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Abstract—With the continuous development of network en-
vironments and technologies, ensuring cyber security and gov-
ernance is increasingly challenging. Network traffic classifica-
tion(ETC) can analyzes attributes such as application categories
and malicious intent, supporting network management services
like QoS optimization, intrusion detection, and targeted billing.
As the prevalence of traffic encryption increases, deep learning
models are relied upon for content-agnostic analysis of packet
sequences. However, the emergence of new services and attack
variants often leads to incremental tasks for ETC models. To
ensure model effectiveness, incremental learning techniques are
essential; however, recent studies indicate that neural networks
experience declining plasticity as tasks increase. We identified
plasticity issues in existing incremental learning methods across
diverse traffic samples and proposed the PRIME framework. By
observing the effective rank of model parameters and the pro-
portion of inactive neurons, the PRIME architecture can appro-
priately increase the parameter scale when the model’s plasticity
deteriorates. Experiments show that in multiple encrypted traffic
datasets and different category increment scenarios, the PRIME
architecture performs significantly better than other incremental
learning algorithms with minimal increase in parameter scale.

Index Terms—network management, encrypted traffic classifi-
cation, incremental learning.

I. INTRODUCTION

The continuous development of Internet technology has
given rise to emerging services such as short videos and
online payments, deeply integrating into and changing people’s
lives. In recent years, with the maturity of cloud computing
technology and large language model, new directions have
emerged for Internet architecture, but this has also posed new
challenges for network management [30]. Network traffic clas-
sification can analyze various attributes of the traffic generated
by communication between devices, including application,
service type, VPN usage [14], and whether there are malicious
attacks [5], through port mapping or traffic monitoring devices.
This analysis provides intelligence support for optimizing
QoS/QoE [20], intrusion detection, and service-specific billing
by ISP [4], thereby enhancing the timeliness and effectiveness
of network management services.

However, with the growing enhancement of internet secu-
rity protection and privacy awareness, the TLS protocol has
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emerged, leading to the development of a series of encryption
protocols (such as HTTPS, QUIC, etc.) that cater to various
services. According to the Google report [1] in April 2023, the
proportion of encrypted webpages within the Chrome browser
reached 98%. While encrypted network traffic provides reli-
able privacy protection, it also presents certain challenges for
network management. Traditional traffic classification tech-
niques based on plain-text analysis are gradually becoming
ineffective. Meanwhile, the emergence of proprietary protocols
and the ever-changing communication patterns resulting from
application layer encryption significantly reduce the applica-
bility of classification techniques based on simple rules or
machine learning methods, such as those relying on ports and
statistical features [35].

Network traffic, as a standardized sequence of interaction
data, retains characteristics such as data types and sizes that
influence the segmentation of transmitted data frames, even
if the content being transmitted is obscured by encryption.
Additionally, the directionality of data transmission and the
frequency of interactions within the bi-flow can reflect certain
patterns that are useful for traffic classification. Therefore, by
extracting the packet length sequence from the transport layer
data and combining it with the directionality and temporal
frequency of packet transmission, we can obtain valuable
information. Additionally, incorporating unencrypted protocol
header provides more sufficient information gain for traffic
classification. Building upon these rich feature sets, recent
advances in deep learning architectures like transformers [25]
have shown remarkable effectiveness in processing sequential
network traffic data. Moreover, by integrating data augmen-
tation techniques like contrastive learning, these models can
further accommodate challenging real-world conditions such
as packet loss and retransmissions [36].

These sophisticated models, however, face a fundamental
challenge: network traffic data exists in a constantly chang-
ing environment. Emerging services, proprietary protocols in
new scenarios, continuously iterating application versions, and
the emergence of new types of attacks can render existing
classification models ineffective, leading to what is known as
"concept drift" [26]. For example, new Internet of Things (IoT)
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protocols can introduce new reflection pathways that result in
novel DDoS attacks, which may bypass existing traffic classi-
fication models used for intrusion detection. To handle concept
drift, defenders must typically reconstruct training datasets and
retrain their models entirely. As model complexity increases,
this retraining process becomes increasingly time-consuming,
creating dangerous delays in responding to emerging attack
patterns.

To ensure the real-time effectiveness of network traffic
classification models, researchers typically adopt incremental
learning approach to enable rapid adaptation to new samples.
Incremental learning reuses most of the parameters from the
existing model to maintain recognition performance for the
original category samples. On this basis, model fine-tuning
is performed on several network layers at the end to achieve
recognition of new types of samples. However, this approach
often faces the issue of "catastrophic forgetting," where the
fine-tuned model may significantly degrade in performance on
the original tasks, especially when there are many categories in
the classification task. To address such issues, several common
strategies have been proposed: 1. Replaying a representative
subset of the original category samples to prevent the model’s
update direction from drifting; 2. Introducing a constraint loss
function that penalizes excessive changes in model weights; 3.
Separating the parameters used for classifying new category
tasks to ensure they do not affect the performance of the
original tasks.

The first two types of methods can incur additional overhead
in model training, and the effectiveness of the improvements
is related to factors such as sample distribution, differences
between samples, and the total number of sample categories,
which makes them less deterministic. Although the approach
of separating model parameters can reliably accommodate the
classification performance of both original and new categories,
it increases the scale of the model, resulting in additional
computational and storage overhead during model deployment.
Moreover, traffic classification tasks are often high-density,
high-concurrency processes, and at critical nodes in the back-
bone network, the throughput of traffic data can reach 100
Gbps [15]. Additionally, ensuring the normal operation of
user services is a fundamental requirement across all scenarios.
However, in environments like the Internet of Things (IoT),
where devices often have limited computational power and
storage resources, it becomes especially critical for network
traffic classification tasks to minimize resource consumption.
Therefore, the parameter scale of models used for network
traffic classification should not be blindly expanded in pursuit
of classification accuracy. Thus, we aim to integrate the above
ideas and separate model parameters at appropriate times to
achieve efficient model evolution.

The challenges of adaptability brought about by contin-
uous learning naturally attract the attention of researchers.
In 2024, Shibhansh Dohare et al. proposed a study on the
plasticity properties of neural network models, providing an
effective theoretical basis for explaining the phenomenon of
"catastrophic forgetting" that occurs in incremental learning

scenarios [19]. By observing the patterns of change in neuron
parameter weights during incremental learning tasks, it was
found that as new classification tasks are introduced, a large
number of neurons become "stagnant,” meaning their weights
change very little. The decline in neuron plasticity partially
explains the reasons for catastrophic forgetting; when the
total number of tasks is too large, it becomes difficult for
the model to accommodate different classification tasks. The
introduction of neural network model plasticity provides an
important metric for assessing whether the model’s scale needs
to be expanded, guiding the orderly evolution of network
traffic classification models.

In response to the aforementioned issues, this article pro-
poses the PRIME architecture. For the newly added traffic
classification tasks, the LwF(Learning without Forgetting) al-
gorithm is first employed for replay-free incremental learning.
At the same time, the system detects the model’s plasticity
using two indicators: the proportion of inactive neurons (could
be measured by entropy efficiency) and the effective rank of
parameters. Once a decline in model plasticity is detected,
the system implements a model expansion strategy to enhance
the representational capacity of the model, ultimately training
a new model with optimal parameter size and incremental
effectiveness.

The organization of the remaining content in this paper is
as follows: Section II discusses research related to network
traffic classification and incremental learning, while Section III
introduces the concept of neural network plasticity along with
theoretical derivations of other related components. Section IV
presents the overall design of the PRIME architecture and its
associated operational mechanisms. In Section V, incremental
learning scenarios are constructed using mainstream datasets,
and the model evolution effects of the proposed architecture
are compared with those of other algorithms. The final section
summarizes the content of this paper and offers prospects for
future work.

II. PRELIMINARIES

A. Feature Extraction and Deep Learning Methods for En-
crypted Traffic

Network traffic, as a standardized form of data, contains
information at the transport and application layers that may
indicate specific application types and behavioral patterns,
including potential malicious activities. However, plaintext
fields such as address information, port numbers, and SNI
fields, which are susceptible to tampering or transforma-
tion, may lead to unnecessary associations with categorical
attributes, resulting in model overfitting. Therefore, specific
feature extraction methods are needed to capture attributes that
are highly relevant to behavior.

We refer to a general feature processing approach for
encrypted traffic [3]. The feature attributes of this traffic
unit can be roughly divided into two categories: one derived
from the transport-layer payload. The other from residual
information such as protocols and transmission modes. The
feature attributes of this traffic unit can be roughly divided into



two categories: one derived from the transport-layer payload.
The other from residual information such as protocols and
transmission modes.

For the transport-layer payload, although its plaintext infor-
mation is obscured by the TLS encryption protocol, the way
a single flow segments its transmitted data and its interaction
patterns are sufficient to establish a correlation with its class
affiliation. Therefore, for a single flow T', we extract the first
N, bytes of the transport-layer payload of the Traffic Classi-
fication object (instances longer than N, bytes are truncated;
shorter instances are zero-padded to match Np). The input is
represented in binary format, organized in a byte-wise manner,
and normalized within the range of (0,1). Let X}, denote the
final extracted feature of the payload, and b; represent the byte
representation of the payload content. The relationship can be
expressed as follows:

Xpay = [b1,b2,..,bx] /255, b; € [0,255]

The interaction of network traffic exhibits a certain
Markov property, whereby the characteristics of each data
packet—such as its size, direction, and arrival time—are influ-
enced by the transmission behavior of the preceding packet.
This intrinsic property is determined by specific behavioral
patterns and categories of applications that influence the traffic
flow. Therefore, in this study, we extract the following features
from the first N, packets to facilitate classification: (i) the
number of bytes in the transport-layer payload, (ii) the TCP
window size (set to zero for UDP packets), (iii) the inter-arrival
time, and (iv) the packet direction € 0, 1.

After extracting the features, we employed the deep learning
supervised paradigm to train the traffic classification model.
Assuming basic traffic unit 7(X,Y) for classification, where
X = [Xpay, Xnar] represents the feature vector extracted from
this sample, which is the combination of the two types of
features mentioned above, and Y is the class label of the
sample. For supervised training, the objective is to learn a
mapping function F to predict ¥ from X. Then for the model
parameter 8, we have the following equation ¥ = F(X;9).

In the regular training step of this work, the model is trained
by minimizing the cross-entropy loss:

C A
- Y Yilog(¥)
=1

Then, the parameters 6 are updated using gradient descent:
0 <— 6 — aVyL. Through this process, we enhance the model’s
capability to classify traffic flows accurately.

B. Incremental Learning and Model Plasticity Analysis

In a constantly changing network environment, traffic clas-
sification models often face samples such as application it-
erations and new types of attacks. This necessitates that the
model, while relying as little as possible on old task data, uses
incremental learning methods based on new task data to train
and enhance the model, achieving a globally optimal state that
accommodates classification tasks for both new and old sample
spaces.

Assuming the current model is facing a new traffic classifi-
cation task 7,1, after having already completed several tasks
T\ ~ T, the current incremental learning goal is to find the
model parameters 8" that satisfy:

n+1

Z E(X7j7yTj) [L(FJ(XT]-’ 9*))]

Jj=0

In the scenario of iterating on traffic classification models,
replaying old data implies the need for additional storage and
computing resources. Therefore, it is necessary to partition
the model, training additional parameters with new data while
employing certain regularization methods to prevent excessive
shifts in the model’s predictions for old tasks. Thus, the model
can be roughly divided into four parts: 8, for the frozen
parameter layer, 6 for the shared parameter layer, and 67, ,
and 6, for the classification layers related to the new and
old tasks, respectively. Here, we introduce the LwF algorithm.
First, we calibrate the initial model 6; = [6;, 65, 6,] to obtain
the predicted output Y/"*! for the new task. Then, when
updating 6; and 67, , through supervised training, we add an
additional penalty based on the deviation of the output from
8, relative to ¥,/» !, corresponds to an improved cross-entropy
function:

L* (YTle YTn+1 i <> 1/T g (ﬁg;'))l/T
Sy )I/T Zj(};gl))l/T
The overall update objectlve of the model 6* =

[6:,6;,6,,07, ] can be formulated as:

argmin AL (P, ¥/ ) L(PTH, YT ) 4 R())

é.vaéTnJr]

However, although deep learning models are mostly over-
parameterized, the capacity for model recognition is ultimately
limited, and the LwF method is highly constrained by the
correlations between tasks. Therefore, this work will perform
a plasticity assessment of the model after the LwF update
to determine whether there is a need to expand the model’s
parameter scale based on its current state. According to
relevant research [12], a decline in plasticity can lead to
poor performance of the model on incremental tasks, and the
literature has also proposed two approaches to measure the
plasticity of the model.

We find that entropy-based metrics effectively capture the
proportion of inactive neurons in our progressive expansion
scenario, as entropy values reflect the diversity and utilization
of neuronal representations. Therefore, our first approach
evaluates network capacity through an information density
measure derived from the entropy of neural activations.

For neurons in shared parameters 6;, we first compute the
Shannon entropy H of their activation distribution, then derive
an information density measure as: E; = nﬂa In this equation,
H= —Zé‘:l pilog,(p;) represents the Shannon entropy of the
activation distribution, » is the current neuron count, and ¢ is a
scaling parameter that controls the sensitivity to network scale
versus representation granularity. For computational efficiency,



we utilize the distribution of L. norms of neural activations
as a proxy for the activation distribution.

The measure E; quantifies the information density of neu-
ral representations by capturing how efficiently the network
utilizes its neuronal capacity to encode diverse activation
patterns. A lower value indicates underutilized capacity with
significant potential for expansion and performance improve-
ment, while a higher value suggests the network is approach-
ing its representational limits with limited room for further
enhancement.

The second approach is to measure the effective rank of
the model’s parameter matrix. Research indicates that if the
effective rank of a particular layer in a neural network is low,
it means that the output of that layer can be derived from a
small number of neurons. This pattern also suggests a decrease
in the model’s plasticity [29].

Due to the computational complexity involved in singular
value decomposition, this paper randomly selects a specific
layer /* of the parameters 6 for effective rank calculation each
time. Let the singular values of the parameter matrix of layer
I* be 01 > 0y > --- > 0,. We filter out singular values smaller
than threshold £ = 1 x 107 to ensure numerical stability. The
formula for calculating the effective rank is:

O; O;
R, =exp| — lo
‘ p( L ol g|c|1>

i:0;>€

where [0} = Zj:6j>£ Oj.
III. SYSTEM OVERVIEW

In this paper, we divided the operational cycle of the en-
crypted traffic classification model into three phases. The first
phase involves training a model in a static network topology,
making it difficult to recognize emerging traffic samples in real
world, which leads to obsolescence. Subsequently, incremental
learning is performed using new samples to achieve model
iteration. Finally, the model reaches an ideal state that is
suitable for the current environment, demonstrating optimal
usability alongside a well-balanced parameter scale. These
three states are illustrated in Figure 1. The PRIME archi-
tecture proposed in this article is designed to ensure optimal
efficiency throughout the entire incremental learning process
in the model iteration, achieved through a structured four-step
approach.

Remarkably, none of the steps in the PRIME method require
replaying old task data, saving storage costs. Moreover, we
deconstruct the model for encrypted traffic classification into
Fine-tune layers, Hidden layers, and the final task layer.
In our approach, only the parameters in the Hidden layers
and the final task layer are updated, while most parameters
remain frozen, resulting in significant savings in computational
resources. In the first step (A), we will employ the LwF
algorithm to conduct incremental learning on the model’s final
task layer, followed by a plasticity analysis of the model
slices adjacent to the task layer in step (B). If the plasticity
is up to standard, the update process concludes, resulting in
a simpler incremental update. Otherwise, we will move to

step (C) to formulate an appropriate model expansion strategy,
approaching the Net2Net [8] method to reasonably expand
the parameter size of the model. Finally, in step (D), by
combining the LwF and Net2Net algorithms for training in
new task scenarios, a plasticity-healthy incremental model is
obtained. Detailed explanations of each step can be found in
the respective subsections of this section.

A. LwF on Task Layer

For a small number of new classification tasks, since neural
network models are often over-parameterized, a new task layer
can be directly added to learn the new classification task. The
parameters of the new task layer and the shared layers use the
labels of the new sample, applying the cross-entropy function
to compute the loss and updating parameters using gradient
descent. Certainly, as mentioned in the Preliminaries, the LwF
algorithm should be used to avoid the catastrophic forgetting
problem. Therefore, during the initial training of the new data
samples, our system records the output logits from the original
task layer as calibration values. During the training process,
the previously mentioned constraint loss function L* is trained
in conjunction with the cross-entropy loss. The specific process
of this step is shown in Algorithm 1.

Algorithm 1 LwF Training on Task Layer

Require: new_tasks T, with TTwt1(XTnt1 yTnin)
origin model: 6, = [6;, 65, 6,]
1: Notation: learning rate: o, max epochs: f,,4y, class num of
T,,(+>1: C,.. 1, joint loss function: L, the #,;, round parameters:
6 t
The other symbols are the same as in the main text.
: Initialize model: 6, = [0, 6;, 8,] < init_model()
: Create new task layer: Or,
. Record calibration values: ¥/ « F,(XT1,6;)
. Add 67, to 6, : 61 =10,,6,,6,,67,. ]
: for epoch: t = 1 to f,4, do
Predicted value: P71 « F,, (XTw1,00))
Cross-entropy: Cott

A T, T,
L(Y’[;Hrl’YTnJrl) - _ Z Y, +1 log(Yi +1)
. i=1
9:  Joint loss:
L AL* (Pt y Tty 4 LTt y Tty L R(A1))

10: Gradient descent:

6 6V —avL; 6 <oV _avL
11:  Overall parameters: 6(") = [6;, Gs(t), 0,, 6;’2]}
12: end for
13: Training completed: 6* = [6,, Gs(lm“"), 0,, G(ZM“I")]

T, =+

B. Plasticity Evaluation

Although over-parameterized models allow for some degree
of continued compatibility with incremental tasks based on
the existing parameter scale, the original model will gradually
reach its limit in representational complexity as the number of
tasks increases. This will lead to a decrease in plasticity. In this



LwF on Task-layer Step A

Step B

Plasticity Evaluation Enhanced adaptability

Known

‘ - Update Only task layer d ":'[':fz:(:‘“;"’(":;;u ) dP m
i o with LWF T * “ Novel Attacks Trendy Apps
i @ OldTask Q Q(‘ Effective R;r;i::sl Parameter -t %E&I"U
Specifi \ Adequate P 8= Lok I—
: plasticity Rep » illp
O' Jjoint ® ] eplay-free mo 'e
< ° Crn@ @@ ¥ Frozen @‘oExtended W ctivated neremental learnin
\ ' Entropy New task labels . 6\ 3?
(a small number) L | r ? Q
: (‘ ia) @l/’é&”‘) allle
Iz, | ‘3 - n%!! . B Fine-tuned SHidde Task Usability
. I\ e Layers *CLayers®’ Layer Mt
Static Network Topology "02- ) Sufficient Plasticity, Q) g 14 : Pla -
O @,/z '\’) O optimized {nodel

%y

Net2Net Expansion /4 ; N
°
G / o AR~

Limited Undating g )
= lasticit, =
Targ_et ® p y >00> 0«00 « . e m 1| &
Machines |—’ ° M%?a. +>0 0> 0000 « & IoT Enviornment B,:c'wor;(e
Q08 {@herormance / MExpand the model with task- >0 0> g>g>g > ' Task Domain N goWork
specific layers +>00~>9>0>9 AL o9 ,% =-=
Strateqy for Model Extension  Step C StepD  LwF with Extended Layers Optimal model efficienc

Fig. 1. Overview of the PRIME System Structure

This figure illustrates the process of transitioning the encrypted traffic classification model from obsolescence to usability using the PRIME
approach, with most parameters frozen. There are four core steps involved: 1) LwF on Task Layer, 2) Plasticity Evaluation, 3) Strategy for
Model Extension, and 4) LwF with Extended Layers. When model plasticity is sufficient, only the first half of the cycle will be executed;
otherwise, the complete cycle will be performed to expand the parameter scale.

case, there will be an irreconcilable contradiction between the
model performance on new tasks and that on existing tasks.
Therefore, during the actual operation of the PRIME system,
when the simple LWF method results in the classification per-
formance of new tasks being below expectations (specifically
manifested as the cross-entropy loss of the new tasks oscil-
lating significantly above a defined value), two methods will
be employed to assess plasticity: measuring the distributional
diversity of neural activations and calculating the effective rank
of parameters. After a comprehensive evaluation, it will be
determined whether the current model has limited plasticity.
Once plasticity falls below a threshold, the PRIME system
will immediately halt the ongoing incremental learning and
proceed with the formulation of model expansion strategies.
Hence, this process occurs interspersed within Step A; for
brevity, it is not shown in Algorithm 1. The effective rank of
the parameter matrix in a certain layer of the neural network
being closer to the dimension of that layer somewhat indicates
that the feature representation capability of that layer has
reached its limit. Similarly, an entropy efficiency E; approach-
ing 0 also indicates that the model’s training has stagnated, as
it reflects a highly uniform activation distribution where most
neurons contribute minimally to the representational diversity.
Therefore, combining the effective rank and the inactive neu-
ron determination formula(the entropy efficiency) mentioned
in section Preliminaries, we can derive the parameter P that
measures the plasticity of a layer with n neurons as follows:

R
P=wlf+szs=w1~pr1+wz-prz

where ®; and @, are the weight coefficients that balance
the importance of two indicators. After obtaining the ratios
pr1 and pry, the two can be combined to form a plasticity

discriminative coefficient. Thus, we set a threshold x;. When
the plasticity indicator exceeds this threshold, we believe that
the model’s expressive capability is lacking, and it is necessary
to perform Step C.

The specific formulas for assessing plasticity and the selec-
tion of relevant thresholds need to be based on observations
of the numerical changes during normal model training, and
the detailed process is outlined in Section V.B.

C. Strategy for Model Extension

Limited representational capacity in incremental learning
scenarios can lead to severe catastrophic forgetting. However,
in the field of traffic classification, both high-throughput back-
bone network nodes and resource-constrained small devices in
Internet of Things (IoT) or mobile communication contexts
require compact models to ensure rapid processing rates
and efficient utilization of limited computational resources.
Therefore, upon detecting limited plasticity, it is essential
to implement appropriate strategies to expand the model’s
scale. The PRIME architecture employs the Net2Net algorithm
to increase the model’s width. This algorithm facilitates the
expansion of our model’s width by creating a new, larger
network that replicates the original network’s parameters and
add a slightly perturbation &. Assuming we expand a certain
layer of the model to r times its original size, the parameter
matrix for this layer @y, € R™ " can be expressed as: Wy, =
(@p1d, Ocopy + €0) € R, where @opy contains duplicated
columns from @,;;. Due to the presence of perturbations,
the newly added neurons are all in an active state, which
increases the overall activation diversity and affects the entropy
efficiency measurement. We use normalized entropy Ej to
measure parameter efficiency. This metric provides a prin-
cipled way to evaluate information density while accounting



for model complexity. The scaling behavior makes it suitable
for comparing efficiency between models of similar scale and
architecture.

For a neural network layer with parameter matrix @; € mxn
that has been expanded by a factor of r, the change in* its

. . o R
effective rank proportion can be expressed as: pr; = —¢ =

Ro+AR m
rn

The random disturbance we added follows independent and
identically distributed Gaussian random variables. Considering
the relevant inference by matrix perturbation theory [23], the
expected rank increment AR ~ min((r — 1)n,n — R), where R
is the rank of the original parameter matrix. When we handle
the traffic classification task, the number of fully connected
layers in the task layer is generally greater than 32 dimensions,
i.e., n > 32. Therefore, the increment in rank is relatively
small, so we can approximately consider that the effective rank
proportion of the model is linearly related to the scale of model
expansion.

After clarifying that the two evaluation metrics are ap-
proximately linearly correlated with the expansion scale, the
setting of the expansion scale r is related to the plasticity
threshold that triggers model expansion. It is necessary to set
an appropriate expansion ratio while avoiding excessive model
expansion or frequent triggering of expansion instructions.
The selection of related parameters is based on this strategic
standard, which is specifically elaborated in Section V.B.

D. LwF with Extended Layers

This step is similar to the LwF algorithm in Step A, but the
parameters of the model before expansion will be frozen to
fully protect the recognition performance of the old tasks. The
newly added model parameters will be trained and updated on
the new tasks according to the LwWF algorithm. In summary, we
can obtain a complete process for incremental learning under
model expansion after triggering the plasticity threshold, as
shown in Algorithm 2.

IV. EXPERIMENT
A. Dataset Preparation and Experiment Settings

In this paper, we utilize three datasets to comprehensively
evaluate the detection performance of PRIME across different
incremental learning scenarios. All three datasets focus on
classifying the application attributes of network traffic, pro-
viding diverse challenges for incremental learning evaluation.
IPTAS-Tbps [10] consists of traffic from seven mainstream
applications collected under CERNET, configured as a single
increment scenario (4+3 classes) for evaluating basic task
extension capabilities.

ISCX-VPN2016 [13] contains traffic from applications under
VPN and non-VPN scenarios, creating low task similarity
conditions that represent challenging incremental learning
scenarios.

MIRAGE19 [2] encompasses traffic from 40 Android appli-
cations, configured for continual increment evaluation with 10
base classes plus 2 classes per subsequent stage.

Algorithm 2 LwF Training with Model Extension via Net2Net

Require: new_tasks 7,1 with T7n1(XTnt1 yTutr)
origin model: 6; = [0, 6y, 6,]
Notation: Expansion scale: r, expanded parameters: O,
parameter duplication: 6y
The other symbols are the same as in the main text and
algorithm 1.
2: Initialize model: 6, = [6;, 05, 0,] + init_model()
Model Extension: 6g <— Net2Net(6y, Ocopy - (1 —r) +€)
4: Create new task layer: 0r,
Freeze original parameters: 6., 6,6,
6: Record calibration values: ¥/ « F,(X™+1, 6p)
Combine parameters: 6% = [6.,6E,6,,6r, ]
8: for epoch: r = 1 to t,4, do
Predicted value: P71 < F,\ y(XTnt1, 6(’>)
10:  Cross-entropy: Cost
L(?Tn+|’yTn+1> - _ Z YiTrHrl log()’}iTrHH)
i=1

Joint loss:
L AoL* (Pt y Tty 4 LTt y Tty 4 (A1)
12: Gradient descent:
Gg) — 6};71) —aViL; 6}21 «— 6;':'1) —aVL

Overall parameters: 6(") = [6,, Gé”, 6,, 9;:11]

14: end for (i) (i)
.. tmax tmax
Training completed: 6* = [0, 6, ;600,07 ]

These datasets collectively enable comprehensive assess-
ment of PRIME’s performance across varying incremental
learning complexities, from simple single-step extensions to
complex multi-stage continual learning with different degrees
of task relatedness.

In our experiments, we utilized deep learning models im-
plemented with PyTorch 2.0.0 and CUDA 11.7. Data pre-
processing and post-processing were primarily conducted
using the NumPy and Scapy libraries. For graphical data
representation, we employed Matplotlib and MATLAB. All
experiments were performed on a PC with the following hard-
ware specifications: a 13th Gen Intel® Core™ i7-13700KF
processor running at 3.40 GHz, 32 GB of RAM, and an
NVIDIA GeForce RTX 4080 GPU. The operating system used
was Windows 11.

B. Model plasticity detection and parameter selection

To gain a more intuitive understanding of the relationship
between model plasticity and detection performance, as well
as to establish a reasonable plasticity threshold for the PRIME
system, we first need to observe the entropy efficiency of
inactive neurons and the distribution of parameter effective
rank within the model parameters when they are at their
limits. We have designed a basic model architecture based
on the transformer to handle classification tasks on the three
datasets. The transformer architecture [33] employs multihead
attention composed of queries(Q), keys(K), and values(V),
enabling it to extract sequential dependencies across varying



spans, thus fulfilling the analytical requirements for both flow-
level and packet-level modalities. The specific model structure
parameters and hyper-parameters utilized for training each
traffic classification task are presented in Table I.

TABLE I
ARCHITECTURE AND HYPER-PARAMETERS OF UNIFIED MODELS

Value

912dim, 2 heads
[912, 256, 64, Ntarget]

Parameter

Transformer Encoder
Linear Layers

Optimizer Adam, le-3

LR Scheduler ReduceLROnPlateau
(factor=0.5, patience=5)

Activation ReLLU

Dropout, Batch Size, Epochs 0.2, 512, 30

Loss Function Cross-Entropy

We first aim to determine the relationship between the
effective rank ratio of parameter matrices and model accuracy.
Therefore, the experiment initially sets the Transformer layer
as a shared pre-trained layer, followed by two fully connected
operations serving as hidden layers to measure factors related
to model plasticity, and finally connects a task layer of
equivalent dimensions to output logits that directly provide
classification information.

First, we deploy models with varying hidden layer sizes
on the MIRAGE19 dataset, with the two fully connected layer
dimensions ranging from 64 to 512. To facilitate observation of
the impact of effective rank ratio on classification performance,
we set the second hidden layer dimension uniformly to 64,
then observe the classification performance when the first
hidden layer dimensions are 64, 128, 258, 512, and 1024
respectively, and record the effective rank ratio of that layer
when the model approaches convergence. The experimental
results are shown in Figure 2. All experimental data in this
paper are uniformly partitioned into 75% training set, 10%
validation set, and 15% test set. All experimental results are
obtained from 10 repeated experiments, with the dataset being
randomly partitioned and shuffled for each experiment.

Effective Rank Ratio vs Accuracy Across Parameter Scales
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Fig. 2. Under conditions of limited model plasticity, recognition accuracy
decreases as the effective rank ratio increases.

The blue line in Figure 2 demonstrates the variation of
model classification accuracy with model scale. It can be

observed that when the number of neurons in the first layer is
below 512, classification performance decreases as the number
of neurons decreases, while beyond 512 dimensions, model
classification performance shows no further improvement.
Therefore, we can consider that when dimensions exceed 512,
the model’s representational capacity, i.e., plasticity, is suffi-
cient, whereas when dimensions are at or below 256, plasticity
is in a limited state. Through the effective rank ratio values in
the bar chart, it is evident that the more insufficient the model
plasticity, the closer this ratio approaches 1, which aligns
with conclusions from related research and our aforementioned
expectations. Combined with the accuracy results, we can
approximately conclude that when this ratio (i.e., pri) exceeds
0.85, the model plasticity is in a limited state and requires
triggering expansion strategies. Correspondingly, when this
value is below 0.8, the model’s representational capacity can
be considered sufficient at that time point.

A single indicator is not sufficiently stable, so we also
introduce information density based on entropy calculation
of neuronal activation as a discriminative factor. By calcu-
lating the information density of the first hidden layer for
models with two-layer dimensions of [512,64] and [256,64]
representing these two critical states, the average values are
approximately 0.75 and 0.95, respectively. In Figure 3, we
present the distribution of infinity norm of neuronal outputs for
the selected layers of these two models, using kernel density
estimation to demonstrate their probability density differences.
It is evident that in models with more sufficient plasticity,
neuronal outputs are more balanced (with peaks significantly
lower than in the upper subplot). Models in this state typically
possess stronger representational capacity, which validates the
effectiveness of our established discriminative factors.

Hiddon Layors: [256,64] (Es = 0.12)
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Infinity Norm Values.

Fig. 3. Sufficient plasticity leads to more uniform output distribution which
means greater information density growth potential.

In summary, combining the sensitivity to parameter expan-
sion changes (the gap between information density trigger
threshold and safety threshold is approximately 4 times that of
the effective rank ratio) and the safety and trigger node values
of the two factors, we can establish the plasticity determination
formula: k5 = 0.8pr; +0.2pr,.

C. Effect analysis under different incremental scenarios

To evaluate the performance of continual learning algo-
rithms, we adopt five widely-used metrics. Average Accu-



TABLE II
PERFORMANCE COMPARISON ACROSS DIFFERENT INCREMENTAL LEARNING SCENARIOS

Scenario Method AAT BWT 7 closer to 0 FWT1 FAT
Single Increment Base 0.814£0.052 —0.343+0.195 0.804£0.077 | 0.730£0.123
(IPTAS-Tbps) LwF 0.819+£0.070 —0.429+0.311 0.827+£0.065 | 0.722+0.156
4+3 classes EWC 0.807 £0.064 —0.470+0.297 0.834+£0.057 | 0.684+0.160
PRIME (ours) | 0.856+0.117 -0.140 £ 0.391 0.689+£0.137 | 0.787 £0.246
Base 0.703 £0.052 —0.342+0.136 0.804+0.049 | 0.595+0.088
Low Task Similarity | LwF 0.716 £0.125 —0.361+0.076 0.773£0.068 | 0.585+0.178
(ISCX-VPN2016) EWC 0.691+0.141 —0.413+0.273 0.775+£0.051 | 0.532+0.210
PRIME (ours) | 0.775+0.098 -0.165 £ 0.167 0.700£0.100 | 0.703 £0.159
Continual Increment Base 0.642+0.032 —0.412+0.043 0.837+0.020 | 0.5724+0.063
(MIRAGE19) LwF 0.649 +0.044 —0.375+0.045 0.835+£0.017 | 0.585+£0.055
1042 per stage EWC 0.662+0.038 —0.349+0.031 0.833£0.017 | 0.605+£0.065
PRIME (ours) | 0.685+0.051 -0.259 £0.038 0.774£0.018 | 0.640+0.033
*All data presented as mean + half-range
Base LwF PRIME
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Fig. 4. Polar Visualization of Algorithm Performance of Continual Incremental Scenarios

racy (AA) measures the overall performance across all tasks:
%ZiTlei,i, where R;; is the accuracy on i, task. Backward
Transfer (BWT) quantifies the effect of learning new tasks
on previous ones: ﬁ l.T;ll [Rr,i —Ri;], where negative values
indicate catastrophic forgetting. Forward Transfer (FWT) mea-
sures how prior learning benefits new tasks: ﬁ ZiTzz [Ri—1,i—
Ry ;], where Ry ; represents random initialization performance.
Final Accuracy (FA) evaluates the model’s final performance:
%ZL1RT,i- Higher values are better for AA, FWT, and FA.
For BWT, values close to zero or positive are preferred, as
negative values indicate catastrophic forgetting.

We evaluate PRIME against established algorithms (LwF
and EWC) on three datasets representing diverse incremental
learning scenarios. IPTAS-Tbps uses a 4+3 class setup for
single increment evaluation. ISCX-VPN2016 tests robustness
under low task similarity conditions with minimal overlap
between tasks. MIRAGE19 examines continual learning with
10 base classes plus 2 classes per subsequent stage.

Each dataset is randomly shuffled before train/test splitting,
with multiple experimental repetitions to ensure robust com-
parisons across algorithms and scenarios ranging from simple
task extensions to complex multi-stage continual learning.

1) Single incremental scenarios with IPTAS-Tpds: As
shown in Table II, in the single increment learning scenario
with IPTAS-Tbps dataset (4+3 classes), our proposed PRIME
method demonstrates superior performance compared to base-
line approaches. PRIME achieves the highest AA and FA,
significantly outperforming Base, LwF, and EWC methods.
Most notably, PRIME exhibits exceptional resistance to catas-
trophic forgetting with substantially better BWT performance

compared to other methods. While EWC shows slightly better
FWT capability, PRIME strategically trades off a portion
of forward recognition accuracy for significant mitigation of
catastrophic forgetting, resulting in better overall accuracy
performance. This design choice allows PRIME to maintain
competitive forward learning ability while achieving the best
overall balance between learning new tasks and retaining
previous knowledge.

2) Low task similarity incremental scenarios with ISCX-
VPN2016: As shown in Table II, under the low task similarity
scenario on ISCX-VPN2016, where we partition the applica-
tion classification into four task types: "Chat", "Streaming",
"File Transfer", and "Others", our proposed PRIME method
significantly outperforms all baseline approaches. While tra-
ditional methods like EWC and LwF struggle in scenarios
with low task similarity, exhibiting severe catastrophic for-
getting, PRIME demonstrates superior knowledge retention
with substantially improved backward transfer performance.
Additionally, PRIME achieves the highest average accuracy
and final accuracy, indicating its effectiveness in both learning
new tasks and preserving previously acquired knowledge when
tasks are dissimilar.

3) Continual incremental scenarios with MIRAGEI9: As
shown in Table II, in the continual increment scenario on
MIRAGE19 with 10+2 classes per stage, PRIME consistently
outperforms all baseline methods across key continual learning
metrics. Our approach achieves the highest AA(0.685) and
FA(0.640), demonstrating its effectiveness in incrementally
learning new classes. Most importantly, PRIME exhibits sig-
nificantly reduced catastrophic forgetting with a backward



transfer of -0.259, substantially outperforming Base (-0.412),
LwF (-0.375), and EWC (-0.349). While the forward transfer is
slightly lower than baseline methods, PRIME’s superior ability
to retain knowledge from previous stages makes it particularly
well-suited for practical continual increment scenarios where
preserving learned representations is crucial. Besides, Figure
4 illustrates the continual learning performance comparison
across four approaches. The baseline method (leftmost) shows
significant performance degradation in later stages, evidenced
by darker colors in the outer regions. The two comparative
algorithms, LwF and EWC (second and third from left),
demonstrate moderate improvement but still exhibit substantial
forgetting. In contrast, our proposed PRIME algorithm (right-
most) maintains superior performance retention, characterized
by predominantly lighter colors in the outer regions, indicating
better resistance to catastrophic forgetting across sequential
tasks.

V. RELATED WORK
A. Encrypted Traffic Classification

Research on encrypted traffic classification has evolved from
traditional techniques to more advanced methods due to the
reduced availability of plain-text information caused by en-
cryption protocols like TLS/SSL. Initially, port-based [18] and
payload-based [35] approaches utilized plain-text information
for traffic classification, but the trend toward traffic encryption
and the use of dynamic port mapping have rendered these
methods ineffective. The focus has since shifted to machine
learning and deep learning techniques. While early machine
learning methods, such as decision trees and K-nearest neigh-
bors [17], offered some advancements, they largely relied
on statistical features and struggled to effectively handle the
sequential characteristics of network traffic.

The rise of deep learning has significantly enhanced traffic
classification. Advanced architectures, such as residual net-
works [16], facilitate deeper feature extraction. For example,
Wei et al. transformed session-grouped packet data into image
pixels for CNN classification [34]. Chen et al. developed the
LS-LSTM model to analyze sequence features in encrypted
traffic, achieving higher accuracy [9]. In recent developments,
Dai applied the Transformer model from natural language
processing to traffic classification in 2022 [11], and M Shen et
al. successfully utilized graph neural networks for classifying
encrypted traffic in 2021 [31].

B. Incremental Learning

Incremental learning aims for rapid adaptation to new tasks
through model fine-tuning in the face of complex data changes.
These methods typically leverage new and a small amount
of old data to adjust certain parameters, which can lead to
"catastrophic forgetting”. This phenomenon occurs when a
model improves on new data but performs poorly on old tasks
due to excessive reliance on new data training. Commonly
used strategies to mitigate this issue include regularization
constraints, data replay, and parameter separation [6].

In a certain year, Zhizhong Li and Derek Hoiem proposed
the LwF(Learning without Forgetting) algorithm [24], which
constrains the deviation of old model predictions to avoid
excessive updates. However, its effectiveness declines as task
relevance weakens. Similarly, James Kirkpatrick et al. intro-
duced the EWC method [21], which incorporates parameter
change penalties to prevent over-updating. Additionally, data
replay methods, like iCaRL [28], select representative old data
to avoid forgetting but require extra storage and computational
resources. Variants using GANs [32] or VAE [27] substitute
storage with computational costs without solving the underly-
ing issue.

Another approach expands model size using gating neurons
while keeping parameters for old tasks unchanged. While this
mitigates forgetting, larger models consume more memory,
affecting training and application.

Some traffic classification studies have utilized incremental
learning methods, such as: MEMENTO [7], CILAEMTD [22].
However, these approaches only employ specific categories of
the aforementioned incremental learning techniques.

C. Plasticity in deep continual learning

Shibhansh Dohare et al. [12] proposed research on model
plasticity in incremental learning, discovering that certain
model metrics are closely related to the learning effectiveness
of models in incremental tasks. They summarized these met-
rics as model plasticity. Experiments showed that when model
plasticity declines, there is a noticeable drop in performance
across various tasks, including incremental updates in deep
learning classification tasks, fitting tasks, and reinforcement
learning-related tasks.

VI. CONCLUSION AND FUTURE WORK

The proposed PRIME architecture innovatively introduces
effective rank ratio and information density-based neuron
inactivity assessment of the observation layer to determine
model plasticity, i.e., expressive capacity. This approach is par-
ticularly suitable for encrypted traffic classification scenarios
where samples evolve rapidly but computational resources are
often constrained, enabling timely model expansion to achieve
better efficiency.Across various incremental learning scenarios
constructed from multiple datasets, PRIME achieves superior
performance over mainstream algorithms across multiple met-
rics, requiring only 1-2 minimal-scale model expansions based
on our observations.

However, plasticity metrics introduce additional computa-
tional overhead. Our findings reveal complex correlations be-
tween plasticity variations and newly introduced task charac-
teristics, requiring further investigation. Future research should
focus on optimizing observation intervals, exploring alternative
model expansion methods, and developing analytical frame-
works for task-plasticity relationships.
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