
1

Analyzing The Mirai IoT Botnet and Its Recent
Variants: Satori, Mukashi, Moobot, and Sonic

Angela Famera, Ben Hilger, Suman Bhunia, Patrick Heil

Abstract—Mirai is undoubtedly one of the most significant
Internet of Things (IoT) botnet attacks in history. In terms
of its detrimental effects, seamless spread, and low detection
rate, it surpassed its predecessors. Its developers released the
source code, which triggered the development of several vari-
ants that combined the old code with newer vulnerabilities
found on popular IoT devices. The prominent variants, Satori,
Mukashi, Moobot, and Sonic1, together target more than 15
unique known vulnerabilities discovered between 2014-2021. The
vulnerabilities include but are not limited to improper input
validation, command injections, insufficient credential protection,
and out-of-bound writes. With these new attack strategies, Satori
compromised more than a quarter million devices within the
first twelve hours of its release and peaked at almost 700,000
infected devices. Similarly, Mukashi made more than a hundred
million Zyxel NAS devices vulnerable through its new exploits.
This article reviews the attack methodologies and impacts of
these variants in detail. It summarizes the common vulnerabilities
targeted by these variants and analyzes the infection mechanism
through vulnerability analysis. This article also provides an
overview of possible defense solutions.

Index Terms—Mirai, Botnet, IoT, Variant, Satori, Mukashi,
Moobot, Sonic, CVE, Exploit, Command Injection, SQL Injection

I. INTRODUCTION

The ubiquitous deployment, promising services, and low-
cost solutions have given the Internet of Things (IoT) immense
popularity [1]–[3]. The implementation of IoT-related solu-
tions not only has made our lives easier but has revolutionized
the world economy as well. Recent economic surveys have
shown that IoT devices will have an economic impact of
$11 trillion per year by 2025, contributing to almost 11%
of the world’s overall economy. The surveys also forecast
that approximately a trillion IoT devices will be deployed
worldwide by 2025 [4]. With the enormous growth prospects
of IoT, however, several inevitable concerns, such as service-
related inconsistency and security-related issues, have drawn
the attention of researchers towards IoT networks [5].

One of the security concerns includes the formation of
malicious botnets by threat actors. A botnet is a network
of computers connected to the Internet, called bots, that run
autonomous programs. Benign botnets play a positive role by
automating tasks, improving algorithms, and facilitating chat

Angela Famera, Ben Hilger, Suman Bhunia, and Patrick Heil are with
the Department of Computer Science and Software Engineering, Miami
University, USA, E-mail: fameraag@miamioh.edu, hilgerbj@miamioh.edu,
bhunias@miamioh.edu, and heilpj@miamioh.edu

1Sonic is an unofficial name given by the authors as this botnet does not
currently have a formal name

rooms. On the other hand, evil actors can use bots for many
malicious purposes, such as financial gain, sniffing of user
activities, network disruption, and the spreading of various
forms of malware [6]–[9]. With smart systems intertwining
with everyday household devices such as watches, cameras,
and refrigerators, hackers have many IoT devices to carry
out their desired tasks. Many of these IoT devices use weak
credentials and suffer from vulnerabilities that allow for them
to be compromised and turned into malicious bots [10], [11].
A botnet is a network of thousands or millions of bots that
are commanded by a single entity.

This paper analyzes an IoT botnet known as Mirai, which
emerged in 2016 and is one of the largest botnets that uses
IoT devices [12]–[16]. Within its first day, Mirai infected over
65,000 IoT devices, and at its peak, it infected over 600,000
devices such as routers, air-quality monitors, and personal
surveillance cameras [17]. Mirai is still used today, but since
its source code was leaked, the greatest security threats have
come from its emerging variants [18], [19].

In addition to analyzing Mirai, this article extensively cov-
ers its most recent variants: Satori (2017), Mukashi (2020),
Moobot (2020), and an unnamed botnet we refer to as Sonic
(2021), as it attacks a SonicWall Secure Socket Layer (SSL)-
VPN vulnerability. The most notable property that makes these
variants stand out is the vulnerabilities they attack within
specific IoT targets. The four variants together target over
15 unique known vulnerabilities discovered between (2014-
2021), and a handful of zero-day vulnerabilities as well.
They infect a variety of devices, including but not limited to
routers, switches, travel-time calculators, cameras and video
surveillance products, storage devices, and video conferencing
tools. These botnets hold a lot of control over IoT networks
and pose a major threat to anyone, anywhere. Satori, like
Mirai, for example, peaked at almost 700,000 infected devices
[20]. Over 100 million Zyxel NAS devices are deployed all
over the world, and Mukashi can infect these devices through
the vulnerabilities it exploits [21]. During the Ukraine-Russia
2022 conflict, Mirai and Moobot were used for DDoS attacks
against various government and business organizations, both
in Russia and Ukraine [22]. Then Sonic (which still does
not officially have a name) continues to utilize three zero-day
vulnerabilities, leaving security experts ignorant.

While in-depth research on the Mirai botnet has been done
in the past (more details in Section VI), to the best of
our knowledge, this is the first detailed comparative study
done on Mirai and how it influences current botnet variants
discovered after 2019. This paper studies some of the most
current IoT botnets and concludes them and Mirai to gain a

2

better understanding of how they work and how they can be
prevented. In summary, the main contributions of the current
paper are as follows.

• An in-depth analysis of Mirai and four of its most recent
(surfaced after 2019) variants: Satori, Mukashi, Moobot,
and Sonic;

• Analyzing the source code to understand the attack be-
havior;

• Drawing a timeline of crucial events to understand the
behavioral changes of Mirai variants;

• Comprehensive comparisons between the aforementioned
variants and Mirai;

• A thorough study of common vulnerabilities and some
zero-day exploits utilized by the variants; and

• Review the possible defense measures that can be taken
against these variants.

The rest of this paper is organized as follows. Section II
provides relevant background information on botnets and
IoT devices and how these two subjects relate. Section III
discusses Mirai’s timeline of attacks, architecture, and prop-
agation methods supported by fragments of the source code.
Subsequently, in Section IV, we provide background on Satori,
Mukashi, Moobot, and Sonic, as well as cover their attack
methodologies, exploitation techniques, and similarities with
Mirai in depth. Section V highlights the different defense
solutions users and manufacturers should take to mitigate IoT
infection. In Section VI, we summarize research papers and
surveys dealing with botnets, specifically Mirai, and outline
the motivations for the current paper. Finally, Section VII
concludes the paper with remarks for the future scope of work.

II. A GENERAL OVERVIEW OF BOTNETS

This section provides valuable background information on
the nature and origins of botnets and their growth in recent
history. The extended forms of all abbreviations used in this
paper can also be referenced in the appendix.

A. What is a Botnet?
A botnet is a collection of bots connected to and controlled

by a Command and Control (C&C) channel [23]. Bots are used
all over the Internet and on various systems, such as video
games and social media platforms. In what is considered a
more familiar setting, bots are autonomous programs built to
perform automated tasks, such as commenting on social media
posts or acting as non-player characters (NPCs) in multiplayer
video games. In most cases, the bots encountered daily are
harmless, but they may also be programmed to attack the host
device.

A malicious botnet is an attack mechanism used by cy-
bercriminals to perform various malicious actions, including
but not limited to Denial of Service (DoS) attacks, spam
distribution, network scanning, exploration, and exploitation
[24]. In the security world, bots are host machines, devices,
and computers infected by malicious code that enslaves them
to the C&C [23]. The C&C updates and guides bots to perform
a desired task by acting as the communication link between
bots and an individual known as a botmaster [23]. The primary

purpose of the botmaster is to control the botnet by issuing
commands through the C&C to perform malicious and illegal
activities.

B. Common Botnet C&C Architectures
The C&C is an important and defining characteristic of

how a botnet operates. It exists in three common structures:
centralized, decentralized, and hybridized. In a centralized
architecture, there exists a central C&C giving instructions to
the botnet. Whether a botmaster uses one centralized channel
or many, all bots in a botnet must report to the botmaster
for instructions. In a decentralized architecture, bots can be
interconnected using Peer-to-peer (P2P) communication. This
means that bots could be used to give instructions or perform
specific functions to hide the C&C channels, rather than all
bots reporting to a central C&C. In a hybridized architecture,
a combination of centralized architecture, decentralized archi-
tecture, and encryption is used to hide botnet traffic. In this
architecture, bots are broken up into servers and clients. Client
bots block incoming connections, and server bots (which also
can act as client bots) listen to predefined ports for incoming
connections while using encryption to communicate with one
another.

Each architecture has its advantages and drawbacks. While
a centralized architecture allows the botmaster to monitor
the status and distribution of the botnet, decentralized and
hybridized architectures make it more difficult for security
experts to detect and shut down a botnet [23].

C. IoT devices and Botnets
IoT devices are best described as gadgets and appliances

that can connect wirelessly to a network and transmit data.
According to Jeremy Losaw, the author of Inventors Digest
magazine, three different components make up an IoT device:
1) the ability to send/receive data; 2) the ability to establish
a network connection such as Wi-Fi, Bluetooth, or a cellular
connection to communicate with the cloud; and 3) the ability
to manage data coming to/from the device with a back-end
database or website [25].

IoT devices are popular botnet targets because if one device
is found with a vulnerability, it is likely that similar devices
contain the same vulnerability. Some of the most prominent
vulnerabilities are Improper Input Validation, OS Command
Injection, SQL Command Injection, etc. [26]. If a botnet can
effectively identify those devices while evading detection, it
can widen the size of its network in a matter of hours or days
[27]. For example, Satori, a variant of Mirai, infected 280,000
devices within the first 12 hours of its activation.

III. MIRAI’S TIMELINE, ARCHITECTURE, AND ATTACK
METHODOLOGY

In this section, we take a deep dive into the conventional
Mirai botnet and its old variants. We discuss the new variants
in Section IV. First, we provide a comprehensive timeline
of the events and discuss the famous Mirai attacks on OVH,
Krebs on Security, and Dyn, Inc. DNS server. Next, we discuss

3

Sep 19 2016 · · ·•
Mirai Attacks French Host OVH. This is
the first major attack using the Mirai
Botnet.

Sep 28 2016 · · ·•
Mirai Attacks Krebs on Security Website.
This website is run by Brian Kreb, who
wrote about the Mirai botnet.

Sep 30, 2016 · · ·• Mirai’s Source Code is published to Hack
Forum.

Oct 21 2016 · · ·• Dyn. Inc DNS servers are attacked by
Mirai.

Mar 7 2020 · · ·• Mukashi Botnet observed exploiting
Zyxel NAS.

Feb 12 2021 · · ·• Unit42 Researchers observe Sonic
Botnet.

Feb 20 2021 · · ·• Unit42 Researchers observe Satori
Botnet.

Mar 12 2021 · · ·• AT&T Alien Labs observe Moobot
Botnet.

Figure 1: Timeline of Mirai and botnet discovery. The first few
events are discussed in Section II while the last four events
are discussed in Section IV.

the impact of these attacks. Finally, we provide a detailed
attack methodology of the Mirai botnet and explain how the
various components work together.

A. Timeline of Events

Paras Jha and Josiah White created Mirai [28]. Jha and
White co-founded Protraf Solutions, which offered mitigation
services for DDoS attacks [28]. Paras Jha and Josiah White
created Mirai, co-founders of Protraf Solutions, which offered
mitigation services for DDoS attacks [28]. Mirai has created
the basis for many botnets that exist today. This is due to the
original creators releasing the source code to the world (under
the name “Anna-Senpai”) back in 2016 on Hackforums. Fig.
1 outlines some of the significant attacks caused by Mirai. In
the subsequent section, we provide an overview of the most
prominent attacks chronologically.

1) Attack on OVH: The first large-scale event was Mirai’s
attack on OVH, a popular Minecraft hosting service hosting
platform. A source of inspiration for Mirai was surrounding
Jha’s interest in hosting a Minecraft game server. Minecraft is
a popular online video game where upwards of $100,000 can
be earned by hosting a game server in the summer months
[29]. As a result, Jha was interested in performing DDoS
attacks on other Minecraft servers to attract business to his
server [29], [30]. This resulted in the first major DDoS attack,
which occurred on September 19th, 2016, when Mirai was
used against OVH.

During the DDoS attack, Mirai used 145,000 infected de-
vices to send 1.1 Tbps data traffic to OVH’s servers, bringing
their services to a halt. This amount of traffic was unprece-
dented in 2016, being a magnitude larger than vDOS, which

maxed out at 50 Gbps [29]. vDOS was a popular DDoS-as-a-
service provider and was used in the gaming industry to gain
a competitive advantage against opponents. Mirai could target
multiple IP addresses simultaneously, allowing it to infect an
entire network rather than a specific server, application, or
website [29].

2) Attack on Krebs on Security: Shortly after the attack on
OVH, Mirai launched another DDoS attack on Brain Kreb’s
security website Krebs On Security [29]. It seemed at first that
the attack was instigated as retribution for an article Krebs
had posted about vDoS [29]. The article detailed a DDoS-
mitigation firm that seemed to hijack web addresses believed to
be controlled by vDOS [29]. In reality, Jha admitted to a friend
that this attack was paid for by a customer who rented a bunch
of Mirai-infected devices [31]. This DDoS attack peaked at
623 Gbps, forcing Kreb’s DDoS mitigation service, Akamai,
to drop Kreb’s website due to the incurred costs of the attack
[29]. It took four days for Krebs On Security to go back online.
Right after this attack, Mirai’s source code was released on the
dark web.

3) Attack on Dyn, Inc. DNS Server: Soon after the attack
on Krebs On Security, the release of the code resulted in an
attack that took down Dyn. Inc’s DNS servers bring down
major websites on the east coast of the United States [30].
Upon the release of Mirai’s source code, the hacker was able
to launch an attack in October 2016 that left the US East Coast
without access to major websites, such as Amazon, Netflix,
PayPal, and Reddit [29]. To this day, Dyn, Inc. is still unable
to assess the full weight of the assault.

B. Impact of the Attacks
The Krebs On Security attack brought Mirai to the forefront

of the FBI’s investigation. The FBI joined with the private
industry to figure out the inner-workings of Mirai. Akamai
created honeypots that allowed the investigators to observe
how infected devices communicated with Mirai’s command-
and-control servers [29]. After the Dyn, Inc attack, a col-
laboration between investigators grew, and engineers from
around the world came together to discuss the threat Mirai
poses. The engineers see the attack on Dyn, Inc. as a proof
of concept that it can affect the entire Internet if it is not
mitigated. While studying the Mirai servers, the investigators
noticed a trend of the botnet targeting gaming servers, and
more specifically, Minecraft servers. This led investigators to
discover the original intention of Mirai, which was to target
Minecraft game servers to gain a competitive edge [29].

C. Mirai’s Architecture and Propagation Methodology
The architecture of Mirai consists of three main compo-

nents: a loader, the compromised devices themselves, and
the C&C [15]. The loader provides a list of devices used
to start scanning and infection activities (see Fig. 2 Step 1).
Commonly known as a bootstrap loader, it is the first piece
of code run in a self-starting process that is responsible for
loading and executing other programs without any external
input [15]. The stages of Mirai’s overall infection process are
visualized in Fig. 2 and discussed in the subsequent sections.

4

5. Malware
Forwards Device

Info to C&C

Infected Device

Compromised
Device

C&C

2. TCP SYN Scan

Bootstrap
Loader

1. Initialize
Scanning

3. TCP
SYN/ACK 4. Brute Force

Infection

6. Delete Binary
and Rename

Process

Figure 2: The four different stages Mirai and its bots use to
infect IoT devices

1) Initial Scanning Strategy: Mirai, along with all its vari-
ants, has a core strategy for finding and infecting IoT devices
[15]. To evade detection, Mirai uses a unique pseudorandom
number generator (PRNG) created by its developers to search
for random IPv4 addresses [15]. Another important behavior
of Mirai is that it avoids certain ports and only looks for ports
in the range [1024, 65535]. It avoids invalid addresses and
selected large organizational networks such as the Department
of Defense (DoD), the US Postal Service, General Electric
Company, and the Hewlett-Packard Company [15], [32]. It
also avoids Internet Assigned Numbers Authority (IANA)
addresses and internal networks [32]. The snippet from the
scanner.c file shows where these avoided ports are defined
[32].

// Found in scanner.c

do {

source_port = rand_next () & 0xffff;

} while (ntohs(source_port) < 1024);

// Addresses avoided

static ipv4_t get_random_ip(void) {

uint32_t tmp;

uint8_t o1 , o2 , o3 , o4;

do {

tmp = rand_next ();

o1 = tmp & 0xff;

o2 = (tmp >> 8) & 0xff;

o3 = (tmp >> 16) & 0xff;

o4 = (tmp >> 24) & 0xff;

}

while (o1 == 127 || // 127.0.0.0/8 -

Loopback

(o1 == 0) || // 0.0.0.0/8 - Invalid

address space

(o1 == 3) || // 3.0.0.0/8 - General

Electric Company

(o1 == 15 || o1 == 16) || //

15.0.0.0/7 - Hewlett -Packard Company

(o1 == 56) || // 56.0.0.0/8 - US

Postal Service

(o1 == 10) || // 10.0.0.0/8 -

Internal network

(o1 == 192 && o2 == 168) || //

192.168.0.0/16 - Internal network

(o1 == 172 && o2 >= 16 && o2 < 32) ||

// 172.16.0.0/14 - Internal network

(o1 == 100 && o2 >= 64 && o2 < 127)

|| // 100.64.0.0/10 - IANA NAT reserved

(o1 == 169 && o2 > 254) || //

169.254.0.0/16 - IANA NAT reserved

(o1 == 198 && o2 >= 18 && o2 < 20) ||

// 198.18.0.0/15 - IANA Special use

(o1 >= 224) || // 224.*.*.*+ -

Multicast

(o1 == 6 || o1 == 7 || o1 == 11 || o1

== 21 || o1 == 22 || o1 == 26 || o1 == 28

|| o1 == 29 || o1 == 30 || o1 == 33 || o1

== 55 || o1 == 214 || o1 == 215) //

Department of Defense

);

return INET_ADDR(o1 ,o2 ,o3 ,o4);

}

The infected IoT devices are responsible for further spread-
ing infection on remote devices. Mirai’s bots independently
scan the Internet for other devices running on Telnet by
sending out TCP SYN probes (see Fig. 2 Steps 2 & 3) targeting
ports 23 (Telnet) and 2323 (alternate port for Telnet) [15].
Telnet is an outdated network protocol administrators use that
provides a virtual connection between remote and local devices
[32].

2) Brute Force Infection: When a susceptible port is iden-
tified by responding to the TCP SYN probe previously dis-
cussed, the malware tries to log into the system by brute
force using ten randomly chosen username and password
combinations from a preconfigured list of around 60 frequently
used credentials by IoT devices (See Fig 2 Step 4) [7]. These
common usernames and passwords can be found in Table I.

// Retry

if (++(conn ->tries) >= 10) {

conn ->tries = 0;

conn ->state = SC_CLOSED;

}

else {

setup_connection(conn);

printf("[scanner] FD%d retrying with

different auth combo!\n", conn ->fd);

}

3) Reporting Back to the C&C: All bots (e.g., compromised
IoT devices) report back to the C&C and obtain instructions
from the server (see Fig 2 Step 5). These connections to
the C&C use a plain TCP socket with an address and port
hard-coded in the source [15]. If successfully logged in, the
malware forwards the compromised device’s IP and other
useful credentials to the C&C.

4) Covering Tracks: After reporting back to the C&C,
Mirai closes the entry point by deleting the downloaded binary
and renaming the process using a random string to keep other
malware from infecting the same device (see Fig 2 Step 6)
[33].

5

Table I: Usernames and Passwords used in Mirai’s Brute Force
Attacks

Username Password Username Password
666666 666666 root 7ujMko0admin
888888 888888 root 7ujMko0vizxv
admin (none) root 888888
admin 1111 root admin
admin 1111111 root anko
admin 1234 root default
admin 12345 root dreambox
admin 123456 root hi3518
admin 54321 root ikwb
admin 7ujMko0admin root juantech
admin admin root jvbzd
admin admin1234 root klv123
admin meinsm root klv1234
admin pass root pass
admin password root password
admin smcadmin root realtek
admin1 password root root

administrator 1234 root system
Administrator admin root user

guest 12345 root vizxv
guest guest root xc3511

mother fucker root xmhdipc
root (none) root zlxx.
root 00000000 root Zte521
root 1111 service service
root 1234 supervisor supervisor
root 12345 support support
root 123456 tech tech
root 54321 ubnt ubnt
root 666666 user user

IV. RECENT VARIANTS AND THEIR ATTACK
METHODOLOGY

Even though the original creators of Mirai were found and
convicted, the public release of the source code at GitHub
repository [32] allowed the botnet to grow and evolve into
the many variants seen today. Variants use the same source
code as the original Mirai botnet, often including additional
features (such as using more recent exploits), and are launched
and controlled by different actors.

The four variants we discuss in depth are Satori, Moobot,
Mukashi, and Sonic. These four variants are prevalent today
and take advantage of recently discovered exploits to infect
IoT devices. As shown in Fig. 1, it was observed in March
2020 that Mukanashi exploited Zyxel NAS services. [34].
Then, Unit42 researchers observed the Sonic Botnet in Febru-
ary 2021 [35]. Later in the same year, they also observed the
Satori Botnet reappearing after its initial discovery in 2017
[36]. Finally, in March 2021, AT&T Alien Labs observed the
Moobot Botnet [37].

All of these variants exhibit similar characteristics to Mirai,
such as scanning and propagation. The most notable difference
between them all, however, is the vulnerabilities and the type
of devices they attack to propagate. A summary of the variants
and how they compare to Mirai can be found in Table II, and
all notable vulnerabilities they use can be found in Table III.
The rest of the section analyzes these four variants in detail.

A. Satori

Satori was a Mirai variant initially active between 2017
and 2018. In December 2017, Satori infected over 280,000
IoT devices within 12 hours of its activation [27]. Satori
exploited improper input validation using CVE-2014-8361 and
CVE-2017-17215 to connect to Huawei routers and Realtek
Software Development Kits (SDK) on ports 37215 (Huawei
HG532 Service) and 52869 (Universal Plug and Play (UPnP))
[27]. See Table III for a summary of these two vulnerabilities.

Although it had supposedly dwindled since then, researchers
at Palo Alto Networks found that Satori was active again.
In February 2021, the researchers found the variant trying to
use OS command injections (CVE-2020-9020) to exploit Iteris
Vantage Velocity Field Unit 2.3.1, 2.4.2, and 3.0 devices.

1) Iteris Vantage Velocity OS Command Injection: The
most recent Satori attack was on Iteris devices. Iteris is a
global leader in smart mobility infrastructure management
that applies cloud computing, artificial intelligence, advanced
sensors, advisory services, and managed services towards safe,
efficient, and sustainable mobility [54]. Vantage Velocity is a
Bluetooth or Wi-Fi-based system that measures travel time.
As most vehicles house a Bluetooth enabled device, such as
the driver’s smartphone, it senses the device’s MAC address
as it passes the field unit and transmits the time and location
of the device to a central host system [55]. The host system
then calculates the average travel times and speeds from this
information. Vantage Velocity units are meant to be installed at
various intersections of a road’s network to capture the time a
Bluetooth-enabled device passes through the intersection [55].

Attackers compromise these devices by injecting commands
via HTTP requests into the cgi-bin/timeconfig.py file via shell
meta-characters in the Network Time Protocol (NTP) Server
field (CVE-2020-9020) [36], [56]. The attackers then use wget
to download the file arm7 from the server 198.23.238.203,
then change the permissions to ensure that it could be executed
by the current user [36]. This server functions as a malicious
shell script that provides malware download services through
HTTP port 80 and is also believed to serve as a C&C server
with port 5684 [36]. This botnet was also found to have
the ability to attack nine different processor platforms, which
were: ARM, ARM7, MIPS, PowerPC, sh4, SPARC, m68k,

x86_64, and x86_32. This allows the attackers to target
servers with different architectures, expanding the reach of
the botnet [36].

2) Satori’s Relation to Mirai: Like Mirai, Satori scans port
23 of random hosts and attempts to log in with its embedded
password dictionary when port 23 is open [36]. To infect other
devices, Satori executes malicious payloads from the C&C to
deploy bots on new victim devices [36]. If Satori compromises
one of these devices, attackers can leak sensitive data and/or
conduct DDoS attacks.

B. Mukashi

Like Satori, what makes Mukashi stand out is the specific
vulnerability it exploits. Mukashi attacks the system with a
critical vulnerability in OS command injection vulnerability
(CVE-2020-9054) found in ZyXel NAS devices. CVE-2020-
9054 allows attackers to remotely execute malicious code
into the affected system [57]. In February 2020, Krebs On
Security alerted Zyxel that this zero-day vulnerability on their
devices was being abused by attackers [58]. That same week,
researchers at Palo Alto Networks detected the same vulner-
ability exploited and dubbed the Mirai variant “Mukashi” on
March 12th, 2020 [58].

1) ZyXel NAS OS Command Injection: Mukashi’s most
prominent attack was on ZyXel devices. ZyXel is a Taiwanese

6

Table II: Comparing Various Topics Between Mirai and The Four Variants

Variant English
Translation

Year of
Discovery

Estimated
Number of
Bots

Number of
Exploits Used

Utilizes
command
Injection

Utilizes
Improper Input
Validation

Number of Current
Zero Day Vulnera-
bilities

Mirai
“Future” 2016 ⇠493,000 0 7 7 0

Satori
“Awakening” or
“Enlightenment”

2017 ⇠280,000 3 3 3 0

Moobot 7 2019 ⇠18,705 6 3 3 0

Mukashi
“Olden Days” or
“Former”

2020 Unknown 1 3 7 0

Sonic 7 2021 Unknown 7 3 7 3

Table III: Vulnerability Summaries
Name CVE ID NVD Base Score

(CVSSv3)
Date Published Vulnerability

Type
Description Variant

Hikvision [38]
CVE-
2021-
36260

9.8 Critical 09/22/2021 Command
Injection

Hikvision products lack proper input validation and are susceptible to command injection Moobot

Realtek [39]
CVE-
2014-8361

N/A 05/01/2015 Improper Input
Validation

Realtek SDK devices allow attackers to remotely inject and execute code in the Universal
Plug and Play (UPnP) Simple Object Access Protocol (SOAP) interface using a crafted
NewInternalClient request

Satori &
Moobot

Huawei [40]
CVE-
2017-
17215

8.8 High 03/20/2018 Improper Input
Validation

Huawei HG532 routers allow authenticated attackers to remotely send malicious packets to
TCP port 37215 and execute arbitrary code

Satori &
Moobot

Vantage [41]
CVE-
2020-9020

9.8 Critical 02/16/2020 OS Command In-
jection

Iteris Vantage Velocity Field Unit devices (version 2.3.1, 2.4.2 and 3.0) allow attackers to
remotely inject commands using crafted HTTP requests

Satori

NAS [42]
CVE-
2020-9054

9.8 Critical 03/04/2020 OS Command In-
jection

ZyXEL NAS devices (version 5.21) improperly sanitize the program’s username parameter,
allowing unauthenticated attackers to execute arbitrary code

Mukashi

Tenda [43]
CVE-
2020-
10987

9.8 Critical 07/13/2020 OS Command In-
jection

The Tenda AC15 AC1900 Dual Band Wi-Fi router goform/setUsbUnload endpoint (version
15.03.05.19) allows authenticated attackers to remotely execute arbitrary commands

Moobot

DrayTek [44]
CVE-
2020-8515

9.8 Critical 02/01/2020 OS Command In-
jection

DrayTek Vigor2960, Vigor3900, and Vigor300B devices allow unauthenticated attackers to
remotely execute code with root privileges

Moobot

Grandstream [45]
CVE-
2020-5722

9.8 Critical 03/23/2020 SQL Injection The Grandstream UCM6200 HTTP (versions before 1.0.19.20) interface allows unauthenti-
cated attackers to remotely perform SQL injections using crafted HTTP requests

Moobot

WIFICAM [46]
CVE-
2017-8225

9.8 Critical 04/25/2017 Insufficiently Pro-
tected Credentials

Wireless IP Camera (P2P) WIFICAM devices allow attackers to bypass authentication by
providing an empty loginuse and loginpas parameter in the Uniform Resource Identifier
(URI) to access credentials in the .ini files

Moobot

VisualDoor [47]
N/A N/A 01/23/2021 VPN Exploit SonicWall Secure Socket Layer (SSL)-VPN allows unauthenticated attackers to remotely

execute code as a “nobody” user via the /cgi-bin/jarrewrite.sh URL
Sonic

DNS-320 [48]
CVE-
2020-
25506

9.8 Critical 02/02/2021 OS Command In-
jection

The D-Link DNS-320 Revision Ax system mgr.cgi component (firmware version is
v2.06B01) allows attackers to remotely execute arbitrary code

Sonic

Yealink [49]
CVE-
2021-
27561

9.8 Critical 10/15/2021 Command
Injection

Yealink Device Management (DM) (version 3.6.0.20) allows unauthenticated attackers
to remotely execute arbitrary commands on the server with root privileges via the
/sm/api/v1/firewall/zone/services URI

Sonic

Arm [50]
CVE-
2021-
27562

5.5 Medium 05/25/2021 Out-Of-Bounds
Write

Calling secure functions under the Non-secure Processing Environment (NSPE) handler mode
in Arm Trusted Firmware devices could allow attackers to trigger a stack underflow that
renders the incorrect operation of the Secure code execution

Sonic

OBR [51]
CVE-
2021-
22502

9.8 Critical 02/28/2021 Code Injection Micro Focus Operation Bridge Reporter (OBR) products (version 10.40) improperly sanitize
the username parameter in the LogonResource endpoint, allowing attackers to remotely
execute arbitrary code

Sonic

Netis [52]
CVE-
2019-
19356

7.5 High 02/07/2020 OS Command In-
jection

Netis WF2419 routers (version V1.2.31805 and V2.2.36123) allow authenticated attackers
to remotely execute code with root privileges through the router Web management page

Sonic

Netgear [53]
CVE-
2020-
26919

9.8 Critical 10/09/2020 Other NETGEAR JGS516PE switches (versions prior to 2.6.0.43) allow unauthenticated attackers
to execute arbitrary code

Sonic

manufacturer that has 100 million devices worldwide [58].
ZyXel NAS devices provide personal cloud storage and allow
users to access their data from anywhere using a mobile
device. These devices contain a pre-authentication command
injection vulnerability that allows the remote execution of
arbitrary code within the vulnerable device by unauthenticated
attackers. This vulnerability lies within the weblogin.cgi

program, which fails to properly sanitize the username pa-
rameter during authentication, allowing attackers to use special
characters like ’ and ; to close strings and concat commands
[34]. Although the web server that runs on ZyXel devices does
not run as a root user, the devices contain a setuid utility
that can be leveraged to run commands with root privileges
[59]. By sending a certain HTTP POST or GET request to
weblogin.cgi, remote unauthenticated attackers can execute
arbitrary code on the NAS device [34], [59].

2) Mukashi’s Relation to Mirai: Similar to Mirai, Mukashi
randomly scans TCP port 23 of IoT hosts and performs brute
force attacks using default and previously recorded credentials
to log into Zyxel NAS products, as well as digital video
recorders (DVRs), security cameras, and other similar devices

[21], [57]. Once successfully connected, it sends the machine’s
information to the C&C server 45.84.196.75 on TCP port
34834 in the form <host ip address>:23 <username>:<password

> [21], [60]. To evade detection, Mukashi binds to TCP port
23448 to ensure only one instance runs on the infected system
[21], [61]. When malware has been executed on the infected
host, Mukashi prints the message “Protecting your device from
further infection” to the console [21], [61]. Once initialized,
Mukashi notifies the C&C server 45.84.196.75 listening on
TCP port 4864 that it is ready for a command from the C&C
[60]. In summary, TCP port 23448 is used to run a single
instance, TCP port 34834 on server 45.84.196.75 is where
the infected hosts’ credentials are sent, and TCP port 4864 on
the same server is where the commands are sent through.

Mukashi’s C&C supports various commands, credentials,
and attacks, all using custom encryption and decryption. These
decrypted commands and attacks can be found in Table IV
[61]. These are the encrypted commands used by Mukashi.
The commands themselves were decrypted, and many of them
were used by Mirai. The actual operation of these commands is
not published although, so we assumed they were the same as

7

Table IV: Mukashi C&C Decoded Commands and Attacks
[61]

Commands Description
.http HTTP flood
.tcp Normal TCP scan
.tcpbypass TCP scan that can bypass Firewall rules
.udp UDP flood with more options
.udpbypass UDP scan that can bypass firewall rules
.udphex N/A
.udpplain UDP flood with fewer options, optimized for higher PPS
.udprand UDP flood with randomized port and packet content
killallbots Code to kill all the bots under the control of C&C
killer Code for killing specific service
PING Ping flood
scanner Code or process responsible for scanning

Mirai’s. These commands are used to perform various DDoS
attacks, Mirai and other variants have used in the past.

C. Moobot
Moobot is another recent variant of Mirai that utilizes five

vulnerabilities, two of which Satori also used in its exploits
in 2017 (see Table III). Moobot was first seen in 2019 by the
Network Security Research Lab at 360 (360Netlab) [62], and
its main targets are Docker APIs, Small Office Home Office
(SOHO) devices, fiber routers, and IoT devices.

1) Notable Attacks by Moobot: In September 2019,
360Netlab published an article discussing various botnets mon-
itored on 185.244.25.0/24, specifically Moobot and its variants
such as Moobot.socks5, Moobot.tor, Moobot.tor.b,

Moobot.go, Moobot.tor.go, and Moobot.c [63].
In July 2020, 360Netlab published an article describing the

vulnerabilities of Moobot attacks, as well as its DDoS activity
[62]. Moobot has been active since the start of 360Netlab’s
tracking attacking targets worldwide and about 100 targets per
day. Moobot has attacked nearly 20,000 targets in the United
States and around 48,000 IP addresses in Brazil between
March 2020 and May 2020. In July 2020, Cloudflare also
detected and mitigated a UDP-based DDoS attack believed to
be generated by Moobot that peaked at 654Gbps [64].

In November 2020, 360Netlab, CNCERT, and Qihoo 360
published a joint article about Moobot using another zero-
day vulnerability to target UNIX CCTV DVRs [65]. Later
the next year, in September 2021, FortiGuard Labs reported
that Moobot was using a remote code execution vulnerability
(CVE-2021-36260) to infect various products from Hikvision,
one of the largest video surveillance brands in the world [66].

Most recently, in February 2022, 360Netlab reported on
some NTP amplification, UDP/STD/OVH floods, and other
attacks on Russian and Ukrainian websites caused by Moobot,
Mirai, gafgyt, ircbot, and ripprbot [22]. The attacks were
launched against four 185.34.x.x/24 IPs, all belonging to
Ukrainian bank oschadbank.ua [22].

2) Hikvision Router Command Injection: Hikvision is the
world’s largest manufacturer of video surveillance products
and solutions and is based out of Hangzhou, China. CVE-
2021-36260 is a command injection vulnerability found in
many different Hikvision IP cameras and products [67]. For
this vulnerability, a command is inserted into the XML pay-
load in conjunction with the HTTP PUT request sent to the

/SDK/webLanguage endpoint [68]. This results in command
execution at the root user. While Hikvision did release a
statement warning users about the vulnerability, devices are
still susceptible if users have not updated the software.

3) Tenda Router OS Command Injection: Moobot was seen
by AT&T scanning for vulnerabilities in Tenda routers. Tenda
is a global supplier of networking devices and equipment
based out of Shenzhen, China, whose AC15 AC1900 Dual
Band Wi-Fi routers are susceptible to OS command injection
(CVE-2020-10987) [69], [70]. The setUsbUnload function
in the router’s bin/httpd binary file contains a deviceName

parameter that is passed directly to a doSystemCmd function
[70]. This deviceName parameter can be set through an
authenticated request, allowing attackers to execute arbitrary
system commands [70]. For example, if wanting to reboot
the router, an attacker can set the deviceName=; reboot

(readers are advised to pay attention to the semicolon) to be
passed to the doSystemCmd function [70].

4) Draytek Switch OS Command Injection: Draytek is a
Taiwan-based supplier of networking devices and equipment.
While currently undergoing reanalysis at the time of this writ-
ing, select beta versions of DrayTek Vigor2960, Vigor3900,
and Vigor300B switches and routers are susceptible to OS
command injections (CVE-2020-8515). These devices allow
unauthenticated remote code execution via shell metachar-
acters to the cgi-bin/mainfunction.cgi URI [71]. This
vulnerability can be used to sniff network traffic and install
backdoors on the devices [72]. There are two command
injection points on these devices: keyPath and rtick, both
located in the /www/cgi-bin/mainfunction.cgi and its corre-
sponding web server /usr/sbin/lighttpd [72], [73]. The keyPath
is used to initiate login requests but has poor input control
that make unauthorized remote command execution possible
[73]. The rtick is used to generate a CAPTCHA image
but fails to verify the incoming timestamp before generating
<rtick>.gif [73]. When the vulnerability was discovered,
the rtick command injection was used to create two sets of
web session backdoors that wouldn’t expire [73].

5) Grandstream Networks Remote SQL Injection: Grand-
stream Networks, headquartered in Boston, manufactures IP
voice and video equipment. CVE-2020-5722 refers to the
vulnerability of the HTTP interface of Grandstream UCM6200
series devices to unauthenticated, remote SQL injection attacks
via crafted HTTP requests [74]. When using the UCM6200
web interface, a user can retrieve their password via the
“Forgot Password” feature by entering their username [75].
The username is validated against a user’s table in an SQLite
database, but this query was vulnerable to a reverse shell
attack in UCM6200 versions before 1.0.19.20. Until version
1.0.20.17, attackers could also introduce arbitrary HTML into
the password recovery email sent to the user [75].

6) WIFICAM Camera Insufficiently Protected Credentials:
CVE-2017-8225 refers to a vulnerability found on WIFICAM
devices [46]. These wireless IP cameras (P2P) are Chinese web
cameras that allow users to stream remotely [76]. The WIFI-
CAM HTTP server is based on GoAhead, a small web server
present in over 700,000 IoT devices [77]. The WIFICAM
server contains system.ini and system-b.ini, which are

8

two configuration files used to store credentials [78]. Access
to these .ini files is not correctly checked, thus allowing
an attacker to bypass authentication by providing an empty
loginuse and loginpas in the URI [78]. If able to bypass
authentication by providing the empty parameters in the URI,
an attacker can steal credentials, FTP accounts, and SMTP
accounts [78].

7) Moobot’s Relation to Mirai: Moobot scans for
DVRIP/ADB/HTTP/TELNET ports and reports its scan results
back to the C&C [63]. Rather than letting the bots indepen-
dently scan for new devices like with Mirai, Moobot bots
perform scans together and piece the results together [37]. Like
Mirai, Moobot has a hard-coded list of IPv4 addresses to avoid
the same range Mirai originally did [37]. A key difference
between Moobot and Mirai is that Moobot uses the hardcoded
string w5q6he3dbrsgmclkiu4to18npavj702f instead of the
string abcdefghijklmnopqrstuvw012345678 used in Mirai
as a seed to generate an alphanumeric string [37]. This string
is a key component in generating the process name to be used
during execution [37]. Moobot also uses encryption to evade
string-based detection. Finally, Moobot uses prctl(), a Linux
function that is used to control or manipulate aspects of the
behavior of the calling thread or process [37]. It uses prctl()
by hiding the process name as /var/Sofia, the name of a
video application used on the targeted Docker API devices
[37].

D. Sonic
In February 2021, a new Mirai variant was discovered by

researchers at Palo Alto Networks. At the time of this writing,
it is one of the latest variants to come to light [79], and there
is no official name for it. As the introduction mentions, we
call this variant Sonic to keep things simple. Perhaps the
most notable property of this variant is that it targets six
recently discovered vulnerabilities in D-Link, Netgear, and
SonicWall IoT devices, as well as three currently unidentified
vulnerabilities.

1) VisualDoor SonicWall Secure Socket Layer VPN Com-
mand Injection: The first vulnerability the Sonic variant uses
is VisualDoor, a SonicWall Secure Socket Layer (SSL)-VPN
Remote Command Injection Vulnerability [80]. SonicWall is
a security platform for cloud, hybrid, and traditional environ-
ments. The bug was discovered by Phineas Fisher, a popular
hacktivist [80]. These products use an old version of Bash,
which is vulnerable to ShellShock, a set of vulnerabilities
used to gain higher privileges and unauthorized access within
Bash. SonicWall devices are therefore vulnerable to unauthen-
ticated remote code execution (as a “nobody” user) via the
/cgi-bin/jarrewrite.sh URL [80].

2) D-Link DNS-320 OS Command Injection: The D-Link
DNS-320 Revision Ax is susceptible to OS command injec-
tions in the system_mgr.cgi component (CVE-2020-25506)
[81]. D-Link is a company based in Taiwan that manufactures
network equipment, and DNS-320 is a storage device produced
by D-Link that features a built-in Web File and File Transfer
Protocol (FTP) server. Arbitrary command execution is caused
more specifically by improper sanitation of HTTP parameters
in the f_ntp_server [60].

3) Yealink Device Management Command Injection:
Yealink is a global brand that specializes in videoconferencing
tools [82]. CVE-2021-27561 is a vulnerability where Yealink
Device Management 3.6.0.20 allows command injections as
root via the /sm/api/v1/firewall/zone/services URI without
requiring any authentication [83].

4) ARM Out of Bounds Write: CVE-2021-27562 is a vul-
nerability where in ARM Trusted Firmware M through 1.2,
the Non-Secure world may trigger a system halt, an overwrite
of secure data, or the printing out of secure data when calling
secure functions under the Non-Secure Processing Environ-
ment (NSPE) handler mode [84]. Arm Trusted Firmware is an
organization that provides open-source secure software that
complies with ARM specifications.

5) Micro Focus OBR Code Injection: CVE-2021-22502
is a remote code execution vulnerability in Micro Focus
Operation Bridge Reporter (OBR) products, affecting ver-
sion 10.40 [85]. This vulnerability could allow remote code
execution on the OBR server [85]. Micro Focus is a worldwide
enterprise software provider that delivers mission-critical tech-
nology and supporting services to manage the IT elements of
a business. Operations Bridge is a Micro Focus product used
for cloud monitoring.

6) Netis OS Command Injection: CVE-2019-19356 de-
scribes that Netis WF2419 is vulnerable to authenticated
Remote Code Execution (RCE) as root through the router
web management page in firmware version V1.2.31805 and
V2.2.36123 [86]. It is possible to execute system commands
as root through the tracert diagnostic tool because of the lack
of user input sanitization [86]. Tracert is used to trace the path
an IP packet takes to its destination. Netis develops networking
products, and WF2419 is a wireless 802.11n router.

7) Netgear Lack of Access Control: CVE-2020-26919 is
a vulnerability where NETGEAR JGS516PE devices before
version 2.6.0.43 are affected by lack of access control at
the function level [87]. Netgear is a multinational computer
networking company, and JGS516PE is a Smart Managed Plus
Power over Ethernet (PoE) Switch designed for desktop or
rackmount.

Sonic also uses three unknown vulnerabilities, all of which
are some type of command injection.

8) Sonic’s Relation to Mirai: Upon successful exploitation,
wget is used to download a malicious shell script that executes
several Mirai binaries one by one [60], [79].

One of the binaries is lolol.sh, which deletes key folders
in the target machine responsible for scheduling jobs and
starting up processes. It also downloads dark binaries based on
the Mirai codebase that is used for propagation via the exploits
mentioned above or brute forced ssh connections using hard-
coded credentials [60]. These dark binaries are saved to a file
called nginx for evasion since NGINX is a widely known
open source web service software [60]. lolol.sh is also
responsible for implementing several packet filters to block
incoming traffic to commonly used SSH, HTTP, telnet, and
other similar ports to try and make it more difficult for
administrators to maintain the system [60]. lolol.sh is also
supposed to be rerun every hour, but the cron command-line
utility is said to be improperly configured [60].

9

install.sh is another script installed by the malware and
is used to download GoLang v1.9.4, as well as the GoLang
standard SSH and Zmap packages onto the device [60]. Go is
an open-source programming language created and supported
by Google, and Golang is another common way of referring to
the language. The Golang SSH package implements an SSH
client and server, and Zmap is a single-packet network scanner.

Two other binaries downloaded are nbrute and combo.txt

[60]. combo.txt is a plain text file containing commonly used
credentials, while nbrute uses combo.txt to brute force SSH
connections with IP addresses [60]. In summary, this variant
downloads binaries to schedule jobs, makes filter rules, carries
out brute force attacks, and spreads malware [60].

V. DEFENSE AGAINST MIRAI AND ITS VARIANTS

Now that we have discussed attack methodologies for the
old variants of Mirai let us take a look at the various defense
solutions that can be used to protect IoT devices against Mirai
and its variants.

A. Change Default Passwords
One of the easiest and probably most practical ways to

defend against these botnets is by changing the default user-
name and password on IoT devices. Mirai’s dictionary attack
successfully penetrated hundreds of thousands of devices and
only tested a handful of weak credentials.

IoT devices are produced in abundance by different manu-
facturers all over the world. When produced, IoT devices may
come with one of the following [88]:

• A factory default username and password printed on the
device or in the instruction manual

• A randomized password is given to each user if the
default password is not changed

• The same username and password that comes with the
other devices produced by the manufacturer (take the
combo “admin” and “admin” for example)

Whether a user logs into the device manually, through a
web browser, or through an app, it is important that users
make time to change their passwords to something more
complex and unique. If IoT devices do not come with a
password (e.g., Amazon Alexa, Google Hub, etc.), the device
likely connects to a home router or your phone [88]. Users
can protect themselves this way by making a secure PIN
for their phone or securing their router login details [88].
IoT manufacturers should also take steps to randomize the
usernames and passwords for their products.

B. Vulnerability Research and Management
Antonakakis et al. predicted in 2017 that “attacks of the

future will evolve to target software vulnerabilities in IoT
devices, much like the early Code Red and Confickr worms”
[7]. We saw in Section IV that what makes many of these
variants unique is their ability to take advantage of a specific
set of vulnerabilities in IoT devices. For example, Satori uses
an OS command injection to infect Vantage Velocity Devices,
while Mukashi uses an OS command injection to infect

ZyXEL NAS devices. When purchasing devices, users should
investigate the product, the manufacturer, and any associated
vulnerabilities or security incidents. Manufacturers should take
the time to program proper constraint validation, as many of
these vulnerabilities are caused by injection attacks. As new
vulnerabilities emerge, IoT devices should be programmed to
update their firmware and operating systems automatically.
Automatic updates require a modular software architecture
in the event of an update failure and a PKI infrastructure
to support trusted updates [7]. Hackers can not only patch
vulnerabilities as they arise, but botnets also have difficulty
maintaining control of an infected device once it has been
rebooted [15].

C. Other Defense Solutions
Other ways to defend devices against IoT botnets include:
• Periodically updating the firmware and the applica-

tions running on the IoT devices. Manufacturers release
patches right after a vulnerability is discovered. Installing
security updates/patches prevents further infection spread.

• Monitoring IP ports 2323/TCP and 23/TCP for attempts
to gain unauthorized control using Telnet [89];

• Disabling Universal Plug-and-Play (UPnP) [89], [90];
• Insist on separate registration and authentication for each

IoT device. Manufacturers could produce IoT devices that
require consumers to register email addresses to facilitate
the communication of alerts and issues [89];

• Securing the network by using VPNs, creating a separate
network, and using a third-party firewall or Intrusion
Detection/Prevention System [90];

• Leaving the devices offline if they are not being used for
long periods [89].

VI. RELATED WORK

This section presents a detailed study of surveys already
published in this domain and motivates the current paper.
Numerous studies have been conducted on Mirai and botnets
in general in the past decade. Table V provides an overview
of articles reviewing botnets, Mirai, and its variants. The
following is the description of each column in Table V:

• Year of Publication: The year the paper was published
• Title: Title of the paper
• Analyze Mirai’s Infrastructure: Describes Mirai’s ar-

chitecture (i.e. how the botnet works)
• Included Mirai Source Code: Presents and/or discusses

Mirai’s source code
• Analyzes Mirai’s Attack Methodology: Discusses Mi-

rai’s infection process
• Mirai’s Impact and Variant Relations: Discusses the

consequences or effect Mirai has had on the economy,
the security industry, and/or other variants

• Investigates Mirai Variants: Names and describes vari-
ants of Mirai

• Name of Mirai Variants: Lists the names of the Mirai
variants

• Defense Strategies Discussed: Describes defense mech-
anisms against Mirai or botnets in general

10

Table V: Summary of the Related papers covering different aspects of Botnet and Mirai
Ye

ar
of

Pu
bl

ic
at

io
n

Ti
tle

A
na

ly
ze

M
ira

i’s
A

rc
hi

te
ct

ur
e

In
cl

ud
es

M
ira

iS
ou

rc
e

C
od

e

A
na

ly
ze

s
M

ira
i’s

A
tta

ck
m

et
ho

do
lo

gy

M
ira

i’s
Im

pa
ct

an
d

Va
ria

nt
R

el
at

io
ns

In
ve

st
ig

at
es

M
ira

iV
ar

ia
nt

N
am

es
of

M
ira

iV
ar

ia
nt

s

D
ef

en
se

St
ra

te
gi

es
D

is
cu

ss
ed

Su
m

m
ar

y

2021 Survey on Botnet Detec-
tion Techniques: Classifi-
cation, Methods, and Eval-
uation [14]

7 7 7 7 7 7 3 Survey on important/recent botnet detection efforts. Proposes a bot detection evaluation
system known as CBDES.

It discusses Honeypot Analysis, Communication Signature Detection, Anomaly
Detection, Deep Learning, Complex Networks, Swarm Intelligence, Statistical Analysis,
Distributed Approaches, and Multidimensional Detection Methods.

2021 The Circle of Life: A
Large-Scale Study of The
IoT Malware Lifecycle
[91]

7 barely 7 3 3 barely 3 Detailed analysis of the lifecycle of IoT malware and comparison with traditional
malware. Presents a large-scale measurement of Linux-based IoT malware samples.

2020 Examining Mirai’s Battle
over the Internet of Things
[15]

3 3 3 3 3 General overview of 39
variants

7 Comprehensive overview of the battle for and reinfection process of IoT devices by Mirai
and its variants. Provide the “first epidemiological quantification of Mirai.”

2020 New Variants of Mirai and
Analysis [18]

3 3 3 3 3 No; Authors Propose New
Mirai Variants

7 Studies Mirai and proposes new Mirai Variants

2020 Systematic Literature Re-
view on IoT-Based Botnet
Attack [16]

7 7 7 7 7 7 7 Systematic literature review on IoT-based botnet attacks and detailed analysis and
discussion of its primary studies

2020 Analyzing Variation
Among IoT Botnets
Using Medium Interaction
Honeypots [10]

3 3 3 3 3 General overview of vari-
ants

7 Provides discussion of Mirai’s functionality and focuses on how much Mirai has been
modified. Provides an idea of the amount of variation present in Mirai attacks using
Cowrie SSH/Telnet honeypot

2020 IoT Botnet Forensics: A
Comprehensive Digital
Forensic Case Study on
Mirai Botnet Servers [11]

3 3 3 3 Barely 7 7 A comprehensive digital forensic case study on Mirai. Sets up a fully functioning Mirai
botnet network architecture and conducts a comprehensive forensic analysis on the Mirai
botnet server. Discussed physical and remote forensic techniques to examine the Mirai
botnet server.

2019 10 years of IoT Malware: a
Feature-Based Taxonomy
[92]

7 7 3 7 7 7 3 Identification of characteristic features of several malware. Comparison of 16 of the most
widespread IoT malware programs based on these features. Novel graphic representation
of the malware relationships.

2019 Issues and challenges in
DNS based botnet detec-
tion: A survey [13]

7 7 7 7 7 7 3 Analysis of various Botnet detection techniques employing DNS Protocol. Thoroughly
analyzes more than 200 papers and categorized the detection techniques, and proposes
attributes of a Smart DNS-based botnet detection system. This paper discussed DNS-
Based Detection.

2018 DDoS-Capable IoT Mal-
wares: Comparative Anal-
ysis and Mirai Investiga-
tion [6]

3 3 3 3 No; discusses
variants of
DDoS-capable
malware though

7 7 Provides taxonomy of DDoS attacks and different types of network architectures used
to carry them out. Discusses DDoS-capable IoT malware. Provides Mirai background,
modes of operation, source code analysis

2018 Tracking Mirai Variants
[19]

7 3 3 3 3 General overview of mul-
tiple variants with an em-
phasis on Masuta, Owari,
and Wicked

7 Analyzed over 32,000 Mirai samples and developed a set of variant classification and
tracking schemes. Emphasized how the data were extracted and used to classify and track
Mirai variants

2018 Understanding linux mal-
ware [93]

7 7 3 7 7 3 3 The paper fills the gap between the malware industry and academia. Security experts write
blog posts to publish their findings, while the academic community requires systematic
studies.

2018 Iot malware:
Comprehensive survey,
analysis framework and
case studies [94]

7 3 3 3 7 7 3 A generic overview of IoT Malware and the major variants.

2017 Understanding the Mirai
Botnet [7]

3 3 3 3 3 General overview of 33
variants

3 Tracking the botnet’s composition, evolution, and DDoS activities from August 1, 2016,
to February 28, 2017, the researchers provide what they call the “first comprehensive
analysis” of Mirai. A thorough description of Mirai, as well the botnets’ timeline of
events, structure and propagation, malware phylogeny and its relation to BASHLITE,
types of devices infected, types of attacks and targets, and possible defense strategies
IoT companies can take against botnets.

The paper also discussed Security Hardening, Automatic Updates, Notifications,
Facilitating Device Identification, Defragmentation, and End-Of-Life.

2017 A survey of botnet detec-
tion based on DNS [8]

7 7 7 7 7 7 3 Describes the botnet life cycle and gives a comprehensive overview of botnet detection
based on DNS traffic characteristic. A concise focus on DNS-based detection solutions
or techniques.

The paper also discussed Honeynet-Based, IDS/Anomaly Based, Statistical-Based,
Graph-Based, Clustering-Based, Entropy-Based, Decision Tree-Based, and Neural
Network-Based DNS Detection.

2017 The Mirai Botnet and the
IoT Zombie Armies [9]

3 3 3 3 3 General Overview; Bir-
ckerBot, Hajime

3 Provides a comprehensive but succinct analysis on the Mirai botnet, its variants, and
the repelling tactics and countermeasures. The paper discussed Block TCP ports used
for probing and brute-forcing the device. Drop TCP egress connections containing attack
traffic. Closing and stopping nonessential ports and services running on the device. Isolate
an organization’s intranet. Allowing Busybox execution only by a specific user. Disabling
UPnP. Update devices with patches and bug fixes.

• Summary: Summary of the work

A few important papers are discussed below.
Antonakakis et. al in [7] provide a comprehensive overview

of Mirai. Tracking the growth, composition, evolution, and
DDoS activities from August 1, 2016, to February 28, 2017,
the researchers provide what they call the “first comprehensive
analysis” of Mirai. The researchers give a thorough descrip-
tion of Mirai, as well as the botnets’ timeline of events,
structure, and propagation, malware phylogeny and its relation
to BASHLITE, the types of devices infected, types of attacks
and targets, and possible defense strategies IoT companies can
take against botnets.

Liu and Wang in [19] analyzed more than 32,000 Mirai
samples and developed a set of variant classification and
tracking schemes. A heavy emphasis is placed on how the
researchers extracted the data and used it to classify and track
Mirai variants. The researchers take a more holistic approach
to discuss the variants and provide details specifically on
Masuta, Owari, and Wicked.

Griffioen and Doer provide a comprehensive overview in
[15] of the battle for and reinfection process of IoT devices
by Mirai and its variants. The researchers analyzed how 39
variants infect and retain control over IoT devices and provide
a more detailed comparative analysis between Mirai, Miori,

11

Akuma, Masuta, Josho, MM, and Objorn. Mirai’s system
infrastructure, source code, PRNG, and interaction with its
variants are described in depth.

Mirai, along with botnets in general, has been widely
studied in the literature. Many of the papers shown in Table V
discuss Mirai’s architecture, code, and attack methodology in
depth. Many of these papers also discuss defense strategies
against Mirai and other botnets. However, what these papers
lack is an in-depth analysis of variant attack mechanisms.
While multiple papers talk about variants of Mirai as a whole,
they fail to cover specific variants and analyze them in depth.
To the best of our knowledge, our paper is the most recent
in-depth analysis of the attack strategies of four variants
discovered between 2017-2021 (i.e., Satori, Mukashi, Moobot,
and Sonic) and how they compare to Mirai.

The authors in [91] methodically analyze the life cycle
of IoT malware and compare it with traditional malware to
examine the efficacy of current defenses against IoT malware.
With an extensive measurement comprising over 166K Linux-
based IoT malware samples accumulated over a year spanning
six different system architectures. The authors compare their
results with previous studies on traditional malware and con-
clude that adequate defense technology is available that needs
to be put into practice.

VII. CONCLUSION

In this paper, we examine Mirai and four of its recent
variants. We saw that these variants are similar to Mirai in that
they target similar devices, pseudorandomly search for open
ports, and use brute-force attacks with a list of commonly used
usernames and passwords to gain access to a device. One of
the biggest differences between Mirai and these variants is
that they target new vulnerabilities that the original botnet did
not take into consideration. As botnets exploit these arising
vulnerabilities and take over IoT devices, the compromised
devices can be used for various detrimental attacks such as
DDoS attacks. This costs companies copious sums of money
as services are made unavailable to the public, and personal
data becomes compromised. One of the best defenses against
botnets is to change the default username and password so that
the authentication is harder to crack. Keeping up with publicly
known vulnerabilities and ensuring all files and features of
a program, device, or service are immune to injections used
for remote privilege escalation are other defenses. IoT devices
are only becoming more popular, so greater emphasis must be
placed on the security of these devices to ensure that they are
not vulnerable to Mirai and its variants. Our comprehensive
study of these four variants will potentially provide security
experts and developers of IoT devices with new information
on how to counter botnet attacks.

APPENDIX

Table VI provides a list of all the abbreviations used in the
paper.

Table VI: Common Abbreviations Used in Paper

Abbreviation Full Form
ADB Apple Desktop Bus
ARC Argonaut RISC Core
CVE Common Vulnerabilities and Exposures
C&C Command and Control
DDoS Distributed DoS
DM Yealink Device Management
DoD Department of Defense
DoS Denial of Service
DVR Digital Video Recorder
FBI Federal Bureau of Investigation
FTP File Transfer Protocol
Gbps Gigabytes per Second
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IANA Internet Assigned Numbers Authority
IDS Intrusion Detection System
IoT Internet of Things
IP Internet Protocol
IPS Intrusion Prevention System
IPv4 Internet Protocol version 4
IRC Internet Relay Chats
MAC Media Access Control
NAS Network Attached Storage
NPC Non-player Characters
NSPE Non-secure Processing Environment
NTP Network Time Protocol
NVD National Vulnerability Database
OBR Micro Focus Operation Bridge Reporter
OS Operating System
PoE Power over Ethernet
PRNG Pseudo-random Number Generator
P2P Peer-2-Peer
RCE Remote Code Execution
RNG Random Number Generator
RSA Rivest, Shamir, Adleman
SDK Software Development Kit
SSH Secure Shell
SSL Secure Sockets Layer
SOAP Simple Object Access Protocol
SOHO Small Office Home Office
TCP Transmission Control Protocol
UPnP Universal Plug and Play
URI Uniform Resource Identifier
VPN Virtual Private Network
2FA Two-Factor Authentication

DECLARATIONS

• Funding The current research is not funded by any grant.
• Conflict of interest/Competing interests The authors

have no conflicting financial or non-financial interests.

REFERENCES

[1] A. A. Laghari, K. Wu, R. A. Laghari, M. Ali, and A. A. Khan, “A review
and state of art of internet of things (iot),” Archives of Computational
Methods in Engineering, pp. 1–19, 2021.

[2] A. A. Laghari, A. A. Khan, R. Alkanhel, H. Elmannai, and S. Bourouis,
“Lightweight-biov: blockchain distributed ledger technology (bdlt) for
internet of vehicles (iovs),” Electronics, vol. 12, no. 3, p. 677, 2023.

[3] M. Waqas, K. Kumar, A. A. Laghari, U. Saeed, M. M. Rind, A. A.
Shaikh, F. Hussain, A. Rai, and A. Q. Qazi, “Botnet attack detection in
internet of things devices over cloud environment via machine learning,”
Concurrency and Computation: Practice and Experience, vol. 34, no. 4,
p. e6662, 2022.

[4] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin,
and D. Aharon, “Unlocking the Potential of the Internet of Things,”
McKinsey Global Institute, 2015.

[5] S. Das, M. S. Obaidat, S. Barman, and D. Giri, “Novel Multiparameter
Detection and Recovery Technique for Diverse Network Systems,” IEEE
Systems Journal, vol. 15, no. 3, pp. 4612–4622, 2021.

12

[6] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “DDoS-
Capable IoT Malwares: Comparative Analysis and Mirai Investigation,”
Security and Communication Networks, vol. 2018, pp. 1–30, 02 2018.

[7] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai Botnet,”
in Proceedings of the 26th USENIX Conference on Security Symposium,
SEC’17, (USA), p. 1093–1110, USENIX Association, 2017.

[8] K. Alieyan, A. ALmomani, A. Manasrah, and M. M. Kadhum, “A survey
of botnet detection based on DNS,” Neural Computing and Applications,
vol. 28, no. 7, pp. 1541–1558, 2017.

[9] G. Kambourakis, C. Kolias, and A. Stavrou, “The mirai botnet and the iot
zombie armies,” in MILCOM 2017-2017 IEEE Military Communications
Conference (MILCOM), pp. 267–272, IEEE, 2017.

[10] B. Lingenfelter, I. Vakilinia, and S. Sengupta, “Analyzing Variation
Among IoT Botnets Using Medium Interaction Honeypots,” in 2020
10th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 0761–0767, 2020.

[11] X. Zhang, O. Upton, N. L. Beebe, and K.-K. R. Choo, “IoT botnet
forensics: A comprehensive digital forensic case study on Mirai botnet
servers,” Forensic Science International: Digital Investigation, vol. 32,
p. 300926, 2020.

[12] D. Balaban, “The 8 biggest botnets of all time.” https://cybernews.com/
security/the-8-biggest-botnets-of-all-time/, October 2020.

[13] M. Singh, M. Singh, and S. Kaur, “Issues and challenges in DNS based
botnet detection: A survey,” Computers & Security, vol. 86, pp. 28–52,
2019.

[14] Y. Xing, H. Shu, H. Zhao, D. Li, and L. Guo, “Survey on botnet detec-
tion techniques: Classification, methods, and evaluation,” Mathematical
Problems in Engineering, vol. 2021, 2021.

[15] H. Griffioen and C. Doerr, “Examining mirai’s battle over the internet
of things,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pp. 743–756, 2020.

[16] I. Ali, A. I. A. Ahmed, A. Almogren, M. A. Raza, S. A. Shah, A. Khan,
and A. Gani, “Systematic literature review on IoT-based botnet attack,”
IEEE Access, vol. 8, pp. 212220–212232, 2020.

[17] J. LOSAW, “Inside the infamous Mirai IoT Botnet: A Retrospective
Analysis,” Cloudflare, 2017.

[18] Z. Ling, Y. Xu, Y. Jin, C. Zou, and X. Fu, New Variants of Mirai and
Analysis, pp. 1–8. Cham: Springer International Publishing, 2020.

[19] Y. Liu and H. Wang, “Tracking mirai variants,” Virus Bulletin, pp. 1–18,
2018.

[20] L. O’Donnell, “Satori Botnet Creator Sentenced to 13 Months in
Prison.” https://threatpost.com/satori-botnet-creator-prison/156947/#:
⇠:text=In%20December%202017%2C%20researchers%20at,500%
2C000%20to%20700%2C000%20IoT%20devices., 2020.

[21] G. Belding, “Mukashi malware: What it is, how it works and how to
prevent it — Malware spotlight.” https://resources.infosecinstitute.com/
topic/mukashi-malware-what-it-is-how-it-works-and-how-to-prevent-
it-malware-spotlight/, 2020.

[22] 360Netlab, “Some details of the DDoS attacks targeting Ukraine and
Russia in recent days.” https://tinyurl.com/2ev5hc4y, February 2022.

[23] S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles, “Botnets: A
survey,” Computer Networks, vol. 57, no. 2, pp. 378–403, 2013. Botnet
Activity: Analysis, Detection and Shutdown.

[24] W. Chang, A. Mohaisen, A. Wang, and S. Chen, “Measuring Botnets
in the Wild: Some New Trends,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
ASIA CCS ’15, (New York, NY, USA), p. 645–650, Association for
Computing Machinery, 2015.

[25] J. LOSAW, “What Makes an IoT Device Tick?,” Inventors’ Digest,
vol. 33, no. 2, pp. 30 – 31, 2017.

[26] “2023 cwe top 25 most dangerous software weaknesses.” https://
cwe.mitre.org/top25/archive/2023/2023 top25 list.html.

[27] C. Cimpanu, “Satori Botnet Has Sudden Awakening With Over 280,000
Active Bots.” https://www.bleepingcomputer.com/news/security/satori-
botnet-has-sudden-awakening-with-over-280-000-active-bots, 2017.

[28] CloudFlare, “What is the Mirai Botnet?.” https://www.cloudflare.com/
learning/ddos/glossary/mirai-botnet/l.

[29] G. M. Graff, “How a Dorm Room Minecraft Scam Brought Down the
Internet.” https://www.wired.com/story/mirai-botnet-minecraft-scam-
brought-down-the-internet/, 2017.

[30] J. Fruhlinger, “The Mirai botnet explained: How teen scammers
and CCTV cameras almost brought down the internet.”
https://www.csoonline.com/article/3258748/the-mirai-botnet-

explained-how-teen-scammers-and-cctv-cameras-almost-brought-
down-the-internet.html, 2018.

[31] B. Krebs, “Mirai Botnet Authors Avoid Jail Time.”
https://krebsonsecurity.com/2020/03/zxyel-flaw-powers-new-mirai-
iot-botnet-strain/, 2020.

[32] J. Gamblin, “Mirai-Source-Code.” https://github.com/jgamblin/Mirai-
Source-Code/tree/master/mirai, 2021.

[33] A. Shoemaker, “How to Identify a Mirai-Style DDoS Attack,” Imperva,
2017.

[34] R. Lakshmanan, “Mukashi: A new mirai iot botnet variant targeting
zyxel nas devices.” https://thehackernews.com/2020/03/zyxel-mukashi-
mirai-iot-botnet.html, 2020.

[35] Z. Z. Vaibhav Singhal, Ruchna Nigam and A. Davila,
“New Mirai Variant Targeting Network Security Devices.”
https://unit42.paloaltonetworks.com/mirai-variant-iot-vulnerabilities/,
2021.

[36] Haozhe Zhang, Vaibhav Singhal, Zhibin Zhang, and Jun Du, “Satori:
Mirai Botnet Variant Targeting Vantage Velocity Field Unit RCE
Vulnerability.” https://unit42.paloaltonetworks.com/satori-mirai-botnet-
variant-targeting-vantage-velocity-field-unit-rce-vulnerability/, 2021.

[37] F. Martinez, “Malware hosting domain Cyberium fanning out Mi-
rai variants.” https://cybersecurity.att.com/blogs/labs-research/malware-
hosting-domain-cyberium-fanning-out-mirai-variants, 2021.

[38] “Hikvision web server build 210702 - command injection.” https://
www.exploit-db.com/exploits/50441.

[39] “Realtek sdk - miniigd upnp soap command execution (metasploit).”
https://www.exploit-db.com/exploits/37169.

[40] “Huawei router hg532 - arbitrary command execution.” https://
www.exploit-db.com/exploits/43414.

[41] “Satori: Mirai botnet variant targeting vantage velocity field unit rce
vulnerability.” https://unit42.paloaltonetworks.com/satori-mirai-botnet-
variant-targeting-vantage-velocity-field-unit-rce-vulnerability/#:⇠:text=
CVE%2D2020%2D9020%20is%20easy,compromised%20devices%
20in%20their%20botnet.

[42] “Zyxel security advisory for the remote code execution vulnerability of
nas and firewall products.” https://www.zyxel.com/global/en/support/
security-advisories/update-zyxel-security-advisory-for-the-remote-
code-execution-vulnerability-of-nas-and-firewall-products.

[43] “Tenda ac15/ac1900 15.03.05.19 goform/setusbunload devicename in-
jection.” https://vuldb.com/?id.157864.

[44] “Web attack: Draytek routers cve-2020-8515.” https:
//www.broadcom.com/support/security-center/attacksignatures/
detail?asid=32150.

[45] “Ucm6202 1.0.18.13 - remote command injection.” https://www.exploit-
db.com/exploits/48247.

[46] “Cve-2017-8225.” https://github.com/kienquoc102/CVE-2017-8225.
[47] “Sonicwall ssl-vpn 8.0.0.0 - ’visualdoor’ remote code execution (unau-

thenticated).” https://www.exploit-db.com/exploits/49499.
[48] “D link dns-320 2.06b01 revision command injection.” https://

vuldb.com/?id.169016.
[49] “Yealink device management 3.6.0.20 services command injection.”

https://vuldb.com/?id.184496.
[50] “Cve-2021-27562.” https://www.cvedetails.com/cve/CVE-2021-27562/.
[51] “Operations Bridge Reporter (OBR) Remote Code execution

vulnerability, CVE-2021-22502.” https://support.microfocus.com/kb/
kmdoc.php?id=KM03775947.

[52] “Netis router (wf2419) rce (cve-2019-19356).” https://github.com/
shadowgatt/CVE-2019-19356.

[53] “Security advisory for missing function level access control on
jgs516pe, psv-2020-0377.” https://kb.netgear.com/000062334/Security-
Advisory-for-Missing-Function-Level-Access-Control-on-JGS516PE-
PSV-2020-0377.

[54] “About Iteris.” https://www.iteris.com/about.
[55] “Vantage Velocity.” https://www.iteris.com/products/travel-time/

vantage-velocity.
[56] “CVE-2020-9020 Detail.” https://nvd.nist.gov/vuln/detail/CVE-2020-

9020#vulnCurrentDescriptionTitle, 2020.
[57] T. Micro, “Mirai’s new variant “Mukashi” attacks network-attached

devices.” https://success.trendmicro.com/solution/000283375, 2020.
[58] B. Krebs, “Zyxel Flaw Powers New Mirai IoT Botnet Strain.”

https://krebsonsecurity.com/2018/09/mirai-botnet-authors-avoid-jail-
time/#:⇠:text=In%20September%202016%2C%20KrebsOnSecurity%
20was,site%20offline%20for%20several%20days., 2018.

[59] “CVE-2020-9054.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-9054, 2020.

13

[60] V. S. R. Nigam, Z. Zhang, and A. Davila, “New Mirai Variant Targeting
Network Security Devices.” https://unit42.paloaltonetworks.com/mirai-
variant-iot-vulnerabilities/, 2021.

[61] K. Hsu, Z. Zhang, and R. Nigam, “New Mirai Variant
Targets Zyxel Network-Attached Storage Devices.” https:
//unit42.paloaltonetworks.com/new-mirai-variant-mukashi/, March
2020.

[62] Netlab360, “An Update for a Very Active DDos Botnet: Moobot.” https:
//blog.netlab.360.com/ddos-botnet-moobot-en/.

[63] Netlab360, “The Botnet Cluster on the 185.244.25.0/24.” https://
blog.netlab.360.com/the-botnet-cluster-on-185-244-25-0-24-en/, 2019.

[64] O. Yoachimik, “Moobot vs. Gatebot: Cloudflare Automatically
Blocks Botnet DDoS Attack Topping At 654 Gbps.” https:
//blog.cloudflare.com/moobot-vs-gatebot-cloudflare-automatically-
blocks-botnet-ddos-attack-topping-at-654-gbps/, September 2020.

[65] “MooBot on the run using another 0 day targeting UNIX CCTV DVR.”
https://blog.netlab.360.com/moobot-0day-unixcctv-dvr-en/, November
2020.

[66] C. Lin, “Mirai-based Botnet - Moobot Targets Hikvision Vulnerabil-
ity.” https://www.fortinet.com/blog/threat-research/mirai-based-botnet-
moobot-targets-hikvision-vulnerability, December 2021.

[67] “CVE-2021-36260 Detail.” https://nvd.nist.gov/vuln/detail/CVE-2021-
36260#vulnCurrentDescriptionTitle, 2021.

[68] bashis, jbaines r7, and Watchful IP, “Hikvision IP Camera
Unauthenticated Command Injection.” https://packetstormsecurity.com/
files/166167/Hikvision-IP-Camera-Unauthenticated-Command-
Injection.html, 2022.

[69] “CVE-2020-10987.” https://nvd.nist.gov/vuln/detail/CVE-2020-
9020#vulnCurrentDescriptionTitle, 2020.

[70] S. Sarda, “Tenda AC15 AC1900 Vulnerabilities Discovered
and Exploited.” https://blog.securityevaluators.com/tenda-ac1900-
vulnerabilities-discovered-and-exploited-e8e26aa0bc68, July 2020.

[71] “CVE-2020-8515.” https://nvd.nist.gov/vuln/detail/CVE-2020-8515,
2020.

[72] S. Khandelwal, “Hackers Exploit Zero-Day Bugs in Draytek De-
vices to Target Enterprise Networks.” https://thehackernews.com/2020/
03/draytek-network-hacking.html, March 2020.

[73] Y. Ma, G. Ye, and H. Liu, “Two zero days are Targeting DrayTek
Broadband CPE Devices.” https://blog.netlab.360.com/two-zero-days-
are-targeting-draytek-broadband-cpe-devices-en/, March 2020.

[74] “CVE-2020-5722.” https://nvd.nist.gov/vuln/detail/CVE-2020-5722,
2020.

[75] J. Baines, “Grandstream UCM62xx SQL Injection.” https:
//www.tenable.com/security/research/tra-2020-15, March 2020.

[76] K. Pierre, “Multiple vulnerabilities found in Wireless IP Camera (P2P)
WIFICAM cameras and vulnerabilities in GoAhead.” https://seclists.org/
fulldisclosure/2017/Mar/23, March 2017.

[77] I. Arghire, “Devices Running GoAhead Web Server Prone to Remote
Attacks.” https://www.securityweek.com/devices-running-goahead-
web-server-prone-remote-attacks, January 2018.

[78] K. Pierre, “Multiple vulnerabilities found in Wireless IP Camera
(P2P) WIFICAM cameras and vulnerabilities in custom http
server.” https://pierrekim.github.io/blog/2017-03-08-camera-goahead-
0day.html#pre-auth-info-leak-goahead.

[79] T. Seals, “Mootbot Botnet Targets Fiber Routers with Dual Zero-Days.”
https://threatpost.com/mootbot-fiber-routers-zero-days/154962/, 2020.

[80] D. Martyn, “VisualDoor: SonicWall SSL-VPN Exploit.” https:
//darrenmartyn.ie/2021/01/24/visualdoor-sonicwall-ssl-vpn-exploit/,
2021.

[81] “CVE-2020-25506.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-25506, 2020.

[82] “Vantage Velocity.” https://www.yealink.com/en.
[83] “CVE-2021-27561.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2021-27561, 2021.
[84] “CVE-2021-27562.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2021-27562, 2021.
[85] “CVE-2021-22502.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2021-22502, 2021.
[86] “CVE-2019-19356.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2019-19356, 2019.
[87] “CVE-2020-26919.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-26919, 2020.
[88] S. Batt, “What Does It Mean to Change the Password on IoT Devices?,”

IoT Tech Trends, 2019.
[89] E. Bertino and N. Islam, “Botnets and Internet of Things Security,”

Computer, vol. 50, no. 2, pp. 76–79, 2017.

[90] TheBestVPN Team, “How to Defend Your IoT Devices from IoT
Botnets,” AT&T Cybersecurity, 2018.

[91] O. Alrawi, C. Lever, K. Valakuzhy, R. Court, K. Z. Snow, F. Monrose,
and M. Antonakakis, “The circle of life: A large-scale study of the iot
malware lifecycle.,” in USENIX Security Symposium, pp. 3505–3522,
2021.

[92] B. Vignau, R. Khoury, and S. Hallé, “10 years of iot malware: A feature-
based taxonomy,” in IEEE 19th International Conference on Software
Quality, Reliability and Security Companion (QRS-C), pp. 458–465,
2019.

[93] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understand-
ing linux malware,” in 2018 IEEE symposium on security and privacy
(SP), pp. 161–175, IEEE, 2018.

[94] A. Costin and J. Zaddach, “Iot malware: Comprehensive survey, analysis
framework and case studies,” BlackHat USA, vol. 1, no. 1, pp. 1–9, 2018.

