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As vehicles become increasingly connected and autonomous, they accumulate and manage various personal

data, thereby presenting a key challenge in preserving privacy during data sharing and processing. This survey

reviews applications of Secure Multi-Party Computation (MPC) and Homomorphic Encryption (HE) that

address these privacy concerns in the automotive domain. First, we identify the scope of privacy-sensitive use

cases for these technologies, by surveying existing works that address privacy issues in different automotive

contexts, such as location-based services, mobility infrastructures, traffic management, etc. Then, we review

recent works that employ MPC and HE as solutions for these use cases in detail. Our survey highlights

the applicability of these privacy-preserving technologies in the automotive context, while also identifying

challenges and gaps in the current research landscape. This work aims to provide a clear and comprehensive

overview of this emerging field and to encourage further research in this domain.

CCS Concepts: • Security and privacy → Cryptography; Privacy-preserving protocols; Domain-specific
security and privacy architectures; Privacy protections; • Theory of computation → Cryptographic
primitives; • General and reference → Surveys and overviews.

Additional Key Words and Phrases: privacy-enhancing technologies, secure multi-party computation, homo-

morphic encryption, privacy-preserving machine learning, intelligent transportation system

1 INTRODUCTION
In recent years, modern automotive architectures have evolved into highly connected, software-

defined systems that aggregate substantial amounts of data. This shift has been driven by advance-

ments in Intelligent Transportation Systems (ITSs) and Software-Defined Vehicles (SDVs), which

integrate connectivity and smart data processing capabilities. Autonomous driving technologies

further contribute to this data collection, with vehicles equipped with numerous sensors to con-

tinuously monitor the environment and vehicular performance. It is estimated that connected

autonomous vehicles alone could generate exabytes of data each month, representing a significant

increase over current data volumes [111]. These advancements are further developed into concepts

of fully connected vehicular networks, such as Vehicular Ad-hoc Networks (VANETs) and the

Internet of Vehicles (IoV), which aim to facilitate extensive data exchange across vehicles, servers,

and infrastructure, supporting services for enhanced safety, assistance, and infotainment.

However, as vehicles become more connected, they gather increasing amounts of sensitive data.

The development of services that utilize this information presents a challenge in ensuring privacy

during data sharing and processing. One of the primary privacy concerns centers on location data,

as the collection and analysis of user locations, travel routes, and behavioral patterns may reveal

sensitive information such as user interests, profiles, and habits. These challenges have led research

to the application of Privacy-Enhancing Technologies (PETs) in the automotive domain.
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In this survey, we review the application of PETs based on two key technologies of privacy-

preserving computation: (1) Secure Multi-Party Computation (MPC), allowing several parties to

jointly compute a function over their inputs while keeping these inputs private from each other,

and (2) Homomorphic Encryption (HE), a form of encryption that allows computations to be carried

out on encrypted data without requiring access to the corresponding plaintexts. Applications of

MPC and HE have been studied in various domains, such as healthcare [7], blockchain [116], and

deep learning [145]. However, there has been limited work to holistically survey their applications

within the automotive domain. This survey aims to fill this gap by exploring the role of these

technologies in enhancing privacy for automotive use cases.

While other privacy-preserving approaches such as Differential Privacy (DP) have shown promise

in automotive domains such as vehicular crowdsourcing and query services in IoV, they typically

achieve privacy by injecting calibrated noise into computation outputs. Zhao et al. [146] concluded

that applying local DP to IoV presents several challenges. For instance, the high-dimensional

nature of vehicle data makes it difficult to apply LDP, as it leads to high global query sensitivity,

introduces excessive noise, and makes it challenging to preserve correlations among attributes after

independent perturbation. Furthermore, the privacy-accuracy trade-off introduced by DP might be

unsuitable for automotive scenarios that require privacy/accuracy results, such as the computation

of ride-sharing matches or some practical ITS applications (e.g. eTolling fees) [55]. In contrast,

MPC and HE allow for exact computation over sensitive data, making them particularly relevant

for secure and precise processing of vehicle data. While we acknowledge that MPC and HE incur

performance overhead in terms of computation and communication costs, they remain promising

solutions for automotive use cases where accuracy is critical and performance requirements can

be optimized through system-level design. For this reason, and given that DP has already been

extensively surveyed in [84, 146], our work focuses specifically on MPC and HE approaches.

To identify the scope of scenarios suitable for applying these technologies, we first survey 230

recent papers to understand the current privacy challenges and solutions in the automotive domain

and to identify specific use cases in vehicular systems where privacy is a major concern. Second,

we aim for completeness of MPC/HE solutions by closely examining 62 studies that specifically

apply these technologies to the identified use cases. Third, we compare these works in terms of

their setups, functions, protocols used, security model, and evaluation datasets. Finally, we also

document the cases in which MPC or HE is combined with other privacy-preserving technologies

(e.g., Differential Privacy or Federated Learning).

Our survey reveals that privacy-preserving computing technologies are applicable in various

settings within the automotive domain. However, we also note several challenges in their application,

identify gaps in current research, and suggest areas where further work is needed. To the best of

our knowledge, this is the first comprehensive survey that studies in detail and compares existing

works applying MPC and HE to privacy-sensitive use cases specifically in the automotive domain.

We summarize the main contributions of this work as follows:

• First, we review 26 privacy-sensitive use cases across four key areas in the automotive do-

main: location-based services, mobility infrastructure, vehicular data analysis, and dynamic

traffic management.

• Second, we conduct a comprehensive analysis of 62 state-of-the-art works that apply MPC

and HE to the identified use cases, and categorize these works based on their computational

setting (client-to-client, client-to-server, distributed).

• Finally, we draw conclusions about the applicability of MPC and HE in the automotive

domain and identify directions for future research.



A Survey on Privacy-Preserving Computing in the Automotive Domain 111:3

2 CRYPTOGRAPHIC BACKGROUND
In this section, we provide an overview of the cryptographic primitives, focusing on MPC and HE.

We briefly introduce the fundamental principles of these technologies here and discuss in the next

sections how they offer strong security guarantees to address vehicle privacy concerns.

2.1 Secure Multi-Party Computation
Secure Multi-Party Computation (MPC) is a cryptographic method that enables multiple parties

to compute a function without revealing their inputs to the other parties [38]. MPC has been a

widely studied topic in cryptography for more than two decades, beginning with Yao’s seminal

work, where he introduced the millionaire problem [126]. The problem involves two millionaires,

Alice and Bob, who want to determine who is wealthier without disclosing their actual wealth. This

scenario is an instance of a broader problem involving two numbers, 𝑎 and 𝑏, where the objective

is to establish whether the inequality 𝑎 ≥ 𝑏 is true or false without revealing the values of 𝑎 and 𝑏.

A Garbled Circuit (GC) is a generic approach for secure two-party computation [127]. In this

protocol, party 𝐴 (the garbler) generates a garbled version of a Boolean circuit that represents the

function to be computed and sends it to party 𝐵 (the evaluator). 𝐵 uses its inputs to evaluate the GC.

To securely obtain encrypted inputs from 𝐴, 𝐵 employs the Oblivious Transfer (OT) [69] protocol,

where 𝐴 holds two messages𝑚0 and𝑚1, and 𝐵 holds a choice bit 𝑏 ∈ {0, 1}. The protocol ensures
that 𝐵 learns only𝑚𝑏 (the message corresponding to its choice), while 𝐴 learns nothing about 𝐵’s

choice 𝑏. The Beaver-Micali-Rogaway (BMR) [11] scheme adapts the main idea of Yao’s GC to a

multi-party setting, allowing each party to independently evaluate the GC.

Another fundamental primitive for MPC is Secret Sharing (SS) [15, 98]. A 𝑡-out-of-𝑛 secret

sharing allows a secret to be divided into 𝑛 shares, where any 𝑡 or more shares can reconstruct

the secret, but any fewer than 𝑡 shares reveal no information about it. There are two main secret

sharing schemes: (1) Additive Secret Sharing (ASS), applicable only in the specific case of 𝑡 = 𝑛, and

(2) Shamir’s Secret Sharing (SSS), which is applicable to any positive 𝑡 ≤ 𝑛. Both schemes satisfy

linearity, such that the sum of two secret shares is equivalent to the share of the sum.

One key sub-area of MPC emphasizes specific functionalities such as the Private Set Intersection

(PSI) method [32]. It enables two parties to securely compute the intersection of their respective

private datasets, such that no information beyond the common elements is disclosed to either party.

Threshold PSI (TPSI) [91] is a variant of PSI that allows the parties to compute the intersection of

their sets only if it exceeds a defined threshold. A Private Equality Test (PEQT) enables two parties

to compare their private values to determine if they are equal without revealing any information to

each other if the values are not equal [91]. Finally, a Private Information Retrieval (PIR) allows a

client to obtain a specific item from a server without disclosing which item was retrieved [27].

2.2 Homomorphic Encryption
Homomorphic Encryption (HE) is a cryptographic technique that enables arithmetic operations

to be performed directly on encrypted data without requiring decryption [95]. It can be catego-

rized into four main types based on the number of operations allowed on the encrypted data: (1)

Additive Homomorphic Encryption (AHE), (2) Multiplicative Homomorphic Encryption (MHE),

(3) Somewhat Homomorphic Encryption (SHE), and (4) Fully Homomorphic Encryption (FHE).

AHE schemes, such as the Paillier cryptosystem [87], are suitable only for specific applications

where algorithms involve predominantly addition operations. AHE schemes, such as the Paillier

cryptosystem [67], allow computations where the encrypted result of two ciphertexts corresponds

to the sum of their original plaintexts. In contrast, MHE schemes, such as the RSA cryptosystem [68],

support computations where the encrypted result corresponds to the multiplication of plaintexts,
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Table 1. Overview of existing related surveys

Survey Year Topic of the survey Comparison to our survey’s contributions

I. Surveys on MPC and HE in non-automotive applications

[125] 2019 Security threats and requirements for secure

outsourced computation and its applications

Our work focuses on the automotive domain applications of MPC and

HE, and not on generic secure outsourcing schemes only.

[145,

148]

2021,

2024

Secure Multi-Party Computation-based ma-

chine learning

Our scope includes the overall automotive domain, and we do not

consider only machine-learning applications.

[1] 2018 Homomorphic Encryption Schemes We survey MPC and HE applications in the automotive domain instead

of focusing on generic HE implementations.

[64] 2023 Trusted execution environments-based se-

cure computation protocols

Our work covers secure computing in automotive use cases using MPC

and HE, and does not focus on TEE-based protocols only.

II. Surveys on privacy-preserving technologies in the automotive domain

[102] 2020 Homomorphic Encryption applications in

VANETs

We extend their focus withMPC applications and give a holistic analysis

of specific automotive use cases.

[80] 2021 Security and privacy requirements, architec-

tures, and cryptographic schemes in VANETs

MPC and HE applications in automotive use cases, which form the

focus of our work, have not been covered in their survey.

[54] 2021 Privacy-preserving location-based services Unlike their focus on privacy-preserving LBSes, our work examines

MPC/HE solutions across a broader scope of automotive applications.

[42] 2022 Security and privacy issues in autonomous

vehicles

Our automotive use case examination and analysis of MPC and HE are

more comprehensive than their work.

[136] 2022 Solutions and future directions for carpool-

ing in CAVs

Our survey considers various automotive use cases, and does not focus

only on carpooling.

[129] 2022 Security and privacy concerns in vehicular

communication systems

Our work focuses on privacy-preserving solutions for automotive ap-

plications using MPC and HE, whereas their work centers on analyzing

security and privacy gaps in V2X communication standards.

[103] 2024 Cryptographic authentication techniques for

secure vehicular communication

Unlike their specific focus on cryptographic authentication in vehicular

communication, our work specifically addresses privacy-preserving

computing in automotive use cases, emphasizingMPC andHE solutions.

although RSA without padding is not semantically secure. SHE schemes, such as the BGN cryptosys-

tem [37], support both addition and a limited number of multiplications. Finally, FHE schemes allow

an unlimited number of both addition and multiplications as well as the evaluation of arbitrary

functions (such as searching, sorting, computation of max or min, etc.) over ciphertexts [1].

Both MPC and HE enable privacy-preserving computations over private data but differ in their

approaches. MPC relies on distributed computation among multiple parties, which may require

communication during the computation. Specifically, SS-based MPC, while promising, requires

multiple parties to be online for the computation. In outsourcing MPC, clients can reduce communi-

cation overhead by distributing their data as secret shares to servers who perform computation on

their behalf and are readily available. As a natural primitive for outsourcing scenarios, HE allows a

data owner to outsource computation to an untrusted server, minimizing communication during

the computation phase. However, HE schemes have several drawbacks. First, the computational

cost is high, as many privacy-preserving computation protocols require encryption of individual

bits. Second, FHE relies on a key technique called bootstrapping to periodically reduce ciphertext

noise, which can drastically reduce the system’s efficiency. Third, there is considerable storage

overhead, as ciphertexts can be several times larger than plaintexts. Finally, a Trusted Authority

may be needed to generate and distribute public and private keys for all parties [125].

3 RELATEDWORK
In this section, we review surveys relevant to privacy-preserving computing in the automotive

domain, with a particular focus on those addressing MPC and HE. We distinguish between works

that cover these technologies in generic application domains and works that specifically focus

on automotive applications. In Table 1, we further highlight distinctions between our work and

existing surveys and discuss the enhancements in our survey.
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Several works survey PETs in a broader, non-domain-specific context. Acar et al. [1] survey HE

schemes and recent developments. Yang et al. [125] provide a technical review and comparison

of secure outsourcing schemes, focusing on various secure computation methods, including MPC

and HE, and conclude with an analysis of security, performance, and future directions in the field.

Zhang et al. [145] and Zhou et al. [148] review the state of the art in privacy-preserving machine

learning, focusing on secure multi-party computation and categorizing techniques used during

the training and inference phases. Li et al. [64] give a comparison of secure computation protocols

based on Trusted Execution Environments (TEEs), offering a taxonomy and assessment criteria

to evaluate various protocols and highlighting their applicability to both general-purpose and

specialized tasks, such as privacy-preserving machine learning and encrypted database queries.

Additionally, domain-specific surveys explore privacy risks, attacks, and other solutions in ITSs,

vehicular networks, such as VANETs, and autonomous vehicles. To this end, Sun et al. [102] survey

HE in VANETs, detailing the relevant framework, security issues, and data handling. Zafar et

al. [136] present a comprehensive survey on carpooling in autonomous and connected vehicles,

discussing the relevant architecture, components, and solutions, and addressing existing challenges

in carpooling. Yoshizawa et al. [129] identify and analyze security and privacy concerns in vehicle-

to-everything communication standards and provide recommendations to address these issues

for the improvement of security and privacy in vehicular networks. Sudrathar et al. [103] classify

and analyze various cryptographic authentication techniques for secure vehicular communication,

discussing their properties, advantages, and limitations.

On the contrary, our survey focuses on the application of MPC and HE in the overall automotive

domain, clearly distinguishing itself from existing surveys that either concern privacy challenges

and cryptographic techniques in general or consider only a very limited area of the automotive

domain. In this way, we address substantial gaps left in the current literature, particularly regarding

the practical application of MPC and HE in automotive privacy scenarios, which has not so far

been the central focus of another similar study. Our article highlights the role of MPC and HE in

solving privacy issues in the context of connected and autonomous vehicles, providing a significant

contribution to the ongoing discussion on ways of improving data privacy and security in this field.

4 METHODOLOGY
We conduct a comprehensive literature review in two steps. First, we begin by identifying exist-

ing privacy-preserving use cases in the automotive domain to understand the scope of relevant

applications. We focus on selected scenarios that are identified as privacy-sensitive. Second, we

specifically examine how MPC and HE are applied to privacy-sensitive use cases.

To conduct a comprehensive investigation, we employ keyword searches in the IEEE Xplore and

Google Scholar databases, chosen for their broad scientific coverage. In the first step, to retrieve

a relevant and exhaustive set of works, we develop two sets of keywords. The first set includes

domain-specific keywords, while the second set includes privacy-related keywords that indicate

relevance to privacy concerns or solutions. A complete list of the keywords used is provided in

Table 2. We generate all possible combinations of domain- and privacy-related keywords and

construct search queries by combining them with logical operators. Specifically, we use the OR
operator within each set of keywords to include synonyms and related terms, and the AND operator

between the domain and privacy keyword sets to ensure that the results are relevant to both areas.

The queries are constructed in the form of: (“domain keyword” OR “domain synonym”) AND
(“privacy keyword” OR “privacy synonym”). For example, a search query would be (“Vehicle”
OR “Car”) AND (“Privacy-preserving” OR “Data privacy”). Due to the potential overlap

with papers on Model Predictive Control, we avoided the acronym “MPC” and used the explicit

term “Secure Multiparty Computation” or “Secure Multi-Party Computation” in our search.
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Table 2. Keywords Used in Literature Search

Domain Keywords Privacy Keywords
vehicle, car, VANETs, location-based services, autonomous ve-

hicles, connected cars, intelligent transportation, vehicular net-

works, mobility, traffic management, vehicular data analysis

privacy-preserving, privacy-sensitive, secure multi-party computation,

homomorphic encryption, data privacy, privacy protection, secure com-

putation, cryptographic protocols, privacy-enhancing technologies, se-

cret sharing, garbled circuits, oblivious transfer, private set intersection

Our aim is to collect research works that address selected scenarios in the automotive domain as

privacy-sensitive. In this approach, we thus do not expect the complete coverage of all possible

automotive use cases, and to not aim to discover new privacy-sensitive use cases, but rather scope

existing use cases and determine if the surveyed technologies address them or leave gaps.

As a result of the first step, we identified a total of 243 papers. Subsequently, we refined this pool

by selecting only publications written in English, published within the last five years, and with a

citation count of at least ten. In addition, we filtered out irrelevant work, e.g., papers focused on

security rather than on privacy. We also excluded papers that address privacy in communication

protocols (e.g., specific authentication schemes in VANETs). Finally, we excluded 48 papers where

the applied methods were unclear or lacked substantial details. Recognizing the potential existence

of recent relevant works that may not fully meet the aforementioned criteria but still be important

(e.g., very recent works with only a few citations), we conduct an additional screening of the works

in the original pool of papers. This results in the inclusion of 16 more papers with direct relevance

to the scope of our survey, despite not initially meeting the set criteria. As a result, our final analysis

dataset consists of 230 papers, selected through criteria-based filtering and our targeted search.

In the second step, for the detailed analysis in Section 6, we filter the collected papers to select

works that apply MPC or HE as a privacy-preserving solution. To ensure comprehensive coverage,

we perform an additional verification step by conducting targeted searches combining each reviewed

use case (Section 5) with MPC and HE technologies. These searches use queries in the form of:

(“Use Case Name”) AND (“Technology Name”). The final dataset consists of 62 papers.

5 USE CASES
In this section, we present a set of use cases in the automotive domain based on the first step

of our literature review. Each use case illustrates specific scenarios that involve the processing,

analysis, or sharing of privacy-sensitive data among multiple parties. We cluster use cases into four

categories: location-based services, mobility infrastructures, vehicular data analysis, and dynamic

traffic management and V2X communication. While we identify specific groups for different use

cases, it is important to note that there are natural overlaps among them. For example, traffic signal

control use case (Section 5.4.5) can be classified to vehicular data analysis and traffic management

groups. However, we categorize it under traffic management because its primary focus is on

optimizing road traffic flow. Later in Section 6, we analyze in detail the concrete applications of

MPC and HE in these use cases.

5.1 Privacy in Location-Based Services
In this section, we discuss privacy concerns associated with Location-Based Services (LBSs). LBSs

include various services that utilize the geographic location of a user as input to specific functions,

such as recommending nearby points of interest, or connecting users to the taxi drivers. Service

providers, typically centralized, require users to disclose their location to access the desired services.

This centralization leaves users unable to verify whether their data is being used as intended, and

poses risks of tracking and profiling. Therefore, finding a way to offer users personalized LBSs
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without compromising their location is an essential concern. Below, we summarize concrete use

cases representing LBSs with works addressing privacy issues in these use cases.

5.1.1 Points of Interest. Points of Interest (POI) are specific locations that are beneficial for drivers,
such as restaurants, gas stations, and landmarks. Vehicles often request these locations to improve

navigation and provide access to nearby amenities. In this scenario, vehicles query for POIs by

sending requests to a server. The server processes these queries and returns relevant information

without determining the exact locations of the vehicles [107, 147].

5.1.2 Navigation and Route Planning. One of the prominent services in vehicular networks is

providing drivers with optimal routes and real-time navigation assistance based on traffic conditions

and data collected from other vehicles. This service requires users to share their current location,

travel routes, and destinations, which might be exploited for user movement profiling [108, 149].

5.1.3 Localization. Vehicle localization is the process of precisely determining a vehicle’s location,

speed, and direction using GPS, sensors, maps, and communication systems. Constant data collection

and transmissionmay expose vehicle location history, travel patterns, and sensitive user information,

highlighting the need for privacy-preserving measures [53, 115].

5.1.4 Vehicular Crowdsourcing. This use case involves outsourcing tasks related to specific locations
to a group of mobile workers. Task requesters register through a centralized server and publish

tasks with target locations or spatial routes. Available workers are considered for task assignment

and are responsible for reporting their locations to the server [93, 124, 142].

5.1.5 Ride-Sharing. Ride-sharing services match drivers with passengers in order to share a journey.

To facilitate this coordination, ride-sharing systems collect vast amounts of sensitive data, including

pick-up and drop-off locations, the identities of riders and drivers, and specific timings. Therefore,

the server or any entity accessing this data can infer sensitive information about riders’ activities

by monitoring their locations [4, 5, 41, 43, 74, 75, 86, 90, 131, 133].

5.1.6 Vehicle Sharing. Vehicle sharing is a smart mobility service that provides users with access

to vehicles for short-term use, often on an as-needed basis. It utilizes in-vehicle telematics and

portable devices, such as smartphones, and allows vehicle owners to distribute temporary digital

keys or access tokens to other users, enabling them to access the vehicle [104, 105].

5.2 Privacy in Mobility Infrastructure
In this section, we discuss the privacy use cases associated with mobility infrastructure. This

category focuses on services where vehicles interact with physical infrastructure, such as toll

stations or charging stations. The primary privacy risks stem from the sharing of vehicle and user

data with centralized systems or third-party infrastructure providers.

5.2.1 Toll Data Collection. Electronic toll collection systems use sensors and toll transponders to

track vehicles. Information stored in toll records can be utilized to monitor a vehicle’s movements,

making vulnerable to unauthorized tracking and user profile breaches [56].

5.2.2 Electric Vehicle (EV) Charging. The EV charging process involves various interactions be-

tween users and charging infrastructure. In the payment process, EV users engage in transactions

with Charging Service Providers (CSP). The chosen Charge Station (CP) generates a service order

including payment amount, charging duration, and location, which the user typically authorizes

through a a mobile application. After the payment, the charging session begins. CPs can aggregate

data from these transactions, including geographic location, charging patterns, and battery us-

age [34]. Over time, this accumulated data may enable the inference of users’ driving behaviors and
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frequently visited locations [117]. EV charging can also be optimized to fill the overnight demand

valley, reducing grid operation costs. However, in this process, participants need to communicate

frequently, thereby revealing an EV owner’s charging profiles [52].

5.2.3 Parking. An autonomous vehicle parking system integrates service providers, parking in-

frastructure, users, vehicles, and authorities. It relies on secure registration and communication

protocols, encrypted data handling, and user authentication mechanisms. Protecting user location

and identity data is important in parking systems, as registration with central authorities for

reservations can expose sensitive information and compromise privacy [67, 92, 150].

5.3 Privacy in Vehicular Data Analysis
In this section, we discuss use cases that target privacy aspects related to analysis of vehicular

data. As the SDVs continue to advance, organizations and institutions are increasingly interested

in gathering vehicle data of various kinds for analysis purposes. Substantial amounts of personal

data collected and processed by service providers can pose serious privacy risks. Research works

address these concerns by proposing privacy-preserving solutions for data aggregation (5.3.1),

or architectures for privacy-preserving federated learning (5.3.2). Vehicular data analysis often

includes learning models of vehicle or driver behavior (5.3.3–5.3.6). These use cases rely on sensitive

data streams (e.g., driving patterns, locations, images) for training accurate models. A primary

privacy concern is protecting this data from misuse and profiling. Another class of applications

(5.3.7–5.3.10) involves learning from the vehicles’ external environment. These applications often

require collaborative sharing of sensitive data, which introduces distinct privacy challenges. In the

following, we discuss concrete use cases for vehicular data collection and analysis.

5.3.1 Data Processing in IoV. Several works address the generic use case of aggregating data in

IoV environments. Each vehicle node provides data, partially aggregated by Roadside Units (RSUs)

and then fully aggregated by a central server. The privacy of vehicle data needs to be protected

from being misused by RSUs and the server [21]. Decentralized VANETs are designed to reduce

centralization and minimize network communication overhead by involving vehicles, RSUs, and

edge nodes to aggregate or even process data. For example, vehicles and RSUs can share real-time

traffic condition information, while edge nodes train machine learning models and distribute results.

In these multi-party setups, privacy has to be taken into account in all existing data flows [22].

5.3.2 Federated Learning (FL). Several works address a generic scenario of training machine

learning models on vehicular data using Federated Learning (FL) [23, 49]. Although FL allows clients

to avoid sharing raw data, a malicious server can still reveal sensitive information from the model

updates. Addressing the trust concerns associatedwith a central aggregator, Decentralized Federated

Learning (DFL) has been increasingly applied in the vehicular domain. It enables participants to

share model updates directly among themselves or with intermediate edge nodes [13, 48, 49, 65].

5.3.3 Training Driving Assistance Systems. This use case involves training models for Advanced

Driving Assistance Systems (ADAS). Particularly, lane-keeping systems are trained on driving

patterns combined with image data, to predict optimal steering angles. The collected training data

can expose sensitive information such as locations and driving patterns [96], [89].

5.3.4 Detecting Misbehavior in VANETs. Misbehavior detection systems aim to identify malicious

data sharing in vehicular networks. They analyze reported data, such as location and traffic details,

sometimes combined with trust scores or feedback, to model and identify anomalies [40, 99, 109].

5.3.5 Traffic Anomaly Detection. This use case involves monitoring the behavior of surrounding

vehicles, e.g., to identify unsafe or malicious driving. An example is detecting stalking vehicles,
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which follow a vehicle for a long duration through various turns and speed changes. This is achieved

using sensor data, such as cameras and IMU sensors, to track proximity and movements [101].

5.3.6 Predictive Maintenance. Data from vehicle sensors and historical repair records can be

analyzed to model and predict potential breakdowns and schedule timely maintenance. This

approach aims to minimize unexpected vehicle failures and extend vehicle lifespan [60].

5.3.7 FL-based Navigation. A concrete use case of DFL in vehicular networks is collaborative

learning a navigation model, studied by Kong et al. [61]. In scenarios where GPS signals are weak,

such as in urban centers or tunnels, vehicles can maintain accurate localization by combining

high-sampling Inertial Measurement Unit (IMU) data and low-sampling GPS data. This process

risks exposing sensitive navigation information during the exchange of FL model updates [61].

5.3.8 Object Classification in CAVs. CAVs use cameras to capture images of their surroundings,

which aids in tasks such as obstacle avoidance and enhancing situational awareness. However,

these images may contain a vast amount of sensitive information, including faces, license plates, or

locations related to the vehicle’s environment [118–121].

5.3.9 Road Profile Estimation. In this setting, multiple vehicles work together to accurately assess

road conditions and identify surface anomalies like potholes. Instead of relying on data from a single

vehicle, which can be affected by sensor limitations, the collaborative approach allows vehicles on

the same road segment to share and combine their data [36].

5.3.10 Vehicle Emission Control. Utilizing traffic light cycle data shared with other vehicles can help

reduce vehicle emissions at intersections. A reinforcement learningmodel processes this data to help

vehicles optimize their speed for lower emissions. Achieving this requires the collection, sharing,

and analysis of privacy-sensitive vehicle data, such as speed, location, and traffic conditions [9].

5.4 Privacy in Dynamic Traffic Management and V2X Communication.
This section discusses privacy-sensitive traffic management scenarios involving real-time vehic-

ular data exchange between vehicles (V2V) or between vehicles and infrastructure (V2X). The

primary privacy risks come from constantly sharing sensitive vehicle data during these interactions.

Compared to use cases within the Mobility infrastructure (Section 5.2) that involve more static

exchanges, in this group, we focus on dynamic, real-time communication.

5.4.1 Message Transmission. Message exchanges in VANETs enable vehicles and pedestrians to

communicate with each other directly (V2V) and with infrastructure such as RSUs. Although

increased connectivity and information flow benefit transportation systems, they also introduce

privacy risks by tracking and revealing personal patterns and locations [76].

5.4.2 Driver ProfileMatching. A concrete use case in V2V exchange includes driver profilematching,

which allows drivers to recognize and connect with others based on shared characteristics such as

destinations, interests, or travel routes. For example, this process allows people to add each other

as friends and share information based on similar interests [114].

5.4.3 Energy Storage Sharing. This use case allows multiple users to access and benefit from

shared energy storage systems, either through community sharing, outsourcing to third-party

energy storage operators, or peer-to-peer sharing. This approach improves cost-effectiveness by

distributing the storage capacity and associated costs among users. This process can involve the

disclosure of energy consumption data, users’ daily routines, or working patterns [113].
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Table 3. Overview of specific use cases with relevant privacy concerns.

Use Case Privacy Concern Use of MPC Use of HE

Location-Based Services
Points of Interest (5.1.1) Location data ✔ ✗
Navigation and Route Planning (5.1.2) Location and trajectory data ✔ ✗
Localization (5.1.3) Location data ✔ ✗
Vehicular Crowdsourcing (5.1.4) Worker’s and task requester’s location ✔ ✔
Ride-Sharing (5.1.5) Pick-up and drop-off locations and driving patterns ✔ ✔
Vehicle Sharing (5.1.6) Booking, transaction, and location data ✔ ✗

Mobility Infrastructure
Toll Data Collection (5.2.1) Location data and driving patterns ✗ ✔
Electric Vehicle (EV) Charging (5.2.2) Charging location, energy consumption patterns ✔ ✗
Parking (5.2.3) Location and identity data ✔ ✔

Vehicular Data Analysis
Data Processing in IoV (5.3.1 ) Data leakage during training process ✔ ✔
Federated Learning (FL) (5.3.2) Data leakage from model updates ✔ ✔
Training Driving Assistants (5.3.3) Driving patterns, location and user’s identity data ✗ ✗
Detecting Misbehavior in VANETs (5.3.4) Location exposure, driving patterns ✗ ✔
Traffic Anomaly Detection (5.3.5) Location data and driving patterns ✗ ✗
Predictive Maintenance (5.3.6 ) Location and identity data ✗ ✔
FL-based Navigation (5.3.7) Privacy disclosure during navigation updates ✗ ✔
Object Classification in CAVs (5.3.8) Image data leakage ✔ ✗
Road Profile Estimation (5.3.9) Vehicle’s sensitive information ✗ ✗
Vehicle Emission Control (5.3.10) Location and speed data ✗ ✗

Traffic Management
Message Transmission (5.4.1) Location and trajectory data ✗ ✔
Driver Profile Matching (5.4.2) Personal data based on interests or destination ✔ ✗
Energy Storage Sharing (5.4.3) Energy consumption and travel patterns ✗ ✗
Speed Advisory (5.4.4) Vehicle speed and arrival time ✔ ✗
Traffic Signal Control (5.4.5) Location data ✔ ✗
Platooning (5.4.6) Location and travel route information ✗ ✔
Traffic Monitoring (5.4.7) Location data and travel patterns ✗ ✔

5.4.4 Speed Advisory. The aim of Consensus-Based Speed Advisory Systems (CSAS) is to provide

real-time, privacy-preserving speed recommendations for groups of vehicles, with a focus on

reducing emissions and enhancing energy efficiency. They require collecting sensitive data, such as

vehicle type, fuel consumption, and driver’s arrival time while optimizing consensus speed [71].

5.4.5 Traffic Signal Control. In traditional intelligent traffic signal control systems, users’ vehicle

information, such as location and speed, is transmitted to RSUs to improve service efficiency. Servers

collect this data to train machine learning models, which automate the formulation of traffic signal

control strategies, optimizing road traffic management. The transmission of this vehicle information

can result in privacy breaches, disclosing sensitive user details [128].

5.4.6 Platooning. Platooning is a fuel-efficient transportation method where multiple vehicles,

typically trucks, follow each other in proximity on highways, for enhanced privacy and increased

road capacity. Forming a platoon typically requires the disclosure of sensitive information, such as

the real-time geographic position and intended routes of participating vehicles [24, 63, 94, 139].

5.4.7 Traffic Monitoring. Crowdsourcing-based traffic flow statistics can optimize traffic light

scheduling and mitigate congestion. Gathering drivers’ directional intentions via RSUs and Traffic

Management Centers (TMC) may expose sensitive information [137].

5.5 Summary
In this section, we briefly reviewed a variety of privacy-sensitive use cases within the automotive

domain, grouped into four subdomains, and listed in Table 3. Our review shows many cases where

privacy-sensitive data is exchanged between multiple parties, such as drivers, data requesters,

infrastructure providers, and service providers. This highlights the relevance of exploring privacy-

preserving computing technologies, such as MPC and HE, in these multi-party environments.
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6 APPLICATIONS OF PRIVACY-PRESERVING COMPUTING
In this section, we examine privacy-preserving computing applications (concerning either MPC or

HE) in the automotive domain proposed in the literature more closely.

6.1 Overview
To achieve a comprehensive overview, we categorize the surveyed works into three application

settings based on similar architectural setups and requirements for applying MPC or HE. The three

primary settings we focus on are: a client-to-client setting, which involves direct data exchange

between clients, such as vehicles or drivers, without intermediary infrastructure; a client-to-server
setting, where clients transfer data to one or more central server(s), for processing and/or storage;

and finally, a distributed setting, which leverages a network of servers and edge nodes to handle

computational tasks closer to data sources in a decentralized way. Following the structure of

Section 5, we then group surveyed works within each setting by their application domains: location-

based services, mobility infrastructures, vehicular data analysis, and dynamic traffic management,

to show how different settings are observed in each use case group.

An overview of the surveyed works can be found in Table 4. The first column lists the publications

and the names of the authors. The second and third columns indicate the specific addressed use

case and its application domain, respectively. The fourth column details the protocols used in the

implementation of the works. The fifth column indicates the security model considered in the

publication: semi-honest and malicious. In the semi-honest security model, it is assumed that the

participants follow the prescribed protocol but may be curious to derive additional information

from the process. On the contrary, in the malicious security model, participants are assumed to

actively attempt to undermine the protocol by modifying inputs or deviating from the protocol.

In addition, we observe that many implementations of MPC and HE serve two primary purposes

in reviewed works. First, numerous works employ MPC or HE to perform privacy-preserving

aggregation, computing an aggregate (e.g., a sum) of data collected from multiple sources. These

functions are used in various use cases, such as aggregating model updates in federated learning,

predictive maintenance, etc. Second, several works employ MPC or HE to implement matching

functionality. In these works, the technologies are used to identify pairs or subsets of data entries

that meet specific criteria without revealing privacy-sensitive information. They are widely used in

contexts such as ride-sharing services and task allocation in spatial crowdsourcing. The remain-

ing works implement customized functionalities that do not fall under aggregation or matching.

Examples of custom functions include training machine learning models [22], performing joined

decision-making [128], and optimization [71]. We list these three categories in the sixth column.

The seventh column shows whether HE and MPC are combined with technologies such as

Blockchain, Differential Privacy, Federated Learning, and Machine Learning. Finally, the last column

indicates whether real-world data or simulated data was used in the papers.

6.2 Client-to-Client Setting
In this section, we discuss how MPC and HE, help to solve privacy issues in various client-to-client

settings, where clients (e.g., vehicle drivers) directly interact with each other to share or exchange

sensitive data, such as locations or travel paths. This approach eliminates the need for a server or

centralized infrastructure to process, store, or transmit data, reducing the privacy risks associated

with centralized systems. In this setting, privacy risks mainly involve the potential exposure or

misuse of sensitive data by malicious clients. To counter these risks, clients use MPC and HE to

jointly process the data without revealing sensitive information to each other. Here, clients typically
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Table 4. Overview of works that employ MPC and HE in the automotive domain.

Reference & Authors Use Case Domain Protocols

Security

Model
Function

Integrated

Tech.
Data

Client-to-Client Setting
[53] Hussain and Koushanfar Localization (5.1.3) LBS BMR (mp), GC(2p) è Custom - Ù
[4] Aïvodji et al. Ride-Sharing (5.1.5) LBS PSI (2p) è Matching - 
[41] Hallgren et al. Ride-Sharing (5.1.5) LBS TPSI (2p) è Matching - 
[86] Pagnin et al. Ride-Sharing (5.1.5) LBS AHE, PSI (2p) è Matching - 
[52] Huo et al. EV Charging (5.2.2) MI SSS (mp) è Aggregation - Ù
[23] Chen et al. Federated Learning (5.3.2) VDA PVSS (mp) ○ Aggregation FL 
[114] Wang et al. Driver Profile Matching (5.4.2) DTM OT, PSI (2p) è Matching - �
[76] Magaia et al. Message Transmission (5.4.1) DTM AHE ○ Matching -  Ù

Client-to-Server Setting
[88] Peng et al. Vehicular Crowdsourcing (5.1.4) LBS ASS (mp) è Aggregation - 
[59] Kong et al. Vehicular Crowdsourcing (5.1.4) LBS AHE è Custom - Ù
[107] Tan et al. Points of Interest (5.1.1) LBS PIR (mp) è Matching - 
[147] Zhou et al. Points of Interest (5.1.1) LBS OT (2p), PIR (2p) è Custom - 
[143] Zhang et al. Points of Interest (5.1.1) LBS PSI (2p) è Matching DP Ù
[90] Pham et al. Ride-Sharing (5.1.5) LBS SHE è Matching - 
[5] Aïvodji et al. Ride-Sharing (5.1.5) LBS SHE, PEQT, SS è Matching - 
[43] He et al. Ride-Sharing (5.1.5) LBS AHE è Matching - 
[51, 75] Luo et al., Huang et al. Ride-Sharing (5.1.5) LBS AHE, GC (2p), SHE è Matching - 
[132] Yu et al. Ride-Sharing (5.1.5) LBS AHE è Matching - 
[133] Yu et al. Ride-Sharing (5.1.5) LBS SHE è Matching - 
[131] Yu et al. Ride-Sharing (5.1.5) LBS AHE, GC (2p) è Matching - 
[130] Yu et al. Ride-Sharing (5.1.5) LBS SHE è Matching - 
[123] Xu et al. Ride-Sharing (5.1.5) LBS GM è Matching - Ù
[141] Zhang et al. Ride-Sharing (5.1.5) LBS PSI (2p) ○ Matching - Ù
[74] Luo et al. Ride-Sharing (5.1.5) LBS PEQT (2p) è Matching - 
[57] Karmakar et al. Ride-Sharing (5.1.5) LBS FSS (3p) è Matching - Ù
[21] Zhou et al. Data Processing in IoV (5.3.1) VDA ASS (mp) ○ Aggregation - Ù
[71] Liu et al. Speed Advisory (5.4.4) DTM SS (mp) è Custom - Ù
[50] Liang et al. Message Transmission (5.4.1) DTM OT (2p) ○ Custom - Ù
[137] Zhang et al. Traffic Monitoring (5.4.7) DTM BGN è Aggregation DP Ù
[94] Quero et al. Platooning (5.4.6) DTM CKKS è Matching - Ù
[139] Zhang et al. Platooning (5.4.6) DTM AHE ○ Aggregation - Ù
[24] Cheng et al. Platooning (5.4.6) DTM AHE ○ Aggregation - Ù

Distributed Setting
[142] Zhang et al. Vehicular Crowdsourcing (5.1.4) LBS AHE, OPE ○ Matching BC 
[124] Xu et al. Vehicular Crowdsourcing (5.1.4) LBS OT, PEQT (2p) è Matching - Ù
[25] Cheng et al. Vehicular Crowdsourcing (5.1.4) LBS AHE è Matching - Ù
[39] Guan et al. Vehicular Crowdsourcing (5.1.4) LBS SHE è Custom - 
[134] Yu et al. Vehicular Crowdsourcing (5.1.4) LBS SSS (mp) è Custom - Ù
[149] Zhou et al. Navigation and Route Planning (5.1.2) LBS MPDC è Custom - Ù
[108] Tiausas et al. Navigation and Route Planning (5.1.2) LBS PIR (mp) è Custom - Ù
[104, 105] Symeonidis et al. Vehicle Sharing (5.1.6) LBS SSS (mp) è Custom - 
[56] Karim and Rawat Toll Data Collection (5.2.1) MI FHE è Custom BC 
[138] Zhang et al. Parking Systems (5.2.3) MI AHE è Custom BC 
[67] Li et al. Parking Systems (5.2.3) MI AHE, PSI (2p) è Matching - Ù
[6] Amiri et al. Parking Systems (5.2.3) MI PIR (mp) ○ Custom BC Ù
[22] Chen et al. Data Processing in IoV (5.3.1) VDA FHE ○ Custom BC, DL Ù
[70] Liu et al. Data Processing in IoV (5.3.1) VDA SSS (mp) è Aggregation - Ù
[65] Li et al. Federated Learning (5.3.2) VDA SSS (mp) è Aggregation FL, DP Ù
[49] Hu et al. Federated Learning (5.3.2) VDA SSS (mp), CKKS è Aggregation BC, FL Ù
[66] Li et al. Federated Learning (5.3.2) VDA DGHV ○ Aggregation BC, FL 
[61] Kong et al. FL-based Navigation (5.3.7) VDA SSS (mp), AHE ○ Aggregation FL, DP Ù
[118, 119] Xiong et al. Object Classification in CAVs (5.3.8) VDA ASS (mp) è Custom DL 
[14] Bi et al. Object Detection in CAVs (5.3.8) VDA ASS (mp) è Custom DL 
[60] Kong et al. Predictive Maintenance (5.3.6) VDA AHE è Aggregation DP �
[40] Gyawali et al. Det. Misbehavior in VANETs (5.3.4) VDA AHE ○ Aggregation DL Ù
[113] Wang et al. Energy Storage Sharing (5.4.3) DTM SSS (mp) ○ Aggregation BC Ù
[128] Ying et al. Traffic Signal Control (5.4.5) DTM ASS (2p) è Custom DL Ù
[2] Adelipour et al. Traffic Signal Control (5.4.5) DTM ASS (mp) è Custom - Ù

Application Domains: LBS — Location-Based Services.MI — Mobility Infrastructures. VDA — Vehicular Data Analysis. DTM — Dynamic Traffic Management

and V2X Communications. Protocols: ASS — Additive Secret Sharing. BGN — Boneh, Goh, and Nissim cryptosystem. BMR — Beaver-Micali-Rogaway protocol.

DGHV— Dijk-Gentry-Halevi-Vaikutanathan Algorithm. CKKS— Cheon-Kim-Kim-Song Algorithm. FHE — Fully Homomorphic Encryption. GC — Garbled

Circuit. OPE — Order Preserving Encryption. OPRF — Oblivious Pseudorandom Function. OT — Oblivious Transfer. AHE — Additive Homomorphic Encryption

(Paillier cryptosystem). PEQT — Private Equality Test. PSI — Private Set Intersection. TPSI — Threshold Private Set Intersection. PIR — Private Information

Retrieval. PVSS — Publicly Verifiable Secret Sharing. SHE — Somewhat Homomorphic Encryption. GM — Goldwasser–Micali Algorithm. SSS — Shamir’s

Secret Sharing. FSS — Function Secret Sharing. MPDC — Multiparty Delegated Computation. Number of parties in MPC protocols: 2p — Two-Party. mp —

Multi-Party (three or more parties). Security Model: è — semi-honest. ○ — malicious. Integrated Technology: BC — Blockchain. DL — Deep Learning. DP —

Differential Privacy. FL — Federated Learning. Evaluation: — Real-world data. Ù — Simulated data.� — Theoretical work.
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Client-to-Client Setting

Client Client

Client

Use Case: Vehicle localization Use Case: Ride-Sharing

Location_B

Car with undefined location

Input: locations of three neighboring cars

Computation: 4-party BMR

Output: Location of car with unavailable 

GPS signal

Input: Trip destination and route

Computation: Threshold Private Set Intersection

Output: Overlap of the routes

: Privacy-sensitive input

: Computing party

: Output

Location_A

Location_C

Planned 

trip route

Planned 

trip route

Fig. 1. Generic client-to-client setting, with two specific example use cases under the same setting. In this
setting, clients typically act as computing parties on their own inputs, with output used by all or some clients.

act as both data providers and computing parties, performing computations on their own inputs.

The result of the computation can be used by all or specific parties, depending on the use case.

Figure 1 demonstrates the client-to-client setting with two specific use cases. In the first example,

localization [53], a car performs secure 4-party computation with three neighboring cars to compute

its location (the output) based on the locations of the neighboring cars (the inputs). The MPC

allows vehicles to not reveal their actual locations to each other. The second example shows the

use of ride-sharing. Here, two drivers compute on their planned routes using PSI protocol, allowing

them to identify potential overlaps without disclosing the full routes. These examples show how

different implementations of the client-to-client setting follow a similar pattern where multiple

clients interact as computing parties on their own inputs. Below, we survey existing works in detail.

6.2.1 Privacy in Location-Based Services. Client-to-client interactions in LBSs involve clients shar-

ing sensitive location data directly with each other to enable services such as localization and

ride-sharing, which may compromise privacy. Addressing this concern in localization, Hussain

and Koushanfar [53] proposed a method where a lost car can compute its location with the help

of three nearby cars while ensuring that the locations of all participating vehicles remain private.

The method enables cars to communicate directly to locate a lost vehicle, computing their mutual

geometric intersections for positioning. This work is one of the few examples of using GC in the

automotive domain, presenting two alternatives: one using a two-party GC protocol and another

using a multi-party BMR protocol. Although the BMR protocol extends GC to support multiple

parties and enhances privacy, it introduces higher computational complexity. More precisely, the

GC-based protocol runs in 0.35s (∼1MB of data sent), while the BMR takes 2.65s due to the use of a

combined circuit (TriLoc), which integrates three instances of sub-circuits that securely compute

pairwise circle intersections (Intersection) and verify whether each point lies within a third car’s

range (Range), along with additional logic to select intersection points.

Another group of works focuses on implementing ride-sharing scenarios, which often involve a

centralized server to coordinate routes, as seen in Table 4. In particular, Aïvodji et al. [4] propose a
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PSI-based decentralized ride-sharing architecture, where a driver and a rider want to determine a

pick-up and drop-off location without disclosing their origin and destination locations to each other

or any third party. After clients encrypt their location using HE, they utilize PSI to compare them

and find the common ride-sharing locations. Even though the PSI method is secure, a semi-honest

adversary might infer information based on the size of the encrypted data. To address this, the

authors propose to fix the size of the isochrone (a geographical boundary showing areas reachable

within a certain time) for both clients to ensure indistinguishability.

Hallgren et al. [41] consider the abstract model of two parties exchanging location data in ride-

sharing. They introduce PrivatePool, supporting two ride-sharing approaches. The first, proximity-

based method, leverages HE to allow users to determine if starting and ending points are within a

certain range, without revealing locations. The second, intersection-based approach, employs a

TPSI protocol to identify overlaps in ride trajectories. Finally, Pagnin et al. [86] further develop

this concept with TOPPool, that extends the PrivatePool [41] and enhances privacy-preserving

ride-sharing with time-aware optimizations and the ability to handle partial schedule overlaps.

Unlike PrivatePool, TOPPool employs regular PSI to perform more efficient intersection-based

matching between trips represented as sets of consecutive points and AHE for ride endpoint-based

matching. Due to space constraints, we omit performance descriptions for ride-sharing papers

here and in Section 6.3.1, and instead provide a performance comparison in Section 7.2.

6.2.2 Privacy inMobility Infrastructures. Although typicallymobility infrastructure services involve

a centralized server, there are scenarios where data exchange occurs directly between vehicles. A

relevant example that utilizes MPC is EV charging control, where EVs coordinate charging without

relying on a centralized charging station to manage the process. To develop a privacy-preserving

EV charging control using SSS, Huo and Liu [52] adjust the charging of all EVs so that they are

all charged as required by the end of the night without surpassing their maximum charging rates.

In their work, the charging profile of each EV is considered the secret and is transformed into

an integer before being shared. Each EV constructs a polynomial of degree 𝑘 with secret as the

constant term and random coefficients, then evaluates the polynomial at predefined points and

shares the results with other EVs. Using these shared evaluations, the EVs can securely reconstruct

the aggregate sum of the charging profiles without revealing individual profiles. Additionally,

collusion among semi-honest EVs requires at least 𝑘 EV’s to collaborate to infer another EV’s secret.

6.2.3 Privacy in Vehicular Data Analysis. Decentralized Federated Learning (DFL) is increasingly

used in the automotive sector during vehicle data analysis without relying on a centralized

server [13]. V2X communication, with its vehicle mobility and limited storage capacity of nodes,

benefits from DFL, as it allows direct client-to-client interactions for training collaborative models.

The direct exchange of gradients between clients can potentially reveal sensitive information about

training data. Addressing data leakage in autonomous vehicles during the training process, Chen et

al. [23] introduce a novel Byzantine-fault-tolerant decentralized FL method based on a peer-to-peer

network, using a PVSS [97] scheme, which enables anyone (not just the participant) to confirm the

accuracy of encrypted shares. In their method, each autonomous vehicle uses PVSS to protect its

data. If a share is identified as false, the responsible participant is considered malicious and will be

excluded from participating in the next communication round. Experiments show that the PVSS

protocol runs in ∼5.2s with 512 autonomous vehicles, with secret share distribution taking ∼0.97s.

6.2.4 Privacy in Dynamic Traffic Management and V2X Communications. We observe two works

leveraging privacy-preserving computing technologies within the context of vehicle-to-vehicle

(V2V) communication to improve traffic management . First, to address privacy concerns in driver

profile matching, where users in vehicular social networks share information based on similar
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characteristics, Wang et al. [114] propose solutions based on OT and PSI. The characteristics include

upcoming destinations, tourist spots, the work sector, favorite sports, preferred movies, music

preferences, etc. The authors use an OT protocol to design a PSI protocol with equality tests. These

protocols allow two parties in a VANET to identify similar characteristics in their sets without

revealing any additional information beyond the intersection.

Second, Magaia et al. [76] focus on enhancing message delivery in vehicular delay-tolerant

networks. The authors introduce a routing protocol called ePRIVO, based on AHE. It solves the

problem of dynamically selecting the optimal vehicle for message forwarding. When two vehicles

meet, they use the protocol to compare their routing metrics (such es ego betweenness centrality

and similarity) to determine which vehicle is a better candidate for message forwarding, without

exchanging privacy-sensitive metrics directly. Encryption and decryption take ∼11.03ms with

1024-bit keys; and the use of encryption results in delivery ratio losses ranging from approximately

0.09% to 30.64% in different scenarios.

6.2.5 Summary. In this section, we surveyed applications of MPC and HE in the client-to-client

setting, using a diverse set of technologies, including GC-based and SS-based MPC, PSI, and HE,

enabling privacy-preserving interactions. Overall, we note a limited number of such implemen-

tations, likely due to the nature of vehicular settings with large fleets, real-time communication,

resource constraints, and client drop-offs. These demands pose a challenge for resource-intensive

MPC and HE technologies. Consequently, we observe more solutions either involving a centralized

server or adopting complex decentralized setups, which we will discuss in the following sections.

6.3 Client-to-Server Setting
In this section, we discuss howMPC and HE address privacy concerns in the client-to-server setting,

where clients (such as vehicles or users) interact with one or more servers that aggregate and

process client data. The primary privacy concern here involves the handling and potential exposure

of large-scale sensitive client data by servers, which may be vulnerable to misuse or breaches. To

mitigate these risks, MPC and HE enable servers to perform computations on client data without

directly accessing sensitive information.

We observe two primary cases within this setting. In the first case, servers typically function as

service providers, performing computations on data collected from clients or providing specific

services in response to client requests. Here, the server processes either encrypted data provided

by clients (in the case of HE) or engages in an MPC protocol with clients, generating the desired

outputs based on client data while preserving the privacy of individual inputs. Figure 2 illustrates

this case on the left, with a concrete example of ride-sharing, where the server securely processes

trip information from clients to generate suitable ride matches by computing on homomorphically

encrypted client data. Note how this implementation differs from the ride-sharing use case within

the client-to-client setting discussed in Section 6.2, where clients communicated with each other

directly. The second case (right) involves an outsourced computation scenario, where multiple

servers aggregate and process client data, where the result is further used by the server. This is

represented in the figure (bottom right) by the vehicular crowdsourcing example, where three

servers receive secret-shared route information from multiple clients and run an MPC protocol to

identify vehicles suitable for a location-specific task without revealing individual vehicle locations.

These examples highlight how client-to-server implementations can leverage MPC and HE to

protect privacy in applications involving sensitive data sharing and processing. Below, we examine

relevant works that apply these techniques across different use cases.
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Client-to-Server Setting

Use Case: Ride-Sharing

Input: Trip destination,route and ride request

Computation: Somewhat Homomorphic Encryption
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Use Case: Vehicular Crowdsourcing 
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Computation: 3-party MPC on secret-shared data

Output: Selection of vehicles for the task request

Fig. 2. Generic client-to-server setting, with two specific use cases under the same setting as examples. In
this setting, clients typically provide their private inputs to the server, with output used by clients or server.

6.3.1 Privacy in Location-Based Services. The client-to-server setting is naturally represented

in LBSs, where clients share sensitive location data with service providers to receive location-

dependent services. Service providers need to process clients’ location data to deliver their services

while ensuring they cannot misuse this sensitive information. We observe three distinct use cases

where MPC and HE are applied: mobile crowdsourcing, points of interest, and ride-sharing. Below,

we examine how different works address privacy concerns in each of these scenarios.

Within the crowdsourcing scenario, mobile crowdsensing involves users collaborating through

their sensing devices to complete a shared task, in applications like traffic monitoring and road

condition analysis. In vehicular networks, the key challenges lie in assessing the reliability of

sensing vehicles. To address these concerns, Peng et al. [88] propose a truth discovery scheme.

The approach uses ASS where Sensing Users (SUs) distribute their collected sensing data to three

servers in a secret-shared way. These servers jointly run a protocol to discover the most accurate

information (ground truth) and to implement a quality-driven user reward mechanism. The data

requester can later aggregate the shares from all servers to recover the final results. Kong et al. [59]

propose a range query scheme using AHE. Vehicles equipped with air pollution sensors generate

encrypted data reports containing the sensed values and their location information. In this scheme,

AHE enables the protection of the location privacy of vehicles and data requesters.

In the context of querying POI, three approaches have been developed to protect privacy while

allowing vehicles to obtain service results. First, Tan et al. [107] propose a computationally efficient

PIR-based framework for vehicular LBS. Their approach partitions a city’s road network into Natural

Road Segments (NRS), with each segment maintaining an association with nearby POIs within a

specified distance. This segmentation significantly reduces the dataset size, making the PIR-based

protocol more efficient. When a vehicle queries POI information, it sends a PIR request that enables

service retrieval without revealing either its exact location or query interests to the server. Second,

Zhou et al. [147] introduce a novel POI protocol that combines multiple cryptographic techniques

and is specifically designed for real road networks. The approach enables top-K POI queries through

vehicle cooperation: Vehicles first obtain symmetric keys through OT, then use PIR to retrieve
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encrypted POI details, while network coding ensures query interest privacy during processing.

Third, Zhang et al. [143] propose a proximity testing scheme that uses two-party PSI to detect any

location grids overlap, indicating proximity. For this scheme, Chebyshev polynomials are used to

optimize computational efficiency and reduce energy consumption.

As observed from Table 4, ride-sharing applications have received significant attention in the

context of LBSs, with multiple works proposing various privacy-preserving approaches. Pham

et al. [90] proposed ORide, implementing SHE with optimized ciphertext packing for privacy-

preserving ride-matching. While the system allows user matching without accessing their identities

or locations, Kumaraswamy et al. [62] and Murthy and Vivek [82] revealed security limitations. A

semi-honest rider can infer driver locations through a location-harvesting attack [62] or a passive

triangulation attack [82] using the permuted distances of the riders in ORide. Further advancing

privacy guarantees, SRide, proposed by Aïvodji et al. [5], implements ride-sharing with a two-stage

approach. First, feasible matches for each rider are computed using an ASS protocol based on SHE.

Then, it uses secure two-party equality testing to determine final matches. To address the efficiency

concerns, He et al. [43] proposed PRIS, which uses AHE and bilinear pairing to protect location

privacy. The system separates operations into offline (local generation of ride offers/requests) and

online phases (secure matching), optimizing computational efficiency while maintaining privacy.

Luo et al. [75] propose a ride-matching protocol that operates in two variants: pRide and pRide2.

pRide encrypts rider and driver location data and distances using SHE (BGN [17]) and identifies

the nearest driver via GC-based secure comparison. pRide2 uses AHE (Paillier) for distance compu-

tation, GC for secure comparisons, while applying data packing and graph partitioning to reduce

computation and communication costs. Huang et al. [51] present an SHE (FV [30])-based improved

version of both the pRide and pRide2 schemes, combining secure distance computation with a ride

request prediction model for optimized driver matching. However, Murthy and Vivek [81] revealed

that pRide2 scheme [51] is vulnerable to driver location inference attacks, where a semi-honest

rider uses decrypted distance values that were homomorphically blinded to recover the underlying

distances and infer the locations of at least 80% of the drivers responding to a single ride request.

Yu et al. [132] proposed lpRide which enables efficient shortest road distance computation over

encrypted rider and taxi locations using a lightweight encryption scheme based on the modified

Paillier cryptosystem [83]. In addition, it securely compares two distances over the corresponding

blinded ciphertexts to find the closest taxi. However, Vivek [112] showed that in lpRide, the modified

Paillier cryptosystem is vulnerable to a key recovery attack, allowing any semi-honest rider or

driver to extract the secret keys of other users and learn the location of riders.

Expanding the scope to group scenarios, Yu et al. [133] developed PGRide. The system uses SHE

with ciphertext packing to compute aggregate distances between multiple riders and potential

drivers in encrypted form. While supporting efficient group matching through separated offline

(key generation) and online (secure computation) operations, the system cannot optimize the

actual pickup route for multiple riders.Focusing on dynamic scheduling, Yu et al. [131] introduced

PSRide. Unlike previous approaches requiring preset locations, PSRide allows real-time matching

and schedule modifications even with active rides. The system uses AHE with cipher packing for

computation and GCs for secure schedule feasibility checks. While this enables flexible ride-sharing,

their use of upper-bound travel time estimates can lead to suboptimal matches. Another approach

is proposed by Yu et al. [130], EPRide, allowing riders to submit encrypted ride requests to a server,

which matches them with nearby taxis that regularly update their encrypted locations using SHE.

The crypto server generates cryptographic keys and collaborates with the server to execute the

secure comparison protocol based on HE to match riders with the nearest available taxi.

Leveraging the XOR-homomorphic property of the Goldwasser–Micali (GM) encryption algo-

rithm, Xu et al. [123] proposed TAROT, route-matching scheme for ride-sharing services. It claims to
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enable secure equality testing and route similarity computation between encrypted location points

accurately, avoiding plaintext exposure during the matching process. However, subsequent passive

attacks by Vargheese and Vivek [110] demonstrate that TAROT’s GM-based equality determination

algorithm leaks the Hamming weight of XORed encrypted location vectors during route similarity

computation. By exploiting this leakage, colluding semi-honest users can infer other users’ sensitive

location data through two distinct passive attacks. In the first attack, adversaries select specific

location points to infer the target’s data. In the second attack, the location points of the colluding

adversary are arbitrarily placed.

Taking a different approach, Zhang et al. [141] proposed a PSI-based approach. Instead of working

with exact locations, their system represents user positions as sets of nearby POIs and then uses PSI

to determine matching potential. This allows the platform to facilitate matches without accessing

exact user locations, sharing driver information when sufficient geographical overlap exists.

Addressing scalability challenges, Luo et al. [74] introduced P
2
Ride. Instead of using computa-

tionally expensive GCs, the system reduces matching to non-interactive PEQT using an overlapping

partition system. This approach significantly reduces computational and communication overhead,

making it more practical for large-scale deployment than GC-based solutions.

Karmakar et al. [57] proposed QuickPool, introducing two complementary approaches for

simultaneous privacy-preserving ride-matching. The first uses pseudorandom functions for route

intersection matching, while the second employs Function Secret Sharing (FSS) [18] to match

users based on the proximity of trip endpoints. The system evaluates match compatibility through

threshold-based distance comparisons while maintaining location privacy through computation.

6.3.2 Privacy in Vehicular Data Analysis. In IoV, aggregating sensitive data from vehicles to cen-

tralized servers for analysis requires privacy-preserving approaches to prevent the exposure of

information during data exchanges. To aggregate vehicle perception data for analysis, Zhou et

al. [21] propose a data aggregation scheme PPVDA. This scheme employs homomorphic MAC

and SS to achieve lightweight, verifiable data aggregation, supporting multidimensional data inner

product computation. The system operates by dividing each piece of sensed data from Vehicular

Nodes (VNs) into multiple additive shares. These shares are then distributed to different RSUs. Each

RSU combines its received shares and creates a partial proof, which is then sent to the central server

for the reconstruction of the full data and computation of the final aggregation result. We observe

similar SS-based approaches for vehicular data analysis in distributed setups in Section 6.4.3.

6.3.3 Privacy in Dynamic Traffic Management and V2X Communications. In a client-to-server

setting, dynamic traffic management in vehicular networks utilizes the continuous exchange of

data between vehicles and servers to optimize tasks such as emission control, energy management,

and traffic management. Below, we see how different techniques are tailored to this setting.

Optimizing emissions and energy use often requires vehicles to share speed and emission data

with servers. Liu et al. [71] introduce MPC-CSAS, a SS-based solution for recommending common

speeds to a group of vehicles. In the conventional approach, vehicles 𝐴 and 𝐵 send their speed-

emission mapping values directly to a base station, which aggregates these values and recommends

the optimal speed. 𝐴 and 𝐵 split their speed-emission mappings into shares, keeping some locally

and sharing others. They aggregate their local and shared data and send the results to the base

station, which calculates the emissions for each speed and recommends the optimal speed. MPC-

CSAS achieves real-time performance by computing the optimal speed in a single iteration using

SS, with total communication less than 3KB for 20 vehicles and less than 5ms runtime.

Route planning often involves pre-sharing routes with RSUs to speed up authentication. Liang et

al. [50] propose OT-based route planning scheme, where a vehicle securely obtains information

about RSUs along its planned route with the help of a Certificate Authority (CA), without the
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CA knowing which specific RSUs the vehicle has chosen. The vehicle uses this pre-shared RSU

information to authenticate with RSUs as it enters its coverage.

Monitoring traffic flow at intersections requires driver data, introducing concerns about the

privacy of their movements. Zhang et al. [137] propose VPTS, a crowdsourcing-based traffic

monitoring scheme that ensures the privacy-preserving collection of traffic flow statistics at road

intersections. This scheme utilizes HE and DP to secure traffic data. The process begins with

initializing an instance of the BGN cryptosystem [37], where a trusted authority sets up public

and private keys, selects a hash function, and communicates with the server for encrypted traffic

direction data handling. Drivers report traffic conditions to an RSU that encrypts and aggregates

the data before sending it to the server for processing. The server decrypts this data to predict and

manage future traffic flow, which is used to control infrastructure, such as traffic light scheduling.

VPTS requires ∼26ms per driver for encryption, commitment, and signing, and 1.565s on the RSU

for 200 drivers, with a communication overhead of 0.071KB per driver and 0.051KB on RSU-side.

Three approaches address privacy concerns in platoon formation and management. To enable

clients to find and join nearby platoons without compromising their location privacy, Quero et

al. [94] utilize the BFV [19] and CKKS [26]encryption schemes, which are FHE methods capable of

performing multiple additions and a finite number of multiplications on encrypted data. Clients

send encrypted platoon requests to the server, indicating their desired platoon location. The server

responds with encrypted platoon identifiers, allowing clients to privately select and contact platoons.

Their experiments show that each plaintext-ciphertext multiplication takes 1.99ms and total client-

server interaction is under 6ms. A single processor core can serve up to 500 clients per second,

making the system scalable to 100,000 daily users with a 10–20 core server.

To address the challenge of selecting reliable platoon leaders, Zhang et al. [139] propose a trust-

based platoon recommendation scheme called TPPR, which helps potential user vehicles avoid

selecting malicious head vehicles. The TPPR uses AHE to ensure secure communication between

the lead vehicle and other vehicles when joining a platoon. Once the trip ends, both the lead vehicle

and the joining vehicle send their driving reports, such as handshake proof and trust value, to RSUs.

The RSU verifies the joining vehicle’s legitimacy and calculates the lead vehicle’s reliability rating

using trust score and feedback. The service provider evaluates the joining vehicle’s performance

and shares it with the trusted authority for forecasting future actions based on historical behavior.

TPPR aggregates ciphertexts for 100 users in 5.6ms and generates handshakes on vehicles in 18ms.

Addressing another concern in platooning, Cheng et al. [24] use HE to develop a recommendation

system for vehicular platoons aimed at accurately calculating feedback about the lead vehicle’s

performance. Each vehicle encrypts its feedback score using additive homomorphic properties,

ensuring that the platoon head vehicle’s reputation can be computed on the aggregated encrypted

data while maintaining individual score confidentiality. In the reputation score evaluation phase,

AHE is applied to calculate the distances between encrypted feedback scores and to aggregate these

encrypted values, allowing the determination of reputation scores while preserving the individual

feedback data. Finally, trusted authorities and servers use the output for a recommendation system

for vehicular platoons. Evaluation results show that AHE decryption takes 1.356ms (4 exponential

operations) and encryption along with multiplication and hash operations run in 1.1673ms.

6.3.4 Summary. In this section, we surveyed applications of MPC and HE in the client-to-server

setting. The solutions address privacy concerns across a diverse range of services, from location-

based applications like ride-sharing and POI queries to traffic management services like platoon

formation. These implementations are typically designed to scale with multiple clients, either

computing on encrypted data from multiple clients (HE) or processing client data in secret-shared

form (MPC). In the next section, we see how these techniques develop further in distributed settings.
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Distributed Setting

Use Case: Vehicular Crowdsourcing Use Case: Object Classification
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Fig. 3. Generic distributed setting, with two specific use cases under the same setting as examples. In this
setting, clients typically provide their inputs to intermediate computing edge/fog nodes, with output used by
all or some clients, or aggregated by a server.

6.4 Distributed Setting
In this section, we discuss the distributed setting, which extends beyond the traditional client-

to-server model introduced in Section 6.3. In this setting, computational tasks are offloaded to

a network of multiple servers, edge nodes, fog nodes, or other distributed resources. Edge and

fog computing processes data at or near the data generation source, minimizing latency without

the need to transmit data to distant servers. A layered structure supports handling large-scale

data-intensive applications in vehicular networks with thousands of clients.

We illustrate two use cases within this distributed setting in Figure 3. In the first example,

vehicular crowdsourcing, vehicles share trajectory data to two non-colluding fog nodes. These

nodes can run an MPC protocol with a server, to select suitable vehicles for a location-based task.

Compared to the vehicular crowdsourcing example in the client-to-server setting (see Figure 2), this

implementation can scale to large number of computing nodes. The second example (bottom right)

involves object classification, where two non-colluding edge nodes receive image data from vehicles,

and run computer vision inference in a 2-party MPC protocol, allowing for privacy-preserving

identification of objects in the images. Both examples illustrate how MPC and HE can support

privacy in applications involving resource-intensive computations across a decentralized network.

Below, we review existing research that applies these techniques to various distributed use cases.

6.4.1 Privacy in Location-Based Sevices. To protect location privacy in vehicle-based spatial crowd-

sourcing in IoV, Zhang et al. [142] propose a decentralized PriSC framework. Their scheme involves
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requesters (such as vehicle services and traffic management) encrypting sensitive location policies

using AHE, while vehicle workers submit their encrypted locations through Order-Preserving

Encryption (OPE) [3] to a blockchain and verify their eligibility for the tasks. Workers also provide

location proofs, enabling requesters to verify authenticity while preserving privacy, all recorded

on the blockchain. PriSC incurs ∼1.7s computation per worker, ∼1.93s for encrypting 10 location
policies with Paillier-1024, and ∼27.5ms for OPE-based location record generation with a 2

40
plain-

text space. Another approach is the PriTAEC scheme developed by Xu et al. [124], which utilizes

OT and PEQT for securing task assignments. In this work, requesters and drivers submit their

location data encoded through Hilbert curves and Bloom filters to edge nodes for range queries.

In the proposed optimized model, edge nodes execute OT protocols with requesters during an

offline phase, while drivers assist edge nodes to finalize the task. The edge computing framework

helps reduce communication latency while preserving the location privacy. Specifically, PriTAEC

achieves task assignment within ∼53ms, where OT accounts for ∼12ms and PEQT for ∼40ms.

Cheng et al. [25] address the task of reputation management in vehicle crowdsensing and propose

a PPRM scheme. It is similar to the work by Peng et al. [88] (discussed in Section 6.3.1) but works in

a different setting. To protect the privacy of sensing data and validate its authenticity, Cheng et al.

use the Paillier algorithm for encryption and apply a comparison algorithm for Paillier ciphertext

for data verification. Then, the cloud server transmits reputation feedback reports to the reputation

center to efficiently update the sensing vehicles’ reputation values.

Guan et al. [39] introduced a task allocation scheme for content dissemination in vehicular

networks that uses SHE. In their approach, two non-colluding servers collaboratively select a

certain number of vehicles to cover a near-optimal city area based on encrypted vehicle trajectory

data. Although the scheme accounts for the high mobility of vehicles, processing large volumes of

encrypted location data results in significant computational and communication overhead. Yu et

al. [134] address task allocation in fog computing using a grid-based region encoding, where users’

locations or trajectories are encrypted into binary arrays called region codes, the scheme applies

bit-wise XOR-based secret sharing to split and transmit the codes to two fog servers. The cloud

server then collaborates with both fog servers to allocate tasks without revealing user locations.

To address location privacy concerns in traffic navigation, Zhou et al.[149] propose a lightweight

cryptographic primitive, Multiparty Delegated Computation (MPDC). It allows two non-colluding

servers to perform secure addition, multiplication, and comparison over location data encrypted

under different keys, providing similar privacy guarantees of MPC and FHE-based approaches

with lower communication and computation overhead. Allowing a client to privately retrieve

precomputed route segments without revealing which segment is being accessed, Tiausas et

al. [108] introduces HPRoP, a PIR-based route planning system. More precisely, their approach

provides privacy-preserving location and trajectory data processing by adding dummy queries

alongside the real route planning request within a hierarchical road network structure.

Another LBS addressed in this setting is vehicle sharing, where users can share their vehicles

via digital keys, known as Access Tokens (AT). HERMES, proposed by Symeonidis et al. [105], is a

scalable and privacy-enhancing vehicular access system that extends SePCAR [104] by utilizing

MPC to manage vehicle ATs across non-colluding servers. In HERMES, vehicle keys and booking

details are kept private, as each server holds only a share of the secret data. The system optimizes

MPC protocols by using AES-CBC-MAC for Boolean circuits and HtMAC for arithmetic circuits,

minimizing communication rounds and computational overhead. This system allows for rapid AT

generation in ∼30.30ms, managing up to 546 operation per second, while providing the scalability

needed for real-world applications, such as rental companies overseeing 1000 vehicles.
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6.4.2 Privacy in Mobility Infrastructures. As can be observed in Table 4, most privacy-preserving

solutions for infrastructure-based vehicle services align with distributed settings, involving interac-

tions between vehicles, RSUs, servers, and blockchain networks. These approaches are particularly

relevant for preserving privacy as vehicle data moves through various infrastructure layers, such

as toll systems, parking facilities, and traffic management platforms.

One relevant example is TollsOnly, a privacy risk reduction model proposed by Karim and

Rawat [56]. The model addresses the need for secure and controlled sharing of electronic toll

transponder data with smart city infrastructure planners, to help manage traffic congestion while

preserving driver’s location privacy. TollsOnly employs FHE to perform computations on encrypted

toll data. In addition, a blockchain-based mechanism grants users control over how and when their

encrypted data is shared with authorized entities.

Parking services in a distributed setting involve interactions between vehicles, parking providers,

and decentralized units such as RSUs to securely manage and process parking data while preserving

driver privacy. Zhang et al. [138] propose a blockchain-based smart parking scheme called BSDP

to protect the privacy of Vehicular Sensor Network (VSN) participants and provide reliable data

aggregation. The scheme employs the Paillier Cryptosystem with Threshold Decryption (PCTD) to

securely encrypt and aggregate location and driving speed data from various VSN participants.

Two adjacent RSUs collaborate to perform privacy-preserving data aggregation. Secure Hidden

Vector Encryption (SHVE) is employed to handle encrypted location queries. BSDP aggregates data

in under 150ms when 100 vehicles and parking requests in 2.5ms per driver.

Another blockchain-based approach for parking was proposed by Amiri et al. [6]. They leverage

PIR to enable drivers to privately retrieve parking offers from a consortium blockchain, using

Reed-Solomon codes to generate coded queries. Their evaluations show that PIR incurs low commu-

nication overhead with ∼3.5KB and ∼1ms computation for parking reservation, making it practical

for real-world deployment. However, the complexity of PIR schemes generally increases with the

number of nodes, which could impact scalability in very large networks.

With a similar concern, to protect the location privacy of drivers during the parking space

detection and matching process, Li et al. [67] introduced PriParkRec. It utilizes OPRF and PSI to

enable drivers to match available parking spaces provided by a semi-honest parking service provider

without revealing their exact location. Anonymous credentials allow users to authenticate without

disclosing their identities, while AHE ensures confidentiality during aggregated data operations.

6.4.3 Privacy in Vehicular Data Analysis. Many recent work address scalable vehicular data anal-

ysis through a distributed paradigm, largely to support privacy-preserving machine learning. In

particular, Chen et al. [22] propose a Decentralized Privacy-preserving Deep Learning (DPDL)

model for VANETs that aims to reduce network congestion and provide low-latency services. This

decentralized approach shifts data processing from central cloud servers to Edge Computing (EC)

nodes. The transportation data is encrypted using FHE before being input into local DPDL models

on each EC node for training. Evaluation results indicate low communication latency, rising from

287.2ms to 823.6ms as the number of vehicles scales from 25 to 150.

Liu et al. [70] addressed real-time lane-changing trajectory prediction in VANETs based on

SSS. Vehicles collect driving data and distribute it in secret-shared form to multiple RSUs, which

collaboratively train an Adaboost [144] algorithm. Secure sub-protocols allow RSUs to jointly

compute model updates, error rates, and trajectory predictions.

Li et al. [65] focus on addressing the limitations related to resource overhead in cloud-assisted

fog computing, that involves multiple interactions between the cloud service center and the fog

nodes, which can cause delays and increase resource overhead. They employ SSS to enable user

gradients to split into multiple secret shares and distribute them among fog nodes. Specifically,
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the (𝑇, 𝑁 ) threshold property prevents collusion among up to 𝑇 − 1 fog nodes and supports up to

𝑁 −𝑇 fog nodes, where 𝑁 represents the number of fog nodes, and𝑇 stands for the threshold value.

Their work distinguishes itself by enabling computation across an unlimited number of nodes 𝑁 ,

offering greater scalability than other MPC methods that are typically limited to 2–4 nodes.

Hu et al. [49] propose DSSFL, a DFL-based data-sharing scheme for the IoV, integrating SSS and

HE. In this approach, vehicles fragment their local model parameters using SSS, distributing these

encrypted fragments to multiple RSUs. The use of HE (specifically, the CKKS scheme) allows RSUs

to perform secure aggregation on these encrypted fragments. The results are then sent back to

vehicles, which use Lagrange interpolation to recover the global model securely. Although HE adds

computational overhead, the model still achieves a high accuracy of approximately 86% due to

efficient data handling and secure aggregation methods. DSSFL uses SSS with a polynomial degree

of 5, requiring at least 6 out of 10 RSUs for model reconstruction. Each vehicle sends 10 encrypted

fragments per round. Model training converges in ∼9 minutes over 20 training rounds.

Li et al. [66] present a FL framework for autonomous vehicles based on HE and ZKPs to protect

model updates from both semi-honest servers and potentially malicious vehicles. HE enables

vehicles to share encrypted model updates securely without disclosing raw data, while ZKP ensures

anonymous identity verification. This dual approach improves model accuracy and reduces training

loss, but it faces latency challenges in high-mobility environments that could benefit from further

optimization for real-time performance. A common limitation in privacy-preserving FL schemes is

the challenge of handling new users and user dropouts [16, 122]. Kong et al. [61] propose a privacy-

preserving aggregation scheme for FL in vehicular fog computing. Their approach combines SSS

with a homomorphic threshold encryption scheme to ensure that client data remains private during

model aggregation. SSS enables the system to tolerate user dropouts by establishing a minimum

threshold for the number of user shares required for aggregation.

Beyond general solutions for privacy-preserving machine learning and FL, several works focus on

concrete applications for smart and autonomous vehicles. Xiong et al. [119] propose an edge-assisted

framework for privacy-preserving object classification. In this ASS-based approach, a vehicle splits

an image into shares for two non-colluding edge servers, which cooperatively process them with a

deep learning model. The same authors in [118] introduce a refined lightweight ASS-based scheme

with enhanced security using chaotic map encryption and proposing a multi-party extension to

tolerate offline servers. Bi et al. [14] extend the approach to full object detection with their P2OD

framework, which implements a secure equivalent of Faster R-CNN to privately compute both

object features and their bounding boxes. These works show that it is possible to offload intensive

computer vision tasks from vehicles to edge servers in a privacy-preserving manner.

Kong et al. [60] propose a privacy-preserving scheme based on HE and DP for continuous data

collection in vehicular fog to implement predictive maintenance, aiming to detect the anomalies

of vehicles and offer early warnings in ITSs. In this scheme, the Paillier cryptosystem is used to

encrypt individual sensory data pieces, facilitating the secure aggregation of multiple data reports

directly at the fog nodes before sending these encrypted data to the cloud server. DP is applied by

adding noise to each aggregated result, making it difficult to infer individual data points.

Gyawali et al. [40] proposes a privacy-preserving misbehavior detection system in VANETS. In

this work, vehicles evaluate messages from neighboring vehicles and send weighted, encrypted

feedback scores to the Local Authority (LA), utilizing a modified ElGamal cryptosystem. The LA

aggregates these encrypted scores without accessing the individual values and then forwards

the aggregated result to the Trusted Authority (TA). The TA decrypts this result to update the

vehicle reputation scores. The authors emphasize that in contrast to the Paillier cryptosystem,

which causes considerable delays, the lightweight and efficient ElGamal-based encryption, with

additive homomorphic properties, is better suited for misbehavior detection systems. Additionally,



111:24 Yuca et al.

implementing batch verification in a bilinear system further reduces delays to 8.23ms per encrypted

feedback at the vehicle-side and 7.61ms for decryption and verification.

6.4.4 Privacy in Dynamic Traffic Management and V2X Communications. Energy storage sharing

involves challenges in maintaining the privacy of clients’ energy demands. To address these issues,

Wang et al. [113] propose a solution combining blockchain and SSS, enabling secure service sched-

uling without revealing individual users’ demands. Users share their individual energy demands

in a secret-shared way and generate ZKPs to verify the consistency of their commitments before

calculating the energy storage service schedule and agreeing on payments. They then submit these

payments to the ledger with proofs, execute the service, and request settlement, with the operator

verifying transactions through signed receipts on the ledger.

Ying et al. [128] propose PrivacySignal to address the vulnerability in traffic control systemswhere

the transmission of vehicle data, such as location and speed, potentially leads to privacy breaches.

In this system, vehicles divide their location and speed data into secret shares that are processed by

RSUs. To demonstrate the feasibility of PrivacySignal in the multi-party setting, the authors assert

that its sub-protocols, such as secure addition, multiplication, and comparison, are MPC- compatible,

Indeed, indicating the system’s potential for scaling to more RSUs in practical implementations.

PrivacySignal incurs a runtime overhead ranging from 0.003s to 0.672s and a communication

overhead between 4.9KB and 45.8KB across its secure sub-protocols, by employing ASS protocols,

making it suitable for real-time applications. Recently, Adelipour et al. [2] proposed another

approach to traffic signal control systems to enable secure green time durations, i.e., the time

intervals during which specific traffic lights remain green, in urban networks. To achieve this, they

use SSS to distribute real-time traffic data across multiple shares, allowing semi-honest servers to

jointly compute green time signals without accessing the raw data.

6.4.5 Summary. In this section, we reviewed applications of HE and MPC in distributed settings.

These implementations typically leverage multiple computing nodes to process data closer to the

source. The solutions aim to support large dynamic vehicle fleets and address diverse use cases, from

scalable location-based services to real-time data analysis. We observe increasing adoption of hybrid

approaches combining multiple privacy-preserving technologies. While distributed architectures

offer improved scalability compared to traditional client-server models, they introduce additional

complexity and require careful privacy analysis.

7 TAKEAWAYS AND DISCUSSION
In this section, we review the applicability of MPC and HE in the automotive domain, based on the

analysis in the previous Section 6, and highlight several challenges in applying these technologies.

7.1 Primitives
We observe that both MPC and HE are widely applied to secure computing scenarios in the

automotive domain, and are useful across a variety of use cases. MPC and HE are sometimes

employed interchangeably within the same use cases, offering similar, though not identical, privacy

guarantees and resource requirements. For instance, ride-sharing and vehicular crowdsourcing

scenarios show applications of both HE and MPC-based solutions.

In particular, AHE and SHE are frequently adopted across ride-sharing, platooning, and crowd-

sourcing applications, utilizing privacy-preserving arithmetic operations. While FHE theoretically

supports more complex operations, it is currently less suited for multi-client collaborative scenarios,

as it typically requires data to be encrypted under the same key. Multi-key FHE schemes provide

a promising alternative by enabling computations on data encrypted by different parties with

their individual keys [79]. However, many such schemes are limited to working over single-bit
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ciphertexts and may not be suitable for encrypting large datasets [135]. A notable challenge for

AHE and SHE-based solutions is the increased size of encrypted messages, which leads to higher

computational and bandwidth demands. Nonetheless, several reviewed optimized approaches like

hybrid PSI and SHE schemes [41], and ciphertext-packing techniques [20] help reduce the payload

sizes, reducing the computational and communication overhead when handling large-scale systems.

MPC approaches also demonstrate their utility in the automotive domain, particularly those based

on Secret Sharing (SS). SS-based non-linear computation requires more communication rounds

compared to HE and GC-based approaches. However, they are advantageous for linear computations,

having relatively low costs during the input-independent computation in the online phase [145].

These approaches prove particularly effective in outsourced settings, such as Federated Learning [61,

66] and vehicular crowdsourcing [134], where clients can upload their privacy-sensitive data

to external servers for computation, enabling clients to remain offline between iterations and

reducing computational overhead. In non-outsourced scenarios such as EV charging [52, 113],

speed advisory [71], ride-sharing [57] and vehicle sharing [104, 105], secret sharing can be employed

to protect sensitive information, while clients need to be online during data exchange process.

In contrast, there are only a few GC-based MPC approaches to privacy issues in the automotive

domain. For instance, we can see several GC-based solutions for vehicle localization and ride-sharing

scenarios. In the localization use case [53], we can see the comparison-based nonlinear functions

can be efficiently implemented in a two-party setting utilizing GC. However, considering the

large number of clients in ride-sharing, GC protocols incur high communication and computation

overhead. For instance, Luo et al. [75] used GC to lightweight the distance comparison computation

between rider and driver; however, it is not practical for real-world ride-sharing applications.

We observe that several papers utilize PSI in distinct automotive scenarios with matching as

main function: parking [67], ride-sharing[4, 41, 57, 86, 141], profile matching [114], and POIs [143].

The intersection of multiple sets can be calculated iteratively by performing pairwise intersections.

Extending the two-party PSI protocol to a multi-party setting in certain automotive use cases

may not be straightforward. However, there are several works on Multi-Party PSI (MPSI) [10,

140]. Although MPSI comes with higher communication overhead and complexity, it reduces

the limitations of PSI among a larger group of participants [78]. Despite the limitations of both

techniques, considering the trade-offs, MPSI might be a new research direction for automotive

scenarios such as ride-sharing or spatial crowdsourcing.

Our study shows that both MPC and HE are effective for implementing privacy-preserving ag-

gregation of sensitive vehicular data. In particular, integrating MPC with FL enables model training

on client data without exposing individual model parameters. In an FL setup, the communication of

model updates can be done via MPC, which enhances the privacy of the system. Similarly, HE can

also be a suitable choice for privacy-preserving aggregation in respective scenarios. HE efficiently

supports the arithmetic addition, which aligns well with the frequent requirement in vehicular data

analysis and FL to compute aggregated averages based on the client’s data.

Our analysis reveals limited adoption of MPC and HE in client-to-client settings, such as in

V2V/V2X contexts, primarily due to the requirements for dynamic, real-time communication. Recent

developments in efficient two-party MPC protocols [33, 73] offer promising solutions to enhance the

applicability of these use cases. In contrast, we observe an increasing number of works addressing

scalable and distributed settings. These complex scenarios often require not only privacy-preserving

computation but also verification of client inputs, achieved through PVSS [100] as demonstrated

in [23], or through MPC protocols with authenticated inputs [28]. For server-side vehicular data

analysis applications, additional privacy measures for protecting computation outputs become

relevant, such as combining MPC and HE with differential privacy techniques [106, 113].
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7.2 Performance
Given the diversity of system settings, protocols, and evaluation metrics, a direct performance

comparison across all surveyed papers is not straightforward. The surveyed papers span a wide

spectrum, from highly performant, lightweight systems to computation or communication-heavy

systems, which makes it challenging to draw generalized performance evaluations.

Direct comparisons are possible for specific applications such as ride-sharing. For example, in

the client-to-server setting, the SHE-based ORide [90] approach shows high computation overhead

from 0.2s to ∼114s for different algorithms on the server side. This overhead was later reduced

to 37.13s in PRIS [43] using AHE and bilinear pairing. SRide [5] introduces a more efficient two-

stage approach with 0.519s for match computation (SHE-based SS) and 0.005s for equality testing,

requiring 62KB and 31KB of communication for riders and drivers, respectively, with 1000 drivers.

More recent works further improve efficiency: pRide2 [75] achieves 0.0051s rider-side and 9.1s

server-side runtime with only 256 bytes of communication per user; EPRide [130] reaches ∼0.0006s
client-side runtime and 8.67MB server-side communication for 2000 taxis; PGRide [133] supports

group matching with ∼1.25s server runtime and less than 3.2 MB communication for 2000 drivers;

and PSRide [131] enables dynamic scheduling with ∼1.5s server runtime and 2.3 MB communication

for 6000 taxis. P
2
Ride [74] replaces GC with non-interactive PEQT, reducing rider-side computation

from 58.6s to 0.47s and driver-side from 60.1s to 4.7s, with 784 bytes and 9.8KB communication,

respectively. In contrast, client-to-client protocols show worse performance. The PrivatePool [41]

exhibits high runtime with trajectory size (0.022s for 32 segments to 96.78s for 1024), whereas

TOPPool [86] reduces this to less than 0.31s. Aïvodji et al. [5] report runtimes between 0.48–0.67s for

PSI-based matching. Overall, client-to-server solutions offer better scalability and lower per-client

latency, while client-to-client approaches are better suited for small-scale setups.

Although the ride-sharing shows a clear trend towards efficiency, applications that involve

large-scale or data-intensive computations still exhibit significant performance overheads. For

example, end-to-end object classification by Xiong et al. [118] requires over 20s and 327 MB of

communication, while the object detection task by Bi et al. [14] takes 190s and over 6 GB for a

single detection. Similarly, the HPRoP algorithm for route planning requires ∼23.55s to compute a

complete route, a notable latency despite being an improvement over prior work.

Overall, our analysis shows that MPC and HE are feasible in scenarios that do not require

continuous real-time updates and can tolerate moderate latency. In addition, recent protocol

optimizations and hybrid approaches have reduced overheads and improved scalability, particularly

in client–to–server and distributed settings. However, MPC and HE likely remain infeasible in use

cases with large numbers of clients, frequent real-time interactions, and complex system design.

7.3 Datasets
We observe that several surveyed works evaluate their solutions on real-world datasets while others

use simulated data only (see Table 4). We also observe that only a few works perform an evaluation

on relatively large datasets containing hundreds of thousands of records or more [41, 66, 74, 90,

94, 142]. We believe that only the evaluation on real-world datasets (recently surveyed in [8, 72])

can validate the applicability of the solutions, while the large-scale evaluation can prepare the

solutions for deployment in large national fleets. The release of new large-scale datasets, and unified

evaluation benchmarks for HE and MPC based on them, would provide great value for privacy

research in automotive applications, as authors could evaluate their works in realistic settings.
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7.4 Security Model
We find that most MPC and HE works in our paper assume a semi-honest security model, where

participating parties honestly follow a protocol. However, in practical applications, real-world

threats often come from malicious attackers. Therefore, it is important to study the performance of

protocols that offer protection against actively malicious adversaries. Several works (see Table 4)

demonstrate the applicability of malicious security models in the automotive domain. Protocols

designed under the assumption of semi-honest adversaries can often be modified to protect against

malicious adversaries. However, this modification significantly increases cost, often to levels

impractical for real-world applications. Overall, the extension of MPC to larger-scale applications

remains a challenge, particularly under a fully malicious security model [29].

8 FUTURE DIRECTIONS
Although extensive research has already addressed many challenges related to privacy issues in

the automotive domain, there are still several key research problems that need further exploration.

We highlight several key areas below to inspire future directions.

Unaddressed Use Cases. Our analysis in Sections 5-6 reveals several privacy-sensitive automotive

use cases that remain unaddressed by either MPC or HE, including traffic anomaly detection, road

profile estimation, vehicle emission control, etc. Addressing these use cases is a clear opportunity

for future work. Furthermore, we observe that several use cases leverage HE but not MPC, such as

predictive maintenance, misbehavior detection, platooning, etc. Similarly, some use cases employ

MPC but lack HE-based solutions, e.g., querying points of interest, localization, EV charging, etc.

Given that MPC and HE can be applied interchangeably in many scenarios, exploring alternative

implementations of existing solutions using the other technology, and comparing their respective

requirements and guarantees, could offer valuable insights for automotive applications.

Baseline Implementations. The surveyed research works typically propose comprehensive solutions

addressing multiple requirements for specific use cases. For instance, numerous ride-sharing

solutions are proposed, each with different complexity levels and privacy guarantees. However,

the field often lacks baseline implementations of fundamental MPC and HE protocols for common

automotive scenarios. Proof-of-concept implementations, evaluated on sample data, would enable

systematic evaluation of various approaches. Such implementation would help researchers assess

how different requirements (e.g., moving from semi-honest to malicious security models) affect

system performance, and determine the applicability of technologies in corresponding use cases.

Real-World Datasets and Benchmarks. Existing works mostly evaluate their approaches to simu-

lated vehicular data. We need publicly available real-world datasets to improve the accuracy and

applicability of privacy-preserving solutions in real-world automotive scenarios. Similarly, one of

the future directions can be focusing on establishing standard benchmarks with unified datasets

and metrics, allowing for the comparison of performance and scalability across privacy-preserving

solutions for similar automotive use cases and settings.

Security Model. The security model in privacy-preserving approaches needs to be strengthened

to ensure robust solutions by moving from semi-honest to malicious security in practical appli-

cations. Recent advances in MPC demonstrate that malicious security can be achieved efficiently

using techniques such as authenticated secret sharing (e.g., SPDZ-style IT-MACs) and optimized

preprocessing protocols (e.g., MASCOT) [31]. Applying and benchmarking maliciously secure MPC

protocols in privacy-sensitive vehicular use cases remains an open and promising direction.
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Dynamic Data. Most existing approaches omit client dropouts and focus on static vehicular data

processing. The development of flexible, dynamic datasets and solutions that can cope with dynamic

users might be a future research direction that needs to be addressed.

Broader Exploration of Use Cases and Privacy-Preserving Technologies. In Section 5, our work

specifically reviewed automotive use cases that were explicitly identified as privacy-sensitive or

implemented privacy-preserving solutions to analyze the applicability of HE and MPC in those.

Future research could expand this scope to systematically analyze a broader range of automotive

use cases, identify new privacy-sensitive use cases, and study suitable solutions. Finally, while our

work concentrated on MPC and HE, similar systematic analysis could be conducted for other PETs,

such as DP, anonymization techniques, zero-knowledge proofs, or a combination of those.

Alignment with Privacy Regulations. A promising future direction includes aligning solutions with

privacy regulations such as GDPR and CCPA. We find that only eight works surveyed in Section 6

discuss the relation to such frameworks: some suggest their solutions help minimize data disclosure

to ensure compliance [41, 86]; others highlight that regulations complicate use case adoptionwithout

such solutions [71, 123], or serve as a general motivation for applying PETs in considered scenarios

[2, 56, 113, 137]. Future work can include a detailed legal assessment of the proposed schemes.

Recent analysis shows MPC’s classification as a GDPR-compliant anonymization technique depends

on the deployment setting, such as the legal relationship between the parties computing on the

secret shares [12]. Future research can evaluate which automotive settings (e.g., specific client-to-

client or distributed configurations) best align with such regulations. Furthermore, research could

explore how complementary technologies, such as applying differential privacy to computation

outputs, can enhance both the technical privacy guarantees and the solution’s legal standing.

Application to Existing Automotive Standards. Most surveyed papers frame their solutions in the V2X

or CAVs context; however, they rarely align with established automotive standards such as ISO/SAE

21434, AUTOSAR, or IEEE 802.11p. Some works reference these standards and incorporate related

simulation parameters such as message size, latency, or communication range [22, 24, 50, 53, 66, 139].

Others mention standards such as IEEE 802.11p or AUTOSAR only at a conceptual level, without

integrating them into the system architecture or evaluation [21, 40, 59, 76]. Future research direction

should align proposed solutions with these regulations and evaluate them on automotive hardware

(e.g., ECUs, embedded SoCs) under realistic network conditions.

Formal Analysis. We observe that the surveyed works offer different levels of security analysis. Some

works provide formal, simulation-based or game-based proofs (e.g., [41, 57]). Other works (e.g.,[5,

53]) argue for their security based on the security of their underlying cryptographic primitives

without providing a formal proof for the complete system. Vulnerabilities (e.g., [62, 82, 112]) found

in some schemes (see Section 6.3.1) further demonstrate the need for a rigorous security analysis.

A key direction for future research is therefore to perform comprehensive security analysis for

proposed solutions. For use cases with multiple privacy-preserving solutions, such as ride-sharing or

vehicular crowdsourcing, it would be beneficial to perform a comparative analysis of the guarantees
offered by different approaches. Strengthening the formal analysis will improve trust and facilitate

the adoption of PETs in the automotive domain.

Recent Advancements in PETs. Finally, we point out several developments in the fields of PETs,

outside the automotive domain, that can be transferrable to vehicular applications.

Significant work has been done on improving MPC and HE with hybrid protocols for deep

learning applications. Specifically, combining different cryptographic primitives, such as HE for

linear operations and SS or GCs for non-linear functions, can significantly reduce computation



A Survey on Privacy-Preserving Computing in the Automotive Domain 111:29

and communication overhead compared to single-primitive solutions [35, 145]. The vehicular data

analysis papers we surveyed mainly rely on a single primitive. Future work can explore adapting

these hybrid approaches for vehicular use cases, such as trajectory prediction, object classification,

or predictive maintenance. Furthermore, the choice of MPC protocol should align with automotive

network characteristics. As discussed in recent works [31, 85], SS-based approaches are better suited

for low-latency settings such as edge-based local area network (LAN). In contrast, GC protocols and

non-interactive HE-based protocols are often more appropriate for wide area networks (WANs).

Beyond protocol design, the field is advancing with the development of usable compilers and

frameworks (such as CrypTen, EzPC, MP-SPDZ) that abstract cryptographic complexity and auto-

matically translate high-level code and DL interfaces into optimized MPC protocols [58, 85]. These

advancements can simplify and accelerate adoption in vehicular applications.

Finally, research in secure aggregation for FL has evolved to include integrity and verification

mechanisms, and ensure robustness against malicious participants [77]. In addition, complementary

research explores secure FL architectures in distributed settings such as IoT networks [44, 47], soft-

ware defined networks [45] and wireless sensor networks [46]. These works may offer transferable

insights to collaborative vehicular applications such as FL-based navigation, misbehavior detection,

object classification, and predictive maintenance.

9 CONCLUSION
In this paper, we offer a thorough analysis of current MPC and HE applications in the automotive

domain. First, we identified and categorized a set of privacy-sensitive use cases relevant to modern

automotive architectures and setups. The privacy use cases they examine mainly focus on privacy

in the contexts of location-based services, mobility infrastructure, vehicular data analysis, and

dynamic traffic management. Second, we studied existing works applying MPC and HE to the

selected privacy-related use cases in detail. Based on our comprehensive analysis, existing MPC and

HE applications in privacy-sensitive automotive scenarios offer promising directions for research

and development toward privacy-preserving, deployable, and scalable computing approaches in

the automotive domain. Finally, we highlight areas for future research in this field.
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