analysis environments or accesses from countries
other than the target, preventing the retrieval of phishing
content. Conversely, access from general residential or mobile
networks in specific countries may match the attacker’s target
and reach the phishing site. Therefore, we store network loca-
tion (IP Geolocation), network provider (ASN), and browser
language settings (Language) for each crawling result.

C. Extracting Crawling Results of Similar Attacks (@)

In this step, we extract crawling results of similar attacks us-
ing state-of-the-art vector representation techniques and search
methods.

Crawling Results DB Integration. We store crawling results
(with the defined data structure) in a vector database, label-

ing them as successful crawling or failed crawling. Vector
databases enable comparisons based on semantic similarity,
allowing effective retrieval of past crawling results from simi-
lar attacks. For string vectorization, we utilize OpenAl’s text-
embedding-3-small model, which transforms text into a 1,536-
dimensional vector space. We selected this model because it
offers an optimal balance between analysis speed and perfor-
mance compared to other prominent models (text-embedding-
3-large, text-embedding-ada-002). While the system requires
a certain amount of labeled initial data to operate, as shown in
Fig. 1, it automatically expands successful crawling and failed
crawling examples by combining continuous system operation
with detection results from Phishing Detectors.
Similarity-based Crawling Results Extraction. In Phish-
Parrot, we convert information from the three defined cate-
gories (Domain, Network, and HTML Information) into string
representations and extract similar crawling results based on
semantic similarity. For example, when searching Domain
Information, we compare similarity using 1,536-dimensional
vectors of registration, DNS, and TLS/SSL strings. The pro-
cedure for extracting crawling results is as follows:

1) Create embedding vectors for each Domain Information,
Network Information, and HTML Information of the
target URL

2) Retrieve results with cosine similarity above a certain
threshold from successful and failed examples in the
database

3) Generate embedding vectors from the entire text of
the results and extract representative results using the
Maximum Marginal Relevance (MMR) algorithm [14]

Cosine similarity quantifies the structural and semantic sim-
ilarity of target URL information in multidimensional space,
enabling high-precision identification of similar patterns in
attack methods and strategies. Cosine similarity ranges from
O (unrelated) to 1 (identical), and we set a threshold of 0.65
based on preliminary experiments that successfully identified
similar attacks. The MMR algorithm balances relevance and
diversity by selecting documents that maximize marginal rel-
evance, creating a representative result set that covers diverse
environmental conditions useful for detecting similar cloaking
patterns. While A in MMR ranges from O (emphasizing
diversity) to 1 (emphasizing relevance), we adopt 0.7 to
prioritize relevance while still considering diversity.
Prompt-Optimized Crawling Results Filtering. We filter
redundant information from the extracted results for LLM
prompts. Specifically, we extract only registration from Do-
main Information, main communications from Network In-
formation, and Crawling Environment Information from each
result. While other information is important for vector com-
parison, it is unnecessary for LLM’s user profile decisions.
Although the number of results for prompt input is arbitrary,
we adopt a total of 10 cases: 5 successful examples and 5 failed
examples. From preliminary experiments, we confirmed this
number allows the LLM to analyze success (e.g., geolocations)
and failure (e.g., desktop restrictions) factors.

D. Obtaining Optimal User Profile with LLM Analysis (@)

In this step, we derive the optimal user profile using LLM
analysis of the extracted crawling results.
Prompt Definition. Table II shows the prompt for LLM
interaction. Prompts are information provided by users to help
LLMs generate appropriate responses. We define a cybersecu-
rity expert persona specializing in phishing detection and anti-
cloaking techniques (Persona). We provide instructions focus-
ing on attacker strategies for cloaking analysis (Instruction).
We specify that analysis results should be output in JSON
format with five types of information (Output Format). Finally,
we embed the target information in the prompt (Analysis
Request).
LLM Analysis Request. We embed the target URL infor-
mation as url, successful examples from extracted crawling
results as successful_examples, and failed examples as
failed_examples in the prompt. This approach, known
as Retrieval-Augmented Generation (RAG), enhances LLM
reasoning with external knowledge, enabling responses based
on current and specific information [15]. Through RAG, we
provide the LLM with phishing site cloaking patterns and past
crawling results, facilitating more adaptive crawling environ-
ment construction. The analysis results include three types of
information for crawling (http_header, ip_location,
network_provider) and two types of rationale informa-
tion (target_victim, reason). In this step, these five
types of information constitute the output.

E. Accessing URL Using Crawling Environment (@)

We aim to bypass cloaking and reach phishing content
using the optimal user profile output by the LLM. Our
system employs Playwright for network log acquisition and
operational stability. We configure headers with those spec-
ified in http_header. For networking, we utilize multi-
ple pre-prepared environments, setting country information
and network types (e.g., typical residential, mobile net-
works) to match those specified in ip_location and
network_provider. We access the target URL in this
environment and obtain the final page content, screenshots, and
network logs after JavaScript interpretation, which constitute
the system’s final output.

IV. EVALUATION
A. Experimental Setup

We evaluate the detection accuracy and execution time of
PhishParrot for identifying phishing sites.
Baseline Systems. Existing cloaking analysis frameworks like
CrawlPhish [1] and PhishPrint [7] are designed for research
purposes to understand cloaking mechanisms, rather than
for operational detection. Therefore, we evaluate PhishPar-
rot against practical baseline systems. To enable this com-
parison, we prepared two baseline systems: the Standard
Analysis System and the Typical User System. The Stan-
dard Analysis System simulates a typical analysis environ-
ment by accessing URLs using Google Chrome in headless
mode on Linux, from a cloud environment in the United

TABLE II: Prompt for Obtaining Optimal User Profile

Tactics

Prompt

Persona
(System)

You are a cybersecurity analyst specializing in phishing detection and anti-cloaking
techniques. Your role is to analyze website behavior patterns and provide
recommendations for optimal crawling environments to detect malicious sites

that use cloaking techniques.

Instruction
(System)

When analyzing cloaking behavior, you should:

1. Consider geographical targeting patterns and past attack trends.

2. Evaluate HTTP header configurations, including User-Agent strings.

3. Assess network provider characteristics, particularly those commonly used by
attackers.

4. Compare provided cloaking and non-cloaking examples to identify behavioral
differences.

Additionally, prioritize settings that reflect environments attackers typically target

based on historical evidence of their tactics, techniques, and procedures (TTPs).

Incorporate insights into network providers, IP ranges, and User-Agent configurations

most likely to bypass cloaking mechanisms.

Output
Format
(System)

Your responses should be provided in JSON format with specific keys:

- http_header: HTTP headers for optimal browsing environment.

- ip_location: IP location of optimal browsing environment.

- network_provider: Optimal browsing environment network provider.

- target_victim: Nature of users targeted by attackers.

- reason: Logical explanation for the recommendations.

DO NOT include markdown, code blocks, or any text outside the JSON.

Analysis
Request
(User)

Analyze the following website information for potential cloaking behavior and
recommend an optimal crawling environment.

URL: {url}

Reference Examples:

1. Successful Crawling Example (examples of successful accesses):
{successful_examples}

2. Failed Crawling Example (examples of sites using cloaking techniques):
{failed_examples}

Based on this information and the reference examples, provide recommendations for:
1. The necessary browsing environment to avoid being cloaked

2. Optimal header information (e.g. User-Agent) for HTTP requests

3. Source IP address characteristics (location and network provider)

Please format your response as JSON with the specified keys:

target_victim, http_header, ip_location, network_provider, and reason.

States. In contrast, the Typical User System randomly selects
one combination of http_header, ip_location, and
network_provider to emulate a typical user environment.
Specifically, we defined http_headers corresponding to
17 different access environments (with Safari restricted to
macOS and iOS) by combining five OS types (Windows,
macOS, Linux, Android, iOS) and four browsers (Microsoft
Edge, Google Chrome, Safari, Mozilla Firefox). Additionally,
to capture high internet usage and regional diversity, we set up
10 ip_locations (United States, India, United Kingdom,
Germany, Japan, Brazil, Saudi Arabia, Canada, Australia,
South Korea). For each ip_location, we specified three
network_providers (Datacenter, Residential, Mobile),
resulting in 17 x 10 x 3 = 510 total combinations. We used
these two systems as baselines for our comparative evaluation
with PhishParrot.

Phishing Detectors. To evaluate our system against various
detection techniques, we reimplemented three state-of-the-
art phishing detectors: ChatPhishDetector [6], VisualPhish-
net [3], and StackModel [16]. We chose these systems because
they employ distinct approaches: ChatPhishDetector leverages
LLM-based contextual analysis of HTML and screenshots; Vi-
sualPhishnet performs visual similarity analysis on screenshots
using a triplet convolutional neural network; and StackModel
combines URL and HTML features with stacked machine
learning models. These diverse perspectives provide a com-
prehensive evaluation of our system’s effectiveness.

Input Suspicious URLs. We collected suspicious URLs from
three feeds: CrowdCanary [17], which collects phishing URL
reports from X using hashtags like “#phishing”; Urlscan.io

TABLE III: Performance Comparison of PhishParrot by LLM

Avg. of 3 Phishing Detectors

TABLE 1IV: Performance Comparison Between PhishParrot
(GPT-40 mini) and Baseline Systems

LLM Acc TPR TNR Pre F1 Execution Time Cost Systems Phishing Detector Acc TPR TNR Pre F1 Execution Time
03-mini 87.7% 89.6% 85.0% 87.9% 0.886 26.54 seconds $0.016 PhishParrot ~ ChatPhishDetector 92.7% 95.0% 89.6% 91.8% 0.933 26.71 seconds
GPT-40 85.9% 87.9% 83.3% 85.9% 0.868 19.13 seconds $0.027 VisualPhishnet 84.7% 86.5% 82.9% 84.5% 0.855 12.00 seconds
GPT-40 mini 88.0% 90.5% 85.3% 87.4% 0.889 16.69 seconds $0.002 StackModel 86.7% 89.9% 83.5% 86.1% 0.877 11.37 seconds
Typical ChatPhishDetector 64.4% 68.0% 58.1% 63.1% 0.652 22.15 seconds

“hichino’’ ¢ o ”. User VisualPhishnet 524% 50.1% 548% 52.5% 0.513 7.44 seconds

URLs tagged as phlSh]ng (?r @phISh—r.ep(.)rt ’ an(.l URLS System StackModel 544% 52.8% 46.0% 53.8% 0.529 6.81 seconds
fI'OHl PhlShTal’lk, a Communlty_blased. phl'ShIIlg V?I‘lﬁcatlon Standard ChatPhishDetector 58.9% 61.9% 52.4% 61.3% 0.612 20.31 seconds
platform. We excluded URLs with invalid domain names Analysis VisualPhishnet 50.8% 46.4% 552% 50.8% 0.485 5.60 seconds
System StackModel 54.6% 539% 454% 53.8% 0.534 4.97 seconds

(NXDOMAIN), domain parking, or legitimate site domains
(matching the top 100,000 sites in the Tranco list [18]).

Crawling Results DB Settings. PhishParrot requires a suffi-
cient number of crawling results labeled as successful crawling
or failed crawling. Therefore, we randomly selected from
the aforementioned 540 crawling environments and applied
them to suspicious URLs from February 1, 2025, to February
21, 2025, collecting a total of 33,432 crawling results. We
labeled these results as successful crawling (reaching phishing
content) or failed crawling (content was cloaked) based on
consensus among three security engineers with all engineers
agreeing on each classification. This process yielded 624
successful entries and 1,223 failed entries, which were stored
in the Crawling Results DB. Furthermore, if all Phishing
Detectors judged a site to be phishing when accessed by Phish-
Parrot, but they judged it to be non-phishing when accessed
by both the Standard Analysis System and the Typical User
System, we assumed a high likelihood of cloaking and also
stored that crawling result in the Crawling Results DB. This
setting allows PhishParrot to capture the latest attack trends
and adapt to rapidly changing phishing tactics.

LLMs. PhishParrot uses 03-mini, GPT-40, and GPT-40 mini
from OpenAl These are the latest models with excellent infer-
ence performance and speed. By comparing various models,
we can evaluate which is optimal for adoption in PhishParrot.

Metrics. We evaluate system performance using seven metrics:
Accuracy, True Positive Rate, True Negative Rate, Precision,
F1 score, Execution Time, and Cost, with VirusTotal as ground
truth. VirusTotal provides analysis results from approximately
90 antivirus engines but requires continuous evaluation due
to detection delays for new phishing sites. We conducted
continuous monitoring for one week and adopted criteria
from previous research to suppress false detections [19], [20].
URLSs determined as “malicious” by five or more engines are
classified as true phishing sites; others as non-phishing sites.

Using this ground truth, we evaluate: Accuracy (Acc) as
the proportion of URLs correctly classified by the system;
True Positive Rate (TPR) as correct phishing classifications
among true phishing sites; True Negative Rate (TNR) as
correct non-phishing classifications among true non-phishing
sites; Precision (Pre) as true phishing sites among system-
identified phishing sites; F1 score as the harmonic mean of
Precision and TPR; Execution Time as per-URL analysis time
from input to output; and Cost as LLM API cost per URL (as
of March 2025).

TABLE V: Top 5 Suggested Optimal User Profile

Optimal User Profile (OS, Browser, Network, Location) #

‘Windows, Google Chrome, Residential, Japan
Android, Google Chrome, Residential, Japan
‘Windows, Google Chrome, Datacenter, United States
macOS, Safari, Residential, Japan

Android, Google Chrome, Mobile, United States

6,128 (18.87%)
5,834 (17.97%)
5,492 (16.92%)
2,847 (8.77%)
2,432 (7.49%)

TABLE VI: Top 5 Suggested User-agent and Network Type

Network Type #

User-agent Type #

Windows, Google Chrome 10,243 (31.53%)
Android, Google Chrome 9,325 (28.70%)
macOS, Google Chrome 5,543 (17.06%)
macOS, Safari 5,136 (15.81%)
i0OS, Safari 853 (2.63%)

Residential, Japan
Datacenter, United States
Mobile, United States
Residential, United States
Mobile, Japan

17,487 (53.83%)
9,978 (30.71%)
2,432 (7.49%)
625 (1.92%)
468 (1.44%)

B. Evaluation Results

We conducted a real-time crawling of 32,487 suspicious
URLs collected over 21 days from March 1, 2025, to March
21, 2025, using PhishParrot and two baseline systems. We then
applied three Phishing Detectors and performed continuous
monitoring with VirusTotal. According to VirusTotal’s inspec-
tion results, 15,309 URLs were identified as phishing sites,
while 17,178 URLs were classified as non-phishing sites.
Summary. Table III presents the performance comparison of
PhishParrot across different LLMs, while Table IV compares
the accuracy between PhishParrot and baseline systems. The
evaluation results reveal that GPT-40 mini demonstrates the
optimal balance between detection effectiveness and process-
ing efficiency among the compared LLMs. Furthermore, the
PhishParrot system using GPT-40 mini achieved Accuracy
rates of 92.7%, 84.7%, and 86.7% for ChatPhishDetector, Vi-
sualPhishnet, and StackModel, respectively. This represents an
improvement of up to 33.8% compared to the baseline system,
achieved with only an average increase of about 7.6 seconds in
execution time, demonstrating PhishParrot’s practicality. These
results remain valuable even if some phishing sites are inactive
or employ sophisticated cloaking (e.g., advanced bot checks)
requiring manual user interaction.

LLMs. In evaluating PhishParrot, GPT-40 mini demonstrated
the best overall performance with the highest accuracy, shortest
execution time, and lowest cost. While 03-mini recorded the
highest precision, it required longer processing time. GPT-40
showed the lowest accuracy and highest cost among the tested
models. The difference in detection accuracy among LLM
models is within 2.1%, which is not statistically significant.
The analysis cost per URL ($0.002-$0.027) is negligible for
practical use, and execution time increases can be addressed
through parallel processing. Considering these results, GPT-40

mini is determined to be the optimal choice for PhishParrot.
Baseline Systems. PhishParrot using GPT-40 mini signifi-
cantly outperformed both baseline crawling approaches across
all Phishing Detectors. Compared to the Typical User Sys-
tem, PhishParrot achieved accuracy improvements of 28.3%,
32.3%, and 32.3% for ChatPhishDetector, VisualPhishnet, and
StackModel, respectively. When compared to the Standard
Analysis System, the difference expanded further, showing
improvements of 33.8%, 33.9%, and 32.1%. This remark-
able improvement demonstrates that the adaptive selection of
crawling environments based on LLM analysis and similar
case extraction effectively evades cloaking techniques that
hinder detection. The increase in execution time was moderate
(about 5-6 seconds) compared to the dramatic improvement in
detection capability. Notably, PhishParrot showed consistent
performance improvement across all detector types, demon-
strating the versatility and robustness of the proposed system.
Examples of Optimal User Profile. Analysis of PhishParrot’s
suggested user profiles revealed distinct patterns in attack-
ers’ targeting strategies. Table V shows the top 5 complete
combinations, with Japanese users on residential networks
dominating (top 2 combinations: 36.84% combined). Windows
Google Chrome from Japanese residential networks ranked
first (18.87%), followed by Android Google Chrome from
Japanese residential networks (17.97%). United States-based
profiles also appeared prominently, with Windows Google
Chrome from United States datacenters third (16.92%). No-
tably, macOS Safari from Japanese residential networks ranked
fourth (8.77%), demonstrating attackers’ awareness of Apple
users as valuable targets.

Individual component analysis (Table VI) showed Google
Chrome’s dominance across all platforms (77.29% total),
reflecting the attackers’ focus on widely-adopted environ-
ments. Geographic analysis revealed a strong concentration in
Japanese residential networks (53.83%) and United States dat-
acenters (30.71%). The combined Japanese targeting (55.27%)
suggests attackers’ particular focus on this region, potentially
related to economic characteristics and cybersecurity aware-
ness differences [21]. These insights demonstrate PhishPar-
rot’s ability to identify sophisticated, region-specific targeting
strategies. This level of granular insight into attacker TTPs
(Tactics, Techniques, and Procedures) underscores the limita-
tions of static, rule-based analytical environments.

V. LIMITATION

PhishParrot has two main limitations. First, the crawling
environment selection process introduces additional execution
overhead. However, this overhead is offset by the improved
phishing site detection rate, and the system’s benefits can
be maximized by selectively applying it to suspicious URLs.
Second, the system requires a certain number of successful
and failed examples to reference crawling results from similar
attacks. Nevertheless, once several hundred initial examples
are prepared (as in our experiment), the system begins to
automatically accumulate cases of trending phishing attacks
and cloaking patterns. This adaptive mechanism is achieved

through continuous operation alongside Phishing Detectors.
Therefore, after building the initial dataset, the system is
designed to self-improve while adapting to the latest attack
trends, maintaining PhishParrot’s long-term effectiveness.

VI. CONCLUSION

This research introduced PhishParrot, a crawling environ-
ment optimization system that uses LLMs to counter cloaked
phishing sites. By accumulating diverse crawling information
and using LLM analysis to mimic attackers’ targets, PhishPar-
rot significantly improved phishing detection rates compared
to standard analysis systems and typical user systems. The
system’s ability to construct flexible environments tailored to
attackers’ targets demonstrates the effectiveness of combining
data accumulation with LLM contextual understanding to by-
pass cloaking techniques. This adaptive approach represents an
advancement in phishing detection and provides a foundation
for effective cybersecurity defenses against evolving threats.

REFERENCES

[1] Penghui Zhang et al. Crawlphish: Large-scale analysis of client-side
cloaking techniques in phishing. In Proc. IEEE SP, 2021.

[2] Penghui Zhang et al. I'm spartacus, no, i’'m SPARTACUS: proactively
protecting users from phishing by intentionally triggering cloaking
behavior. In Proc. ACM CCS, 2022.

[3] Sahar Abdelnabi et al. Visualphishnet: Zero-day phishing website
detection by visual similarity. In Proc. ACM CCS, 2020.

[4] Yun Lin et al. Phishpedia: A hybrid deep learning based approach to
visually identify phishing webpages. In Proc. USENIX Security, 2021.

[5] Ruofan Liu et al. Inferring phishing intention via webpage appearance
and dynamics: A deep vision based approach. In Proc. USENIX Security,
2022.

[6] Takashi Koide et al. Chatphishdetector: Detecting phishing sites using
large language models. IEEE Access, 2024.

[7] Bhupendra Acharya and Phani Vadrevu. Phishprint: Evading phishing
detection crawlers by prior profiling. In Proc. USENIX Security, 2021.

[8] Ruofan Liu et al. Knowledge expansion and counterfactual interaction
for reference-based phishing detection. In Proc. USENIX Security, 2023.

[9] Daiki Chiba et al. Domaindynamics: Advancing lifecycle-based risk

assessment of domain names. Comput. Secur., 2025.

Luca Invernizzi et al. Cloak of visibility: Detecting when machines

browse a different web. In Proc. IEEE SP, 2016.

Xiwen Teoh et al. Phishdecloaker: Detecting captcha-cloaked phishing

websites via hybrid vision-based interactive models. In Proc. USENIX

Security, 2024.

Takashi Koide et al. Phishreplicant: A language model-based approach

to detect generated squatting domain names. In Proc. ACSAC, 2023.

Woonghee Lee et al. Beneath the phishing scripts: A script-level analysis

of phishing kits and their impact on real-world phishing websites. In

Proc. Asia CCS, 2024.

Jaime G. Carbonell and Jade Goldstein. The use of mmr, diversity-based

reranking for reordering documents and producing summaries. In Proc.

SIGIR, 1998.

Patrick S. H. Lewis et al. Retrieval-augmented generation for

knowledge-intensive NLP tasks. In Proc. NeurIPS, 2020.

Yukun Li et al. A stacking model using URL and HTML features for

phishing webpage detection. Future Gener. Comput. Syst., 2019.

Hiroki Nakano et al. Canary in twitter mine: Collecting phishing reports

from experts and non-experts. In Proc. ARES, 2023.

Victor Le Pochat et al. Tranco: A research-oriented top sites ranking

hardened against manipulation. In Proc. NDSS, 2019.

Peng Peng et al. Opening the blackbox of virustotal: Analyzing online

phishing scan engines. In Proc. IMC, 2019.

Shuofei Zhu et al. Measuring and modeling the label dynamics of online

anti-malware engines. In Proc. USENIX Security, 2020.

Global Anti-Scam Alliance. 2024 state of scams in japan report, 2024.

https://www.gasa.org/post/2024-state- of-scams-in-japan-report.

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

