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Abstract— Space-air-ground integrated networks (SAGINs)
face unprecedented security challenges due to their inherent char-
acteristics, such as multidimensional heterogeneity and dynamic
topologies. These characteristics fundamentally undermine con-
ventional security methods and traditional artificial intelligence
(AI)-driven solutions. Generative AI (GAI) is a transformative
approach that can safeguard SAGIN security by synthesizing
data, understanding semantics, and making autonomous deci-
sions. This survey fills existing review gaps by examining GAI-
empowered secure communications across SAGINs. First, we
introduce secured SAGINs and highlight GAI’s advantages over
traditional AI for security defenses. Then, we explain how GAI
mitigates failures of authenticity, breaches of confidentiality,
tampering of integrity, and disruptions of availability across
the physical, data link, and network layers of SAGINs. Three
step-by-step tutorials discuss how to apply GAI to solve specific
problems using concrete methods, emphasizing its generative
paradigm beyond traditional Al. Finally, we outline open issues
and future research directions, including lightweight deployment,
adversarial robustness, and cross-domain governance, to provide
major insights into GAI’s role in shaping next-generation SAGIN
security.

Index Terms—Space-air-ground integrated networks, genera-
tive Al, security threats, communication authenticity, communi-
cation confidentiality, communication integrity, communication
availability.

I. INTRODUCTION

A. Toward GAI-Enabled SAGIN Security

Over the past decade, the advancement of 5G and the
prospects for 6G have led to significant progress in space-
air-ground integrated networks (SAGINs), including the ex-
tensive deployment of low earth orbit (LEO) satellite con-
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stellations (e.g., Starlink and OneWeb), the development of
high-altitude platform station technology, and the enhance-
ment through software-defined networking (SDN) and network
function virtualisation (NFV) technologies [1]. This multi-
layer heterogeneous architecture aims to provide global three-
dimensional seamless coverae by 2030, fulfilling the rigorous
demands of future applications such as intelligent transporta-
tion, telemedicine, and smart cities, characterised by high
reliability, ultra-low latency, and extensive connectivity. [2].

SAGIN communication faces numerous intricate security
threats stemming from distinct problems, including multi-
dimensional heterogeneity, dynamic topology, and resource
limitations, in contrast to conventional single-domain networks
(e.g., terrestrial and aerial networks) [3]. This significantly
enhances the complexity of security measures implemented
for such cross-domain systems. The ephemeral connectivity
of cross-domain nodes makes static authentication suscep-
tible to spoofing attacks. Furthermore, coordinated assaults
across the physical, data link, and network layers are being
escalated. Resource-limited nodes find it challenging to fa-
cilitate high-intensity real-time integrity verification. Conse-
quently, the fundamental security needs of SAGIN commu-
nication—authenticity, confidentiality, integrity, and availabil-
ity—are susceptible to risks of imbalance. Thus, guaranteeing
secure communications in SAGINs is of paramount impor-
tance [4] [5] [6] [7].

However, security methods, as encryption and intrusion
detection, frequently prove inadequate in the dynamic and
heterogeneous SAGINs. Conventional artificial intelligence
(AI) methodologies, such as deep learning (DL) and deep
reinforcement learning (DRL), offer improved functionali-
ties for anomaly detection, threat identification, and adaptive
security strategies; however, they demonstrate considerable
shortcomings in the context of SAGIN security. It necessi-
tates substantial quantities of labelled samples for training;
however, SAGIN attack samples are limited and demonstrate
non-independent and identically distributed (non-IID) traits,
resulting in a significant decline in detection accuracy. Archi-
tecturally, unimodal models like convolutional neural networks
(CNNSs) and recurrent neural networks (RNNSs) are inadequate
in effectively capturing cross-domain attack features. More-
over, inadequate dynamic flexibility required regular retraining
to address emerging threats, hence failing to satisfy real-time
anti-jamming demands. These constraints hinder the efficacy
of conventional Al in safeguarding SAGINs [10].

Generative Al (GAI), as a prominent subset of Al, presents
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TABLE I
SUMMARY OF RELATED SURVEYS, WHERE ., O, AND O REPRESENT COMPREHENSIVE REVIEW, PARTIAL REVIEW, AND NOT REVIEW, RESPECTIVELY
Ref. Contribution SAGIN | Security GAI
(3] A survey of security threats, attack methods, and defense schemes in SAGINs, addressing the unique ° ° @)
vulnerabilities of heterogeneous SAGINs and explicitly covering traditional Al-enabled defenses.
[10] A survey of Al applications across satellite systems, covering use cases, hardware implementation © © ©
challenges, and future directions, with explicit focus on traditional AI with little coverage of GAL
[13] A review of Al applications, including generative models for security enhancement, across diverse 0 0 0
satellite communication challenges such as anti-jamming, interference management.
[14] A review of Al applications and challenges in 6G UAV-satellite networks, systematically classifying © © ©
and comparing solutions for security risks including traditional Al and GAL
[15] A survey of GAI applications for physical layer communication security, covering defense mechanisms O © ®
like RF authentication, anomaly detection, and anti-jamming.
[16] A survey of physical layer security for low-altitude economy networks, highlighting the application 0 ° 0
of GAI for enhancing anti-eavesdropping strategies, anomaly detection, and optimizing defenses.
A survey of GAI models addressing security issues in physical layer communications, covering
[17] ey B o .5 5 > oI O [ ] [ ]
confidentiality, authentication, availability, resilience, and integrity.
A review of the fundamentals, applications, and challenges of GAI in mobile networking, with a
(18] |~ () () o
specific focus on advancing security solutions (e.g., intrusion detection and jamming mitigation).
[19] A survey on deploying AIGC services in mobile edge-cloud networks, covering architectures, © © P
generative models, and use cases, with a focus on low-latency, privacy, and resource efficiency.
[20] A review of GAI applications within the IoEV, highlighting its critical role in addressing security © © Py
threats like adversarial attacks, and cyber-physical anomaly detection.
[21] A survey on deep learning in anomaly detection, highlighting the critical role of generative models for @) ® ®
both data augmentation to and enhanced anomaly identification in security-critical domains like IoT.
A review of privacy and security concerns in GAI from, highlighting GAI’s potential applications in
[22] . - . : AP O o o
solving security problems, such as anomaly detection and cybersecurity threat identification.
23] A survey on security and privacy challenges in generative data from AIGC, highlighting the © ® °
applications of GAI in developing methods such as data synthesis and multimodal defense frameworks.
[24] A survey of architectures, applications, and security challenges of LLM-based edge intelligence, @) 0 °
highlighting GAI’s role in optimizing security solutions e.g., threat detection.
Our |Focus on how GAI can address various security issues in SAGINs and discuss the development Py Py Py
paper |potential of GAI in SAGIN secure communications compared to traditional AL

an innovative framework for addressing security limitations
in SAGINs, using its robust skills in data production, se-
mantic comprehension, and autonomous decision-making [11].
In contrast to conventional AI, which primarily analyses,
interprets, and classifies data to address specific issues, GAI
has superior capability in analysing and recording intricate
multidimensional data distributions, facilitating the creation
of highly correlated new data (e.g., photos, text, video) [12].
Specifically, although traditional AI depends on past data to
identify known risks, GAI may generate variations of unknown
attacks by analysing data distributions, thereby mitigating
the lack of labelled data. Moreover, transformer models of
GALI utilise multi-head attention techniques to correlate cross-
domain traffic, hence identifying multi-domain attack patterns
overlooked by unimodal CNNs. It utilises real-time dynamic
defence via prompt engineering (PE) and in-context learning
(ICL) to enable millisecond-level anti-jamming responses. In
summary, GAI not only mitigates the intrinsic deficiencies
of static defences and conventional AI but also establishes
a proactive-adaptive defence system specifically designed for
heterogeneous SAGINs through privacy-preserving synthesis,
cross-domain attack simulation, high-fidelity reconstruction,
and semantic strategy generation.

This paper offers thorough insights into how GAI can
efficiently tackle the substantial security difficulties posed by
SAGINS.

B. Related Surveys and Contributions

The security challenges and Al-driven methodologies for
SAGINs and its sub-networks have garnered significant inter-

est, as demonstrated in Table I. The research in [3] offered an
extensive examination of security threats, attack methodolo-
gies, and defensive strategies, focussing on the distinct vul-
nerabilities in heterogeneous SAGINs and partially addressing
conventional Al-based defence mechanisms. Since that time,
specialised Al review functions for SAIGNs or their sub-
networks have been developing. For instance, in [10], the
utilisation of Al in satellite communications was thoroughly
examined, concentrating mostly on conventional Al techniques
for various security issues while providing minimal insight
into GAI methodologies. The research in [13] specifically
investigated Al applications, encompassing generative models
for security improvement, in various satellite communication
issues like beam hopping, anti-jamming, channel modelling,
and space-air-ground integration. The authors of [14] thor-
oughly delineated the uses, problems, and future possibilities
of Al in 6G UAV-satellite communication networks, carefully
categorising and contrasting several Al solutions for security
threats, encompassing classical Al and GAL

Furthermore, certain surveys highlight the GAI for secure
physical layer communication. The research in [15] examined
GAI applications for the security of physical layer commu-
nication, encompassing defence strategies such as authen-
tication, anomaly detection, and anti-jamming, while also
tackling new dangers posed by GAl-driven adversarial attacks.
[16] examined secure physical layer communication methods
for low-altitude economic networking, emphasising the novel
application of GAI to improve anti-eavesdropping tactics,
anomaly detection, and the optimisation of security measures.
Moreover, the authors in [17] presented an exhaustive survey



of GAI models that tackle security concerns in physical layer
communications, encompassing confidentiality, authentication,
availability, resilience, and integrity.

Turning to mobile networks, [18] comprehensively reviewed
the fundamentals, applications, and challenges of GAI in
mobile and wireless networking, partially advancing wireless
security solutions (e.g., intrusion detection, jamming miti-
gation, and generative steganography). [19] investigated the
Al-generated content (AIGC) services in mobile edge-cloud
networks, including architectures, generative models, imple-
mentation challenges, and real-world use cases, with a focus
on low-latency, privacy, and resource efficiency. Targeting
internet of electric vehicle networks (IoEVs), [20] categorized
GALI applications across four layers (battery, electric vehicle,
grid, and security), highlighting its critical role in addressing
security challenges like adversarial attacks and cyber-physical
anomaly detection. [21] reviewed deep learning advancements
in anomaly detection, highlighting the critical role of gen-
erative models for both data augmentation to address class
imbalance and enhanced anomaly identification in security-
critical domains like IoT and cybersecurity.

Furthermore, [22] analyzed privacy and security concerns
in GAI from five key perspectives (user, ethical, regula-
tory, technological, and institutional), while also highlighted
GATI’s potential applications in solving security problems,
such as anomaly detection, cybersecurity threat identification,
and enhancing autonomous system safety. [23] systematically
reviewed security and privacy challenges in generative data
from AIGC, analyzed through the lens of core information
security properties (i.e., privacy, controllability, authenticity,
and compliance), while emphasizing the transformative appli-
cations of GAI in developing innovative countermeasures such
as synthetic data synthesis, multimodal defense frameworks,
and adaptive security mechanisms. The study in [24] explored
architectures, applications, and security challenges of large
language model (LLM)-based edge intelligence, highlight-
ing GAI’s role in optimizing threat detection, vulnerability
management, and automated security solutions for resource-
constrained environments.

Unlike existing surveys and tutorials, which focus primar-
ily on GAI applications in sub-networks of SAGINs or on
a specific type of GAl-enabled security defense technique,
our survey provides a detailed classification of attacks and
GALI defenses across the entire SAGIN, considering security
requirements and network architectures. Our work bridges an
essential gap in current research by providing a comprehensive
analysis of the status and potential of GAI applications in
SAGINSs, as well as a full comparison with traditional Al. Our
work explains how GAI enhances SAGIN security compared
to traditional Al, a topic that has been previously under-
explored. The contributions of our survey are as follows:

o We present the architectures of SAGINs and the security
challenges from a security perspective. Meanwhile, we
outline the basic GAI models and summarize their suit-
ability for solving security issues and advantages over
traditional Al

« We investigate four categories of security problems that
may be encountered in SAGINs, namely authenticity
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Fig. 1.

Organization structure of this paper.

failures, confidentiality breaches, integrity tampering, and
availability disruptions, and outline the corresponding
GAl-based approaches, categorized by physical layer,
data link layer, and network layer.

+ We implement three tutorials that are employed to detail
how GAI addresses the multi-class security issues in
SAGINSs, highlighting the advantages of GAI compared
to traditional Al

e We discuss the open issues and future research di-
rections from the perspectives of resource constraints
and lightweight deployment, adversarial robustness and
trustworthy mechanisms, cross-domain coordination and
governance compliance, respectively.

The remainder of this work is outlined in Fig. 1. From a per-
spective of security, we introdcue the architectures of SAGINSs,
overview the fundamental concepts of GAI, and compare
the traditional AI with GAI in Section II. In Section III, a
comprehensive exploration of GAI for authenticity failures
and confidentiality breaches is presented. In addition, Section
IV reviews the GAI solutions for integrity tampering and
availability disruptions. In Sections V, VI, and VII, we conduct
and analyze potential tutorials. Furthermore, we discuss open
issues and discuss future research directions in Section VIII
followed by Section IX as conclusion. For visibility, Table II
lists the main acronyms quoted in this survey.

II. BACKGROUND KNOWLEDGE

In this section, we first introduce the SAGINs from a
security perspective, including components and security chal-
lenges. Subsequently, we provide an overview of GAI and
compare its advantages over traditional Al in addressing
SAGIN security issues.

A. Secured SAGINs

The distinctive characteristics of SAGINSs, featured by self-
organization, heterogeneity, and time-variability, introduce un-
precedented challenges [6]. Among them, security vulnerabil-
ities caused by architectural weaknesses, exposed nodes, and



TABLE II
LIST OF MAIN ABBREVIATIONS.
Abbreviation Description Abbreviation Description
AAV Autonomous Aerial Vehicle IDS Intrusion Detection System
ADS-B  |Automatic Dependent Surveillance-Broadcast ToT Internet of Thing
Al Artificial Intelligence ISL Inter-Satellite Link
AIGC Al-Generated Content LLM Large Language Model
ARP Address Resolution Protocol LSTM  |Long Short-Term Memory
BDS Beidou Navigation Satellite MAC Media Access Control
CIR Channel Impulse Response MAD Malicious Attack Detector
CNN Convolutional Neural Network MAVLink [Micro Air Vehicle Link
CSI Channel State Information MDP Markov Decision Process
DDoS Distributed Denial of Service MEC Multi-Access Edge Computing
DL Deep Learning MITM  [Man-in-the-Middle
DNN Deep Neural Network ML Machine Learning
DoS Denial-of-Service MTL Multi-Task Learning
DP Differential Privacy RNN Recurrent Neural Network
DRL Deep Reinforcement Learning RF Radio Frequency
GAI Generative Al SAGIN  [Space-Air-Ground Integrated Network
GAN Generative Adversarial Network SDR Software-Defined Radio
GDM Generative Diffusion Model SVM Support Vector Machine
GNSS Global Navigation Satellite System TBM Transformer-Based Model
GPS Global Positioning system VAE Variational Autoencoder

unsecured communication links pose critical threats to four
fundamental communication security requirements: authentic-
ity, confidentiality, integrity, and availability [3], [25].

o Authenticity: Authenticity ensures the legitimacy of net-
work entities and the trustworthiness of data sources in
SAGINS, and prevents unauthorized access through multi-
layered authentication mechanisms [26]. Current imple-
mentations employ hardware-based identification (e.g.,
media access control (MAC) address), protocol-layer au-
thentication (e.g., digital certificates), and biometrically-
enhanced dynamic credentials [27].

o Confidentiality: Confidentiality ensures that data trans-
mission is accessible exclusively to authorized users.
Since the transmitted data contains information about
the user’s behavior, malicious attackers can indirectly
infer sensitive information using unintentionally leaked
available messages [7].

o Integrity: Integrity ensures data accuracy and reliability
during transmission, storage, and processing. The attack
against integrity is less intense but more sophisticated.
Attack surfaces extend beyond simple original data modi-
fication to include protocol-level interference that disrupts
information exchange processes from within network
layers [28].

e Availability: Availability ensures authorized users to ac-
cess the wireless network whenever and wherever they
request it, even under adversarial conditions or system
failures [29]. Attackers attempt to delay, block or even
interrupt transmissions, thus rendering network resources
unavailable.

The following discusses the security challenges and their
impact on security requirements across four segments.

1) Secured Cross-Domain Interaction Segment: The cross-
domain interaction mechanism consists of dynamic protocol
stacks, multi-domain gateways, and intelligent control planes
that coordinate the three heterogeneous segments: space, air,
and ground [30], [31]. This framework serves as a vital
facilitator for multi-domain coordination in SAGINSs [1], [32],

encountering two main security challenges: protocol hetero-
geneity [3] and vulnerabilities associated with delay-sensitive
handovers [33]. The transient connectivity of dynamic nodes,
such as satellites and autonomous aerial vehicles, makes static
authentication mechanisms vulnerable to spoofing attacks. In
these scenarios, adversaries can impersonate legitimate gate-
ways and introduce false routing information, thereby com-
promising authenticity [34], [35]. Furthermore, confidentiality
risks emerge from vulnerabilities in inter-satellite link (ISL)
protocols, allowing eavesdroppers to capture cross-domain
session keys through compromised key mapping tables at
protocol gateways [36]. Divergent protocol implementations,
such as the Consultative Committee for Space Data Systems
(CCSDS), Micro Air Vehicle Link (MAVLink) for aerial plat-
forms, and the 3rd Generation Partnership Project (3GPP) for
ground networks, increase the vulnerability of data conversion
processes to manipulation. For example, man-in-the-middle
(MITM) attacks as described in [38] effectively modified AAV
control commands during AAV-to-ground switching opera-
tions, thereby undermining data integrity. Additionally, threats
to availability arise from the targeted jamming of cross-domain
synchronisation signals, potentially disabling positioning sys-
tems in AAV-ground synchronisation [39].

2) Secured Space Segment: The space segment includes
satellites, ground stations, and space-based Internet of Things
(IoT) devices, utilising technologies such as LEO constella-
tions. The broadened network exposure presents security risks,
including susceptibility to assaults and data manipulation.
Attackers can spoof global positioning system (GPS) signals
by employing publicly accessible ephemeris data to distort
satellite navigation. Although satellite laser communications
provide narrow beams, high-altitude platforms can capture
signals with sophisticated optical tracking, hence jeopardising
confidentiality [42]. Furthermore, the constrained computa-
tional capabilities of on-board devices impede real-time high-
strength integrity checks [43]. Moreover, adversaries can an-
ticipate satellite trajectories and inundate satellite uplinks with
high-power transmitters, significantly diminishing single-beam



TABLE III
SUMMARY OF SECURITY CHALLENGES IN SAGINS.

Segment

Authenticity

Confidentiality

Integrity

Availability

Cross-Domain

* Spoofed Gateways:
Forge authentication to inject

« ISL Eavesdropping:
Intercept data in protocol

*« MITM in Handovers:
MITM tampers with control

* Cross-Layer Jamming:
Jamming attacks threaten

Interaction false routing [34], [35]. conversion [36]. commands [38]. cross-domain signals [39].
* GPS Spoofing: * Laser Interception: ¢ Real-Time Check Limits: ||* High-Power Jamming:
Space Forge commands to High-altitude eavesdropping || Limited resources restrict Overwhelm satellite uplinks
manipulate signals [41]. for narrow beams [42]. real-time validation [43]. with high-power signals [44], [45].
* MAC Cloning: * mmWave Leakage: * Path-Switching Injection: ||+ DDoS Flooding:
Air Hijack networks via spoofed |[Millimetre-wave links suffer||Injecting data when switching|| Botnets overload aerial command
addresses [50]. from leakage [52], [53]. paths in AAV networks [38]. || channels [54], [55].
* Rogue BS: * Edge Server Breaches: ¢ ML Traffic Inference: e Firmware Tampering:
Ground Fake BS harvests user Attacked MEC nodes ML deduces secrets from Malware alters IoT device

data [61].

leak sensitive data [62].

encrypted patterns [63].

updates [64].

throughput [44], [45]. Sleep deprivation can be exploited by
attackers to intentionally and persistently transmit erroneous
control commands [45], [46] to deplete network resources.

3) Secured Air Segment: The air segment includes AAVs,
airships, aerial base stations, and airborne sensors, distin-
guished by dynamic mobility and line-of-sight dependencies
[47], [48]. Key security issues include AAV identity spoofing
and the interception of wireless signals [49]. Malicious nodes
can replicate AAV MAC addresses to infiltrate networks
and seize control of swarms through deceptive link state
announcements, compromising authenticity [50]. In [51], the
radio frequency (RF) fingerprint authentication technique was
introduced to extract hardware features of node communi-
cation modules to mitigate attacks. Millimetre-wave links in
legitimate AAVs exhibit vulnerabilities regarding the leakage
of unencrypted messages [52], [53]. The quantum key distri-
bution technique [7] shows potential for mitigating decryption
risks. Furthermore, node mobility enables MITM attacks that
alter AAV commands, thereby undermining integrity [38]. The
restricted computational capacity of on-board devices, akin to
space nodes, hinders effective real-time integrity assessments
[47]. Distributed denial of service (DDoS) attacks, particularly
those involving numerous distributed bot-type attacks, inun-
date the air network, thereby limiting access for legitimate
users and impairing availability [54], [55].

4) Secured Ground Segment: The ground segment is com-
posed of multiple sub-networks, such as 5G/6G base stations
[56], narrowband IoT networks [57], and worldwide interop-
erability for microwave access (WiMAX) [58]. Its distributed
architectures and legacy protocols (e.g., message queuing
telemetry transport (MQTT) [59] and constrained application
protocol [60]) expose critical secure vulnerabilities. In terms
of undermining authenticity, rogue base stations, masquerade
as legitimate base stations to spoof the users and obtain
their data [61]. Confidentiality leaks arise from compromised
edge servers. Adversarial machine learning (ML) models can
deduce sensitive industrial IoT data from encrypted multi-
access edge computing (MEC) traffic patterns [62]. Integrity
violations occur when malware modifies firmware updates
in industrial IoT devices. For example, in [63], malware
added malicious content to escalate an application’s privileges,
allowing hackers to exfiltrate sensitive data. Furthermore,

availability disasters can stem from physical infrastructure
damage, such as severed backbone fibre-optic cables [64].

In summary, SAGINs exhibit many new types of security
challenges, and each segment confronts its own unique secu-
rity threats, as summarized in Table III.

B. Overview of GAI

GALI is increasingly adopted across various fields of com-
munication networks [65], and its distinctive features make it
very suitable for SAGIN security enhancement. Secured GAI
models be categorized as follows:

o Variational Autoencoders (VAEs): VAEs are generative
frameworks that integrate DL with probabilistic graphi-
cal models, consisting of an encoder, a decoder, and a
probabilistic latent space. The encoder compresses sen-
sitive data into a probabilistic latent distribution, thereby
enhancing confidentiality through non-linear dimension-
ality reduction. A joint source channel coding scheme
for point-to-point wireless communications was proposed
by [66], utilising vector quantised VAE (VQ-VAE) and
achieving nearly 90% accuracy. This scheme applies to
anti-eavesdropping within the space segment. Simultane-
ously, the decoder reconstructs data from latent samples,
facilitating integrity verification via anomaly detection.
The AC-VAE framework presented in [67] employed
active learning alongside contrastive VAE-based models,
resulting in F1 scores ranging from 0.68 to 0.96 using
merely 3% of labelled data. This approach prevents
dynamic routing table tampering in LEO satellite net-
works, thereby enhancing the efficiency of data integrity
verification. VAEs, while adaptable, demonstrate blurred
reconstructions and instability during training in high-
dimensional contexts.

o Generative Adversarial Networks (GANs): GANs are
unsupervised learning frameworks that model accurate
data distributions through the adversarial training between
a generator and a discriminator [68]. The discriminator
detects anomalies by differentiating between legitimate
data and adversarial samples. In [69], an FS-GAN algo-
rithm was introduced, leveraging the principles of feder-
ated learning (FL), self-supervised learning, and GANSs,
resulting in an improvement of over 20% in average



classification performance. The enhancement of cross-
domain protocol vulnerability detection is anticipated,
along with a reduction in the risk of MITM hijacking
during the conversion between MAVLink and hypertext
transfer protocol (HTTP). The generator creates realis-
tic attack scenarios to strengthen defences proactively.
A mask guided adversarial training (MAGAT) structure
was proposed by [70], integrating adversarial training
with mask-guided operations to protect against mali-
cious face editing. This architecture can be utilised to
pre-train AAV biometric authentication systems, thereby
mitigating identity authenticity failures resulting from
MAC address forgery. Despite their advantages, GANs
experience mode collapse and exhibit limited control over
local feature generation, which constrains their ability to
synthesise a diverse range of threats.

Generative Diffusion Models (GDMs): GDMs are score-
based generative models that learn data distributions
through a bi-directional process of forward diffusion and
reverse denoising [71], [72], [73]. The forward diffu-
sion process progressively injects controlled Gaussian
noise into real data until it becomes pure noise [75],
whereas the reverse denoising network effectively recover
corrupted raw data from adversarial environments itera-
tively by training neural networks [74]. As demonstrated
in [76], a reverse denoising inspired DRL algorithm
was proposed to balance content reconstruction fidelity
and transmission efficiency in mobile AIGC networks.
Complementary work in [77] presented an approximate
message passing algorithm based on the reverse denoising
process, which could achieve an improvement in signal
reconstruction quality. These methods facilitate content
reconstruction after data tampering in the space segment.
While GDMs avoid mode collapse in GANs and exceed
VAEs in generation fidelity, their reliance on 1000+
denoising steps limits real-time applications (e.g., real-
time video encryption) [78].

Transformer-Based Models (TBMs): TBMs are DL ar-
chitectures based on a self-attentive mechanism that pro-
cess sequential data through an encoder-decoder frame-
work and perform well in natural language processing
tasks [79]. The multi-head self-attention module captures
global dependencies, overcoming the local constraints of
CNNs and RNNs. The encoder captures the complex
dependencies and analyzes input sequences for security
detection, while the decoder generates target sequence us-
ing cross-attention. [80] developed TAEEF, a transformer-
autoencoder hybrid for hyperspectral anomaly detection,
which could be adopted in identifying payload tam-
pering that occurs in satellite-ground links and AAV-
ground links. TBMs also advance physical layer se-
curity [81] and intrusion detection [82]. Despite these
strengths, challenges such as high computational de-
mands, strong data dependency, and integration complex-
ity hinder widespread adoption.

LIMs: LLMs are transformer-based neural networks
trained on massive text corpora to understand and gen-
erate human-like text through contextual reasoning [83],

[84]. While LLMs and TBMs are similar, LLMs uniquely
rely on massive pre-trained language backbones and
contextual reasoning to generate security policies (e.g.,
cross-domain rules) or parse natural-language threat de-
scriptions. These capabilities are critical for address-
ing SAGIN’s dynamic multi-domain collaboration and
human-in-the-loop adaptation, which generic TBMs lack
owing to task-specific rigidity. Specifically, LLMs con-
sist of three core components: a pre-trained backbone
(e.g., GPT-4 and LLaMA) for general language patterns,
domain adaptation techniques (e.g., retrieval-augmented
generation) to specialize in vertical fields, and tool in-
terfaces enabling interaction with external systems (e.g.,
network analyzers). Security applications include natural-
language-to-configuration translation, as implemented in
ChatNet’s encrypted SAGIN policy generation [83], and
privacy-preserving sensor data transmission via collabo-
rative mobile agent systems [85]. Despite these strengths,
LLMs remain vulnerable to adversarial prompts and face
challenges such as high computational costs and context
window limitations [86], [87].

In summary, GAI models can be targeted to address authen-
ticity failures, confidentiality breaches, integrity tampering,
and availability disruptions in SAGINs through data genera-
tion, feature reconstruction or policy optimisation capabilities.
The basic principles, applications in security, and features of
these GAI models are concluded in Table IV.

C. GAI vs Traditional Al in Security

While traditional Al (e.g., discriminative Al) has demon-
strated efficacy in addressing conventional security challenges.
GAl, a transformative paradigm in AI’s evolution, is revolu-
tionizing the field through its unique features, such as data
augmentation, scenario simulation, and cross-modal analysis
[88], [89], [90]. The fundamental distinctions between these
paradigms include the core paradigm, architecture, data de-
pendency, and dynamic adaptation, which enable GAI as a
superior solution for modern security enhancement.

o Core Paradigm: Traditional Al relies on discriminative
models (classification/regression) to differentiate normal
from abnormal patterns. However, its over-reliance on
historical data restricts it to known threats, rendering it
ineffective against dynamic unknown threats in complex
SAGINs such as zero-day attack [91]. For instance,
while support vector machines (SVMs) are effective for
known threats [92], their accuracy drops to only 50%
against unknown threats [93]. In contrast, GAI leverages
generative models to synthesize diverse attack variants by
learning underlying data distributions. FS-GAN in [69]
could generate hybrid attack traffic without labeled data
and improving detection accuracy more than 20%. This
capability enables the generation of variant MITM attacks
for cross-domain interactions, facilitating pre-training of
SAGIN intrusion detection systems.

o Architecture: Conventional Al depends on established
feature engineering and static architectures, such as CNNs
and RNNs. This unimodal approach increases information



TABLE IV

SUMMARY OF BASIC PRINCIPLES, SECURITY APPLICATIONS, AND FEATURES OF TYPICAL GAI MODELS, WHERE GREEN TICK REPRESENTS STRENGTHS

AND RED CROSS REPRESENTS WEAKNESSES.

Model ! Principle I Security Applications I Pros & Cons
Through an encoder and ||* VQ-VAE for Secure Coding: .
. . Ideal latent-space anomaly detection
a decoder, the latent space || A source channel coding scheme with above 90% accuracy [66]. X Blurred tructions with weak
VAEs ||can be learned, and new * AC-VAE for Anomaly Detection: rutrre lrle c\f)rllstr:; 1orn(sj ‘tm p V:le
content is generated Utilize the active learning to improve VAE with less labels [67]. protocol-level tamper detectio
* FS-GAN for Anomaly Detection: Powerful attack traffic generation
Model accurate data R o .
distributions through the Distinguish legitimate data from adversarial samples [69]. X Easy mode collapse and dependence
GANs adversarial trainin * MAGAT Against Malicious Face Editing: on empirical parameterization
& Utilize MaGAT to defend against malicious face editing [70]. with poor performance
Learn data distributions * DRL-GDM for Content Recover){: . Robust model and flexible for real-
. . Balance content recovery and transmission [76]. . )
GDMs || through forward diffusion || | DMs for A . M Passing: time spoofing defense
and reverse denoising G s for Approximate essage - assing: . X High energy consumption
Utilize the reverse process to acheive the message passing [77].
* TAEF for Anomaly Detection: Well cross-modal protocol semantic
Self-attention-based Achieve detection on multiple real hyperspectral datasets [80]. analysis for cross-domain defense
TBMs || process for sequential data|| « TBMs for Intrusion Detection: X High computational load with limited
Detect sophisticated and dynamic threats [82]. real-time security in AAVs detection
Generate human-like * ChatNet for Eavesdropplpg Prevention: ) ) Dynamic policy generation :and
content through Transform natural language into encrypted configurations [83]. natural-language threat parsing
LLMs contextual Te agsonin ¢ LLMs for Privacy Preserving: X Context window limitations with
) & Present a split learning system with the privacy-preserving [85]. cross-domain attack chain failure

leakage and diminishes cross-domain attack detection
accuracy in SAGINs. A single CNN is insufficient to
defend against diverse MITM attacks across multiple do-
mains [94]. In contrast, GAI facilitates multimodal inputs
and end-to-end generation through modular designs, such
as progressive denoising in GDM and self-attention in
TBM, enhancing the accuracy of threat detection via
cross-modal correlation. The advantage was demonstrated
through a cross-modal transformer (FmFormer) [95]. This
framework enables the correlation of satellite telemetry,
AAV sensor logs, and ground network traffic to detect
multi-domain routing hijacking attacks in SAGINs, which
single-modality CNNs are unable to identify.

Data Dependency: Conventional Al depends on substan-
tial labelled datasets, resulting in diminished performance
in scenarios with limited data [96]. Centralised training
raises privacy concerns, particularly in widely exposed
SAGINs [97]. GAI addresses these limitations by em-
ploying unsupervised and few-shot learning, thereby mit-
igating label scarcity through the generation of synthetic
data. As a result, it exhibits reduced response time in
identifying unknown attacks and can effectively balance
privacy with model performance through prospective sim-
ulation. A dilated convolutional transformer-based GAN
(DCT-GAN) for time series anomaly detection was pro-
posed in [98] to enhance model accuracy and generalisa-
tion, facilitating the precise detection of stealthy satellite-
side attacks in data-scarce SAGINSs.

Dynamic Adaptation: Traditional Al relies on static mod-
els that require periodic retraining to adapt to evolving
threats in SAGINs, resulting in delayed responses to
emerging risks. Specifically, the underlying data distri-
bution changes over time, which can render ML models
trained on historical data obsolete [99] [100]. GAI, how-

ever, achieves real-time adaptability through PE and ICL,
which enables milliseconds of real-time anti-jamming and
on-demand dynamic optimization. [101] combined DL
with generative model to utilize ICL for dynamically
optimized defense against zero-day attacks, gaining a
15% performance improvement. Besides, ChatGPT was
adopted for automated anomaly detection script gener-
ation via PE [102]. Hence, these methodologies enable
real-time defense against evolving SAGIN threats without
costly model retraining.

In summary, GAI has more powerful analytical capabilities
and novel generative features than traditional Al, which makes
it uniquely suited for tackling complex security challenges
in SAGINs. The differences between them and examples of
security enhancement via GAI are summarized in Table V.

The integration of GAI with SAGINSs represents a significant
advancement in communication technology [11]. The emer-
gence of complex security threats, including cross-domain sig-
nal jamming and dynamic cyber attacks in SAGINSs, highlights
the potential application of GAI in threat modelling, real-time
defence, and data privacy protection. In this context, GAI-
enabled SAGIN security enhancement will serve as a crucial
factor in the evolution of AI-SAGIN.

III. GAI FOR AUTHENTICITY AND CONFIDENTIALITY
SECURITY IN SAGINS: CURRENT RESEARCH

Section III and IV review the role of GAI in mitigating
SAGIN security threats through four security requirements as
illustrated in Fig. 1. Meanwhile, this exploration incorporates
the open systems interconnection (OSI) layered protocol layers
(i.e., physical layer, data link layer, and network layer) under
each requirement to bridge current research gaps. This is
because different layers exhibit distinct vulnerabilities due to
their underlying protocols as shown in Fig. 2. In this section,



TABLE V
SUMMARY OF DIFFERENCES BETWEEN GAI AND TRADITIONAL AI FOR SECURITY ENHANCEMENT, WHERE RED DOT REPRESENTS THE DRAWBACKS
OF TRADITIONAL AI, GREEN DOT REPRESENTS THE ADVANTAGES OF GAI, AND BLACK DOT REPRESENTS THE GAI ENHANCED SECURITY

EXAMPLES.
Aspect || Traditional Al I Generative Al || SAGIN Security Enhancement via GAI
Core ® Poor Dynamic Threat Detection: Superior Various Attack Defense: || ® FS-GAN for Various Attack Generation:
. Discriminative models are limited to Generative models create diverse FS-GAN generates MITM attacks for cross-
Paradigm o .. .
classifying known threats. samples to enhance robustness. domain interaction segment [69].
® Poor Cross-Modal Detection: Superior Cross-modal Detection: ® FmFormer for Cross-Modal Detection:
Architecture || Fixed architectures struggle to fuse Modular design enables cross-Modal FmFormer detects the multi-domain routing
multimodal data. correlation. hijacking attacks in SAGINs [95].
® Over-reliance on Databases and Powerful Data Generation and ® DCT-GAN for Few-Shot Preservation:
Data Possible Privacy Issues: Prospective Privacy Protection: DCT-GAN reduces detection latency and
Dependency || Rely on amounts of labelled data with || Synthetic data generation addresses balances privacy via simulation, to detect
poor performance in few-shot scenarios.|| labeling gaps and preserves privacy. stealthy attacks in data-scarce SAGINs [98].
® QOutdated Models Perform Poorly Superior On-Demand Optimization|| ® PE/ICL for Evolving Threats Defense:
Dynamic in New Threats Defense: and Real-Time Anti-Jamming: ICL-enhanced generative model for SAGINs’
Adaptation Static models fail to respond in real- PE and ICL enable real-time strategy zero-day defense [101] while PE-based
time to dynamic threats. adjustments. anomaly detection through ChatGPT [102].

we first summarize the authenticity failures and confidentiality
breaches that may be encountered in SAGINs, and overview
the corresponding GAI-based security solutions in detail.

A. GAI for Authenticity Failures

1) Physical Layer: Failures in authenticity at the physical
layer in SAGINs primarily arise from signal spoofing attacks,
wherein attackers transmit either fabricated signals or relevant
real signals to target devices. The openness of long-link
signals, including satellite navigation signals like GPS [103]
and the Beidou navigation satellite (BDS) system [104], as
well as air signals such as automatic dependent surveillance-
broadcast (ADS-B) [105], makes them susceptible to spoofing.
Attackers utilise publicly accessible ephemeris data to spoof
global navigation satellite system (GNSS) signals, leading to
location inaccuracies and trajectory deviations in AAVs [41].

GANSs improve security by facilitating a competitive interac-
tion between the generator and the discriminator. This research
aims to develop effective spearheads (spoofing jamming) and
robust shields (spoofing defence) utilising GANs for anti-
spoofing applications. In the air segment, the end-to-end
FlightSense [105] integrated GAN and CNN methodologies
to identify ADS-B spoofing and perform aircraft identification
using raw I/Q signals, resulting in a detection accuracy of
98.87% and a classification accuracy of 99% on synthetic
datasets. In the space segment, as shown in Fig. 3, [106]
utilised GAN to attain high-precision signal detection in GNSS
acquisition. Although these methods demonstrate high preci-
sion, they generally concentrate on individual attack types and
exhibit limited scalability. To address these limitations, [107]
developed a GAN-assisted contextual pattern-aware intrusion
detection system that demonstrates high accuracy in identify-
ing six types of attacks, including spoofing and replay, along
with ultra-low latency in real-vehicle experiments. This model
demonstrates significant applicability potential for SAGINSs.

Hybrid GAI approaches are emerging beyond the single
GAN. GenCoder [108] integrated a five-layer deep neural net-
work (DNN) with VAE to effectively produce adaptive training

data for unidentified attacks. Reference [109] integrated VAE
with Wasserstein GAN (WGAN) for the detection of spoofing
signals, utilising the accurate reconstruction capabilities of
VAE alongside the feature learning strengths of WGAN.
Additionally, the capabilities of TBMs to capture spatio-
temporal features and identify anomalous patterns through a
multi-head attention mechanism are incorporated with GANSs.
DroneDefGANt, as proposed by [110], represents a hybrid
methodology that integrates GANs with transformer models
to identify external threats, such as GPS spoofing, alongside
internal failures, including actuator malfunctions.

Current research also explores GAI’s integration with tra-
ditional authentication approaches such as RF fingerprinting
(RFF), channel state information (CSI), and channel impulse
response (CIR). For instance, [111] introduced GANSAT by
combining GAN and satellite constellation RFF for GPS spoof
detection and location estimation. This approach overcame
conventional methods’ environment-sensitivity limitations, but
required location-specific training data with unverified cross-
domain generalization. As a refinement, [112] employed
GAN-CNN approach by analyzing the RFF of LoRa system,
performing 92.4% authentication accuracy without channel
compensation. In addition, [113] exploited conditional VAE
(CVAE) to adaptively compress and extract discriminative
RFF features to improve accuracy. Based on the CSI, [114]
proposed a GDM-based secure sensing solution for ISAC
system to extract the true CSI for sensing. [115] constructed a
conditional GAN (CGAN) framework integrating long short-
term memory (LSTM) and gated recurrent unit (GRU) net-
works to predict mobile channel responses. It achieved high
accuracy but degraded without CSI training data. As a com-
plement, [116] presented HVAE, combining an AE for CIR
characteristics extraction and a VAE for the enhancement of
CIR feature representation and authentication results.

2) Data Link Layer: The expiration of contextual authenti-
cation in dynamic SAGINSs creates temporal gaps for attackers
to forge temporary MAC identities. Typical threats include
MAC address spoofing, address resolution protocol (ARP)
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Fig. 2. Overview of typical attack scenarios at different layers in SAGINs. The 13 typical attack methods summarized above significantly cause authentication
failures, confidentiality breaches, integrity tampering, and availability disruptions in SAGIN communications.

spoofing, and frame injection attack, facilitating DoS attack,
MITM attack, and session hijacking attack [50].

MAC address serves as a unique physical credential for
device access. Attackers can bypass the network authen-
tication by cloning the legal MAC address [117] [118].
Although threshold-based sequence number analysis detects
MAC spoofing, it yields false alarms due to frame loss. To
overcome this drawback, an artificial neural network (ANN)-
based detection method was proposed in [119] to analyze
sequence number gaps and statistical distributions in MAC
headers. The ANN framework could function as a pre-trained
feature extraction layer for GAN discriminators or generators.
Additionally, randomized dynamic defense [120] improve IoT
security by adapting signal strength thresholds. Such methods
are compatible with GAN integration for enhanced defense.

ARP maps logical address (i.e., IP address) to corresponding
physical address (i.e., MAC address) without verifying the au-
thenticity of responses to ARP requests [121]. This vulnerabil-
ity enables attackers to execute ARP spoofing (i.e., ARP cache
poisoning). It is an active attack method involving the injection
of forged IP-MAC mappings into devices via unsolicited ARP
messages. Attackers manipulate ARP cache tables without
awaiting target-initiated queries, facilitating subsequent MITM
and denial-of-service (DoS) attacks. The FS-GAN in Fig. 3
could classify ARP-spoofed frames adopting distributed GANs
for sample generation and FL for training [69] .

In SAGINS, legitimate devices operate within open shared
wireless media, allowing attackers to sniff MAC frames and
forge spoofed frames for injection attacks such as false ac-
knowledgment (ACK) and message frame injection [122].
These frames disrupt user decisions and exhaust resources,
causing communication blockages. [123] designed an airspace
anomaly detection method combining flight plan data with
GAN-LSTM model for ADS-B attack. It could construct
airspace image frames, utilizing GANs for temporal prediction
and normalized cross-correlation for anomaly localization.
Results demonstrated 92.3% average detection accuracy with
11.9% false positive rate and 6.2% false negative rate, effec-
tively identifying stealthy attacks like frame injection while
maintaining compatibility with ATC operational constraints.

3) Network Layer: Against threats like IP forgery and
routing hijacks, GAI enhances end-to-end defense by synthe-
sizing adversarial traffic for anomaly detection and generating

dynamic authentication patterns to expose malicious actors.

In [124], the authors introduced a multi-architecture GAN
framework aimed at mitigating data imbalance in network
intrusion detection. The application of synthetic data to the
CIC-IDS2017 benchmark resulted in a 6.18% enhancement in
recall for Bot attack detection. However, real-time traffic in
SAGINs is dynamic, and this method may have limitations.
The Magteon-Turing L3TM framework in [125] introduced a
GAl-driven method to address identity spoofing and traffic
camouflage. The integration of Megatron-Turing NLG and
Swarm OpenAl LLMs was achieved within a seven-layer
architecture. 1) The data layer utilised GANs for the gen-
eration of synthetic hybrid traffic; 2) The traffic analysis
layer implemented Langchain for semantic feature extraction,
achieving 98.7% accuracy in detecting SYN Flood and IP
spoofing; 3) The behavioural validation layer employed Llama
models for protocol logic verification, identifying anomalous
session patterns with a false positive rate of 1.5%. This study
addresses the static rule limitations identified in [124] by
employing dynamic LLM ensembles, which facilitate adaptive
responses with sub-second latency.

GALI is capable of predicting the time series of attacks in
SAGINs via the generation of adversarial samples. A hybrid
deep learning framework integrating remaining useful life
GAN (RUL-GAN) for time-series prediction of DoS attacks
was proposed by [126]. A domain-specific GAN mechanism
was developed to synthesise distributed energy resource con-
trol messages (e.g., packet parameters, protocol features), re-
vealing authenticity threats from adversarial message spoofing
[127]. The framework incorporated conditional value-at-risk
for quantifying tail risk and employed an ensemble learning-
based bagging method to identify synthetic identities, resulting
in an attack vector generation accuracy of 95.7%, a tail risk of
9.61% (with 95% stability), and an overall accuracy of 99%.

The GAN-DRL model presented in [128] incorporated an
intelligent routing model to tackle the issue of detecting minor-
class attacks resulting from imbalanced data in healthcare-
consumer loT, while simultaneously optimising network-layer
routing. The approach utilised GAN for generating synthetic
data to identify rare attacks, such as smurf attacks, and
employed DRL to dynamically adjust routing policies. This
resulted in a 12% improvement in throughput, a 20% reduction
in latency, and a 30% increase in the probability of avoiding
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Fig. 3. Typical GAl-based approaches for authenticity failures and confidentiality breaches in SAGINs. For authenticity failures, [106] introduces a GAN-
based GNSS spoofing framework; [69] illustrates a FS-GAN approach against ARP spoofing; [130] presents a GAN-based malicious attack detector. For
confidentiality breaches, [132] - [152] designs multiple physical layer anti-eavesdropping methods by combining GAI with encryption, physical layer security,
and covert communication; [154] proposes a GAN-based IDS for IoFT; [164] combines LSTM with GAN for IDS design.

malicious attacks within an SDN architecture. This approach
demonstrates limited efficiency in generating high-dimensional
traffic features. To tackle this problem, [129] proposed a
lightweight GAN-DRL model compression technique aimed
at enhancing the efficiency of high-dimensional traffic feature
generation while mitigating the significant computational over-
head in SDN-IoT environments. In addition, [130] proposed a
distributed GAN training framework integrating a malicious
attack detector (MAD) for multi-device collaborative novel
attack detection as shown in Fig. 3.

4) Summary and Lessons Learned: As summarized in Table
VI, GAI serves as a proactive tool for generating adversarial
samples and a reactive shield for real-time anomaly detection,
enabling adaptive defense in SAGINs. GANSs excel at detecting
spoofing through signal discrepancy analysis. Hybrid models
integrating VAEs or transformers further enhance robustness
against unknown attacks. Federated GANs and LLM-GAN
hybrids demonstrate exceptional capabilities in mitigating
MAC spoofing, IP forgery, and routing hijacks by leveraging
synthetic traffic and semantic features to reduce false positives.
Despite these advancements, challenges remain:

o Generalization-Specialization Trade-off: Models like
CVAE-ZSL achieve high zero-shot detection accuracy but
degrade in cross-domain scenarios.

o Computational Overhead: Computational overhead limits
real-time high-dimensional traffic analysis.

o Explainability Gaps: Lack of explainable AI (XAI) inte-
gration undermines trust in hybrid model decisions.

e Adversarial Robustness: GAl-enhanced attack tools ex-
ploit static defenses, requiring co-designed countermea-
sures.

B. GAI for Confidentiality Breaches

1) Physical Layer: Eavesdropping attacks, referred to as
stealth attacks, are markedly exacerbated by the intrinsic
openness of wireless channels and the architectural hetero-
geneity present in SAGINs. Attackers leverage vulnerabilities
in satellite link broadcasts, AAV relays, and terrestrial network
density to intercept data through signal capture, protocol

parsing, or cross-layer traffic correlation. Current countermea-
sures primarily depend on encryption methods for content
protection, physical layer security for signal protection, and
covert communication for behaviour concealment [131]. These
approaches face challenges related to dynamic adaptability,
computational overhead, and cross-domain coordination. Re-
cently, GAI has improved these methods by incorporating
dynamic learning and generative capabilities.

GAl-assisted encryption: Conventional encryption methods
depend on a pre-shared secret key between communicating
entities, which are susceptible to elevated error rates and key
exposure. A WGAN-GP adversarial autoencoder was proposed
to dynamically extract cross-layer channel features, thereby
enhancing key capacity and reducing errors [132].

Additionally, the high spatio-temporal similarity of the CIR
in high-density user scenarios enhances the likelihood of
eavesdroppers successfully reconstructing keys. In this context,
[133] proposed a GAN-assisted noise generation algorithm de-
signed to inject adversarial noise into critical defence regions
of dynamic LiFi networks. Moreover, frequent handovers in
SAGIN elevate the risk of key leakage. An intelligent soft han-
dover method for UAV-enabled cellular networks is presented,
utilising GAN in conjunction with blockchain and physically
unclonable function for lightweight message encryption [134].

In addition to single-attacker scenarios, [135] introduced
a multiparty adversarial encryption model utilising GAN for
secure multi-party communication. The introduction of an en-
hanced adversarial training framework featuring four types of
attackers (including ciphertext-only, key-leaked, and chosen-
plaintext attackers) enabled the model to attain information-
theoretic security via synchronised neural network parameters
and secret keys, effectively resisting multimodal threats in
complex SAGINSs.

Furthermore, current methods focus on encryption algo-
rithms designed for “fixed eavesdroppers”. Eavesdroppers fail
when they can flexibly adjust their methods based on the trans-
mission policies of legitimate devices, a phenomenon we refer
to as “evolved eavesdroppers” possessing adaptive learning
capabilities. According to [136], eavesdroppers adjust neural



TABLE VI
SUMMARY OF GAI SOLUTIONS FOR SECURITY THREATS AFFECTING AUTHENTICITY IN SAGINS, WHERE MULTIPLE ATTACKS IN NETWORK LAYER

REFER TO TRAFFIC INJECTION, SPOOFING, AND REPLAY ATTACKS.

Layer Ref. Segment Security Threat GAI Approach Description
[110] | Cross-Domain GPS spoofing TBM-GAN DroneDefGANt for external attacks and internal faults
[115] | Cross-Domain Auﬂll;ggé:stlon LSTM-CGAN Physical-Layer authentication adopting CSI and CGAN-LSTM
[106] Space GNSS spoofing GAN High-precision detection against wrong timing and positioning
[109] Space Unknown spoofing VAE-WGAN A GNSS spoof detection model comprising VAE-WGAN
[111] Space GPS spoofing GAN Combine GAN and RFF for detection and location estimation
Physical [105] Air ADS-B spoofing CNN-based GAN GAN-CNN for detecting ADS-B spoofing using raw I/Q signals
Layer [107] Ground Spoofing in IVN GAN A GAN-assisted contextual pattern-aware IDS
[108] Ground Spoofing attack DNN-based VAE IDS to address the dynamic and evolving cyberthreatsy in IoV
[112] Ground Spoofing for IoT CNN-based GAN Spoof detection and authentication using RFF-CWT-based GAN
[113] Ground Spoofing for AIS Conditional VAE A RFFI-based CVAE detection framework
[116] Ground Spoofing for IIoT Hierarchical VAE CIR-based authentication for static and mobile IToT
[119] | Each Segment MAC spoofing ANN for GAN An ANN-based spoofing detection method
Data Link [69] | Each Segment ARP spoofing GAN A federated self-supervised learning model for traffic analysis
Layer [123] Air ADS-B Spoofing LSTM-GAN An attack detection and marking model based on LSTM-GAN
[120] Ground MAC spoofing Adversarial for GAN | A randomized dynamic target defense framework for IoT system
[124] | Each Segment | Traffic injection LSTM-GAN A traffic augment solution for IDS system
[125] | Each Segment | Traffic spoofing LLM-GAN A Magteon-Turing L3TM framework
[126] Ground Multiple attacks GAN Time-series prediction of cyber attacks in vehicle networks
Network [127] Ground Replay attack GAN GAN as an attack generation for training defense systems
Layer [128] Ground Minor-Class attack DRL-based GAN An anomaly detection system for optimum routing in H-CIoT
[129] Ground Traffic injection GAN Lightweight GAN for traffic prediction and routing in SDN-IoT
[130] Ground Multiple attacks GAN A GAN-based malicious attack detector for IoT systems

network parameters through a symmetric training process that
emulates legitimate users, thereby increasing the risks to GAI-
assisted SAGINs. The authors proposed a secure autoprecoder
(ASAP) framework based on adversarial learning for MIMO
wiretap channels featuring “evolved eavesdroppers.” The two-
stage adversarial training jointly optimises modulation and
precoding, thereby enhancing the security-reliability trade-off.

Given the unique role of semantic communication in SA-
GINs [137], GAl-assisted encrypted semantic communica-
tion requires investigation. A GAN-based encrypted semantic
communication system was proposed by [138]. An effective
defence against eavesdropping attacks was achieved in a
generic semantic communication scenario with shared knowl-
edge through the design of a symmetric encryption structure
and an adversarial training algorithm. The system improves the
balance between privacy-preserving capabilities and versatility
in SAGINS.

GAI-assisted physical layer security: GAI enhances phys-
ical layer security by leveraging channel randomness and
active defense strategies against sophisticated eavesdropping.
For instance, an adversarial training framework was proposed
to harden modulation classifiers against evasion attacks [139].
By designing an iterative “Least Likely” white-box attack
strategy, this active anti-eavesdropping method improved com-
munication privacy by reducing the classification accuracy of
eavesdroppers to random guessing levels (e.g., from 98% to
4%) in software-defined radio (SDR) tests.

In addition, beamforming significantly contributes to phys-
ical layer security. [140] proposed an actor-critic GDM (AC-
GDM) scheme optimizing precoding and IRS phase shifts,
leveraging GDM’s denoising capability in IRS-assisted IoT.

Another proactive defense method integrates perturbations into
beamforming design [141]. As demonstrated in [142], an
adversarial defense embedded waveform design (ADEWD)
solution adopted GAN-generated amplitude-controlled pertur-
bations superimposed on signals to disrupt eavesdropper iden-
tification while ensuring reliable communication. In addition,
[143] extended this approach to cooperative beamforming
in AAV swarm with a GDM-enabled twin delayed deep
deterministic policy gradient (GDMTD3) method to tackle
the non-convex, NP-hard dynamic problem and promote the
secrecy rate.

Beyond secrecy rate, secrecy energy efficiency (SEE) is
critical for energy-constrained SAGINs [144]. [145] designed
a mixture of experts (MoE)-based GDM RL algorithm, im-
proving SEE and resisting eavesdropping. Additionally, the
authors in [146] further considered the energy constraints for
HAP in SAGINs and proposed a GAN-empowered deep RL
framework named Gen-DRL. Integrating bidirectional LSTM-
enhanced GANSs into the policy network, Gen-DRL dynam-
ically predicted channel states and adapted to environment
while capturing long-term temporal dependencies. It achieved
5.1%-12.43% higher SEE than benchmarks, exhibiting supe-
rior robustness against mobile user scenarios.

GAlI-assisted covert communication: Encryption and phys-
ical layer security cannot prevent adversaries from detecting
communication behaviors, risking data reliability and exposing
source locations. In SAGINs, covert communication outper-
forms by ensuring “communication undetectability” (e.g., min-
imizing signal detection probability). [147] developed a GAN
framework optimizing transmit power against eavesdroppers
with uncertain thresholds in uplink FL. Extending this, the



authors of [148] proposed a model-driven GAN (MD-GAN)
framework, featuring a GAN-based joint trajectory and power
optimization algorithm when only partial channel information
is available. In addition, [149] introduced an AE-based GAN
for water-to-air communication scenario based on optical
wireless communication (OWC), which optimized a signal
generator and a decoder to produce covert signals statistically
indistinguishable.

For AAV-assisted jamming, [150] proposed a data-driven
GAN (DD-GAN) framework to address the eavesdropping
threats in downlink satellite-ground communication. Targeting
AAV-assisted jamming scenarios with partial environmental
knowledge, the method integrated genetic algorithm-generated
samples to co-optimize AAV jamming power and 3D tra-
jectory through adversarial training. For non-terrestrial net-
works (NTN) IoT, [151] developed a tripartite collaborative-
adversarial network (TCAN) based on GANSs. This framework
integrated a generator (emulating legitimate transmitters), a
cooperative classifier (receiver), and an adversarial discrimi-
nator (attacker) to dynamically balance covert signal design
and detection. Beyond physical signals, text steganography is
applied in covert communication. [152] proposed StegAbb,
a GPT-3-based linguistic steganographic method for SDRs.
Leveraging GPT-3’s language generation capabilities, StegAbb
transformed cryptographic abbreviations into natural-looking
cover texts, optimizing the security-textuality balance.

2) Data Link Layer: Eavesdropping at this layer takes
advantage of unencrypted protocol frame structures, such as
MAC addresses, and inherent protocol vulnerabilities, facilitat-
ing data interception, tampering, and impersonation. Intrusion
detection systems (IDSs) function as essential safeguards for
SAGINSs, integrating with GAI to facilitate adaptive threat
detection, thereby ensuring data confidentiality and integrity.

In [153], the authors utilised WGAN to generate network
traffic data, addressing data scarcity and class imbalance
for multi-stage attack detection in distributed SAGINs. To
mitigate the training instability and adversarial vulnerability
of distributed GANs, [154] proposed a GAN-based robust
intrusion detection system for the security of the Internet of
Flying Things (IoFT), addressing the issue of limited attack
diversity in public datasets. To enhance few-shot detection,
[155] introduced a semi-supervised GAN for anomaly detec-
tion. The method addressed redundant feature issues and data
imbalance in high-dimensional traffic data targeting SAGINs
by employing positive-sample-only training.

Additionally, FL facilitates the improvement of model gen-
eralisation in generative artificial intelligence by enabling
decentralised collaborative training while maintaining data
privacy [156]. A framework for federated learning (FedDWM)
that incorporates conditional GAN (CGAN) was proposed in
[157] to tackle data privacy and class imbalance issues in
IDS for SAGINs. The proposed algorithm utilises CGAN for
synthesising attack samples to achieve balanced training and
incorporates dynamic weight-momentum aggregation, result-
ing in improved model convergence and enhanced detection
robustness. Evaluations of the CIC-IDS2017 and CSE-CIC-
IDS2018 datasets revealed an accuracy of 95.74% and an F1-
score of 94.29%. GAI-FL introduces a new framework for

secure distributed content generation in SAGINSs.

In addressing the multi-class IDS, [158] introduced an
autoencoder-based multi-task learning (MTL) framework
aimed at IoT networks. To address the limitations of single-
task learning in the context of rare attacks and data imbal-
ance, this method combined convolutional autoencoders for
feature extraction with multi-task learning parameter-sharing
mechanisms, further improved by stochastic weight averaging
for model optimisation. The feature generation capability of
the self-encoder serves as a foundation for botnet detection.
For instance, [159] combined traditional machine learning with
GANSs to detect dynamic botnet traffic, achieving an accuracy
exceeding 98% on the UNSW-NB15 dataset while minimising
false positives.

To address the dynamic characteristics of SAGINs, [160] in-
troduced a Wasserstein-distance-based composite GAN (WC-
GAN) for dynamic access control in Internet of Vehicles (IoV)
systems, effectively mitigating mode collapse and gradient
vanishing issues present in conventional GANs. The WC-
GAN produced synthetic behavioural data to enhance limited
training samples and integrated it with real datasets to train a
neural network for real-time risk assessment. The evaluations
indicated that the hybrid-trained risk predictor achieved an
accuracy of 87% and a false-negative rate of 5.2%.

3) Network Layer: Breaches at this layer pose a risk of
exposing sensitive data, such as user identities and interaction
patterns, which directly contradicts SAIGN’s objectives of
preserving privacy. GDM can be utilized to synthesize data
to replace the real data for privacy protection and VAE can be
adopted to generate synthetic samples of rare class for training
against malicious data injection [161].

A GAN-based traffic feature hiding model (TFHM) was pro-
posed in [162], utilising GRU-enhanced generators to maintain
contextual dependencies in the context of encrypted traffic
analysis. Building on this, [163] introduced a GAN-based
chaotic logistic encryption technique for the protection of loV
trajectory data. This approach addresses the limitations of
traditional chaotic encryption related to static key distribution
and low plaintext-key correlation, while exhibiting resilience
against noise, MITM, and differential attacks. Furthermore,
the integration of GAN with LSTM facilitates dynamic de-
fence and attack prediction. Fig. 3 demonstrates that [164]
explored a hybrid LSTM-GAN model to mitigate the issues of
high false positives and inadequate generalisation identified in
[163]. This approach combines LSTM for capturing sequential
dependencies with GANSs for generating adversarial scenarios.
Experimental results indicated a detection accuracy of 92.5%,
a 15% decrease in false positives relative to standalone LSTM,
and a 25% enhancement in threat prediction.

Additionally, [165] proposed a secure routing framework
that integrates GAN and blockchain technologies for edge-
assisted wireless sensor networks (WSNs). This framework
facilitates the co-optimization of energy efficiency and confi-
dentiality by employing dynamic bio-inspired clustering and
reinforcement learning-based scheduling. Furthermore, [166]
enhanced security by transitioning from reactive defence to
proactive prediction. Utilising dynamic risk modelling and
multi-policy collaboration with a Wasserstein distance-based



TABLE VII
SUMMARY OF GAI SOLUTIONS FOR SECURITY THREATS AFFECTING CONFIDENTIALITY IN SAGINS, WHERE MULTIPLE ATTACKS IN DATA LINK
LAYER REFER TO DATA TAMPERING, PRIVACY LEAKAGE, AND IMPERSONATION, AND MULTIPLE ATTACKS IN NETWORK LAYER REFER TO PRIVACY

LEAKAGE AND TRAFFIC EAVESDROPPING.

Layer Type Ref. Segment Security Threats | GAI Approach Description
[132] | Each segment | Eavesdropping WGAN-AE A physical layer key generation method
[135] | Each segment | Various attacks GAN A multiparty adversarial encryption model
[136] | Each segment Intelllgen.t AE for VAE A secure autoprecoder for MIMO wiretap channels
. Eavesdropping
Encryption [138] | Each segment | privacy leakage GAN An encrypted semantic system for privacy preserving
[134] Air Eavesdropping GAN An intelligent soft handover for UAV-enabled framework
[133] Ground Key leakage GAN Key defense in dynamic light-fidelity networks
[139] | Each segment | Eavesdropping GAN An enhanced and robust modulation classifier
[146] | Satellite/Air Eavesdropping LSTM-GAN A GAl-based DRL framework for SEE
Physical Physical Layer [143] Air Eavesdropping GDM Beamforming for multi-objective SEE optimization
Layer Security [140] Ground Eavesdropping GDM A actor-critic GDM-enhanced beamforming scheme
[142] Ground Eavesdropping GAN An adversarial defense embedded waveform design
[145] Ground Eavesdropping MoE-GDM A MoE-GDM-based resource allocation strategy
[147] Ground Eavesdropping GAN An optimization framework to counter attackers
[148] Air Eavesdropping GAN A joint trajectory and power optimization algorithm
Covert [149] Water/Air Eavesdropping AE-GAN A covert signal generation scheme for OWC
Communication | [150] | Satellite/Air Eavesdropping DD-GAN Optimization for AAV’s power and trajectory
[151] | Air/Ground Eavesdropping GAN A covert signal design and detection framework
[152] | Each segment | Eavesdropping LLM A GPT-3-based linguistic steganographic method
[155] | Each segment | Data tampering GAN A hybrid high-dimensional anomaly detection model
Intrusion [157] | Space/Ground | Privacy leakage CGAN CGAN-FL for data privacy and class imbalance
Detection [153] Ground Privacy leakage WGAN A traffic data generation scheme
Data Link [154] Ground Privacy leakage GAN A GAN-based robust IDS for IoFT security
Layer Multi-class [159] | Each segment Impersonation GAN A hybrid approach for dynamic botnet traffic detection
Intrusion [158] Ground Multiple attacks VAE Autoencoder-based multi-task learning framework for IoT
Detection [160] Ground Multiple attacks WC-GAN A wasserstein-distance-based composite GAN in IoV
[162] | Each Segment | Privacy leakage GAN Traffic feature hiding model for encrypted traffic analysis
Trafﬁ? [165] | Each segment | Eavesdropping GAN A GAN-blockchain integrated secure routing framework
Network Encryption [163] Ground Eavesdropping GAN A GAN-based chaotic logistic encryption method for IoV
Layer Intrusion [164] | Each segment | Multiple attacks LSTM-GAN LSTM-GAN for dynamic defense and attack prediction
Detection [166] Ground Multiple attacks WC-GAN A proactive prediction solution for IoV

combined GAN, communication efficiency was optimised
while ensuring the confidentiality of IoV in SAGINs.

4) Summary and Lessons Learned: As summarized in
Table VII, GAI enables dynamic encryption from channel
characteristics, enhances physical layer security via noise-
like signals, and optimizes covert communication parameters
to evade detection. In addition, GAI synthesizes adversarial
traffic for robust IDS, mitigates data scarcity in threat models,
and obfuscates traffic patterns. The inherent adaptability of
GAI models allows FL to learn and respond to the dynamic
topologies, volatile channels, and diverse threat landscapes
characteristic of SAGINSs, offering a level of agility unattain-
able by static security solutions. Despite these significant
promise, challenges remain:

® Resource constraints: High complexity and energy
consumption hinder deployment on resource-limited
edge/aerial/satellite nodes within SAGINs.

o Fighting vulnerability: GAI vulnerability to “evolved
eavesdroppers” enables training mimicry and evasion
attacks.

o Cross-domain integration: Heterogeneous segment inte-
gration (satellite/aerial/terrestrial) demands standardized
frameworks and cross-domain coordination.

e High scalability: Scalability to massive mobile networks
requires real-time inference via algorithmic/system co-
design.

IV. GAI FOR INTEGRITY AND AVAILABILITY SECURITY IN

SAGINS: CURRENT RESEARCH

This section summarizes integrity tampering and availabil-
ity disruptions that may be encountered in SAGINs, and
overviews the corresponding GAl-based solutions in detail.

A. GAI for Integrity Tampering

1) Physical Layer: Attacks such as jamming, spoofing, and
tampering can all affect data integrity to some degree [167],
[26]. Data anomaly detection and data reconstruction are the
primary means of verifying and ensuring data integrity [17].

Anomaly detection: 1t identifies deviations from normal
patterns in datasets. GAI improves this capability by offering
self-supervised anomalous data samples for training, facilitat-
ing high-dimensional anomaly detection and accurate locali-
sation in complex and unfamiliar scenarios. A discriminative
autoencoding framework (Dis-AE) was introduced by [168],
which synergistically integrates GAN and autoencoders for
semi-supervised anomaly detection. Dis-AE encounters imple-
mentation challenges in SAGINs owing to the complexity of
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Fig. 4. Typical GAl-based approaches for integrity tampering and availability disruptions in SAGINs. For integrity tampering, [180] demonstrates a data
reconstruction method based on MTS-GAN; [185] introduces a GAN-based IDS for CAN; [190] illustrates an encoder-based GAN for IDS. For availability
disruptions, [199] and [207] present VAE-GAN-based and TBM-based approaches for jamming recognition and jamming prediction, respectively; [213]

integrates PSO with GAN for IDS; [218] introduces how to apply VAE in IDS.

high-speed spatio-temporal data. To tackle these challenges,
[169] introduced an anomaly detection model that combines
improved GAN (IGAN) with LSTM networks for ADS-B-
based air transportation systems.

In addition to high-precision detection, [170] facilitates ac-
curate localisation of anomalous data. The authors introduced
a cross-correlation graph-based encoder-decoder GAN for the
purposes of anomaly detection and localisation. Expanding
upon [170], [171] addressed the issue of pattern sensitivity
in scenarios involving sample imbalance. A hybrid model
combining K-means, VAE, and Support Vector Data Descrip-
tion (SVDD) was developed to tackle anomaly detection in
multidimensional spacecraft telemetry characterised by imbal-
anced and unlabelled samples. In the context of contaminated
datasets, frameworks based on normalising flows have been
effective in reducing training biases [172]. Additionally, a
convolutional variational autoencoder-GAN (CVAE-GAN) has
facilitated zero-shot anomaly detection in AAV systems in the
absence of contaminated data [173].

To enhance defence against multimodal threat coverage in
AAV swarms, [174] proposed a hybrid anomaly detection
system that integrates GANs and FL. The framework addresses
in-flight anomalies, such as GPS jamming and spoofing, as
well as network attacks including blackhole, grayhole, and
flooding. It integrates an unsupervised stacked autoencoder
with federated learning for flight anomaly detection and em-
ploys a supervised LightGBM classifier augmented by gener-
ative adversarial networks for data balancing. To address data
heterogeneity, [175] utilised deep federated learning (DFL)
and VAEs as local models in satellite communication systems,
focussing on mitigating privacy leakage and fairness issues
inherent in centralised methods.

Current methodologies primarily focus on recognising the
information contained within the IP/TCP header, rather than
directly analysing the payload. The multimodal process of
LLM interprets data content as a specific “language” of the
device, facilitating deeper semantic feature extraction from
network behavioural characteristics to content semantics. A
content-based IoT detection framework utilising ChatGPT 4.0
Turbo embeddings and LSTM temporal modelling attained an

accuracy of 99.75% through the extraction of semantic features
from network behaviour [176].

Data reconstruction: Data reconstruction in SAGINs
faces challenges including heterogeneity and resource con-
straints. GAI models exhibit the ability to reconstruct high-
dimensional data, including channel states and images, from
low-dimensional observations. For instance, [177] presented
an adversarial autoencoder (AAE) framework designed for
simultaneous anomaly detection and signal reconstruction in
sub-Nyquist sampled spectrum monitoring scenarios relevant
to 6G and satellite systems. This architecture combines an
autoencoder with adversarial discriminators to enable simulta-
neous signal recovery. The AAE exhibits a delay in detection
and has restricted capabilities for attack localisation. In re-
sponse to these limitations, [178] introduced a CVAE-based
deep learning approach for the detection of cyber-physical
attacks in distribution systems, attaining a detection accuracy
of 98% on the BATADAL dataset.

To improve high-precision data reconstruction, [179] estab-
lished a framework based on a denoising diffusion probabilis-
tic model (DDPM) for the compression of satellite monitoring
data. The proposed method mitigates the limitations of existing
dictionary-dependent sparse representation techniques by util-
ising deep generative modelling to effectively capture the in-
tricate distributions of vibration signals. Similarly, as shown in
Fig. 4, [180] proposed a high-precision reconstruction method
utilising multi-component time series GAN (MTS-GAN) to
address electromagnetic data loss caused by equipment failures
in SAGINS.

Ensuring the integrity of image data is essential in SA-
GINs. A multi-modality semantic-aware framework for ve-
hicular networks was introduced by [68], utilising GAI-based
image generation and reconstruction. A single-input multi-
task reconstruction framework utilising an efficient pyramidal
GAN for remote sensing images was proposed by [181].
This method is hindered by over-smoothed textures resulting
from pixel-wise reconstruction loss. A GAN-based super-
resolution method (SRGAN) for AAV image enhancement was
designed to address the critical challenge of low-resolution
artefacts resulting from hardware constraints and motion blur



[182]. SRGAN primarily emphasises pixel-wise feature map-
ping, thereby overlooking the spatial-spectral interdependen-
cies present in multisensor data. In response to this challenge,
[183] proposed TransGAN-CFR, a novel framework that com-
bines transformer and GAN for cross-modal reconstruction.
The method utilised window-based multi-head self-attention
and depthwise-convolution-enhanced feedforward networks to
achieve accurate multispectral texture recovery.

2) Data Link Layer: Integrity at the data link layer requires
that data frames remain unchanged and consistent throughout
transmission, protecting against unauthorised alteration or cor-
ruption. Threats predominantly leverage protocol frame struc-
tures, such as ethernet frame tampering, and vulnerabilities,
including ARP/DHCP spoofing and VLAN hopping attacks,
to forge, inject, or truncate frames.

The authors in [184] introduced a GAN-enhanced hybrid
machine learning framework aimed at the real-time detection
of ARP spoofing attacks. The approach combined dynamic
ARP cache validation with CNN classifiers, utilising GAN-
generated synthetic attack traffic to enhance model generalisa-
tion to previously unobserved attack patterns. It relies on static
feature engineering and lacks the capability to dynamically
generate adversarial attack samples.

The enhanced GAN-based IDS for automotive CAN net-
works was proposed in [185], as illustrated in Fig. 4. An en-
hanced discriminator was developed to detect data tampering
through the verification of signal value ranges. Experiments
indicated enhanced efficacy in identifying DoS, injection, mas-
querade, and data tampering attacks, attaining 99.9% precision
and recall.

To address the dynamic and heterogeneous characteristics of
SAGINS, [186] proposed a GAN-enhanced anomaly detection
framework that generates synthetic attack patterns, such as
data tampering and frame spoofing. The lightweight classifiers
were developed to detect unauthorised alterations in network
frames. This framework is limited as it does not incorporate
proactive remediation mechanisms and functions exclusively
at the threat identification stage. In response, [187] proposed
a hybrid security evaluation framework for future IoV, which
addresses integrity verification challenges in complex attack
scenarios through the multidimensional integration of vehicle
dynamics modelling. The authors in [188] integrated a gen-
erative neural network for data imputation with blockchain
technology to provide tamper-proof storage, facilitating the
prediction of missing attributes and ensuring dataset complete-
ness. Evaluations demonstrated a 17%-23% improvement in
imputation accuracy compared to traditional SVM method,
while blockchain consensus mechanisms reduced tampering
risks by 34%.

3) Network Layer: The integrity of the network layer in
SAGINSs is crucial for ensuring reliable routing and packet
delivery; however, it is susceptible to threats such as MITM
attacks and malicious routing injection, particularly during
dynamic topology changes. GAI tackles these challenges by
employing adversarial traffic generation for routing verifica-
tion hardening, spatiotemporal anomaly reconstruction, and
topology-aware integrity self-healing mechanisms, thereby es-
tablishing a proactive defence against multi-domain coordi-

nated attacks.

In the context of anomaly detection, [189] proposed a GAN-
based framework that utilised latent interactions to identify
hardware trojans (HTs) affecting routing components and to
classify attack types. Evaluations indicated a 91Additionally,
[190] introduced N-GAN to address the high false alarm issue
by integrating partial attack semantics via weak supervision,
in contrast to the unsupervised GAN-based IDS presented in
[189]. The study in [191] introduced a GAN-based method
for generating synthetic attack traffic to mitigate issues of
data scarcity and class imbalance in intrusion detection sys-
tems (IDS). The authors utilised vanilla GAN, WGAN, and
conditional tabular GAN (CTGAN) to generate high-fidelity
Botnet attack samples from the CIC-IDS2017 dataset, resulting
in an increase in the Botnet detection Fl-score from 0.60 to
0.90, while ensuring robustness across various attack classes.
Furthermore, [130] examined a GAN-based dynamic MAD,
in which the generator produced varied attack patterns while
the discriminator worked to improve detection robustness
collaboratively.

Stealthy cyber attacks deliberately avoid detection by imi-
tating legitimate network behaviours and conforming to pro-
tocol specifications while carrying out malicious payloads. In
[192], the authors developed a hybrid adversarial framework
that integrates GAN and constrained optimisation to gener-
ate protocol-compliant attack samples in industrial control
systems. The approach focused on injection, function code,
and reconnaissance attacks, implementing ICS-specific con-
straints such as immutable packet headers while modifying
negotiable features. This resulted in over 80Extending beyond
single GANSs, [193] designed a hybrid GAN-driven framework
for secure cluster-based routing in ad-hoc networks, jointly
addressing energy efficiency and malicious node resilience.
Additionally, LLM can collaborate effectively with GANs.
A GAN-based intelligent fuzzer (DCGAN-MNFuzz) was in-
troduced by [194], which generated protocol-aware mutated
payloads through adversarial training. This was combined with
an LLM-powered dynamic risk assessment engine, validated
in a smart airport IoT testbed.

In addition to IDS design, GAI enables protocol and packet
encryption. In this context, [195] proposed a GAN-based
framework for generating balanced datasets to mitigate imbal-
anced attack detection in drone video analytics, specifically
focussing on replay, packet injection, and physical capture
threats. The integration of MAVLink’s continuous authentica-
tion methods, such as digital signatures, along with lightweight
encryption, improved data integrity against network-layer tam-
pering while preserving operational efficiency.

4) Summary and Lessons Learned: As summarized in Table
VIII, GAI enables proactive defense through two synergistic
capabilities: high-dimensional anomaly detection and robust
data reconstruction. Meanwhile, generative models transcend
traditional threshold-based methods by enabling semantic-
aware validation—interpreting payloads as domain-specific
“languages” and verifying contextual coherence beyond syn-
tactic checks. Despite these transformative advantages, critical
challenges remain:

® Resource-needs conflict: Computational intensity of GAI



SUMMARY OF GAI SOLUTIONS FOR SECURITY THREATS AFFECTING INTEGRITY IN SAGINS. MULTIPLE ATTACKS IN PHYSICAL LAYER REFER TO

TABLE VIII

16

JAMMING, SPOOFING, AND TAMPERING; MULTIPLE ATTACKS IN DATA LINK LAYER REFER TO ARP/DHCP SPOOFING AND VLAN HOPPING ATTACK;
MULTIPLE ATTACKS IN NETWORK LAYER REFER TO MITM ATTACKS AND MALICIOUS ROUTING INJECTION.

Layer Type Ref. Segment Security Threats | GAI Approach Description
[168] Each segment Data tampering AE-GAN A semi-supervised anomaly detection model
[170] Each segment Data tampering GAN A cross-correlation graph-based encoder-decoder
[171] Space Data tampering VAE A hybrid high-precision detection model
Anomaly [175] Space/Ground Data tampering VAE A heterogeneous multidimensional detection model
Detection [169] Air Data tampering LSTM-GAN A detection model for ADSB-based system
[173] Air Multiple attacks VAE-GAN A CVAE-GAN for zero-shot learning for AAV
Physical [174] Air Multiple attacks GAN Anomaly detection for anomalies and attacks
Layer [176] Ground Multiple attacks LLM Anomaly detection using ChatGPT 4.0 Turbo
[180] | Space/Air/Ground | Multiple attacks GAN A high-precision reconstruction method
[181] | Satellite/Ground | Multiple attacks GAN A multitask image reconstruction framework
[177] Space Multiple attacks VAE Joint anomaly detection and signal reconstruction
Data [179] Space Multiple attacks GDM High-precision reconstruction for satellite data
Reconstruction [183] Space Multiple attacks TBM-GAN TransGAN-CFR for cross-modal reconstruction
[182] Air Multiple attacks GAN Super-resolution for AAV image enhancement
[178] Ground Multiple attacks VAE A detection approach for cyber-physical attack
[68] Ground Multiple attacks GAI A multi-modality semantic-aware framework
Intrusion [184] Each segment ARP spoofing GAN A hybrid ML framework for real-time detection
) Detection [185] Each segment Multiple attacks GAN A IDS for automotive CAN networks
Di}_t‘:yléi.nk Prediction [188] Each segment Frame tampering GAN Data imputation for secure blockchain
Anomaly [186] Ground Frame spoofing GAN The lightweight frame classifier
Detection [187] Ground Frame tampering GAN A security evaluation framework for future IoVs
[189] Each segment Packet dropping GAN GAN-based detection for hardware trojans
[190] Each segment Packet dropping GAN GAN for partial semantic attack
[191] Each segment Multiple attacks GAN A synthetic attack traffic generation approach
[192] Each segment Stealthy attack GAN A framework for protocol-compliant attack samples
Network Intrusion [195] Air Packet injection GAN GAN for authentication and lightweight encryption
Layer Detection 1o/ ™ Ai/Ground Multiple attacks | LLM-GAN A GAN-based intelligent fuzzer
[130] Ground Multiple attacks GAN A GAN-driven dynamic malicious attack detector
[193] Ground Stealthy attacks GAN GAI for secure cluster-based routing

models (e.g., transformer-GAN hybrids) conflicts with
satellite/avionic latency/energy constraints.

e Over-reliance on dataset: Training-data dependence cre-
ates vulnerability to adversarial poisoning that may in-
duce model biases.

e Explainability deficit: Explainability deficits in deep gen-
erative models hinder breach root-cause analysis.

e Cross-Domain gaps: Layer-specific defenses (e.g.,
physical-layer recovery, network-layer verification) lack
holistic orchestration across SAGINs.

B. GAI for Availability Disruptions

1) Physical Layer: Jamming attacks compromise commu-
nication availability by transmitting high-power signals that
degrade legitimate signal-to-noise ratio (SNR). GAl-based
research addresses jamming recognition and mitigation.

Jamming recognition: Protection mechanisms in SAGINs
initiate dynamic spectrum reconfiguration and topology adap-
tation for swift defence. GANs utilise zero-sum game dy-
namics for the recognition of multi-attack signals, akin to
spoofing detection [106]. Leveraging this advantage, [196]
introduced a robust IDS utilising GAN and adversarial sample
regularisation, effectively addressing spoofing and jamming
attacks encountered by AAVs that depend on GPS naviga-
tion. Nonetheless, a single GAN would face challenges in

managing multi-dimensional data characterised by complex
relationships, such as high-resolution images. To address this
issue, [197] developed a conditional tabular GAN (CTGAN)
that synthesises data rows from discrete columns, effectively
resolving unbalanced distributions. Furthermore, TBM may be
employed to improve the efficacy of GAN. The DroneDef-
GANLt, as discussed in [110], utilised the multi-head attention
mechanism of transformers to address discriminator gradi-
ent challenges in GANs. Furthermore, autoencoders enhance
GANSs in situations with limited labelled data, such as AAV
swarm [174].

In contrast to GANs, VAEs generate interpretable features
for jamming recognition by utilising latent space recognition.
In [198], the authors introduced a VAE-based unsupervised
framework for detecting anomalous interference in MIMO-
OFDM ISAC through reconstruction probabilities. The advan-
tages of VAEs are particularly evident in few-shot learning.
The study [199] explored the latent space of small sample
datasets through the use of VAE, subsequently sampling and
decoding this latent space to facilitate dataset expansion prior
to GAN discrimination. Centralised VAEs encounter difficul-
ties in distributed SAGINSs because they are susceptible to jam-
ming. A federated augmented aggregate training algorithm was
proposed by [200], which integrates spectral function feature
extraction through CVAE to address the issue of unknown



interference detection in distributed SAGINs. Additionally,
in response to intelligent jammers that replicate legitimate
signals, [201] introduced a VAE that integrates a dynamic
adaptive spectro-temporal resilient filter (DASTRF), further
augmented by a vision transformer (ViT) and LSTM. The pro-
posed FL-ViT-LSTM-VAE enhances the detection of signal-
replicating smart jammers through the optimisation of time-
frequency distribution feature separation, thereby ensuring the
safe operation of AAVs.

Jamming recognition models are primarily characterised by
TBMs [202] and GDMs [203]. For instance, [202] introduced
a distributed radar multi-interference identification method
utilising a transformer network and adaptive beamforming
to mitigate the decline in identification performance caused
by the overlap of multiple interference sources in the time-
frequency domain. Additionally, to address the issues of inef-
ficient intrusion detection and privacy leakage in SAGIN with
heterogeneous data, the authors in [203] developed a STINIDF
framework that collaboratively trains the conditional diffusion
model (DP-CDM) via federated learning (FL) and produces
global traffic data by integrating the differential privacy (DP)
mechanism.

Jamming mitigation: Jamming mitigation involves both
active signal suppression and passive data reconstruction meth-
ods. Active mitigation relies on the awareness of jammers
and the surrounding environment. According to the avail-
able literature, [204] introduced a collaborative reinforcement
learning algorithm that employs a mixture Gaussian distribu-
tion model, integrating GAN localisation with time difference
of arrival techniques. In situations characterised by unknown
or incomplete information, [205] developed an intelligent
spectrum access algorithm that integrates GAN and DRL to
mitigate interference, even in cases with up to 90% missing
data. Furthermore, [206] introduced a vision transformer-
based adaptive blind beamforming method (ViT-BF) aimed at
jammer suppression. A proactive jamming prediction method
that integrates a pseudo-random algorithm with a transformer
module to forecast jammer behaviour was proposed by [207].

Passive data reconstruction emphasises recovery on the
receiver’s side. A conditional diffusion model (CDM)-based
anti-jamming algorithm was implemented to ensure accurate
reception of satellite navigation signals in complex SAGINs
[208]. The algorithm incrementally introduced noise and learnt
the noise distribution via the forward diffusion process, while
systematically denoising the noise-embedded QPSK signal as
a condition in the reverse diffusion process. Furthermore, [209]
proposed GAN-inspired anti-jamming techniques for semantic
communication, ensuring decoding consistency during attacks.
Additionally, few-shot sample scenarios in IoT networks were
examined in [210], highlighting that various jamming styles
were rare and challenging to mitigate effectively. The authors
proposed a meta-learning and multi-task approach for source
separation to address unknown interference.

2) Data Link Layer: Availability threats, such as MAC
flooding and ARP-based DoS, encompass adversarial actions
that interfere with protocol operations or deplete resources,
consequently denying legitimate access to network services.
GALI can improve the resilience of the data link layer protocols

in SAGINs against jamming or resource-exhaustion attacks
through the simulation of intricate adversarial scenarios and
the development of adaptive defence strategies.

In [211], the authors introduced a GAN-enhanced IDS
combined with a LSTM-based MAC protocol to mitigate
availability threats in underwater wireless sensor networks
(UWSNSs). The framework utilises GAN for real-time assess-
ment of acoustic channel quality, including noise patterns
and malicious signal interference, alongside LSTM-MAC for
adaptive medium access control. This approach dynamically
optimises contention access periods and implements reactive
jamming to counter DoS attacks, resulting in a detection
accuracy of 98.9% with 5% malicious nodes present. Based
on this, [212] examined cross-layer attacks that encompass
the data link and network layers, including flooding attacks
that utilise IPv6 router advertisements, resulting in link layer
congestion. The authors proposed a DL-based approach for
detecting router advertisement flooding DDoS attacks in IPv6
networks. Integrating feature ranking algorithms with a RNN
addresses the vulnerability of the neighbour discovery protocol
(NDP), specifically mitigating RA flooding attacks.

The aforementioned studies depend heavily on static feature
libraries and are unable to manage adversarial perturbation
traffic in real time. To address this issue, [213] proposed an ad-
versarial attack detection framework (WCSAN-PSO) utilising
an optimised weighted conditional stepwise adversarial net-
work alongside particle swarm optimisation, as illustrated in
Fig. 4. The integration of GAN-generated adversarial samples
with feature selection techniques enhanced the robustness of
IDS. The framework demonstrated an accuracy of 99.36% for
normal traffic and 98.55% for malicious traffic when assessed
using the CIC-IDS2017 dataset. Utilising GAI to dynami-
cally generate attack patterns and optimise model parameters
enhanced the generalisation of IDS against evolving threats,
consequently improving service availability.

3) Network Layer: The availability of the network layer in
SAGINs is compromised by dynamic topology-based DDoS
attacks, resource depletion in high-latency links, and routing
flooding attacks. GAI facilitates federated anomaly detection
and supports privacy-preserving adversarial training.

VAE demonstrates effective performance in traffic anomaly
detection within SAIGINs. For instance, [214] presented a
two-phase DDoS mitigation framework powered by a VAE,
which incorporated cyclic queuing to optimise the balance
between persistent resource consumption and detection effi-
ciency for edge devices in dynamic SAGIN environments.
Furthermore, [215] introduced an unsupervised intrusion de-
tection system utilising deep autoencoders to capture spa-
tiotemporal patterns of normal network flows within industrial
control systems. This method attained a detection accuracy of
98.8% for DDoS attacks, accompanied by a false alarm rate
of only 1.13%. However, the method presented in [215] is
limited by inadequate privacy protection when dealing with
non-independent and identically distributed data (non-1ID)
and exhibits weak cross-device generalisation. In response to
this issue, [216] examined a FL-VAE scheme that integrates
variational autoencoders with momentum-accelerated FL, with
a specific focus on DDoS mitigation in SAGINs. The frame-



TABLE IX
SUMMARY OF GAI SOLUTIONS FOR SECURITY THREATS AFFECTING AVAILABILITY IN SAGINS, WHERE MULTIPLE ATTACKS IN NETWORK LAYER
REFER TO DDOS ATTACK AND ROUTING FLOODING.

Layer Type Ref. Segment Security Threats | GAI Approach Description
[196] Space/Air GPS jamming GAN A robust IDS based on GAN and sample regularization
[197] Air Jamming attack GAN Conditional tabular GAN to handle multi-dimensional data
[110] Air Jamming attack TBM-GAN DroneDefGANt smooths gradient during backpropagation
[174] Air Jamming attack AE-GAN AE-GAN solves insufficient labelled data in AAV swarm
Jamming | [198] Ground Jamming attack VAE Unsupervised detection for MIMO-OFDM ISAC system
Recognition | [199] | Each segment Jamming attack VAE-GAN Jamming recognition based on AC-VAEGAN
[200] | Air/Ground | Unknown jamming VAE A federated augmented aggregate training algorithm
Physical [201] | Air/Ground | Intelligent jamming VAE A dynamic adaptive spectro-temporal resilient filter
Layer [202] Ground Jamming attack TBM A distributed radar multi-interference identification method
[203] | Space/Ground Privacy leakage GDM STINIDF through FL and generated traffic data
[204] Air Jamming attack GAN A collaborative RL algorithm based on GAN
[205] Ground Jamming attack GAN An GAN-DRL-based spectrum access algorithm
. [206] Space Jamming attack TBM A vision transformer based blind beamforming method
J?Iflm'flg [207] Air Jamming attack TBM Jamming prediction integrates pseudo-random with TBM
Mitigation [208] Space Signal jamming GDM A GDM-based anti-jamming algorithm
[209] | Each segment Jamming attack GAN A anti-jamming scheme for semantic communication
[210] Ground Jamming attack TBM A sample less source separation algorithm
. [211] | Underwater MAC flooding LSTM-GAN A GAN-enhanced IDS integrated with MAC protocol
Daﬁa Link })net tre lzst:gﬁ [212] | Cross-Domain Flooding DDoS GAN Detection for routing flooding in IPv6 networks
ave [213] | Each segemnt MAC flooding GAN An adversarial attack detection framework
[214] | Each segment DDoS attack VAE A VAE-powered two-phase DDoS mitigation framework
[215] | Each segment DDoS attack VAE An unsupervised IDS using deep autoencoders
[216] | Each segment DDoS attack VAE A FL-VAE scheme combining VAE with FL.
Network Intrusion [217] | Each segment Multiple attacks VAE VAE is combined with neural architectures
Layer Detection | [218] | Each segment Multiple attacks VAE A privacy-preserving traffic generation method
[219] | Each segment Multiple attacks GAN A hybrid IDS integrating CGAN and gradient boosting
[220] | Each segment DDoS attack LLM A GAl-driven framework using pre-trained transformers
[221] | Each segment DDoS attack LLM A GAl-powered real-time DDoS detection framework

work tackled feature heterogeneity among distributed nodes
via dynamic client sampling and adaptive model retraining,
resulting in a 99.97% attack recognition precision on non-IID
traffic and a 32% reduction in cross-node data exchange.

VAE can be integrated with neural architectures to provide
defence mechanisms against attacks in SAGINs. The study
[217] utilised the anomaly detection capability of VAEs by
employing probabilistic reconstruction of multi-dimensional
traffic patterns. Additionally, [218] introduced a privacy-
preserving traffic generation method utilising CVAE, which
tackles security availability issues in SAGINs arising from dy-
namic traffic patterns and device heterogeneity. The authors in
[219] proposed a hybrid IDS that integrates conditional GAN
(CGAN) and extreme gradient boosting (XGBoost) for small
sample datasets. This method decreased the physical layer
deployment requirements in wireless sensor networks by util-
ising adversarial data generation. The approach attained 99.9%
detection accuracy and a 1.83% reduction in false alarms on
the NSL-KDD and CICIDS2017 datasets by integrating GAI
with lightweight classifiers, thereby improving network-layer
anti-jamming capabilities, especially for resource-constrained
nodes in SAGINSs.

In the context of DDoS vulnerabilities, [220] presented
PLLM-CS, a framework driven by GAI that utilises pre-
trained transformers. The model restructured network data
into context-aware token sequences, effectively capturing spa-

tiotemporal patterns in cyber threats via self-attention mecha-
nisms, thereby overcoming the limitations of traditional IDSs
in resource-constrained satellite environments. The centralised
architecture presented in [220] is at odds with the distributed
characteristics of SAGINs, facing challenges related to dy-
namic network traffic and the complexity of heterogeneous
cross-domain protocols. Therefore, [221] developed Llama2-
Defender, leveraging LLMs for contextual reasoning across
heterogeneous nodes to overcome generalization limitations
in aerial-terrestrial networks.

4) Summary and Lessons Learned: As summarized in Table
IX, GAI enables robust jamming recognition by distinguishing
stealthy adversarial patterns from legitimate transmissions.
Meanwhile, diffusion models facilitate high-fidelity signal
reconstruction from severely corrupted observations, while ad-
versarial learning frameworks generate adaptive beamforming
and spectrum access policies that dynamically circumvent in-
terference. Crucially, GAI’s synthetic data generation capabil-
ity overcomes the critical limitation of attack sample scarcity,
enabling the training of detectors for novel or evolving threats
without requiring extensive real-world datasets. Despite these
advances, critical challenges remain:

e Fidelity vs. deployability trade-offs: While model dis-
tillation and FL offer partial mitigation, fundamental
trade-offs persist between generative fidelity and edge
deployability.



o [ntrinsic vulnerability: Maliciously crafted inputs could
poison generative training data or deceive detectors
through perturbation attacks, potentially turning defensive
systems into availability liabilities.

e Cross-Layer coordination: While GAI excels at layer-
specific countermeasures (e.g., physical-layer beamform-
ing and network-layer DDoS mitigation), holistic frame-
works for orchestrating generative defenses across SA-
GIN’s protocol stack require development.

V. TUTORIAL 1: GDMTD3 FOR MULTI-OBJECTIVE
AERIAL COLLABORATIVE SECURE COMMUNICATION
OPTIMIZATION

A. Motivation

The allocation of resources for secure communication in
SAGINs presents a critical and complex challenge under
various attacks. This issue pertains to the dynamic allocation
of constrained resources, such as transmit power, computing
power, and routing, to optimise security metrics, including
secrecy rate and SEE, while concurrently reducing opera-
tional costs, such as energy consumption and latency. The
primary challenge is optimising problems characterised by
high-dimensionality, non-convexity, and NP-hardness within
the dynamic adversarial conditions and strict resource lim-
itations of SAGINs. For instance, [143] presented a multi-
objective problem aimed at optimising the excitation current
weights and three-dimensional trajectories of UAVs to achieve
a balance between secrecy rate and energy consumption in
a dynamic high-dimensional space. Traditional AI methods,
such as DRL approaches, encounter significant challenges
in accurately modelling the complex probability distributions
associated with high-dimensional continuous action spaces.
These methods often exhibit high policy variance, unstable
convergence, and suboptimal Pareto frontiers in the context of
secure resource allocation [78] [222].

GDMs offer a significant advantage compared to tradi-
tional DRL in addressing complex resource allocation issues.
DRL utilises deterministic or simplified stochastic policy
networks, whereas GDMs employ a progressive denoising
mechanism to accurately capture and sample from complex,
high-dimensional state-action distributions. This facilitates the
production of varied and high-quality candidate solutions for
DRL’s policy networks, efficiently examining the complex
trade-offs between opposing objectives (e.g., secrecy rate ver-
sus energy). The integration of GDMs into the DRL framework
significantly enhances the representational capacity of the pol-
icy, addressing the limitations of traditional DRL in navigating
complex solution spaces and achieving robust convergence
towards near-Pareto-optimal strategies under uncertainty. The
GDM-driven DRL framework creates a new and scalable
model for secure and efficient SAGINS.

B. System Description

Fig. 5 illustrates that the UAV swarm-enabled secure
surveillance network encounters ongoing threats from mobile
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Fig. 5. A UAV swarm-enabled surveillance network transmits sensitive
data to a RBS, persistently threatened by a mobile eavesdropper attempting
interception through time-varying wiretap channels [143].

eavesdroppers seeking to intercept communications via time-
varying wiretap channels across discrete time slots. Collab-
orative beamforming (CB) using UAV virtual antenna arrays
(UVAAs) improves directional security but creates a signifi-
cant energy-security trade-off. The continuous repositioning of
UAVs to achieve optimal beam patterns significantly increases
energy consumption in the pursuit of maximising secrecy rates.
Within this dynamic threat environment, a multi-objective
optimisation problem for aerial secure communication and
energy efficiency (ASCEE-MOP) is formulated to maximise
the secrecy rate and minimise energy consumption as follows:

N N

max ;RSE[n], - ZE{n] (1a)
st.  0<IY[n)<1,Vke{l,.., K}, (1b)
Xuin < 2¥[n] < Xmax, Yk € {1,..., K}, (lc)

Yain < ¥¥ [0] < Yinax, ¥k € {1, ..., K}, (1d)
Zmin < 27 [n] € Zmax, Vk € {1,...,K}, (le)

0 < vY[n] < Vipax, Vk € {1, ..., K}, (1)
gk, [n], qr, [0]]| = DS, Vhr, k2 € {1,.., K}, (1g)

where Rgg[n] and E[n] are the achievable secrecy rate
and the flight energy consumption, respectively. K and N
are the number of UAVs and time slots, respectively. I =
{IY[n]}ker nen and g = {qY [n]}rek nen are the excitation
current weight matrix and the position matrix of UAVs at
all time slots, respectively. ¢ [n] = (z¥[n],y¥[n],zY [n])
is the the coordinate of UVAA center. (1b) expresses the
range constraint of the excitation current weight. Moreover,
Constraints (1c), (1d), and (le) restrict the flight area of the
UAV. Constraint (1f) is the speed constrain of the UAV, and
Constraint (1g) is imposed to guarantee the minimum distance
between two UAVs.

This problem is non-convex, NP-hard, and dynamic due to
eavesdropper mobility. Existing approaches for such optimiza-
tion problems typically decompose them into separable convex
subproblems solved iteratively. However, solution accuracy
critically depends on the decomposition strategy. Moreover,
dynamic factors, such as mobile eavesdroppers and time-
varying channels, impose prohibitive computational overhead
for real-time SAGIN operations. DRL provides an efficient
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Fig. 6. The proposed GDMTD3 framework, which integrates a GDM into
actor network to capture complex state features and generate optimal actions
from environmental states [143].

framework for adaptive sequential decision-making through
policy gradient frameworks that encode environmental dynam-
ics into a Markov decision process (MDP). This paradigm effi-
ciently navigates the solution space of ASCEE-MOP without
explicit problem decomposition. Furthermore, GDM can be
adopted in policy network to generate high-quality solutions
for excitation current weights and UAV localisation, mapping
the state of the environment directly to the optimal action.

C. GAI-Based Solutions

Generally, the GDM-driven DRL approach significantly
improves the robustness and convergence of the policies by
fusing the distributional modelling capability of diffusion
models with the decision optimization framework of DRL. It
is divided into three main steps when solving complex single-
objective and multi-objective optimization problems with high-
dimensional state-action spaces. Here, we take the GDMTD3
in [143] as an example to illustrate.

e Step 1: Modelling the dynamic optimisation problems
as MDP tuples is fundamental, where the MDP tuple is
< S, A, P, R,y >. The environment state at slot n is
s[n]. The action set is a[n] = (I[n],q[n]). The reward
function is defined as r[n|. P is the transition probability
of the state, and ~ is the discount factor. This formulation
transforms ASCEE-MOP into a tractable DRL problem
where UAV swarms interacts with the environment to
maximize cumulative discounted rewards.

e Step 2: We integrate the GDM with the actor network
of TD3, where the multi-layer perceptrons (MLPs)-based
actor network struggles with the non-linear state space
induced by mobile eavesdroppers and multi-objective
trade-offs. GDMs address this limitation by modeling
high-dimensional distributions for more balanced and op-
timized decisions in uncertain and dynamic environments.
As shown in Fig. 6, GDMTD3 integrates GDM with
the actor network for enhanced state-action distribution
capture and a more diverse set of potential actions.
The core is GDM-based action sampling. This process
is similar to the Gen-DRL in [146], but this tutorial
analyzes the more complex multi-objective optimisation
rather than the single-objective optimisation in [146]. Fur-
thermore, while [140], [145], and [165] consider resource
optimisation in secure communication, their schemes
address lower dimensions andthe algorithms may fail in
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dynamic and complex SAGINs. Using GDM-driven DRL
to implement secure security resource allocation would
support them being more applicable to real SAGINs to
some extent. Specifically, in GDMTD3, based on the
current state s[n|, action a[n], and initialized Gaussian
distribution £ ~ N(0,I), a denoising distribution
€o (e, t, s[n]) is deduced and then the mean of the
reverse process Kg, can be computed as follows:

1 (w _ Procoa > 2
where 3, is the variance function of variance preserving
stochastic differential equations and ¢y = 1 — (.
oy = szl o,. Then, a reparameterization trick that
facilitates differentiable sampling is employed to compute
the distribution x¢_1 as follows:

@i 1 = ko, (2, t,8) + (B:/2)? @ e, 3)

Ko, (wta t, S[n]) =

where Bt is a predetermined variance factor and ® is the
operator of Hadamard product. Finally, we can obtain the
generative distribution pg, (o) as follows:

T
po,(zo) = p(zT) H Poy(Tt—1|Tt), “)
t=1
where p(ar) represents a standard normal distribution.
Once the generative distribution pg, (o) is successfully
trained, we can sample the action g from (4).

e Step 3: Now, we can conduct the training and execution
process. The RBS governs the training process via the
actor-critic framework of GDMTD3. During this step,
environment interactions of the UAV swarm are contin-
uously recorded and cached in a replay buffer. Upon
completion of the training cycle, the actor network is
deployed across the UAV swarm, enabling autonomous
real-time adaptation to dynamic threats for sustained
secure communication during operational execution.

D. Numerical Results

As shown in Fig. 6 of [143], the proposed GDMTD3
achieves a 20% higher average reward per episode compared
to benchmarks (TD3, PPO, DDPG, SAC, and transformer-
based TD3 methods). This performance gain stems from its
generative diffusion mechanism, which enhances exploration-
exploitation trade-offs in high-dimensional state-action spaces,
thereby maximizing cumulative rewards.

Fig. 7 demonstrates the superior performance of GDMTD3
in terms of average secrecy rate and average energy consump-
tion compared to baselines. This gain stems from dynamic
joint optimisation of UAV excitation currents and spatial
configurations, effectively countering eavesdropping threats. It
exhibits 18% lower average energy consumption than conven-
tional strategies, which is attributed to the joint optimisation of
beamforming parameters and trajectory planning. Collectively,
these results confirm that the GDM-DRL framework uniquely
balances two competing objectives: maximizing secrecy rates
while minimizing energy consumption. We can further con-
clude that the proposed GDM-DRL approach still performs
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Fig. 7. Comparison results of the proposed GDM-enabled DRL approach and
other four deployment policies. (a) Average secrecy rate per step [bps/Hz].
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Fig. 8. Comparison of curves of GDMTD3 with different denoising steps
[143]. When the number of denosing steps is 4, the reward reaches its
maximum value and the average security rate is the highest and the energy
consumption is the lowest. As the number of denosing steps is raised or
lowered, the performance starts to decrease.

well when the security resource optimisation is more complex,
e.g., cross-layer or cross-domain resource optimisation, as
considered in [39], [132], and [212]. Traditional DRL, on the
other hand, fails further.

In addition, the denoising step count critically modulates
noise suppression efficacy and overfitting vulnerability in
GDMTD3. As validated in Fig. 8, performance peaks at 4
steps for ASCEE-MOP. Beyond this threshold, marginal utility
attenuation occurs due to noise-pattern overfitting, inducing
oscillatory artifacts in action generation. This establishes 4-
step diffusion as the optimal robustness-efficiency trade-off.

E. Lessons Learned

GDM-driven DRL robustly models high-dimensional state-
action spaces to resist adversarial perturbations and data noise.
Their integration replaces conventional policy networks with
iterative diffusion processes, generating high-quality action
sequences via multi-step refinement and overcoming tradi-
tional DRL’s local convergence in complex spaces. With this
mechanism, the challenge of [140], [145], and [165] not being
able to cope with high-dimensional dynamic security opti-
mization problems is addressed. It also shows vast potential in
higher dimensional cross-layer and cross-domain optimization
problems in [39], [132], and [212].

VI. TUTORIAL 2: GDM FOR PRIVACY-PRESERVING
MOBILE CROWDSENSING

A. Motivation

The collection and sharing of extensive sensing data in
SAGINSs, including satellite telemetry, AAV trajectories, and
user behaviours, poses significant risks to privacy. Attackers
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Fig. 9. The privacy preservation framework, where GAl-enabled SPPMCS
can alleviate the privacy preservation concerns on sensing data, and MST’s
identification and location information [161].

can acquire raw data through eavesdropping on wireless links
and compromising edge servers or IoT devices, resulting
in the exposure of user identity, location, and behavioural
information. Traditional privacy-preserving methods exhibit
significant limitations: static encryption techniques struggle to
accommodate the dynamic topology of SAGIN, resulting in
increased latency [131]; DP necessitates a trade-off between
data utility and anonymity, thereby reducing the effectiveness
of data analytics [203]; and FL utilising discriminative Al
safeguards local data but suffers from slow convergence and
accuracy degradation in heterogeneous device environments
[156]. None of these approaches can effectively protect privacy
while simultaneously addressing the constraints of dynamism,
utility preservation, and real-time requirements.

GAI, particularly GDM, overcomes the aforementioned
limitations via paradigm reconstruction. Sensitive privacy at-
tributes are removed from the original data using a forward
diffusion process, followed by the generation of synthetic data
that retains equivalent statistical features while lacking privacy
information, based on backward denoising [161]. In contrast
to DRL, GDM mitigates issues related to high variance and
sub-optimal policies in complex privacy-utility trade-offs in
reinforcement learning [78]. In comparison to GAN and VAE,
GDM offers a more stable training process and superior
generation quality, effectively addressing the pattern collapse
associated with GAN and the ambiguous reconstruction issues
of VAE [71] [73].

The typical application involves secure and privacy-
preserving mobile crowdsensing (SPPMCS) as discussed in
[161]. This system employs GDM to substitute raw sensing
data, such as vehicle images, with synthetic samples that
do not compromise privacy. This approach effectively elim-
inates potential privacy leakage pathways and quantitatively
enhances the equilibrium between privacy and task accuracy
via the privacy-preserving utility index (PPUI). Consequently,
it equips the SAGIN with a dynamic privacy mitigation
mechanism unattainable by conventional Al methods.

B. System Description

As illustrated in Fig. 9, SPPMCS comprises three core
entities: a service requester (SR) for task generation and



specification, a service provider (SP), and distributed mobile
sensing terminals (MSTs) performing SP-coordinated data
acquisition. Specifically, this system operates in three phases:
i) Task Generation and Allocation: The SR generates sens-
ing tasks (specifying data type, volume, and quality) and
distributes them to SPs. SPs then authenticate MSTs using
broadcast encryption and assign decryption keys. However,
dynamic task adjustments (e.g., for real-time data needs)
incur significant key-management overhead and delays under
traditional encryption, degrading system efficiency. ii) Data
Collection and Submission: MSTs submit collected data to
SPs. While conventional discriminative Al techniques (e.g.,
federated learning) preserve local data privacy, they suffer
from slow convergence and reduced accuracy due to edge
device heterogeneity (varying computational and communica-
tion capabilities). iii) Result Evaluation and Reward Payment:
SPs evaluate data quality and reward MSTs. Some RL and
blockchain-based approaches, face high computational costs
and slow convergence, hindering real-time verification of
reward transactions.

C. GAI-Based Solutions

GDM-driven privacy preservation mechanisms contribute to
robust security defenses against threats like malicious data
injection, unauthorized access, and spectrum manipulation,
while simultaneously enhancing protection for both data con-
tent and terminal identification/location in SAGINs. Here, we
introduce the GDM-driven SPPMCS scheme to compensate
for the lack of dynamic adaptability of static encryption [138],
poor accuracy of differential privacy data [102], and slow
convergence of FL-based traditional AI [156] [157]. Main
steps in Fig. 10 are as follows:

e Step I: In sensing task publishment, SRs outsource
application-specific data requirements to SPs, leveraging
SP resources to overcome collection and analysis limita-
tions.

e Step 2: In sensing terminal recruitment, the SP recruits
qualified MSTs based on SR specifications utilizing a
utility-driven reward model where compensation scales
with data quality and objective fulfillment.

e Step 3: In sensing data collection, MSTs collect data
per SR specifications. While high-capacity MSTs fulfill
multi-type tasks independently, others form coalitions to
achieve full coverage. This cooperation enhances task
completeness but necessitates proportional reward redis-
tribution.

o Step 4: We conduct GDM to finish synthetic data genera-
tion. Specifically, the GDM process involves two stages:
(1) a forward diffusion phase that incrementally adds
noise to original training images to learn latent features;
(2) a reverse diffusion (denoising) phase that reconstructs
realistic synthetic images from noise. By replacing a
portion of real-world data with these synthetic samples
during data submission, MSTs mitigate privacy exposure
without degrading downstream task performance (e.g.,
vehicle detection). GDM eliminates the lack of dynamic
adaptability inherent in encryption in [138]. Synthetic
data requires no cryptographic keys or complex key-
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Fig. 10. A GDM-enabled SPPMCS framework for sensing data content
protection, where GDM is adopted to synthesize vehicle images. The GDM
process extracts features from original images by adding noise during the
forward diffusion stage. A subsequent denoising process in the reverse
diffusion stage then generates the target synthetic image. By replacing real-
world images with these privacy-free synthetic counterparts, the framework
effectively alleviates sensing data privacy concerns [161].

distribution protocols, enabling seamless adaptation to
new data types/privacy requirements. This GDM mecha-
nism can also be adopted to enhance DP with poor data
accuracy in [102], by generating structurally consistent,
high-fidelity synthetic data. In addition, GDM avoids
the slow convergence of FL-based privacy in [157]. It
operates locally or at the SP without iterative parameter
exchanges, reducing latency. Synthetic data submission
incurs minimal overhead compared to FL’s multi-round
coordination.

e Step 5: Hybrid data submissions from MSTs undergo
SP-led quality attestation—measuring critical dimen-
sions, which directly determines reward distribution via
mechanism-defined payment rules anchored in quality-
effectiveness proof.

D. Numerical Results

Since GDM can generate new synthetic data to replace
the original data to be analyzed and processed, it can lower
data attacks and privacy leakage risks for the original data.
Simulations are based on the YOLOv3 model. The GDM
parameters are configured with 500 iterations, a mini-batch
size of 32, a learning rate of 0.005, and a squared gradient
decay factor of 0.9999.

Fig. 11 illustrates the performance of YOLOv3 when trained
with varying proportions of GDM-generated synthetic data.
Increased integration of synthetic data correlates with a re-
duction in YOLOv3 detection accuracy. While synthetic data
effectively mitigates privacy leakage from raw data, its inclu-
sion inevitably compromises downstream task performance.
To address this issue, Fig. 12 introduces the privacy protection
utility index (PPUI), quantifying the balance between privacy
preservation and data utility. PPUI is calculated as a weighted
sum of the synthetic data proportion in the training dataset
and the average accuracy of the downstream task model,
both normalized to the range [0, 1]. The index demonstrates
an inverse relationship with synthetic data proportion: higher
proportions enhance privacy protection but degrade model
accuracy, thereby reducing PPUI. The strategy maximizing
PPUI achieves an optimal privacy-accuracy equilibrium.
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E. Lessons Learned

GDM-driven privacy-preserving mechanisms that generate
high-fidelity synthetic data for high-altitude platform remote
sensing data, UAV swarm cooperative path data, and SAGIN
resource scheduling data. It generates statistical attributes
that are consistent with, but free of, privacy properties. It
can effectively deal with the privacy preservation challenges
encountered in encryption [138], differential privacy [102], and
FL-based traditional AI [156] [157].

VII. TUTORIAL 3: GAI FOR MULTI-MODALITY
SEMANTIC-AWARE COMMUNICATIONS IN SAGINS

A. Motivation

Real-time secure transmission and defense requirements
face great challenges in dynamic and vulnerable SAGIN
environments. For example, high-resolution image transmis-
sion delays cannot meet millisecond security decision-making
needs [68]. The static models employed in traditional Al
require periodic retraining to adapt to dynamic threats in
SAGINSs, resulting in delayed responses to emerging risks [99]
[100]. In addition, data generation and reconstruction based
on a single textual prompt can deviate significantly from real-
world scenarios (e.g., CNN-based image recognition) [94].

The GAI approaches enhanced by multi-modal data gen-
eration and semantic compression can effectively break
through the above limitations to achieve real-time adaptive
security communication and defense [176] [209]. Semantic
compression-based VAEs constribute to probabilistic com-
pression of SAGIN data, saving SAGIN resource. In cross-
modal alignment, the text-image semantic space can be uni-
fied, eliminating semantic ambiguities caused by dynamic
environment changes. GDM balances generation quality and
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latency by adjusting the number of denoising steps, which
significantly improves environment adaptability. A representa-
tive GAl-based multi-modality semantic-aware framework is
proposed in [68] to promote the service quality of GAI for
SAGINs. In this case, text and image data are exploited to
create multimodal content to provide more reliable and secure
communications for vehicle networks, mainly including GAI-
assisted skeleton-semantic co-generation and DRL-assisted co-
optimization.

B. System Description

We take the vehicle-to-vehicle (V2V) networks as an ex-
ample to demonstrate the advantages of the GAI-based multi-
modality semantic-aware framework. The Fig. 1 in [68] il-
lustrates the GAl-enabled V2V networks, where multi-camera
systems are employed to capture real-time road imagery for
safety applications, such as collision alerts during accidents.
Other major applications include navigation and route opti-
mization, insurance and risk assessment, traffic simulation and
prediction, and driving data generation. However, conventional
generative models relying solely on textual descriptors exhibit
high uncertainty, often generating inaccurate visual recon-
structions (e.g., misrepresenting accident scenes or contextual
details like license plates). Therefore, while the application
of GAI in V2V shows great potential, it also faces critical
challenges, including real-time data processing and decision
making and adapting to dynamic and unpredictable envi-
ronments. These unreliability challenges necessitate a robust
generative architecture capable of preserving semantic fidelity
to ensure safety-critical decision-making in V2V networks.

C. GAI-Based Solutions

We conduct a multimodal semantic-aware GAI framework
for V2V networks, leveraging complementary data modalities
(text and images) to enhance situational awareness. Multi-
modal fusion mitigates ambiguities inherent in unimodal data,
yielding superior environmental perception. As depicted in
Fig. 13, semantic skeletons derived from textual and visual
inputs enable generative models to produce highly accurate
reconstructions of road scenes. In addition, By fusing textual
semantics and structural skeletons, this framework establishes
tamper-evident environmental fingerprints, ensuring trustwor-
thy perception against malicious attacks in [211] and [213].

o Step 1: Semantic information extraction: Textual seman-
tics are extracted from road images via a secure encoder,
detecting objects (vehicles, pedestrians) and attributes
(position, trajectory).

o Step 2: Image skeleton Extraction: A streamlined struc-
tural skeleton is derived by identifying salient edges
and contours within the road scene. This compact repre-
sentation preserves critical topological features, enabling
efficient downstream processing (e.g., object recognition,
lane detection) while discarding superfluous details.

o Step 3: Wireless transmission: Semantic text and struc-
tural skeletons are fused into a lightweight data package
for V2V broadcast. This approach reduces bandwidth
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Fig. 13. Proposed GAl-enabled multi-modality semantic-aware communica-
tion framework for V2V networks [68].

consumption by > 90% compared to raw image transmis-
sion, ensuring reliable delivery of essential environmental
data under constrained network resources.

o Step 4: GAl-enabled image generation: A generative
model synthesizes road scenes by integrating the struc-
tural skeleton (spatial foundation) with semantic de-
scriptors (contextual attributes). This dual-input approach
ensures high-fidelity reconstructions across diverse sce-
narios (e.g., weather variants, traffic densities). Model
efficiency is tunable via diffusion-step optimization. In
addition, this enhanced GAI can be utilized to generate
adversarial scenarios to proactively identify hazards [213]
and contribute the traffic real-time generation in [124].
Cross-modal validation detects synthesized deepfakes tar-
geting SAGIN perception.

e Step 5: Image reconstruction: Onboard intelligence com-
pares GAl-reconstructed scenes with real-time feeds. Po-
tential hazards (e.g., obstacles, accidents) are identified
through real-time scene comparison, triggering multi-
modal (auditory/visual) alerts to prompt driver interven-
tion. The proposed framework can alleviate the problems
of insufficient accuracy and real-time performance in
[177], [179], and [182].

e Step 6: DRL-based resource allocation: For the proposed
GAI framework, we propose a double deep Q-network
(DDQN)-based approach to optimize the security qual-
ity of experience (QoE) in V2V networks within the
constraints of the transmission power budget and the
probability of successful transmission for each vehicle.
More specific process can be found in [68].

D. Numerical Results

We evaluate the performance of the proposed GAI-DDQN
algorithm for multi-modality semantic-aware framework. In
Fig. 4 (a) of [68], the proposed DDQN strategy shows su-
perior convergence dynamics versus benchmarks (e.g., DQN-
based, greedy-based, and random-based GAI approaches). In
addition, as shown in Fig. 14, we analyze the variation of QoE
with the size of image payload. The QoE metric, evaluated per
timestep in unconstrained environments, quantifies generative
image fidelity critical for security-sensitive perception. The
DDQN-based approach consistently outperforms benchmarks,
demonstrating its efficacy in adversarial SAGIN conditions.
Crucially, increased image payload enhances system QoE
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by conveying richer environmental signatures, enabling more
robust anomaly detection against spoofing or data tampering
attacks in [189], [214], and [217]. This payload-QoE syn-
ergy directly strengthens spatial-temporal integrity verification
across ground-air-space links.

E. Lessons Learned

The transmission delays impeding real-time security de-
cisions in SAGINSs, and traditional Al fails to address due
to their latency and single-modality inaccuracies. The pro-
posed GAI-based multi-modality semantic-aware framework
overcomes these limitations through cross-modal fusion and
semantic compression, enabling tamper-evident environmental
fingerprints and adaptive diffusion-step optimization for real-
time threat response. It can effectively enhance cross-domain
spoofing detection in [115], data tampering resilience in [189],
and integrity verification of SAIGN links in [187]. Ultimately,
the co-design of generative semantics and DRL resource
allocation establishes a new paradigm for security-assured
dynamic perception in safety-critical SAGIN operations.

VIII. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

This section explores the open issues and potential research
directions for the application of GAI in SAGIN security.

A. Resource Constraints and Lightweight Deployment Issues

The high computational overhead inherent in current GAI
models is in fundamental conflict with the limited resources
(i.e., computing power and energy) of the SAGIN nodes.
Existing compression techniques (e.g., knowledge distillation)
often struggle to balance real-time security reasoning and
threat detection accuracy with dynamic topologies. Advancing
theoretical efficiency boundaries for edge-deployed models
remains imperative.

1) Neural Architecture Search (NAS)-Driven GAI Model
Compression: NAS leverages ML methods to automate the
neural network architecture design in a data-driven manner
[223], eliminating extensive manual effort required to ex-
plore vast network structure spaces for optimal task-specific
efficiency. Within SAGINs, NAS can automatically generate
lightweight GAI models with high compression ratio and
low latency (e.g., adversarial sample generator and anomalous
traffic synthesiser) to run real-time threat detection directly on
satellite/IoT devices, reducing cloud dependency. Novel NAS
frameworks should automate compression of GAI models for
SAGIN-edge devices, optimizing layer pruning and quantiza-
tion while preserving anomaly detection accuracy.



2) MoE-Driven Lightweight GAI Model: The MoE-driven
GAI addresses SAGIN deployment challenges through modu-
lar task-specialization [84]. Its dynamic routing mechanism ac-
tivates only relevant lightweight expert modules (e.g., compact
models for generating defensive data), significantly reducing
computation load on satellites. The modular design facilitates
cross-platform adaptation and independent updates, enabling
collaborative threat analysis without raw data transfer. This
architecture delivers complex security capabilities to resource-
constrained nodes through elastic deployment.

3) Edge-Cloud Collaborative Generative Frameworks:
These frameworks mitigate resource constraints through lay-
ered task offloading and semantic communication [19]. Edge
devices execute lightweight submodules (e.g., compressed
diffusion models) for localized tasks, while dynamically of-
floading compute-intensive steps (e.g., multi-step denoising)
to the cloud. Transmitting latent features instead of raw
data significantly reduces bandwidth consumption. Federated
knowledge distillation facilitates continuous compression of
cloud-trained large models into micro-experts deployed at the
edge, supporting offline generation of security decoys.

B. Adversarial Robustness and Trustworthy Mechanisms Is-
sues

Current GAI-driven SAGIN security defenses are vulnerable
to dynamically evolving adversarial attacks. Static defence
models cannot counter adaptive attackers such as “evolution-
ary eavesdroppers”, which continuously analyze defenses and
adjust attack strategies in real-time, utilizing the static nature
of defenses and the flaws of black-box decision-making.

1) Explainable Generative Frameworks: Explainable gen-
erative frameworks are expected to address the opaque
decision-making of black-box models in SAGIN security [88].
These frameworks employ multi-modal explanation techniques
to trace adversarial samples through cross-domain feature
attribution. In addition, domain knowledge constraints, such
as communication protocols and physical-layer features, are
embedded into generative models to restrict output spaces
and suppress adversarial perturbations. Robustness verifica-
tion tools mathematically certify explanation integrity against
attacks, ensuring auditability for critical missions. Integrated
into detection pipelines, they provide interpretable alerts
through XALI interfaces.

2) Digital Twin-GAI Fusion for Proactive Defense: Digital
twin (DT)-GAI synergy establishes a dynamic cyber-physical
testing environment for SAGIN resilience [224]. Using GANS,
the DT synthesizes high-fidelity attack scenarios by lever-
aging historical attack data and threat intelligence. The DT
to iteratively optimizes defense policies through millions of
simulated attack cycles, employing techniques like OpenAl’s
“red teaming” to stress-test robustness. Crucially, concept drift
adaptation mechanisms inspired by “digital cousins” that gen-
eralize physical environments—enable extrapolation to unseen
attack variants, enhancing cross-domain generalization.

3) Continual Learning-Driven GAI for Sustainable Adap-
tive Defense: This framework mitigates catastrophic forgetting
in SAGINs by synergizing adversarial robustness with trust-
worthy mechanisms through continual learning [225]. Feder-
ated continual learning enables edge devices to locally train
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adversarial detectors on emerging cross-domain threats. Stable
knowledge retention leverages Hessian-based regularization
to freeze critical weights from prior tasks, mathematically
certifying that new adaptations do not degrade defenses against
known threats, thus ensuring robustness continuity. This end-
to-end approach bridges adaptive defense and trustworthy
operation for SAGINs’ dynamic threat landscape.

C. Cross-Domain Coordination and Governance Compliance
Issues

In SAGINs, GAl-enabled cross-domain defense faces
“governance-efficiency paradox”: multi-source heterogeneous
data integration challenges and governance-compliance bar-
riers. Cross-domain attacks (e.g., “LEO relay with UAV
poisoning”) require fused information, but inter-domain data
sovereignty conflicts and regulatory fragmentation create
“governance silos” among satellite/aerial/ground nodes, hin-
dering security policy synchronization.

1) Semantics-Driven Policy Generation: Multilevel gen-
erative models establish an end-to-end semantics-to-policy
mapping framework to resolve defense policy fragmentation
challenges in cross-domain SAGIN [76]. LLMs such as GPT-
4, parse threat descriptions and extract semantic feature vec-
tors, and GANs map semantic vectors to specific defense
rules. In addition, a predefined security policy ontology li-
brary can also be constructed to map heterogeneous protocol
semantics—including satellite authentication rules, airborne
encryption policies, and ground access control policies—into
a unified framework. Through FL, GAI aggregates localized
policy features from each domain and synthesizes cross-
domain coordinated policies based on semantic similarity. This
approach unifies heterogeneous protocol semantics, enabling
panoramic attack chain cognition.

2) Neuro-Symbolic Quantum-Driven GAI Architectures:
This direction fuses the dynamic learning capability of neural
networks with the interpretable rule engine of symbolic sys-
tems , combining quantum computing to accelerate the cross-
domain verification process and crack the governance com-
pliance and real-time contradiction [226]. It can be achieved
through three key capabilities: (1) A neuro-symbolic layer
encoding governance rules (e.g., spectrum allocation) for in-
terpretable compliance while learning multi-domain threats;
(2) A GAI module simulates cross-domain conflicts (such as
SAGIN resource contention) to draft real-time protocols and
optimize scheduling; (3) A quantum engine accelerates multi-
domain policy verification, slashing audit time, and concur-
rently secures communications via quantum encryption. This
integration enables dynamic cross-domain policy alignment
and real-time collaborative governance.

IX. CONCLUSION

This review presents an overview of GAl-enabled secure
communications for SAGINs, emphasizing the enhanced ef-
fectiveness of GAI compared to traditional Al in protecting
SAGINs. This analysis thoroughly examines the architecture
of SAGINs and the specific security challenges faced. The effi-
cacy of different GAI models in addressing security issues has



been examined. This survey provides a comprehensive anal-
ysis of GAl-based methods addressing authenticity failures,
confidentiality breaches, integrity tampering, and availability
disruptions in SAGIN communications. The three tutorials
conducted provide a detailed exploration, highlighting the
superior efficiency of GAI in addressing security threats in
SAGINs relative to traditional AI. We have identified open
issues and associated research directions, offering insights into
the future of GAI-enabled SAGIN security.
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