
Hard-Earned Lessons in Access Control at Scale:
Enforcing Identity and Policy Across Trust

Boundaries with Reverse Proxies and mTLS
Mitendra Kumar Mahto

Software Engineering
LinkedIn Corporation

Email: mahto.mitendra@gmail.com

Sanjay Singh
Software Engineering
LinkedIn Corporation

Email: gargwanshi.sanjay@gmail.com

Abstract—In today’s enterprise environment, traditional ac-
cess methods such as Virtual Private Networks (VPNs) and
application-specific Single Sign-On (SSO) often fall short when
it comes to securely scaling access for a distributed and dynamic
workforce. This paper presents our experience implementing a
modern, Zero Trust-aligned architecture that leverages a reverse
proxy integrated with Mutual TLS (mTLS) and centralized
SSO, along with the key challenges we encountered and lessons
learned during its deployment and scaling. This multidimensional
solution involves both per-device and per-user authentication,
centralized enforcement of security policies, and comprehensive
observability, hence enabling organizations to deliver secure and
seamless access to their internal applications.

Index Terms—Zero Trust, mTLS, reverse proxy, access control,
enterprise security, SSO

I. INTRODUCTION

Modern enterprises face mounting complexity in securing
access to their internal applications. The rise of remote work,
bring-your-own-device (BYOD) policies, and an explosion of
microservices has pushed legacy access control mechanisms to
their limits. VPNs, once sufficient for perimeter-based security
and primarily designed for remote access, now represent
a broad and often risky gateway into corporate networks.
Employees on campus, often on the same trusted network, can
bypass VPN altogether and access internal resources directly,
which is usually without any meaningful access restrictions
beyond the basic network segmentation.

On one hand SSO improves usability, but introduces man-
agement challenges and performance bottlenecks when de-
ployed at scale. This paper builds on emerging Zero Trust
practices, such as those seen in BeyondCorp [2] and advo-
cates for a practical enterprise-wide transition from piecemeal
controls to a centralized model based on reverse proxies with
mTLS and integrated SSO. This architecture enforces strong
identity and context-based access at network boundaries and
provides a unified access layer across applications with central
security policies being enforced.

The key goals for this paper are to:
• Highlight the shortcomings of current access mechanisms

when confronted with the complexity of thousands of
users, diverse tools, and varied protocols.

• Describe a robust, proxy-based approach that centralizes
policy enforcement, enabling contextual access control
based on both user and device identity.

• Share the practical, hard-earned lessons from deploy-
ing and operating this architecture in a live production
environment, spanning various teams and infrastructure
layers.

II. CURRENT STATE: LIMITATIONS OF LEGACY
APPROACHES

Modern enterprises operate within increasingly complex and
distributed environments, making traditional access controls
inadequate for secure and scalable operations. Legacy models,
often designed for perimeter-centric security, have significant
inconsistencies and vulnerabilities in how they manage access
based on user location and trust assumptions.

TABLE I
EVOLUTION OF ACCESS CONTROL MECHANISMS

Phase Primary
Mechanism

Identity De-
termination

Access
Control

Phase
1

Network
ACLs (VPN)

IP address
only

Coarse-
grained,
IP-based

Phase
2

Basic SSO User identity Moderate,
app-specific

Phase
3

Enhanced
SSO + RBAC

User +
Groups

Role-based,
moderately
fine-grained

A. Fragmented Trust Models

A primary limitation of legacy access models is the frag-
mented trust model they impose. Typically, remote employees
rely on Virtual Private Networks (VPNs) for secure connec-
tivity. While VPNs provide encrypted tunnels, their access
control mechanisms primarily operate at Layer 3 (network
layer) using Access Control Lists (ACLs) based on IP. Hence,
it can enforce restrictions based solely on IP addresses or
subnets. This means that once a device is authenticated to
the VPN, it often gains broad, unrestricted lateral access to

ar
X

iv
:2

50
8.

01
86

3v
1 

 [
cs

.C
R

] 
 3

 A
ug

 2
02

5

https://arxiv.org/abs/2508.01863v1


internal services, creating a vast attack surface if the device is
compromised.

In contrast, on-campus employees typically don’t require
VPN access. While critical environments such as production
are protected through strict network segmentation, as discussed
later in the paper, non-production use cases such as internal
tools or staging environments often allow broader access based
solely on presence within a trusted corporate network. Over
time, the distinction between critical and non-critical resources
can blur. For example, staging environments may contain
data copied from production, and internal tools may handle
sensitive workflows. In many cases, ad hoc or isolated security
measures are applied to mitigate these risks, but such solutions
are often not comprehensive or consistently enforced, leading
to potential exposure of sensitive information.

B. Coarse-Grained Network Segmentation

To mitigate lateral movement, large enterprises commonly
employ network segmentation, creating boundaries between
environments such as development, production, corporate,
finance, and third-party zones. However, these segments are
typically enforced through static Layer 3 or Layer 4 network
controls. These controls are again coarse-grained, operating at
the network packet level without context about user identity,
device posture, or specific application requirements.

Maintaining these static network policies at scale becomes
a significant operational burden, leading to configurations that
are either brittle or end up granting more access than necessary.
Such rigidity fails to capture the dynamic nature of modern
enterprise needs, where user roles change frequently, device
trustworthiness varies, and access often needs to be highly spe-
cific. A modern alternative that addresses these shortcomings
is identity-based and device-aware policy enforcement at the
traffic edge layer, typically enabled via reverse proxies. This
approach allows for dynamic, context-rich access decisions
that are separate from rigid network topologies.

C. Limitations of Standalone Access Technologies

1) VPNs: Secure Tunnel, Broad Access: VPNs are effective
at establishing encrypted communication between users and
corporate networks, safeguarding data in transit. However,
their reliance on coarse-grained Layer 3 ACLs for access
control poses a significant challenge. Once a device connects
to the network via VPN, it generally receives unrestricted
lateral access to internal services. This broad access model
lacks the enforcement of least privilege and drastically expands
the potential attack surface in the event of a compromised
device.

2) SSO: Convenience with Complexity: Single Sign-On
(SSO) enhances user experience by offloading authentication
to a centralized identity provider, allowing users to access
multiple applications without repeated logins. However, in
practice, each application typically integrates with the SSO
provider independently, leading to fragmented implementa-
tions. This becomes especially problematic in large enterprises
where internal tools are hosted across different domains, such

as .fin.company.com for finance apps and .tools.company.com
for internal tools. These domain patterns often emerge from
legacy setups, multi-datacenter deployments, or organizational
silos, and are rarely standardized. Since browser-based SSO
relies on shared cookies and domain continuity, such fragmen-
tation makes centralized SSO brittle, resulting in inconsistent
session behavior, repeated logins, and operational overhead. It
also complicates policy enforcement and centralized auditing
across the application ecosystem.

3) The VPN + SSO Combination: Fragmented and Fragile:
The combination of VPNs (for network connectivity via Layer
3 ACLs) and per-application SSO introduces a complex and
brittle access model. This hybrid approach exacerbates issues
such as bloated HTTP headers and cookies which lead to
performance degradation and application errors. Hence, access
control remains fragmented across different systems, with no
central point for policy enforcement or a “kill switch” to
revoke access uniformly across all applications in the event
of a security incident. This piecemeal strategy ultimately fails
to scale effectively with modern organization requirements for
secure, agile, and centrally managed access.

Fig. 1. Current State: Fragmented Access Control Landscape

III. PROPOSED STATE: THE ZERO TRUST MODEL WITH
REVERSE PROXY, MTLS, AND SSO

The Zero Trust model represents a fundamental shift away
from perimeter-based security by adopting the principle of
“never trust, always verify” [1]. This philosophy replaces the
traditional idea of a trusted network with a model of identity-
and context-aware access enforcement. In this framework,
every request for a resource, regardless of its origin, is treated
as untrusted and must be verified in real time based on user
identity, device trustworthiness, and strict policy compliance.

Our implemented architecture puts this philosophy into
practice. It uses a reverse proxy integrated with Mutual TLS
(mTLS) and centralized SSO. This proxy acts as a secure,
unified gateway for all internal applications. Here’s how it
works:

1) It authenticates both the user and the device for every
request using mTLS and SSO.

2) It evaluates a centralized set of access policies to deter-
mine if the request is permitted.



3) If access is granted, the proxy injects a single,
lightweight identity header into the request. This header
contains all the necessary validated information for the
downstream application.

By centralizing access decisions at the proxy, this ar-
chitecture enables fine-grained access control, consolidated
observability for auditing, and the ability to implement a rapid
“kill switch” to revoke access across all applications in real
time. This results in a more secure, scalable, and operationally
simpler solution that still provides a seamless user experience.

We aim to equip infrastructure and security engineers with
a practical framework and proven guidance for building Zero
Trust-aligned access control systems that scale.

Fig. 2. Zero Trust Architecture with Reverse Proxy, mTLS, and SSO

IV. SYSTEM ARCHITECTURE OVERVIEW

At the heart of this architecture is a reverse proxy capable
of performing both user and device authentication. This proxy
acts as a critical enforcement point, performing both user and
device authentication for every incoming request.

The proxy’s operation is multi-fold:
• It terminates inbound HTTPS connections and leverages

Mutual TLS (mTLS) to validate device certificates [4].
This step ensures that only trusted, authenticated devices
can initiate a connection.

• Concurrently, it integrates with an identity provider (IdP)
to perform robust user authentication using standard
Single Sign-On (SSO) protocols such as OIDC or SAML.
This verifies the identity of the individual attempting to
gain access.

• The proxy asynchronously retrieves policy enforcement
data from an external control plane service. This allows it
to apply broader organizational policies beyond basic user
and device verification, such as detecting impossible login
scenarios like simultaneous logins from geographically
distant locations.

• The proxy abstracts user authorization info in a secure
token header as a standard JWT token signed by the proxy

and passes it down to the applications. This decouples the
application logic from SSO protocols and auth providers.

A. Other Key Components

To enable seamless integration across a diverse ecosystem,
several supporting components were developed or extended:

• Client-Side Libraries: Libraries were implemented in
Go, Rust, and Python to support mTLS and SSO flows
across different platforms. For macOS specifically, inte-
gration with the native Keychain was required to authen-
ticate device certificates securely.

• Command-Line Tool Enhancements: Existing CLI
tools were extended to support identity propagation by
injecting token information into headers, enabling secure
communication through the proxy.

• SSH-over-HTTP Integration: SSH configurations were
updated to enable tunneling over HTTP [3]. This allowed
developers to access production environments via the
reverse proxy, while enforcing mTLS and SSO authenti-
cation for all SSH sessions.

• Split-Horizon DNS Support: Internal DNS infrastruc-
ture was enhanced to support Split-Horizon DNS, en-
abling context-aware routing through the appropriate
proxy based on the client’s security zone or environment.

• Browser Integration: Browser behavior was extended
to automatically retrieve the user’s device certificate from
secure storage (such as the macOS Keychain) and present
it during mTLS handshakes, without prompting the user
each time. This improved usability while maintaining
strong authentication guarantees.

• Server-Side Token Libraries: Server libraries were built
in multiple languages to securely decode identity tokens
and apply fine-grained authorization policies based on
token claims and scopes.

Fig. 3. Proxy Workflow and Component Integration

V. DETAILED REQUEST FLOW

This section outlines the step-by-step process a user’s re-
quest follows when interacting with internal applications via
the Zero Trust architecture.



1) User Initiates Request: A user types
example1.corp.company.com into their browser.

2) DNS Resolution: The browser initiates a DNS query.
Leveraging split-horizon DNS, the system returns the
reverse proxy’s IP address, directing traffic to our proxy.

3) SSL Connection & mTLS Handshake: The browser
attempts to establish an SSL/TLS connection with the
reverse proxy. The proxy, in turn, initiates Mutual TLS
(mTLS) by requesting a client certificate from the
browser for device authentication.

4) Device Certificate Presentation & Validation: The
browser retrieves the client certificate from the macOS
Keychain (or equivalent platform certificate store) and
presents it. The proxy then validates this device certifi-
cate (checking against issuing CA, expiration, revocation
status, etc.).

5) Secure Connection Established: Upon successful
mTLS validation, a secure TCP connection is established
between the browser and the proxy.

6) HTTPS Request & SSO Token Check: The browser
proceeds to send the HTTPS request over this es-
tablished secure connection. The proxy intercepts the
request and inspects it for a valid SSO token within the
cookies.

7) SSO Workflow Initiation: If no valid SSO token is
found, the proxy initiates the Single Sign-On (SSO)
workflow with the configured authentication provider.

8) User Authentication: The user is redirected to the
identity provider and completes the SSO workflow by
entering their login credentials or by leveraging existing
sessions.

9) Dynamic Policy Enforcement: After successful user
and device authentication, the proxy applies additional
security policies. It leverages dynamically updated pol-
icy enforcement data, retrieved asynchronously from
an external control plane service. This allows for the
application of broader organizational policies, such as
impossible login, revoked device certs, etc, before grant-
ing final access to the internal application.

10) Subsequent Authenticated Requests & Downstream
Forwarding: Once all policy checks are passed and a
valid SSO token is established, all subsequent requests
from that browser will automatically include this token
in the cookies. The proxy then extracts this SSO token
from the cookie and sets it as a header for downstream
applications, ensuring seamless and continually evalu-
ated access.

11) Logging and Observability: Each access decision is
logged with full context: certificate fingerprint, user ID,
source IP, request path, and decision outcome. These
logs are critical for security audits, forensic analysis,
and compliance reporting.

VI. IMPLEMENTATION CHALLENGES

This section outlines three major categories of challenges
encountered while deploying a proxy-based Zero Trust ar-

chitecture at scale: operational, architectural, and policy-
related. Addressing these challenges holistically is essential
to ensure successful and sustainable rollout. A particularly
relevant example involves differentiating access between full-
time employees (FTEs) and contractors. Contractors often
use unmanaged devices, require limited access durations, or
operate with reduced trust posture compared to full-time staff.
Designing a policy framework that accounts for these nuances
is critical. This is where device metadata and identity-based
policy enforcement which are enabled through mTLS and SSO
integration at the proxy to become indispensable.

A. Operational Challenges: Certificate Lifecycle and Device
Integration

One of the foremost tasks is managing certificates at scale.
Provisioning, rotating, and revoking certificates across thou-
sands of devices requires a robust Public Key Infrastructure
(PKI) tightly integrated with device management systems.
Automation becomes key to reduce operational overhead and
avoid security lapses.

Additionally, securing private key material on user devices is
critical. Leveraging platform-native capabilities such as Secure
Enclave on macOS or TPMs on Windows which ensures
private keys are stored in hardware-isolated environments,
following best practices for secure key handling [5].

B. Proxy Integration Challenges

At the architectural level, integrating the reverse proxy into
existing infrastructure poses its own complexities. Internal
tooling and legacy applications may not support mTLS or
header-based identity propagation, requiring custom integra-
tions or shims. Client certificate handling is not equally mature
across all programming languages, leading to inconsistencies
and increased development effort. The proxy must also handle
a variety of protocols and traffic types, sometimes necessitat-
ing advanced routing logic or fallback modes for edge cases.

C. Policy Modeling and Backward Compatibility

Designing access control policies that are expressive enough
to handle modern identity-based models while remaining com-
patible with legacy systems is a non-trivial task. Policies must
account for hybrid scenarios where tools lack full mTLS or
SSO support, or where device trust cannot be independently
established. Moreover, teams often interpret “least privilege”
differently, so striking the right balance between strictness and
usability requires iterative tuning and stakeholder buy-in.

VII. LESSONS LEARNED

Implementing a Zero Trust-aligned architecture with a re-
verse proxy, mTLS, and centralized SSO brought several
critical insights. Our experiences highlight the importance
of robust observability, differentiated policies, and resilient
infrastructure.



A. Careful Planning is Essential to Manage Co-existence
Challenges

Legacy, decentralized SSO often leads to excessive cookie
and header sizes, causing HTTP 431 errors and performance
degradation. While centralizing identity verification at the
proxy solves these issues by removing the need to pass
large tokens and simplifies integration with older systems,
organizations must prepare for unexpected surprises during the
transition. Apps that previously managed their own SSO and
header controls might behave unpredictably when both old,
decentralized methods and the new, centralized proxy-based
controls are active. Proactive and thorough planning is crucial
to navigate these complex co-existence scenarios and ensures
a smooth migration.

Recommendations: Plan transitions meticulously. Audit
applications for legacy header behavior, and coordinate closely
with app teams to avoid conflicts between old and new SSO
mechanisms. Use feature flags or phased rollout strategies to
manage risk.

B. Expect and Plan for Tooling and Platform Fragmentation

Organizations often operate in heterogeneous environments,
where various command-line tools, web UIs, and backend
services interact differently with identity and certificate infras-
tructure. Client behaviors can vary widely based on language
version (e.g., Python 2 vs 3) or operating system (e.g., macOS
vs. Linux vs. Windows), as well as their support for certificate
stores like macOS Keychain. For instance, macOS’s strict
Keychain enforcement can interfere with mTLS flows, often
requiring device-specific workarounds. Accounting for this
fragmentation is crucial for seamless deployment and user
experience.

Recommendations: Provide platform-aware guidance and
wrapper scripts. Proactively test enforcement across common
stacks. Avoid assuming uniform behavior across developer
environments.

C. Lack of Observability Can Cripple Enforcement

To successfully implement dynamic access decisions and
enforce a deny-by-default posture, comprehensive and real-
time observability is critical. This includes capturing and
querying identity context, device trust signals, and access logs.
This deep visibility allows security teams to confidently refine
policy behavior, ensuring that access is granted exactly as
intended, preventing both over-provisioning and unnecessary
denials. Without this precise visibility and control, security
teams can’t be sure policies are working as intended, and users
may face frustrating experiences due to unexpected access
issues.

Recommendations: Add structured logging, user-facing
audit trails, and rich error messages. Invest in tooling that can
trace decisions across proxies and identity providers. Make
observability a prerequisite, not an afterthought.

D. The Proxy Must Be Treated as Tier-0 Infrastructure

The proxy serves as the single enforcement point for
access decisions across the organization, making it a criti-
cal dependency. Any disruption, whether caused by outages,
misconfigurations, or failures in the identity provider, can
lead to widespread access issues. Its central role significantly
increases operational risk, especially when it controls entry to
sensitive environments or core systems.

Recommendations: To mitigate these risks, the proxy
path should be hardened with safeguards such as fallback
authentication mechanisms, signed token caching, certificate
monitoring, and high availability. Out-of-band access paths
should be established for critical operations like SSH, logging,
and incident response to maintain control during outages. The
proxy and its observability stack must be treated as Tier-0
infrastructure, supported by safe CI/CD practices, automated
configuration validation, and region-aware deployment strate-
gies. Additionally, identity validation logic should be made
testable and version-controlled, with support for staged roll-
outs, traffic shadowing, and rollback mechanisms to minimize
disruption during updates.

E. Support Protocol Diversity Without Forcing Rewrites

Organizational needs for identity management can evolve
rapidly, necessitating the ability to seamlessly switch between
different SSO authentication protocols and identity providers.
Our architecture’s proxy provides a critical abstraction layer
for identity that addresses this need. It ensures that internal
applications, even those lacking native SSO or mTLS support,
do not need to be aware of or adapt to changes in the specific
authentication protocol (e.g., SAML, OIDC, Kerberos) or the
underlying identity provider. Therefore, leveraging the proxy
to handle all necessary protocol conversions and assertions is
crucial for future-proofing an organization’s identity strategy.

Recommendations: Normalize identity at the proxy. Accept
multiple formats upstream and translate them into consistent
headers or tokens downstream. Allow services to evolve inde-
pendently of identity systems.

VIII. CONCLUSION

Transitioning to a reverse proxy model with mTLS and
centralized SSO aligns with Zero Trust principles and offers
a significant upgrade in access control capabilities. It enables
granular, context-aware authentication decisions based on both
user and device identity, simplifies application integration, and
provides a centralized enforcement point for policy and ob-
servability. While not without its implementation challenges,
the security, scalability, and operational benefits of this ap-
proach make it a compelling choice for modern enterprise
environments.

REFERENCES

[1] “Zero Trust Architecture,” National Institute of Standards and Tech-
nology (NIST) Special Publication 800-207, 2020. Available: https:
//csrc.nist.gov/publications/detail/sp/800-207/final

[2] “BeyondCorp: A New Approach to Enterprise Security,” Google Cloud.
Available: https://cloud.google.com/beyondcorp



[3] “SSH over HTTP: Secure Access to Internal Services,” Cloudflare
Developers. Available: https://developers.cloudflare.com/cloudflare-one/
connections/connect-apps/use cases/ssh/

[4] “Implementing Mutual TLS Authentication,” Envoy Proxy
Documentation. Available: https://www.envoyproxy.io/docs/envoy/
latest/configuration/listeners/ssl

[5] “Best Practices for Using Client Certificates,” OWASP Cheat Sheet Se-
ries. Available: https://cheatsheetseries.owasp.org/cheatsheets/Mutual
TLS Authentication Cheat Sheet.html


