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ABSTRACT: Deep neural networks (DNNs) and generative AI (GenAI) are increasingly vulnerable to
backdoor attacks, where adversaries embed triggers into inputs to cause models to misclassify or misinterpret
target labels. Beyond traditional single-trigger scenarios, attackers may inject multiple triggers across various
object classes, forming unseen backdoor-object configurations that evade standard detection pipelines. In
this paper, we introduce DBOM (Disentangled Backdoor-Object Modeling), a proactive framework that
leverages structured disentanglement to identify and neutralize both seen and unseen backdoor threats
at the dataset level. Specifically, DBOM factorizes input image representations by modeling triggers and
objects as independent primitives in the embedding space through the use of Vision-Language Models
(VLMs). By leveraging the frozen, pre-trained encoders of VLMs, our approach decomposes the latent
representations into distinct components through a learnable visual prompt repository and prompt prefix
tuning, ensuring that the relationships between triggers and objects are explicitly captured. To separate
trigger and object representations in the visual prompt repository, we introduce the trigger–object separation
and diversity losses that aids in disentangling trigger and object visual features. Next, by aligning image
features with feature decomposition and fusion, as well as learned contextual prompt tokens in a shared
multimodal space, DBOM enables zero-shot generalization to novel trigger-object pairings that were unseen
during training, thereby offering deeper insights into adversarial attack patterns. Experimental results on
CIFAR-10 and GTSRB demonstrate that DBOM robustly detects poisoned images prior to downstream
training, significantly enhancing the security of DNN training pipelines.

KEYWORDS: Backdoor Attacks; Generative AI; Disentanglement

1 Introduction

As deep neural networks (DNNs) become more prevalent in applications such as natural
language processing [1–3] and object classification [4–6], they are increasingly being targeted by
sophisticated security threats [7,8]. The rise of generative AI [9–11] has enabled the large-scale
creation of datasets sourced from online repositories. Although these datasets improve model
robustness, they often bypass rigorous vetting, making them vulnerable to backdoor attacks [12–15].
Such attacks embed hidden triggers in training samples, causing models to misclassify inputs
containing the trigger, for example, altering a stop sign’s label to a speed limit sign.

Recent work has focused on identifying backdoored samples in pre-trained infected models
[16–19], but less attention has been given to proactively scanning training data for suspicious
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Figure 1: Overview of our disentangling process for trigger–object pairings. During training, the system
learns separate representations of triggers and objects. By factorizing these components, the model can
generalize to unseen trigger–object configurations, although they were never observed together during
training.

triggers before the final model is trained. This lack of focus on the dataset creation phase represents
a significant gap in input-level backdoor defense strategies [20–23]. Malicious triggers can be
embedded in training samples well before the model is exposed to them, undermining the integrity
of the entire training process. Addressing this stage early in the pipeline not only prevents
contaminated data from infiltrating the training process, but also reduces the computational costs
associated with post-training purification efforts [24,25]. Lastly, proactively analyzing the dataset
offers deeper insights into the adversarial logic behind these backdoors, specifically how triggers
interact with objects and how attackers strategically embed them to exploit vulnerabilities.

Although existing defenses can detect single or multiple backdoor triggers in a compromised
data set [26–30], they remain strictly trigger-centric, where flagged samples are discarded, and
images of objects classes bearing those triggers are ignored. This removes valuable co-occurrence
information into how specific triggers map onto particular objects, which could expose systematic
attacker strategies. In realistic many-to-many attack scenarios [31], where adversaries plant various
triggers across a wide range of object categories, a trigger-only approach would fail to recognize
novel trigger-object combinations outside of its training set of known trigger–object pairings. For
instance, assume a square-patch trigger is only ever seen on stop signs and a pixel-noise trigger
only on speed-limit signs. If an attacker then applies that same square patch to yield signs or
the pixel noise to pedestrian-crossing signs (pairings never observed before) those trigger-centric
detectors may sharply degrade in performance, since they do not explicitly model which object
the trigger appears on. By contrast, a co-occurrence-aware model that simultaneously identifies
both triggers and object classes preserves the relational context between adversarial triggers and
their targets. Rather than excluding compromised samples, this approach leverages modular
relationships to learn comprehensive backdoor patterns and infer previously unseen trigger–object
combinations. As a result, the model can accurately recognize the underlying object despite the
presence of a trigger, integrate attacked examples into both training and inference workflows,
and reduce false positives by distinguishing benign from malicious features. Moreover, modeling
trigger–object relationships provides deeper forensic insights into attacker tactics, enabling dynamic
update strategies that proactively defends models against evolving many-to-many backdoor attacks.
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Overall, we can summarize that existing input-level defenses in current state-of-the-art (SOA) attack
scenarios remain strictly trigger-centric, where: (1) they identify and discard adversarial samples,
losing the underlying object semantics and missing the opportunity to reveal adversarial strategies,
(2) do not focus on concurrently identifying triggers and the associated object class, and (3) fail to
generalize to novel trigger-object pairings.

To address these gaps, we present Disentangled Backdoor-Object Modeling (DBOM), a
proactive framework based on VLMs and prompt tuning [9], designed to identify and isolate
unseen backdoor-object configurations. Instead of inspecting a potentially compromised model,
this approach focuses on learning trigger-object configurations within web-scraped training images
before they are ever fed into a downstream model. Our method surpasses current SOA pre-training
defense algorithms by detecting not only the types of backdoor triggers in compromised datasets,
but also the underlying objects they target, thereby capturing the adversarial logic behind these
malicious trigger–object pairings. Here, we define a trigger as the backdoor attack pattern
embedded into an image and an object as the benign semantic class being manipulated. DBOM
then factorizes these two primitives into independent embeddings (Figure 1), enabling modular
representations of trigger–object configurations [32]. Furthermore, by capturing the relationship
among triggers and objects during training, previously unseen trigger-object pairings can be
detected during inference, a problem traditional single-trigger detection pipelines overlook. The
contributions of our approach are as follows:

• We introduce DBOM, a novel end-to-end disentangled representation learning framework
that separates triggers and objects into independent latent visual primitives. By leveraging
cross-modal attention for structured latent decomposition, DBOM aims to learn each trigger
pattern and each object class in isolation. At inference, it recomposes these known trigger and
object embeddings to recognize combinations never seen during training, achieving zero-shot
generalization over trigger–object pairings and resulting in a robust method against adaptive
backdoor strategies.

• Our approach incorporates a dual-branch module that features a learnable visual prompt
repository along with a dynamic soft prompt prefix adapter for prompt tuning. The use of a
learnable visual prompt repository allows us to capture primitive-specific features for both
triggers and objects, aiding in feature disentanglement. Furthermore, dynamically tuning
text prompt representations based on image content, our module enhances the semantic
context of each sample and improves the separation between trigger and object features. This
design allows the framework to capture diverse trigger patterns across multiple object classes,
overcoming the limitations of conventional defenses that assume a single, static trigger per
dataset.

• By integrating a proactive backdoor detection mechanism into the data curation process,
DBOM identifies unseen backdoor-object attacks before downstream model training begins. A
composite loss function that minimizes cross-entropy, disentanglement, and prompt alignment
losses together ensures that poisoned samples are identified and isolated for removal from the
dataset.
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2 Related Work

Disentanglement involves separating visual primitives of images into independent components
[33–37]. A central strategy for addressing this task is to train models that learn these independent
components and recombine them in novel ways, thereby enabling the flexible recognition of
previously unseen trigger–object pairings. Li et al. [14] apply symmetry and group theory to model
primitive relationships, introducing a novel distance function. A Siamese Contrastive Embedding
Network (SCEN) [38] embeds visual features into a contrastive space to separately model primitive
diversity. A retrieval-augmented approach improves recognition of unseen primitive component
pairings by retrieving and refining representations [39]. Recent methods integrate vision-language
models (VLMs) such as CLIP [9] to enhance the recognition of structured relationships between the
underlying nature of images and text prompts. Compositional Soft Prompting (CSP) [40] utilizes a
static prompt prefix alongside learned primitive embeddings, with predictions based on cosine
similarity between text and image features. Later works remove the static prefix, making the entire
prompt learnable [41,42]. In the context of DBOM, disentangling triggers and objects allows our
model to factor visual embeddings into two primitive subspaces: one that captures adversarial
trigger patterns and one that encodes the class object semantics. Once these primitives are learned,
unseen trigger-object pairings can be inferred upon during testing.

Backdoor Attacks became prominent with the introduction of Badnets [12]. Badnets demonstrated
how adversaries can embed backdoors into DNNs by poisoning the training data with
trigger-patterned images, such as a single white square or pixelated patterns, to misclassify inputs.
Liu et.al. [13] introduced trojaning attacks, which differ from Badnets, by reverse-engineering
neuron activations to generate adversarial triggers that maximize activations in specific neurons.
Li et.al. [43] explored techniques to make triggers more covert to detection by implementing
steganographic embedding, where backdoor triggers are hidden within images at a pixel
level. Recent backdoor attacks include Wanet [15], a warping-based trigger, which introduces
imperceptible image distortions as triggers instead of traditional noise perturbations.

Backdoor Defenses mostly operate in the adversarial machine learning life-cycle at the model
level, leaving the dataset vetting process largely unexplored [44]. Several works attempt to filter
adversarial images before training [20–22,29], but these rely on detecting known trigger-object
configurations and fail to generalize to unseen pairings. VisionGuard [21] compares the softmax
outputs of original and transformed images using metrics like the Kullback–Leibler divergence
to detect attacks without altering the target network. Deep k-NN [20] leverages deep feature
space clustering and k-nearest neighbor voting to detect and remove poisoned images from the
training set prior to downstream model training. HOLMES [22] employs multiple external detectors
trained on both dedicated labels and top-k logits to capture subtle differences between benign and
adversarial inputs. Traditional backdoor defenses assume a compromised model and attempt to
mitigate attacks post-training [17–19]. However, these techniques reactively address attacks after
deployment by cleaning the model, whereas our approach proactively filters poisoned images
before they enter the downstream training pipeline, preventing backdoor contamination at its
source. Furthermore, these methods overlook the opportunity to identify unseen trigger–object
configurations that were not seen in their model training, which is addressed in this paper.
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Figure 2: DBOM utilizes a visual prompt repository and a similarity-based retrieval mechanism to detect
unseen backdoor trigger-object representations through the use of CLIP’s pre-trained visual and textual
encoders. During training, each image retrieves visual prompts from the repository, shifts a learnable
text prefix with a prompt adapter, and fuses decomposed image–text features via cross-attention. During
inference, the framework again retrieves the top visual prompts, shifts the text prompt for each new image,
and computes similarity scores to pinpoint unseen trigger-object pairings. Lastly, in separate pair spaces, the
logits are computed by comparing the fused image–text features with the visual features from the frozen
visual encoder, as well as the selected visual prompts and the text features from the frozen text encoder. The
highest-scoring trigger–object pair is then selected as the predicted configuration. By detecting malicious
seen and unseen configurations in this way, DBOM identifies backdoored configurations and isolates them
for removal prior to downstream model training.

3 Preliminaries and Insights

3.1 Trigger-Object Representation

We define a backdoor configuration as a pairing of a trigger and an object, where the trigger
serves as the adversarial modification and the object represents the underlying semantic class
being targeted (e.g., “stop sign,” “yield sign,” “airplane”). Let T be the set of all possible triggers,
and O be the set of object categories, where T = {t0, t1, . . . , tn} and O = {o0, o1, . . . , om}. The
complete set of potential trigger–object pairings is given by P = T × O, where each pair (t, o) ∈ P
corresponds to a unique backdoor attack configuration. These pairings can be categorized into two
groups: (1) seen pairings (Ps), which are explicitly observed during training, and (2) unseen pairings
(Pu), which do not appear in the training set but may still be encountered during deployment.
These subsets are disjoint (Ps ∩ Pu = ∅) and together form the complete space of possible attack
configurations (Ps ∪ Pu = P). During evaluation, test samples are drawn from a predefined set
Ptest ⊆ P, which contains both seen and unseen pairings. The objective of our approach is to
learn a function f : X → Ptest, where X represents the input space of images containing these
trigger–object configurations. The function f is designed to map an image to its corresponding
attack configuration, enabling generalization to unseen trigger–object pairs that were not part of
the training distribution. Furthermore, we note that the goal of this paper is not to train an infected
model or defend against attacked models, but to detect backdoored images before downstream
model training begins.

3.2 Threat Model and Defender Goals
Threat Model. We assume an adversary injects backdoor attacks based on trigger–object pairings
into a web-scraped or publicly available dataset used for training a downstream DNN. The goal is
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to cause the model to misclassify inputs containing triggers into a target label while maintaining
normal classification on clean images. Since large datasets are rarely vetted on a per-sample basis,
malicious samples blend easily with clean data. Furthermore, attackers can escalate this threat by
injecting multiple triggers across different classes, including novel, unseen trigger–object pairings,
so that conventional defenses which expect a single static trigger fail to detect them. Consequently,
the compromised data is used in downstream training, embedding hidden adversarial behaviors
into the final model.

Defender’s Goal. The defender’s goal is to identify backdoored images prior to downstream model
training, ensuring they are isolated while minimizing the misclassification of clean images. Given
a potentially poisoned dataset that contains several triggers–object configurations, the defender
must distinguish legitimate images from those carrying triggers. Furthermore, by concurrently
identifying both the trigger and the underlying object, the defender learns vital information into
the adversary’s strategies. Moreover, separating the adversarial trigger from the underlying object
enables the recovery of correct object semantics in backdoored samples, eliminating the need to
discard these adversarial samples from training or inference.

4 Proposed Framework

DBOM leverages CLIP as its backbone by freezing its pre-trained visual and text encoders.
Let fθ(·) denote the CLIP image encoder and gϕ(·) denote the CLIP text encoder. Given an input
image xi, the image encoder extracts visual features fv = fθ(xi) ∈ Rd, which serve two purposes: (i)
they are used to retrieve the most relevant visual prompts from a learnable repository, and (ii) they
provide the bias for shifting a set of learnable prefix text tokens [v1][v2][v3] via a prompt adapter
network. Unlike fixed prefix templates (i.e., a photo of), our approach employs prompt tuning, a
technique where these prefix tokens are treated as learnable parameters and optimized end-to-end
to capture task-specific context for each image. This allows the text prompt to be tailored to the
visual content of each image, promoting the alignment between visual and textual modalities. The
shifted prefix is then appended to the trigger and object word embeddings to form the final prompt
ti, which is processed by the text encoder to produce text features ft = gϕ(ti) ∈ R768. Lastly, fv and
ft are decomposed and fused, and their joint representation is mapped into a separate pair space
where the similarity between the image and fused features helps determine the final trigger-object
prediction. Figure 2 displays the overall architecture of the proposed approach.

4.1 Visual Prompt Repository

The visual prompt repository comprises a collection of M learnable visual prompts {Pi}M
i=1,

with each prompt Pi ∈ Rl×d paired with a learnable key ai ∈ Rd. These prompts capture high-level
visual semantics and are refined during training. For a given image, cosine similarity is computed
between the normalized image features fv and each normalized key. Based on the similarity scores,
the two most similar prompts are selected. One is intended to align with the image’s trigger and
the other with the object. To enforce this specialization, we introduce two auxiliary losses. The
trigger-object separation loss is formulated as:



Comput Mater Contin. 2025 7

Lsep = − 1
N

N

∑
i=1

log
( exp(cos( f (i)v , a(i)trig)

)
exp(cos( f (i)v , a(i)trig)

)
+ exp(cos( f (i)v , a(i)obj)

)
)

. (1)

Because our primary objective is to accurately flag backdoored images, the loss function prioritizes
the trigger key by encouraging it to achieve a higher similarity score than the object key, with the
object serving as complementary context for the image. The visual prompt diversity loss is defined as:

Ldiv =
1
N

N

∑
i=1

max
(

0, m − cos
(
a(i)trig, a(i)obj

))
, (2)

where m = 0.5 is a fixed margin. This term penalizes any excessive similarity between the retrieved
trigger and object visual prompts, thereby promoting disentangled features for more distinct
representations [45]. Combining these terms yields:

Lvis = Lsep + Ldiv, (3)

which guides the prompts to distinctly capture trigger and object characteristics. During training,
the visual prompt repository is updated end-to-end with Lvis. This ensures that the repository
vectors are not static but are continuously refined to distinguish between trigger and object features.
The final representation of the retrieved visual prompts can be denoted by fret.

4.2 Dynamic Prefix Adapter

Traditional prompt tuning approaches [9,40,46] use a fixed soft prompt prefix, where a sequence
such as [trigger][object] is appended with an initialized phrase a photo of. This means that
the same prefix is applied to every sample, regardless of the unique characteristics of the trigger or
object in the image. This prefix rigidity can hinder the system’s ability to accurately distinguish
between different trigger–object pairs. Motivated by the work in [46], we propose an adaptive
prompt network module that dynamically adjusts the learnable prefix tokens based on the visual
content of the input image. This has been shown to transfer the frozen backbone’s generalization
power to entirely new tasks with very few labeled examples [46–48].

Specifically, the prompt adapter utilizes the image features fv to compute a bias term that is
added to the base prompt tokens, thus tailoring the prompt to each individual sample. Besides,
by dynamically shifting the soft-prompt prefix based on each image’s visual features, the prompt
prefix adapter aligns the text embeddings more closely with the specific trigger and object
primitives, which in turn lets the model accurately recombine those known primitives into novel,
unseen pairings at inference, improving zero-shot pairing performance. The prompt adapter is
implemented as a lightweight neural network defined by:

APNet( fv) = W2 · σ(W1 · fv + b1) + b2, (4)
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where σ(·) denotes the ReLU activation function, and W1, W2, b1, and b2 are trainable parameters.
The output, φ( fv), represents the bias added element-wise to the original prompt embeddings
{θ0, θ1, . . . , θp} via θ′i = θi + φi( fv) for i = 0, . . . , p. The final text prompt ti is constructed by
appending {θ′0, θ′1, . . . , θ′p} with the trigger and object word embeddings, θt and θo, respectively.
Lastly, ti is fed into the text encoder to generate the text features ft.

4.3 Feature Decomposition and Fusion

To disentangle and jointly embed the representations of triggers and objects for backdoor
detection, we decompose and then fuse the visual features, fv, and the text features, ft [42]. We
first isolate how each trigger and object contributes to the text representation by averaging their
respective logits. This decomposition helps the model treat triggers and objects as independent
primitives, ensuring that potential backdoor triggers are not blended with the underlying objects
during subsequent fusion. During training, we explicitly supervise these decomposed features to
capture the semantics of each trigger and object class.

Formally, we compute the trigger and object probabilities as follows:

p(y = t | x; θ) =
exp( fv · ft)

∑
t̄∈T

exp( fv · ft)
, (5)

p(y = o | x; θ) =
exp( fv · ft)

∑
ō∈O

exp( fv · ft)
, (6)

where T is the set of possible triggers, O is the set of possible objects, and θ denotes the learnable
parameters. We then optimize cross-entropy losses for the trigger (Ltri) and object (Lobj) predictions:

Ltri = − 1
|T | ∑

(x,y)∈P s

log
(

p
(
y = (t) | x; θ

))
, (7)

Lobj = − 1
|O| ∑

(x,y)∈P s

log
(

p
(
y = (o) | x; θ

))
, (8)

where P s denotes the set of seen triggers–object pairings.
Next, fv and ft are fused with a cross-attention mechanism that aligns the image and text

features within a joint embedding space. Specifically, we define the query Q from ft, and the key
K and value V from fv. The query identifies the textual aspects that need to be emphasized in
the visual representation; the key–value pairs in the visual space highlight regions or features
corresponding to each textual element:

Attention(Q, K, V) = softmax
(QKT

√
d

)
V, (9)
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where d is the feature dimensionality. The result of this cross-attention is ft→v, a fused representation
that integrates the textual context of the triggers and objects with the corresponding visual features.

4.4 Training and Inference

Our framework trains in two main stages: we first adapt the soft prompt so that the fused
features ft→v correctly capture the target trigger–object pairings, and then we ensure the textual
representation ft is consistent with the retrieved visual prompt. We compute the probability of a
trigger–object pair

(
t, o
)

by comparing the image feature fv to the fused representation ft→v:

psp
(
y = (t, o) | x; θ

)
=

exp
(

fv · ft→v
)

∑(t′,o′)∈P s exp
(

fv · ft→v
) . (10)

Minimizing the cross-entropy over these probabilities yields the soft prompt alignment loss Lsp.
This encourages the shifted soft prompt to correctly identify the trigger–object pairs for samples
in P s. Next, we require that the textual representation ft matches the retrieved pairing from the
prompt repository. We define:

pret
(
y = (t, o) | x; θ

)
=

exp
(

fret · ft
)

∑(t′,o′)∈P s exp
(

fret · ft
) . (11)

Minimizing the cross-entropy over these probabilities produces the retrieval alignment loss Lret.
The total loss is a weighted sum of these components along with the prompt losses:

Ltotal = Lret + λtri_obj

(
Ltri + Lobj

)
+ λsp Lsp + λvisLvis. (12)

During inference, the learned prompt adapter shifts the prefix tokens, the visual prompts are
retrieved and averaged, and the logits are computed based on the similarity between the image
and text features in the pair space. The predicted trigger–object text labels are selected by:

ŷ = arg max
(t,o)∈P test

psp
(
y = (t, o) | x; θ

)
, (13)

where P test denotes the set of test trigger–object pairings, which includes seen and unseen
configurations, and psp is computed following the same procedure in Eq. (10).

5 Experiments and Results

5.1 Experimental Setup

Attacks and Splits. We conduct experiments using two benchmark datasets: CIFAR-10 [49] and
GTSRB [50]. CIFAR-10 contains 50,000 training images and 10,000 test images across 10 object
classes, while GTSRB consists of 39,209 training images and 12,630 test images spanning 43 traffic
sign classes. Recent studies [21,51] have shown that adversaries can place backdoor triggers
directly on traffic signs to mislead advanced driver-assistance and autonomous-driving systems.
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Table 1: Comparison of backdoor trigger–object identification methods on GTSRB and CIFAR-10. Bold
indicates the best results.

Method CLIP Model GTSRB CIFAR-10

S U Att. Obj. HM AUC S U Att. Obj. HM AUC

CoOP [46] ViT-L/14 28.26 28.95 37.26 35.59 11.59 4.95 65.64 67.81 46.31 92.69 47.47 35.67
CSP [40] ViT-L/14 57.34 77.86 65.27 76.85 51.07 38.03 70.28 77.81 63.34 95.28 62.23 50.42

DBOM (Ours) ViT-B/32 92.65 93.70 98.31 87.10 88.05 85.03 92.09 93.76 98.19 87.38 86.76 84.43
DBOM (Ours) ViT-B/16 93.19 95.47 98.63 90.32 90.21 87.86 93.40 94.90 98.31 89.51 90.22 87.37
DBOM (Ours) ViT-L/14 96.89 96.88 98.15 95.00 93.94 92.29 96.90 98.15 98.80 95.20 94.19 93.07

Therefore, GTSRB provides a practical, safety-critical testbed for evaluating our proposed data-level
defense system. To introduce backdoor vulnerabilities, we generate contaminated versions of
all clean images using six attack patterns, while retaining the clean images themselves as an
individual class. The six widely recognized backdoor attacks which are employed are: Badnets
Square (Badnets-SQ) [12], Badnets Pixels (Badnets-PX) [12], Trojan Square (Trojan-SQ) [13], Trojan
Watermark (Trojan-WM) [13], l2-inv [43], and l0-inv [43]. These attacks encompass a diverse range
of backdoor characteristics, including universality, label specificity, and variations in trigger shape,
size, and placement. This results in a trigger–object pairing space of 301 unique pairings for GTSRB
and 70 pairings for CIFAR-10.
Implementation Details. We utilize PyTorch 1.12.1 [52] for the implementation of our model. The
model is optimized using the Adam optimizer [53] and is trained over 20 epochs on the previously
mentioned datasets. Both the image encoder and text encoder are based on the pretrained CLIP
ViT-L/14 model, and the entire model is trained and evaluated on a single NVIDIA 2080 Ti GPU.
We set M = 20 for both GTSRB and CIFAR-10. To assess scalability and accuracy trade-offs, all
experiments are implemented with the smaller CLIP variants ViT-B/16 and ViT-B/32, repeating
the same training schedule and hyperparameters.

5.2 Unseen Trigger–Object Evaluation

This experiment evaluates the performance of DBOM in both the seen (S) and unseen (U)
trigger–object pairing scenarios. Specifically, the accuracy for each trigger–object pairing type is
measured, assessing both the Attack (trigger) and Object classifications separately. To provide a
comprehensive evaluation, we report the Harmonic Mean (HM) of the seen and unseen accuracies,
which balances performance across known and novel pairings. In addition, we calculate the area
under the curve (AUC), which serves as the primary metric for assessing the overall effectiveness
of the model in detecting trigger-object configurations. We compare DBOM’s results with CoOP
[46] and CSP [40] since they represent two distinct approaches for leveraging CLIP in modeling
triggers and objects as separate primitives in the embedding space. CoOP uses fixed, pre-computed
natural language representations for the triggers and objects while learning only a context prompt
prefix to condition CLIP. In contrast, CSP learns soft prompts by fine-tuning learnable tokens for
triggers and objects, allowing for more adaptive reconfiguration and improved generalization to
unseen trigger–object pairings.
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Table 2: Inference runtime per image on a single NVIDIA 2080 Ti GPU (batch size 64).

CLIP Variant Inference Time (ms/img)

ViT-B/32 2.53
ViT-B/16 4.27
ViT-L/14 10.69

Table 1 demonstrates that DBOM outperforms the baseline methods across nearly all metrics.
DBOM improves AUC over 53% on GTSRB and nearly 43% on CIFAR-10. Furthermore, DBOM
successfully identifies over 98% of backdoor triggers on both benchmarks while classifying nearly
95% of objects in the diverse GTSRB dataset (43 classes) and over 95% on CIFAR-10 (10 classes).
Importantly, the high accuracy observed for unseen trigger-object pairings indicates that our model
can detect trigger-object pairings that were not encountered during training. Note that DBOM not
only generalizes to unseen trigger–object pairings, it also accurately identifies seen triggers: the
“Seen” columns in Table 1 show over 92 and 96% accuracy on known trigger patterns.

Moreover, we report the results of smaller CLIP variants in Table 1 and average run-times
across both datasets for each variant in Table 2. We can observe that the ViT-B/32 and ViT-B/16
models run at an average of 2.53 ms and 4.27 ms/image, compared to ViT-L/14’s 10.69 ms/image
respectively. Importantly, this reduction in compute does not result in a significant drop in accuracy:
the ViT-B/32–based DBOM still achieves AUC scores of 85.03% on GTSRB and 84.43% on CIFAR-10,
while the ViT-B/16 variant increases those figures to 87.86% and 87.37%. These findings suggest that
our approach can leverage smaller CLIP backbones for real-time deployment without sacrificing
the high trigger-object identification performance afforded by the larger variant.

Overall, DBOM’s zero-shot generalization capability to novel trigger–object pairings is
achieved by leveraging the disentangled representation learning approach, which factors triggers
and objects into independent primitives. Although previous methods aim for similar generalization,
our visual prompt repository, dynamic prefix adapter, feature decomposition and fusion greatly
improve the ability to recombine these learned representations to accurately identify novel
trigger-object pairings. Therefore, DBOM offers robust protection against evolving backdoor
attack strategies by possessing the ability to identify seen configurations with high accuracy and
then leveraging those seen pairings to identify unseen configurations, resulting in an adaptive
method that can simultaneously evolve to adversarial strategies.

5.3 Backdoor Poison Detection Evaluation

DBOM is compared against conventional pre-training dataset cleaning approaches [20–22] by
simulating a realistic scenario where the poisoning rate is set at 5%, 10%, and 15%, reflecting the
poisoning ratios often encountered in web-scraped datasets. Overall accuracy (Acc.) measures the
proportion of all images, both clean and poisoned, that are correctly classified. Futhermore, we
report the attack recall (Rec.), indicating the percentage of poisoned images that are successfully
identified. Additionally, attack precision (Prec.) measures the proportion of images flagged as
attacked that are truly poisoned, and the F1 Attack score is the harmonic mean of attack precision
and recall. Table 3 summarizes the performance of DBOM relative to baseline methods.

Evaluation shows that DBOM consistently results in high overall accuracy while keeping the
misclassification of clean samples to a minimum. For example, on GTSRB, DBOM achieves overall
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Table 3: Poison detection evaluation at 5%, 10%, and 15% poisoning levels on CIFAR-10 and GTSRB. Bold
indicates the best results for each poisoning rate.

Method Poisoning Rate GTSRB CIFAR-10

Acc. Rec. Prec. F1 Acc. Rec. Prec. F1

VisionGuard [21]
5% 88.43 57.07 23.23 33.02 85.56 48.57 16.94 25.12

10% 85.09 62.16 35.83 45.46 88.34 65.32 44.34 52.82
15% 90.23 63.29 68.99 66.02 90.94 70.17 69.58 69.87

Deep k-NN [20]
5% 99.46 89.13 100.0 94.25 98.81 76.19 100.0 86.49

10% 97.11 75.35 95.65 84.40 97.59 75.90 100.0 86.30
15% 94.69 64.59 100.0 78.48 97.45 82.95 100.0 90.68

HOLMES [22]
5% 95.99 35.56 96.97 52.03 99.29 80.00 100.0 88.89

10% 96.91 69.81 100.0 82.22 97.53 78.43 100.0 87.91
15% 93.62 57.20 99.29 72.58 97.45 83.10 100.0 90.77

DBOM (Proposed)
5% 98.36 98.49 98.83 98.63 97.86 97.23 98.86 98.19

10% 98.05 95.52 98.21 96.83 98.80 98.79 99.05 98.85
15% 97.86 98.19 98.28 98.23 97.58 97.58 98.06 97.71

Figure 3: Impact of λvis on AUC and seen/unseen accuracy.

accuracies of around 98% with an attack recall consistently exceeding 97% and F1 scores near
98% across poisoning rates of 5%–15%. Similar trends are observed on CIFAR-10, where overall
accuracies are in the range of 97–98%, and both attack recall and F1 scores remain high. Furthermore,
our experimental results reveal an important trade-off between precision and recall. While methods
such as Deep k-NN and HOLMES achieve near perfect precision, they often suffer from lower
attack recall (typically around 75–80%), leading to significantly lower F1 scores. DBOM’s modest
decrease in precision is acceptable because missing a poisoned image can be far more harmful
than incorrectly flagging a few additional clean images, especially when clean images make up
the majority of the dataset. Lastly, unlike existing SOA methods that solely focus on identifying
whether an image is backdoored or poisoned, DBOM disentangles each image’s representations
into primitives to identify both the trigger and the object concurrently, thereby enabling it to detect
unseen configurations that were not encountered during training, a crucial improvement over
existing SOA methods.
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Table 4: Learnable vs. Static Prefix.

Method GTSRB CIFAR-10

“a photo of" [v1][v2][v3] “a photo of" [v1][v2][v3]

Seen 90.10 92.29 (+2.19) 96.75 96.90 (+0.15)
Unseen 94.92 95.54 (+0.62) 95.75 97.34 (+1.59)
Attack 97.76 98.04 (+0.28) 97.74 98.80 (+1.06)
Object 84.09 89.16 (+5.07) 93.82 95.20 (+1.38)
HM 86.40 87.50 (+1.10) 93.01 94.19 (+1.18)
AUC 83.29 86.60 (+3.31) 91.15 93.07 (+1.92)

5.4 Ablation Study

Impact of λvis. We investigate the influence of the visual prompt loss weight, λvis, on DBOM’s
ability to disentangle trigger and object features. Recall that the visual prompt loss Lvis = Lsep +

Ldiv enforces higher similarity for the trigger visual prompt and diversity between the trigger
and object visual prompts. Note that when λvis = 0.0, the visual prompt loss is removed from the
training objective and the model loses supervision to disentangle trigger and object features from
the visual prompt repository, although the top two most similar prompts are still selected.

The results, shown in in Figure 3, reveal that at λvis = 0.0, the model achieves the lowest
performance across all metrics. As λvis increases, the supervision provided by the separation and
diversity losses leads to improvements in both AUC and unseen accuracy, reaching a peak at
λvis = 0.5. This peak indicates that a moderate emphasis on the separation losses most effectively
refines the latent representations. Therefore, the model is able to generalize more robustly to unseen
backdoor configurations. While selecting the top two prompts from the visual repository yields
acceptable performance, incorporating the explicit separation and diversity losses significantly
improves overall performance across all metrics. While results on CIFAR-10 show a more stable
rise and fall of seen, unseen, and AUC values, the results on GTSRB show more variation over each
tested λvis value.

Learnable vs. Static Prefix. In this experiment, we replace the learnable soft prompt adapter
with a static fixed prompt prefix, a photo of, to isolate the influence of a constant prefix context
on model performance. Table 4 details the performance improvement across all metrics of the
learnable prefix adapter over the fixed prefix. For GTSRB, the learnable prefix leads to a 5.07%
increase in object classification accuracy, AUC 3.31% and seen accuracy 2.19%. This improvement
is especially significant for object classification, given that GTSRB has a diverse set of 43 classes,
making the task more challenging. Similarly, on CIFAR-10, we see a notable 1.59% increase on
unseen pairings, 1.38% for object classification, and 1.92% for AUC. The improvements can be
attributed to dynamically adjusting the prefix tokens based on each input image’s content, leading
to better alignment between visual and textual representations and more precise detection. This
improves the model’s capability to distinguish between triggers and objects, especially when
encountering unseen adversarial configurations.



14 Comput Mater Contin. 2025

Su
cc

es
s C

as
es

Fa
ilu

re
 C

as
es

GT: (badnetssquare, ship)
Pred: (badnetssquare, ship)

GT: (badnetspixels, airplane)
Pred: (badnestpixels, airplane)

GT: (clean, deer)
Pred: (clean, deer)

GT: (l2inv, childrencrossing)
Pred: (l2inv, childrencrossing)

GT: (l0inv, keepleft)
Pred: (l0inv, keepleft)

GT: (trojanwm, priorityroad)
Pred: (trojanwm, priorityroad)

GT: (trojansq, stop)
Pred: (trojansq, stop)

GT: (badnetssquare, dog)
Pred: (badnetssquare, cat)

GT: (badnetspixels, 30kmh)
Pred: (badnestpixels, novehicles)

GT: (clean, leftcurve)
Pred: (clean, rightcurve)

GT: (l2inv, airplane)
Pred: (l2inv, bird)

GT: (l0inv, keepleft)
Pred: (l0inv, keepright)

GT: (trojanwm, 100kmh)
Pred: (trojanwm, 120kmh)

GT: (trojansq, horse)
Pred: (trojansq, dog)

Figure 4: Ground Truth vs. Prediction of DBOM.

5.5 Qualitative Analysis

Figure 4 displays randomly selected images from the test set along with the predicted
trigger–object pairs and their ground-truth labels. The examples in the top row highlight successful
predictions, illustrating how our framework can handle diverse triggers, object classes, and varying
image quality. Even in blurry or distorted cases, such as the “Priority Road” sign, the model still
distinguishes both the trigger and the object accurately.

In contrast, the bottom row depicts failure cases where the predicted objects differ from the
ground truth (though the triggers are correctly identified). For instance, in the first error image,
“30km/h” is misclassified as “No Vehicles,” likely due to the heavy blur on the sign. Likewise,
in the second example, the model predicts “Dog” instead of “Cat”, a plausible mistake given
the animal’s appearance. The fourth image is misjudged as a “Bird” rather than an “Airplane,”
suggesting that the system recognized a flying object but failed to capture its specific category. This
can be attributed to some key features, such as text or outlines, being nearly imperceptible and
making the difference between classes difficult to discern. Overall, despite a few misclassifications
caused by blurred or partially obscured features, our model successfully distinguishes a wide
range of triggers and objects. This highlights its strong robustness against challenging real-world
conditions, even when subtle distortions could easily mislead other systems.

6 Discussion and Limitations

The empirical results demonstrate that DBOM not only achieves SOA performance in detecting
both seen and unseen trigger–object pairings, but also maintains high overall accuracy and attack
recall even at low poisoning rates. By proactively vetting training data, DBOM prevents backdoor
contamination before downstream model training, reducing the need for costly post-training
purification and preserving clean samples for model learning.

By separating the backdoor trigger from the underlying object semantics, DBOM not only flags
poisoned images, but also recovers the correct object label despite the presence of a backdoor pattern.
This has several key benefits. First, it preserves the majority of clean examples so that benign object
information is retained rather than discarded, maintaining dataset diversity and reducing the risk
of eliminating clean samples. Second, disentanglement yields finer-grained forensic insights into
how specific triggers map onto different object categories, revealing systematic attacker strategies
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and enabling more targeted threat intelligence. Third, the modular nature of trigger and object
primitives enables zero-shot detection of trigger-object pairings that were unseen during training,
addressing a crucial limitation in conventional trigger-centric defenses. In practice, this means
DBOM can adapt to evolving backdoor tactics across multiple object classes, lower false-positive
rates by distinguishing benign from malicious features, and streamline training-time vetting helping
prevent data contamination at its source rather than reactively purifying a compromised model.

Despite these strengths, it is important to discuss DBOM’s limitations. Our design assumes
that the defender maintains a library of T candidate trigger patterns, drawn from previously seen
backdoor signatures. In our experiments, T is composed of six well-studied backdoor attacks,
but the repository can be extended over time as new threats emerge by disentangling unknown
triggers and adding them to the trigger repository. When novel trigger patterns are encountered
in new data, we can fine-tune only the visual prompt repository and prefix adapter (rather than
retraining the entire VLM backbone) on a small set of those examples, allowing DBOM to rapidly
incorporate and detect new triggers with minimal overhead. Although DBOM currently focuses on
triggers in T, exploring zero-shot discovery of entirely novel trigger patterns remains an important
avenue for future work. Furthermore, the effectiveness of the model depends on the careful tuning
of hyperparameters such as λvis, as shown in our ablation study. Moreover, DBOM is currently
dependent on VLM encoders, leading to a dependency on the VLM’s pre-trained weights. If the
VLM fails to classify certain object classes or detect a trigger pattern, then both the visual prompt
retrieval and the prefix-tuned text embedding can be skewed, leading to lower detection rates.
Mitigating this risk in the future may require fine-tuning the VLM on more diverse, trigger-specific
data, or swapping in more powerful multimodal backbones as they become available. However, in
this manuscript, we showed base CLIP models are well adept for this task.

While our experiments so far have focused on a select set of backdoor triggers, we have
not yet evaluated DBOM against adversarial perturbations generated by methods like Projected
Gradient Descent (PGD) [54] or Fast Gradient Signed Method (FGSM) [55]. Such attacks work
by distributing pixel-level noise within a perturbation budget: when the budget is very small,
the changes are imperceptible but often yield lower attack success; when it is larger, the attack
becomes more effective but also more noticeable to humans. We believe DBOM’s disentangled
trigger–object framework could be extended to handle perturbations with higher budgets, where
the noise forms a distinct visual signature similar to the currently tested backdoor patterns and
thus can cluster effectively in our visual prompt repository. In future work, we plan to explore
these alternative attack types to further test DBOM’s resilience. Lastly, evaluating DBOM on larger
and more heterogeneous datasets and in real-world data-curation pipelines will further validate its
practical utility.

7 Conclusion

In this paper, we introduced DBOM, a novel disentangled representation learning framework
designed to detect both seen and unseen backdoor trigger-object pairings in training datasets.
By leveraging a structured factorization of triggers and objects in the embedding space, DBOM
enables robust generalization to novel backdoor configurations that evade conventional defenses.
Our approach integrates a visual prompt repository and a dynamic prefix adapter to enhance the
separation of adversarial triggers from underlying object representations. Experimental results
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demonstrate that DBOM significantly improves backdoor detection performance, outperforming
SOA methods in identifying poisoned samples before they compromise downstream model training.
This proactive approach not only enhances the security of DNN training pipelines but also provides
deeper insights into backdoor strategies by identifying the objects associated with triggers, offering
a novel method for defending against evolving backdoor threats.
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