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ABSTRACT 
Graphics processing units (GPUs) are becoming an essential part of the intelligent transportation system 

(ITS) for enabling video-based and artificial intelligence (AI) based applications. GPUs provide high-

throughput and energy-efficient computing for tasks like sensor fusion and roadside video analytics. 

However, these GPUs are one of the most unmonitored components in terms of security. This makes them 

vulnerable to cyber and hardware attacks, including unauthorized crypto mining. This paper highlights GPU 

security as a critical blind spot in transportation cybersecurity. To support this concern, it also presents a 

case study showing the impact of stealthy unauthorized crypto miners on critical AI workloads, along with 

a detection strategy. We used a YOLOv8-based video processing pipeline running on an RTX 2060 GPU 

for the case study. A multi-streaming application was executed while a T-Rex crypto miner ran in the 

background. We monitored how the miner degraded GPU performance by reducing the frame rate and 

increasing power consumption, which could be a serious concern for GPUs operating in autonomous 

vehicles or battery-powered edge devices. We observed measurable impacts using GPU telemetry (nvidia-

smi) and nsight compute profiling, where frame rate dropped by 50 percent, and power usage increased by 

up to 90%. To detect, we trained lightweight classifiers using extracted telemetry features. All models 

achieved high accuracy, precision, recall, and F1-score. This paper raises urgent awareness about GPU 

observability gaps in ITS and offers a replicable framework for detecting GPU misuse through on-device 

telemetry. 

 

Keywords: GPU security, crypto mining detection, intelligent transportation systems, edge computing, 

Nsight Compute, AI application, transportation cybersecurity, video analytics.  
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INTRODUCTION 

Graphics Processing Units (GPUs) have become essential components in modern transportation 

systems in enabling intelligent infrastructure and vehicles. From smart roadside units (RSUs) equipped with 

video analytics to traffic surveillance cameras and advanced driver-assistance systems (ADAS), GPUs 

empower real-time processing of high-resolution data streams. Their parallel computing capabilities 

support critical tasks such as object detection, license plate recognition, and traffic flow analysis. The 

integration of GPUs in both stationary and mobile platforms has enhanced the responsiveness and 

intelligence of transportation networks, contributing to smarter and safer roadways (1)(2). 

This evolution represents a significant shift from traditional CPU-bound systems to GPU-

accelerated edge intelligence. Modern platforms such as NVIDIA Jetson AGX Orin, Jetson Xavier, and 

DRIVE PX have been widely adopted in autonomous vehicle prototypes and edge devices (3), offering 

substantial improvements in performance per watt for machine learning workloads. Even discrete GPUs 

like NVIDIA's RTX series are increasingly used in research-grade automotive testbeds for rapid 

prototyping and on-board AI inference. These platforms enable complex computations at the edge, reducing 

latency, lowering bandwidth consumption, and increasing overall system efficiency (3)(4). 

Despite the widespread deployment of GPUs in transportation infrastructure, security models have 

not kept pace with this technological shift. Traditional cybersecurity frameworks predominantly focus on 

protecting the operating system, CPU-bound processes, and network-level communication. As a result, 

GPU workloads, especially those executed at the kernel level or through vendor-specific APIs like CUDA 

or OpenCL, often fall outside the visibility of conventional endpoint detection and response (EDR) tools 

(5)(6) . This blind spot creates a critical vulnerability in modern intelligent transportation systems. 

GPU processes can be exploited without triggering standard alerts, which allows attackers to 

stealthily run malicious workloads such as unauthorized cryptocurrency miners. For example, a stealth 

crypto miner embedded in a roadside AI unit or autonomous vehicle can quietly drain computational 

resources, leading to significant degradation in system performance. This includes reduced frames per 

second (FPS) in vision pipelines, thermal throttling, increased power drawing, and even delayed safety-

critical responses. These safety-critical applications include pedestrian detection (7) or collision avoidance 

(8) , which can be affected by the stealthy miner without being flagged by traditional security mechanisms. 

Such threats pose direct risks to both passenger safety and infrastructure integrity. 

This paper addresses the missing link between GPU deployment and GPU security in transportation 

systems. First, it highlights emerging threats that specifically exploit GPU resources in ITS. Next, it reviews 

current detection methods, including profiling tools and telemetry analysis, that have potential for GPU-

focused anomaly detection. We present a case study in the paper, demonstrating the feasibility of detecting 

unauthorized GPU miners using onboard telemetry and performance counters. Finally, the paper gives 

directions for future research, secure deployment strategies, and the need for standardized GPU-aware 

security models across transportation platforms. 

 

GPU IN MODERN TRANSPORTATION SYSTEMS 

 In modern intelligent transportation systems (ITS), GPU plays a vital role in powering a wide range 

of critical applications that require real-time, high-throughput computation. At the core of many ITS 

deployments is computer vision, where GPU accelerates object detection, traffic violation monitoring, and 

vehicle tracking using deep learning models. Whether deployed in roadside cameras or mounted on 

infrastructure at intersections, GPUs process high-resolution camera feeds to identify pedestrians, recognize 

license plates, classify vehicle types, and detect red-light running or speeding incidents (9)(10). These tasks 

demand rapid inference speeds and parallel computation to ensure minimal latency capabilities that 

traditional CPU-bound systems cannot provide (11). Moreover, advanced video analytics, including motion 

trajectory analysis and multi-object tracking, benefit from the parallelism of GPU architecture, which makes 

them indispensable for cities. These characteristics of the GPU help to automate traffic management or 

improve situational awareness on busy roadways. 

GPUs also empower ITS in real-time sensor fusion for cooperative perception at intersections and 

other high-traffic zones. In these environments, multiple data sources such as LiDAR, radar, video feeds 
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(12), and V2X messages (13) must be fused to form a comprehensive, low-latency environmental model. 

This cooperative perception is vital for early hazard detection and coordinated decision-making between 

smart infrastructure and connected vehicles. GPUs facilitate this fusion by running parallel algorithms and 

real-time AI-based perception models. Their ability to handle heterogeneous sensor data at high throughput 

enables smarter, safer interactions at intersections, especially where human visibility or vehicle line-of-

sight is limited (14). 

Within vehicles, especially those supporting Advanced Driver Assistance Systems (ADAS) and 

autonomous driving features, GPUs are central to decision-making and perception. Tasks such as 

simultaneous localization and mapping (SLAM) (15), 3D semantic segmentation, lane detection, and 

trajectory planning require not just rapid computation but also low-power acceleration, an area where 

modern automotive-grade GPUs excel (16). Neural networks used for obstacle avoidance, path prediction, 

and driver monitoring rely heavily on GPU parallelism for real-time inference. High-end autonomous 

platforms use convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformers 

for continuous sensing and control (17). These AI workloads are too intensive for CPUs or microcontrollers 

alone, making onboard GPUs essential for both safety and performance (18). 

To meet the diverse computational needs of these ITS applications, a variety of GPU-based 

hardware platforms are employed across the transportation ecosystem. The NVIDIA Jetson Orin platform 

has become standard in edge-deployed smart roadside units (RSUs) and traffic cameras, providing a 

compact, low-power solution with robust AI acceleration. Jetson Orin can run full perception pipelines 

locally, enabling infrastructure to respond to dynamic traffic conditions in real time. For autonomous 

vehicles, especially shuttles or industrial fleets, NVIDIA’s AGX platform offers an automotive-grade 

solution designed for mission-critical AI tasks (19), featuring redundant safety mechanisms and deep 

learning optimization(18). Additionally, RTX-series GPUs commonly used in consumer desktops are 

increasingly adopted in development kits and traffic analytics systems, where researchers and engineers 

need flexible, high-performance computing for prototyping or running pilot deployments. These GPUs 

offer powerful compute and Tensor Core acceleration, making them suitable for testing perception and 

planning algorithms before transitioning to embedded or production-grade platforms. 

Despite their capabilities, GPUs deployed in field-based ITS systems face a unique set of 

constraints. These edge devices must operate autonomously and reliably in outdoor or vehicular 

environments with limited connectivity, power, and maintenance support. For example, an RSU might be 

mounted on a traffic pole without constant network access or physical security, making remote diagnostics 

or software updates difficult. This necessitates that the GPU-based system not only performs its primary 

tasks but also be resilient to faults and adaptive to environmental changes. Furthermore, these edge-

deployed GPUs are often underutilized relative to their computer capacity, running on intermittent 

workloads depending on traffic density and time of day. This underutilization, combined with the lack of 

real-time monitoring and fine-grained resource auditing, creates an attractive attack surface for malicious 

or unauthorized usage. For instance, a stealthy crypto miner could exploit idle GPU cycles (20) without 

triggering conventional alarms, leading to overheating, degraded AI performance, and compromised safety, 

a risk largely overlooked in traditional ITS security models (21). Thus, while GPUs significantly elevate 

the capabilities of ITS systems, their powerful, low-visibility nature also introduces new security challenges 

that demand closer attention from both researchers and practitioners. 

 

GPU SECURITY RISKS  

The misuse of GPU resources in intelligent transportation systems (ITS) is no longer a hypothetical 

concern; it is an emerging security challenge with safety and operational consequences. One of the most 

immediate risks is unauthorized crypto mining. In GPU-accelerated platforms such as smart roadside units 

(RSUs), traffic analytics boxes, or in-vehicle systems, idle GPU cycles can be hijacked to run crypto mining 

algorithms without the operator’s knowledge (20). This form of “cryptojacking” drains power, causes 

excess heat generation, and degrades performance, particularly during off-peak hours. Such attacks have 

been demonstrated in academic studies, where GPU-based miners can be embedded within machine 

learning pipelines and escape traditional endpoint detection systems. Other studies further show how GPU-
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based crypto miners can be injected into poorly secured edge devices, converting computational 

infrastructure into silent, energy-intensive mining nodes. 

Beyond mining, GPUs open up a new vector for covert computation. Unlike CPUs, which are 

typically subject to process-level monitoring and host-based intrusion detection, GPU workloads often 

execute in isolated memory spaces using separate kernel streams (22)(23). This creates a blind spot for most 

IT security tools. Attackers can exploit this by embedding malicious GPU kernels into otherwise benign 

applications, for instance, hijacking the Tensor cores to conduct password cracking, data exfiltration, or AI 

model inversion, all without involving the core processor. This form of stealth computation is particularly 

dangerous in ML environments because of the lack of mature runtime security for inference engines and 

accelerators. The covert nature of these tasks, coupled with the high throughput of modern GPUs, makes 

them ideal platforms for stealthy attacks that escape detection entirely (24). 

Another underexplored but dangerous risk lies in denial-of-service (DoS) (25 )scenarios caused by 

GPU kernel abuse. A malicious actor can write kernels that consume all shared memory, loop infinitely, or 

saturate thread blocks, leading to congestion in the GPU’s execution pipeline (26). On real-time 

transportation systems, this is catastrophic. For example, a smart camera processing intersection video feeds 

may begin to drop frames or output delayed detections if its GPU is locked in an unauthorized loop. 

Autonomous driving stacks could experience blocked inference pipelines (27), causing perceptual or 

decision lag. These kernel-level DoS conditions can disrupt critical scheduling, cause device reboots, or 

stall safety systems in edge environments. 

Closely tied to these issues is the phenomenon of thermal degradation. Unlike cloud GPUs housed 

in climate-controlled data centers, GPUs in roadside or in-vehicle deployments are exposed to 

environmental temperature variations and often rely on passive cooling (28). Continuous high-load 

operations, especially unauthorized ones like crypto mining, cause sustained thermal stress that can degrade 

GPU silicon over time, reduce reliability, and even trigger thermal throttling that slows down safety-critical 

workloads (29). While thermal throttling protects hardware, it leads to degraded AI performance, 

potentially impacting time-sensitive perception and planning tasks. In systems meant to operate for years 

without maintenance, this degradation presents a real-world reliability concern, especially in under-

maintained roadside infrastructure (29). 

These vulnerabilities translate into concrete failures in ITS operations. A GPU compromised by 

rogue code or mining activity may begin to lag in perception tasks such as object detection from video or 

radar input. As frame rates drop or detection latency increases, important visual cues like a pedestrian 

entering a crosswalk or a vehicle running a red light can be missed (30). Similarly, in cooperative perception 

systems that fuse camera and LiDAR data, GPU lag can lead to misaligned fusion, producing a false or 

stale view of the environment. In connected vehicle contexts, GPU-bound delays in V2X message fusion 

or validation could disrupt real-time safety coordination (31), leading to missed alerts or incorrect actions 

at intersections. 

A key part of this problem is that most edge systems lack security tools with GPU-level visibility. 

Traditional security agents focus on file systems, network behavior, and CPU process trees. However, GPU 

workloads operate through separate APIs (e.g., CUDA), run in separate memory, and often don’t generate 

audit trails accessible to host-based monitoring tools. Tools like NVIDIA Management Library (NVML) 

or CUPTI (for GPU telemetry) are required to observe power usage, memory allocation, and kernel 

execution, but these tools are often disabled or not installed in production environments due to IT policies 

or driver limitations. Research-grade installations may leave CUPTI disabled to reduce overhead, and 

industrial deployments may not expose NVML due to a lack of software integration. This creates a critical 

blind spot, where GPU abuse can persist indefinitely without visibility or alerts. 

The entry points for attackers are diverse and feasible for GPUs. In many deployments, systems 

rely on remote management or over-the-air (OTA) software updates, both of which can be exploited. If an 

attacker phishes a system administrator or compromises the OTA pipeline, they can insert malicious GPU 

binaries during what appears to be a routine update. Worse yet, many roadside units and cameras are 

physically accessible or insecurely mounted. A USB drive dropped into a roadside cabinet or an exposed 

debug port on a pole-mounted RSU can provide physical access to the system’s storage or bootloader, 
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enabling payload injection. Once deployed, the GPU kernel code can remain dormant or lightly loaded, 

avoiding detection while continuously mining or degrading system function (32). 

In conclusion, the misuse of GPU resources in transportation infrastructure represents a form of 

silent safety degradation. Unlike network attacks that generate alerts or malware that crashes systems, GPU 

abuse hides in plain sight, gradually slowing perception, introducing errors, and accelerating hardware 

aging. These effects, though subtle, compromise the responsiveness and trustworthiness of ITS systems. As 

the field moves toward increasingly GPU-reliant architectures, whether for AVs, RSUs, or infrastructure 

analytics, it is essential that researchers and operators treat GPU runtime integrity as a first-class security 

concern. This means investing in GPU-aware monitoring tools, hardening update channels, and establishing 

behavioral baselines for edge AI workloads to ensure both safety and resilience. 

 

REVIEW OF EXISTING DETECTION METHODS FOR GPU INCURSION  

While GPUs have become indispensable for real-time AI in transportation systems, detection 

mechanisms to secure them remain underdeveloped. Unlike CPUs, which benefit from decades of robust 

monitoring infrastructure, GPUs lack standardized, field-viable security research. This section surveys the 

state of current detection techniques and their limitations in real-world intelligent transportation settings. 

 

Existing Detection Techniques 

Several approaches have been explored for detecting malicious or unauthorized GPU activity, often 

repurposed from CPU-centric or data center contexts: 

CPU Hardware Performance Counters (HPCs) are frequently used to detect anomalies in 

instruction flow, cache usage, and branch prediction features commonly exploited by malware. However, 

these counters are limited to CPU execution and offer no visibility into GPU-side operations such as CUDA 

kernel launches, memory transfers, or shared memory utilization (33). Thus, they are ineffective for 

detecting GPU-resident threats like crypto miners or covert AI workloads running in edge devices. 

External Sensors, including power side-channel analysis tools and electromagnetic (EM) probes, 

have been used to detect unauthorized GPU behavior in lab environments. For instance, Xiao et al. (34) 

demonstrated power trace-based detection of hidden workloads by analyzing EM leakage patterns. While 

effective in controlled setups, these methods are impractical for deployment in fielded systems like roadside 

units (RSUs) or in-vehicle compute boxes due to cost, complexity, and environmental noise sensitivity. 

Power-Based Monitoring via APIs such as NVIDIA’s NVML (NVIDIA Management Library) or 

tools from the RAPIDS suite provides access to metrics like GPU power draw, memory usage, and thermal 

readings. While theoretically useful for detecting sustained abnormal loads from stealthy mining or 

inference hijacking, such telemetry access is frequently restricted on enterprise-managed or production edge 

systems. Additionally, API-based monitoring is often blocked for non-root processes or sandboxed 

environments due to security policies, further limiting its real-world utility. 

 

Absence of Continuous Runtime Solutions 

Current transportation deployments lack continuous, runtime GPU data access. Security policies within ITS 

architecture and vehicle control systems often omit the GPU entirely, treating it as an opaque co-processor 

rather than an actively monitored subsystem (35). This oversight leaves systems vulnerable to persistent 

stealth threats that degrade performance or manipulate sensor inference without raising alerts (36). 

 

CASE STUDY: ON-DEVICE DETECTION OF GPU CRYPTOMINING 

Graphics processing units (GPUs) are becoming a critical component in the operation of intelligent 

transportation systems. They are used for real-time video analytics, object detection, and sensor data 

processing that enable safe and responsive AI behavior on the road. However, despite their growing role, 

GPU activity often remains unmonitored, leaving them exposed to silent misuse. One such threat is 

unauthorized crypto mining, where malicious software hijacks the GPU’s computing resources for profit 

without disrupting visible operations (20). These miners can operate in the background of safety-critical 

applications, draining power and slowing down performance in ways that may go unnoticed. 
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In this case study, we examine how the presence of a crypto miner affects a GPU-based perception 

workload and whether this misuse can be identified using only on-device monitoring tools. We set up a 

video streaming application using YOLOv8 to simulate a roadside AI system, and introduced a T-Rex 

crypto miner configured to mine Ravencoin using the KawPoW algorithm. Both tasks ran simultaneously 

on the same GPU, mimicking a stealth attack that could occur in a real-world edge deployment. The goal 

was to observe changes in performance and GPU behavior under malicious load and to test if these changes 

could be used to detect the threat reliably without external sensors or privileged system access. 

 

Experimental Setup 

To simulate a transportation-focused edge computing environment, we designed a desktop testbed that 

mimics the conditions of a roadside AI unit. The experimental setup used for emulating a roadside GPU 

environment is summarized in Table 1. 

 

Table 1: Experimental Setup Summary 

 

Component Description 

CPU AMD Ryzen 5 3600 

GPU NVIDIA RTX 2060 Super 

RAM 8 GB 

OS Windows 10 Pro 

Benign Workload Multi-stream YOLOv8 (video detection) 

Malicious Workload  T-Rex Miner (KawPoW for Ravencoin) 

Telemetry Tools nvidia-smi, Nsight Compute 

 

For the benign workload, we used a multi-streaming video application running YOLOv8 to perform 

object detection on 1080p video feeds. This mirrors the perception workload common in roadside cameras 

or in-vehicle vision modules. For the malicious workload, we introduced the T-Rex cryptominer, 

configured to mine Ravencoin using the KawPoW algorithm. The miner was launched without 

administrative privileges to simulate a stealth attack in a real-world edge node where security controls may 

be limited. 

To capture system behavior under both normal and compromised conditions, we used two telemetry 

tools. The first was nvidia-smi, which logged metrics like GPU utilization, memory usage, and power draw. 

The second was Nsight Compute, which profiled kernel-level behavior, including streaming multiprocessor 

throughput, memory bandwidth, and kernel execution time. Data was collected under two conditions: 

YOLOv8-only (benign), and YOLOv8 with the miner running in the background. 

 

Results and Observations 

We observed a noticeable drop in system performance when the cryptominer started running in the 

background alongside the video processing workload. With only YOLOv8 active, the GPU maintained a 

stable frame rate of about 28 frames per second, and power usage remained around 65 watts. After the T-

Rex miner was launched, the frame rate dropped to 14 frames per second, cutting the processing speed in 

half (Figure 1). This reduction in throughput directly affects the ability of a transportation system to process 

real-time camera input. The frame rate drop is shown clearly in the plot, where performance begins to fall 

immediately after the miner starts. 
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Figure 1: Average Frame Rate: With vs Without Miner 

 

At the same time, power consumption increased to around 95 watts. The second plot (Figure 2) 

illustrates this power rise, showing how the miner creates sustained energy demand. GPU utilization also 

rose sharply and remained at 99 percent, meaning the miner consumed nearly all available processing 

resources. Memory usage increased from approximately 2800 MiB to 3900 MiB, which could reduce 

available memory for critical applications. 

 

 

Figure 2. GPU Power Usage: With vs Without Miner 

 

Data collected from Nsight Compute supported these observations. Table 2 below shows a 

summary of GPU metrics affected by the miner. 

 

Table 2. GPU Behavior Comparison: Normal Workload vs. Crypto Miner Interference 

Metric YOLOv8 Only YOLOv8 + Miner Impact 

Frame Rate (FPS) ~28 ~14 Real-time processing halved 

Power Draw (W) 65 95-159 30-90% increase 

GPU Utilization (%) 40% 99% Saturated compute 

Memory Used (MiB) ~2800 ~3900 Resource hogging 

sm throughput (%) Moderate High + flat Compute stall 

dram throughput (%) Low Elevated Memory pressure 

 



Puspa et al.  

9 
 

The sm-throughput metric increased significantly and remained constant during mining, showing 

high kernel activity. Kernel duration also became longer, which indicates that the miner was using the GPU 

more intensively. DRAM throughput increased as well, meaning the miner placed greater stress on memory 

bandwidth. A small drop in SM frequency suggested that the GPU was running hotter and possibly 

throttling to control temperature. 

These results raise concerns about GPU safety in transportation. In real-time systems like connected 

vehicles or roadside units, even a small delay in processing can mean a missing object or a slower response 

to a hazard. Since the GPU remains active, but overloaded, traditional system checks may not detect the 

problem. This creates a silent risk that affects both performance and functional safety. 

 

Detection of the Miner 

To understand whether the presence of a crypto miner can be detected through profiling, we used GPU 

telemetry logs collected during both benign and miner-active sessions. The goal was to see if a machine 

learning model could distinguish between normal workloads and hidden mining activity based on the 

patterns observed in hardware-level metrics. We extracted features such as streaming multiprocessor 

throughput, DRAM throughput, kernel duration, power usage, and frequency from Nsight Compute reports. 

We trained multiple lightweight classifiers on this data. Table 3 shows the detection results for four 

classifiers - random forest, gradient boosting, linear regression and a neural network with two hidden layers. 

All the models achieved very high accuracy.  

 

Table 3: Accuracy of Detection Models 

 Detection Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Random Forest 100 100 100 100 

Gradient Boosting 100 100 100 100 

Linear Regression 100 100 100 100 

Neural Network 100 100 100 100 
 

This level of performance shows that the miner leaves behind a very consistent footprint in GPU 

telemetry. It does not behave like a typical AI workload and can be separated based on its kernel execution 

characteristics and overall resource consumption. 

This detection was done offline, meaning the classification was not happening in real time. 

However, the results prove that even with limited access, on-device metrics can be used to identify 

malicious GPU activity with a high degree of confidence. These models require no modification of system 

drivers, no privileged access, and no extra hardware. In an edge computing context, this makes them suitable 

for practical deployment in safety-critical transportation systems. 

The experiment shows that a stealthy miner, though quiet and non-intrusive on the surface, leaves 

clear signals when the right telemetry is collected and analyzed. These signals can be used to build a 

lightweight but effective defense layer in intelligent transportation environments. 

 

ITS Safety Implications 

The performance degradation caused by the crypto miner has serious implications for intelligent 

transportation systems. When the GPU is overloaded by unauthorized compute tasks, its ability to support 

real-time perception and decision-making is reduced. In our case study, the drop-in frame rate and increased 

latency would delay or entirely miss critical detections in a video pipeline. For example, a vehicle or 

roadside unit relying on YOLOv8 for pedestrian detection might fail to respond in time if the frame rate is 

cut in half. 
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This becomes a safety issue, not just a performance one. Missed detections or delayed responses in 

real-world conditions can lead to collisions, near misses, or failure to act in a dynamic traffic situation. In 

a roadside unit, the system might not detect a vehicle running a red light or a pedestrian crossing 

unexpectedly. In an autonomous vehicle, a delayed object classification could interfere with braking or 

navigation decisions. All of this happens silently, without triggering alarms, because the system sees the 

GPU as functional. 

Crypto miners operate in the background and consume resources without causing direct application 

crashes. This makes them harder to detect and more dangerous in safety-critical environments. Without 

access to GPU-level observability, transportation systems are left blind to these threats. The signals 

collected in this case study show that it is possible to identify these risks before they result in visible failures. 

However, if telemetry is ignored or unavailable, the system continues to run in a degraded and potentially 

unsafe state. 

This highlights the need to treat GPU-level observability as part of the cybersecurity and functional 

safety framework for connected and automated transportation systems. GPUs are no longer auxiliary 

accelerators. They are core components of the AI stack, and any compromise to their availability puts the 

entire perception pipeline at risk. 

 

CONCLUSIONS 

This paper highlights GPU security as a critical blind spot in intelligent transportation systems. As 

AI-driven perception becomes central to safety and decision-making, the GPU has evolved from a 

performance booster to a core operational component. Our case study showed how stealthy crypto mining 

can silently degrade GPU performance, cutting frame rates in half and increasing power draw, without 

crashing the system or raising immediate alarms. These impacts pose serious risks to applications like 

pedestrian detection, traffic monitoring, and autonomous navigation. 

We demonstrated that GPU telemetry, collected using existing tools like nvidia-smi and Nsight 

Compute, is sufficient to detect such misuse with high accuracy. Simple classifiers trained on kernel-level 

metrics achieved perfect performance, making this approach suitable for deployment on edge nodes. 

Without requiring deep system access or additional hardware, this method provides a practical path toward 

improving cybersecurity and functional safety. As transportation systems continue to evolve, GPU 

observability must become a standard part of system monitoring and protection. 

 

RECOMMENDATIONS AND FUTURE DIRECTIONS 

This study highlights the importance of monitoring GPU behavior in intelligent transportation 

systems. As GPUs take on more critical roles in enabling perception and decision-making, overlooking 

their security creates a significant risk. While most transportation cybersecurity strategies focus on the 

operating system, network, or CPU, the GPU remains largely unmonitored. This makes it possible for 

threats like crypto mining to go unnoticed, even while degrading system performance and safety. 

We recommend that transportation platforms begin to adopt GPU telemetry monitoring as part of 

regular system checks. Tools like nvidia-smi and Nsight Compute already provide access to useful 

performance metrics that can be easily observed and used to monitor different malicious activities. These 

tools can be used to detect unusual behavior such as sustained power draw, constant utilization, or irregular 

memory usage. Including GPU performance metrics in the same monitoring pipelines that already track 

CPU or network activity would offer a more complete view of system health. 

The detection models we used in this paper were built using simple classifiers with a small number 

of features. Despite this, they achieved perfect results in distinguishing normal workloads from mining 

activity. These models are lightweight and can be integrated into background services that alert the system 

when GPU usage becomes suspicious. While our tests were performed offline, the telemetry required for 

detection can be collected in real time. Future implementations could involve live monitoring systems that 

take action, such as stopping a suspicious process or triggering a fail-safe mode. 

There is also a need to extend this work to a wider range of platforms. Many edge devices in 

transportation use embedded GPUs like the NVIDIA Jetson series, which may have different constraints 
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and fewer accessible metrics. Building similar detection strategies for those platforms is essential if we 

want broad protection across connected intersections, roadside units, and in-vehicle systems. Linux-based 

deployments should also be tested, as many field systems do not use Windows. 

Although this paper focuses on crypto mining, other GPU-based threats are possible. Attackers 

could try to steal AI models, introduce adversarial behavior, or use GPUs for hidden data processing. These 

threats also rely on GPU accessibility and would likely affect similar metrics. Monitoring changes in 

utilization patterns or kernel behavior could help detect these forms of misuse as well. 

We suggest that transportation safety standards begin to include GPU observability as part of 

overall system readiness. If a vehicle or roadside unit cannot process video in real time, it may fail to detect 

a pedestrian or recognize a stop sign. These risks cannot be ignored. Setting clear thresholds for frame rate, 

latency, and resource usage will help identify when a system is operating outside of safe conditions. Without 

these checks, GPUs can be compromised quietly while the rest of the system continues to appear healthy. 

Going forward, stronger collaboration is needed between transportation operators, researchers, and 

GPU vendors. Sharing the best practices, benchmark datasets, and monitoring tools would help make GPU 

security more accessible. This paper offers a starting point and a practical example, but the long-term goal 

should be to treat GPU observability as a standard part of designing and securing transportation systems. 
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