
LLM-Assisted Model-Based Fuzzing of Protocol Implementations
Changze Huang

hcz@stu.pku.edu.cn

Key Lab of HCST (PKU), MOE;

SCS, Peking University

Beijing, China

Di Wang

wangdi95@pku.edu.cn

Key Lab of HCST (PKU), MOE;

SCS, Peking University

Beijing, China

Zhi Quan Zhou

george.zhou@nio.com

NIO Inc.

Shanghai, China

Abstract

Testing network protocol implementations is critical for ensuring

the reliability, security, and interoperability of distributed systems.

Faults in protocol behavior can lead to vulnerabilities and system

failures, especially in real-time and mission-critical applications. A

common approach to protocol testing involves constructing Mar-

kovian models that capture the state transitions and expected be-

haviors of the protocol. However, building such models typically

requires significant domain expertise and manual effort, making

the process time-consuming and difficult to scale across diverse

protocols and implementations.

We propose a novel method that leverages large language models

(LLMs) to automatically generate sequences for testing network pro-

tocol implementations. Our approach begins by defining the full set

of possible protocol states, from which the LLM selects a subset to

model the target implementation. Using this state-based model, we

prompt the LLM to generate code that produces sequences of states.

This program serves as a protocol-specific sequences generator. The

sequences generator then generates test inputs to call the protocol

implementation under various conditions. We evaluated our ap-

proach on three widely used network protocol implementations and

successfully identified 12 previously unknown vulnerabilities. We

have reported them to the respective developers for confirmation.

This demonstrates the practical effectiveness of our LLM-assisted

fuzzing framework in uncovering real-world security issues.

Keywords

Protocol-Implementation Fuzzing, Model-Based Fuzzing, LLM-

Assisted Testing

1 Introduction

Network-protocol implementations are widely deployed across sys-

tems from cloud services and web applications [11, 13] to embedded

devices [15, 27] and industrial control systems [48]. Bugs in these

implementations can persist for an extended period, compromising

the security and stability of the systems. Studies show that even a

single malformed input or unhandled edge case can disrupt services

and cause catastrophic consequences [12, 28, 54]. Thus, identifying

these bugs is an essential step when implementing protocols.

In this paper, we focus on fuzzing of protocol implementations.

Studies show that fuzzing is an effective method for testing protocol

implementations [21, 24, 25, 40]. In these methods, a fuzzer usually

sends crafted protocol messages over a network interface or di-

rectly to a broker to trigger unexpected states, crashes, or abnormal

responses. One major benefit of fuzzing is its capacity to explore a

large state space without requiring a formal protocol specification.

Nevertheless, having domain knowledge about protocols can be

helpful. Model-based fuzzing of protocol implementations [9, 10,

38, 39] is a method that uses knowledge about protocols. These

methods use a predefined (usually coarse-grained) model of pro-

tocol behavior to generate sequences of messages, systematically

exploring the state space of the protocol. One widely employed

family of models is finite-state machines (FSMs) [20, 22, 42, 43].

These methods use an FSM to represent the states and transitions

defined by a protocol, enabling the fuzzer to produce sequences of

messages that reflect protocol-specific communication patterns. Fol-

lowing the predefined model, these methods improve input validity,

enhance code coverage, and increase the chances of identifying

bugs that depend on specific protocol states or message sequences.

However, the reliance on predefined models is a double-edged

sword: the applicability and effectiveness of model-based fuzzing

depend on the availability and quality of these models. Adapting

model-based fuzzing to different protocols requires the manual

construction of protocol models, and adjusting these models to

optimize fuzzing performance would be an effort-consuming task.

In this paper, we propose ChatFuMe, a model-based protocol-

implementation fuzzing method that leverages large language mod-

els (LLMs) [17] to construct and adjust protocol models automati-
cally. LLMs have emerged as a novel tool for general fuzzing [52, 53],

as well as protocol-implementation fuzzing [35, 37, 49]. These LLM-

assisted fuzzing methods leverage the understanding and genera-

tion capabilities of LLMs to produce syntactically and semantically

valid messages for different protocols. Unlike ChatFuMe, none of

these are model-based: they rely on LLMs to directly generate a

large number of sequences of protocol messages, resulting in long

generation time and high token consumption.

Instead of direct generation of message sequences, ChatFuMe

uses LLMs to automatically construct and adjust protocol models

in the form of random sequence-generator programs that gener-
ate random message sequences. Our motivation is driven by the

LLMs’ strong capabilities in generating programs, inferring state

transitions, and embedding domain knowledge from protocol doc-

umentation and usage patterns. Our design of ChatFuMe aims to

strike a balance among the following desiderata:

• Flexibility. ChatFuMe handles implementations of different

protocols with little adaptation effort.

• Effectiveness. ChatFuMe achieves comparable performance

against model-based fuzzing with predefined models.

• Cost-efficiency. ChatFuMe consumes much fewer tokens

than prior LLM-assisted protocol fuzzing methods.

ChatFuMe consists of two major components: (i) automatic

model construction, and (ii) feedback-guided fuzzing loop. The

model construction starts with identifying protocol states, using

the protocol’s documentation (possibly with some user prompts to

ar
X

iv
:2

50
8.

01
75

0v
1

 [
cs

.C
R

]
 3

 A
ug

 2
02

5

https://arxiv.org/abs/2508.01750v1

encode domain knowledge) as input. ChatFuMe then asks the LLM

to summarize the protocol behavior, capturing high-level domain-

specific patterns of the states and transitions. Next, ChatFuMe

prompts the LLM to select key states and summarize the transition

rules among them. These states and transitions form the basis of

a coarse-grained protocol model. Rather than directly generating

message sequences, ChatFuMe asks the LLM to construct a se-

quence generator, which is an executable program that samples

state transitions and generates random message sequences.

After the model construction, ChatFuMe’s fuzzing loop starts

with pairing the random sequence generator with a user-provided

payload generator that handles the low-level field formatting of

messages. The user can once again use an LLM to program the

payload generator in advance. Executing the random generator

multiple times, ChatFuMe generates multiple message sequences

and sends them to the protocol implementation being tested. Chat-

FuMe then collects the behavior of the protocol implementation,

such as its responses, and prompts the LLM to evaluate these re-

sults and suggest adjustments to the protocol model. In particular,

the LLM is supposed to provide feedback on whether to add new

states, remove existing ones, or update transition probabilities.With

the feedback, ChatFuMe’s model-construction component adjusts

the protocol model and the generator program. The fuzzing-loop

component then begins another iteration using the adjusted model.

Our experiments demonstrate that ChatFuMe is reasonably flex-

ible, effective, and cost-efficient. In testing three different real-world

protocol implementations, our approach discovered 12 potential

bugs, validating its fault detection capability. Compared to a prior

model-based fuzzer, our method identified more new protocol states

within the same time window, demonstrating its effectiveness in

exploration. Additionally, compared to a prior LLM-based fuzzer,

our technique achieves lower token consumption, highlighting its

cost efficiency and scalability in practical fuzzing scenarios.

Contributions. The paper’s contributions include the following:

• We propose ChatFuMe, an LLM-assisted model-based

fuzzing method for protocol implementations. The key inno-

vation is that it uses LLMs to construct and adjust a protocol-

model program that generates message sequences.

• We implement ChatFuMe and conduct an experimental

evaluation of it. Our experiments demonstrate the flexibility

of ChatFuMe by applying it to three different protocols, its

effectiveness by comparing it against a prior model-based

method FUME [39], and its cost efficiency by comparing it

against a prior LLM-assisted method ChatAFL [37].

• We apply ChatFuMe on three real-world protocol imple-

mentations (HMQ, PyModbus, and Moquette) and discover

12 potential bugs in these implementations.

2 Background: Model-Based Fuzzing of Protocol

Implementations

In this section, we review FUME [39], a model-based fuzzing tech-

nique designed for Message Queuing Telemetry Transport (MQTT)

implementations. We begin by reviewing the MQTT protocol,

which we will use as a concrete protocol to demonstrate our method

Table 1: A summary of MQTT control packets.

Name Purpose Components

CONNECT Initiate connection to broker FH, VH, payload

CONNACK Acknowledge connection request FH, VH

PINGREQ Check if connection to broker is alive FH

PINGRESP Confirm connection is active FH

DISCONNECT Close network connection gracefully FH

AUTH Exchange authentication data FH, VH

PUBLISH Deliver message to subscribers FH, VH, payload

PUBACK Acknowledge QoS 1 PUBLISH FH, VH

PUBREC Acknowledge QoS 2 PUBLISH FH, VH

PUBREL Confirm receipt of PUBREC FH, VH

PUBCOMP Confirm receipt of PUBREL FH, VH

SUBSCRIBE Request subscription to topics FH, VH, payload

SUBACK Acknowledge SUBSCRIBE packet FH, VH, payload

UNSUBSCRIBE Request to cancel subscriptions FH, VH, payload

UNSUBACK Acknowledge UNSUBSCRIBE packet FH, VH, payload

in Section 3. We then sketch FUME’s predefined model that guides

the fuzzing of MQTT implementations.

2.1 The MQTT Protocol

The Message Queuing Telemetry Transport (MQTT) protocol [4]

has emerged as the de facto standard for messaging in the Internet

of Things (IoT) and Industrial IoT (IIoT) domains [47]. Standardized

by OASIS and ISO, MQTT is a lightweight, event-driven protocol de-

signed for environments with limited bandwidth and high latency,

making it ideal for devices such as sensors, embedded systems,

and industrial PLCs. At its core, MQTT operates on a publish/sub-

scribe model, which inherently decouples message publishers (i.e.,
senders) from subscribers (i.e., receivers). Communication is facili-

tated through topics, which serve as virtual channels for message

exchange. The central component of this architecture is the MQTT

broker (i.e., server), which manages connections, filters incoming

messages from publishers based on their topics, and efficiently

distributes them to all interested subscribers.

In MQTT, all communication between clients and brokers is

facilitated through the exchange of control packets, which are the

fundamental units of data transfer. These packets encapsulate vari-

ous operational commands, enabling functions such as establishing

connections, managing subscriptions, and publishing application

messages. Each control packet adheres to a structured format con-

sisting of up to three main components: a fixed header (FH), a

variable header (VH), and the payload, which contains the actual

data ormessage that may vary depending on the control packet type.

MQTT supports 15 different packet types, including connection

management, message publishing, and subscription management.

Table 1 summarizes the 15 MQTT packet types.

The explicit connection management packets highlight MQTT’s

stateful nature. Such statefulness enables the broker to retain a

client’s subscriptions and buffer messages for delivery upon re-

connection, which is crucial for maintaining persistent sessions.

However, the statefulness results in a vast and complex input space

for fuzzing. A fuzzing method needs domain knowledge about

MQTT to generate valid message sequences (e.g., they should start

2

Start

Generate
CONNECT

Generate
CONNACK

Generate
UNSUBACK

Generate
payload

Fuzz
payload Send

Finish

15 states for 15 packet types

Figure 1: FUME’s generation-guided fuzzing model.

with a CONNECT message) and explore deep states (e.g., some

states can only be reached by subscribing to a specific topic).

2.2 FUME’s Fuzzing Model for MQTT Brokers

FUME is a fuzzing method designed explicitly for testing MQTT

implementations [39]. To this end, FUME is a model-based fuzzing

method because it requires a predefined model of the MQTT proto-

col to guide the fuzzing process. FUME’s model is coarse-grained:

it only knows the 15 message types shown in Table 1, and every

message sequence must start with CONNECT.

FUME then uses the MQTTmodel to construct two Markov mod-

els (i.e., FSMs with probabilistic transitions) to describe mutation-

guided and generation-guided fuzzing, respectively. Mutation-
guided fuzzing requires an input corpus of valid message sequences

as test cases. On the other hand, generation-guided fuzzing requires
domain knowledge of the protocol to generate valid message se-

quences. In this paper, we aim to develop a flexible fuzzing method

applicable to different protocol implementations, where informal

protocol descriptions are often more readily available than a corpus

of test cases; thus, we focus on generation-guided fuzzing.

Figure 1 demonstates FUME’s fuzzing model of one iteration of

generation-guided fuzzing. We ignore the state-transition probabil-

ities, so it appears just like an FSM. The model describes a random

generation process: it starts with generating a CONNECT mes-

sage and its payload, then stochastically generates some follow-up

messages, applies fuzzing (e.g., insertion, deletion, and mutation)

to the payloads multiple times, and finally sends the message se-

quences to the MQTT broker. FUME has another fuzzing model for

its mutation-guided fuzzing process, and it alternates between the

two fuzzing models to leverage the strengths of both models.

We take inspiration from FUME with a key observation: such

fuzzing models can be easily expressed by executable programs that
generate random message sequences. Moreover, payload genera-

tors are also executable programs. The observation motivates us

to leverage the understanding and programming capabilities of

LLMs to extract domain knowledge about protocols and generate

executable programs that represent the fuzzing models.

3 Our Method

In this section, we describe the workflow and technical details

of our ChatFuMe method. Section 3.1 presents an overview of

ChatFuMe’s workflow and its two major components: (i) auto-

matic model construction, and (ii) feedback-guided fuzzing loop.

Sections 3.2 and 3.3 use MQTT as a demonstration protocol to

explain the two components, respectively.

3.1 Overview of the Workflow

Figure 2 presents an overview of ChatFuMe. Its key feature is com-

bining model-based protocol-implementation fuzzing with LLMs:

it uses LLMs to automate various steps in the workflow, including

the construction and adjustment of the fuzzing model. In this way,

ChatFuMe achieves flexibility to handle different protocols.

Automatic model construction. ChatFuMe begins with user-

provided protocol documentation, which may include prompts to

describe protocol states as a high-level summary of a protocol’s

specification. ChatFuMe uses an LLM to augment the set of states

by extracting domain knowledge from the protocol documentation.

With the augmented set of states, ChatFuMe again requests the

LLM to perform state selection and summarize the state-transition

rules, narrowing down to a small but essential subset of states as

the starting point for fuzzing and capturing how the protocol al-

lows moving between different states. These transitions, with the

selected states, form a lightweight coarse-grained model of protocol

behavior. This component also provides the functionality to adjust

the model by prompting an LLM to modify the selected states based

on feedback from the fuzzing loop, which we explain below.

Feedback-guided fuzzing loop. Based on the constructed protocol

model, ChatFuMe uses an LLM to generate a sequence-generator

program, which produces randomized state sequences that con-

form to transition rules. The sequence generator is paired with a

user-provided payload generator—which an LLM could generate

in advance—to generate complete message sequences. ChatFuMe

then sends these sequences to the protocol implementation and

monitors its behavior, e.g., whether it crashes or reports abnormal

responses. After collecting the testing results, ChatFuMe decides

whether to adjust the protocol model. We employ two mechanisms

for this decision: (i) with a predefined probability, ChatFuMe resets

the protocol model to the initial one constructed at the beginning

of the workflow, i.e., incorporates random restart; or (ii) ChatFuMe

prompts the LLM to analyze the testing results and decide if the

model needs refinement, and if so, further prompts it to identify

states that contribute to effective testing outcomes. Typically, the

LLM would add a few new states or remove existing ones from

the protocol model. If the model gets adjusted, ChatFuMe loops

back to the phase of generating a sequence-generator program

via an LLM. Otherwise, it keeps the sequence-generator program

unchanged and starts the next loop iteration.

Incorporation of LLMs. We use LLMs because they provide capa-

bilities for understanding documentation (for model construction),

generating code (for program generation), and analyzing testing

results (for model adjustment). Furthermore, for widely used proto-

cols, even if the user does not possess domain knowledge, LLMs’

familiarity with these protocols enables ChatFuMe to perform

fuzzing effectively with minimal guidance. Instead of asking the

LLM to generate individual test cases directly, we prompt it to gen-

erate an executable program as a random sequence generator. This

generator-based design significantly reduces token consumption

3

LLM

Automatic Model Construction Feedback-Guided Fuzzing Loop

Protocol
Description

① Input

S1 S2

…… S3

Initial States

② Extract

③ Summarize

Key States and Transitions

S1
…
…

S3

Sequence-Generator
Program

④ Code
Payload-Generator

Program

① Input

Message
Sequences

⑤ Generate

Testing
Results

⑥ Test

Whether to
Adjust Model

⑦ Decide

⑧ Feedback

Figure 2: An overview of ChatFuMe’s workflow. Dotted arrows indicate prompting the LLM for specific tasks.

by generating numerous message sequences from a single genera-

tor, making ChatFuMe cost-efficient for LLM-assisted fuzzing of

real-world protocol implementations.

3.2 Automatic Model Construction

The construction of our fuzzing model begins with user-provided

identification of protocol states, which can be derived from existing

work, specifications, documentation, or manual analysis. Listing

1 provides an example of the initial states of MQTT. These initial

states can be extracted from the MQTT specification [4]. These

states provide a coarse-grained foundation for understanding the

protocol’s high-level behavior. To enrich this initial model, we

prompt the LLM to incorporate domain knowledge, such as typical

client-server interactions and expected message sequences. This

step enhances the completeness and semantic accuracy of state def-

initions, enabling better downstream reasoning during fuzzing. By

combining user input with LLM-driven knowledge expansion, we

strike a balance between manual guidance and automated insight.

Listing 1: An example of initial states. The list above repre-

sents the primary MQTT control packet types. Each state

corresponds to a specific control packet used in the commu-

nication between MQTT clients and brokers.

1 states = ["CONNECT", "CONNACK", "PUBLISH",

2 "PUBACK", "PUBREC", "PUBREL",

3 "PUBCOMP", "SUBSCRIBE", "SUBACK",

4 "UNSUBSCRIBE", "UNSUBACK", "PINGREQ",

5 "PINGRESP", "DISCONNECT", "AUTH"]

Once domain knowledge is incorporated, we leverage the LLM to

refine the state space by selecting a concise set of essential protocol

states for testing. This step abstracts the protocol into a manage-

able number of representative states that retain sufficient semantic

coverage while reducing unnecessary complexity. As illustrated in

Listings 2 and 3, we construct a two-part prompt to guide the LLM

in identifying essential protocol states for testing. The Listings 2

provides contextual information about the protocol and the goal

of reducing the input space by selecting a small number of high-

impact states. The Listings 3 specifies a structured output format,

requiring the LLM to return a JSON array of state names and con-

cise justifications for their importance. This automated abstraction

enables ChatFuMe to focus on high-impact areas of the protocol,

balancing coverage and efficiency in the input space exploration.

Listing 2: The prompt for state selection.

1 Prompt_for_States_Selection = f'''I am designing a model -

based testing framework for the {protocol }. To

reduce the search space , I want to abstract the

protocol into a small number of essential states

that capture the most important aspects of its

behavior for testing purposes.

2 Please help me identify {number} essential states above

that cover the core functionality of {protocol}

while preserving enough semantics to be useful for

testing client and broker implementations.

3 Output Format: {example}'''

Listing 3: The Example for state selection.

1 Example_for_States_Selection = f'''

2 Return a JSON array of {number} objects.

3 Each object should have ONLY the following fields:

4 `"select"`: A short name for the state

5 (e.g., `"CONNECT"`, `"PUBLISH"`)
6 `"reason"`: A concise explanation of why this state is

7 essential for {protocol} testing

8 '''

3.3 Feedback-Guided Fuzzing Loop

In the feedback-guided fuzzing loop, we leverage the LLM to analyze

execution results and guide the adjustment of the protocol model.

The loop begins with the LLM-generated sequence generator, which

produces message sequences following the current state transition

model. These sequences serve as high-level plans for how a client

might interact with a protocol implementation.

4

To guide the LLM in producing a realistic sequence generator,

we apply an autoprompting strategy [17, 50, 52] to create a high-

quality prompt that encapsulates the protocol specification. Given

a set of selected states, we ask the LLM to construct a prompt that

will later be used to generate Python code implementing a random

state sequence generator. This prompt includes constraints to pre-

serve realistic protocol behavior, such as capturing state transition

probabilities, enforcing randomness, and ensuring variable-length

sequences. In this way, we distill the protocol specification into

a reusable instruction, forming a bridge between abstract state

modeling and a concrete generation of the generator.

After generating a prompt tailored for protocol behavior, we use

the LLM to produce a Python program as the sequence generator,

which wewrite into a module and dynamically import for execution.

This integration step serves both as a code validity check and as

the mechanism to link LLM output with our fuzzing pipeline. If the

generated code passes import and runtime validation, we invoke

it repeatedly in the loop. Listing 4 presents an example of the

code generated by the LLM, which incorporates both the protocol

specification and random control structures.

Listing 4: The Python code of an LLM-generated random

sequence generator for the MQTT protocol.

1 import random

2

3 def MQTT_state_generator ():

4 states = ['CONNECT ', 'CONNACK ', 'PUBLISH ', 'SUBSCRIBE

', 'DISCONNECT ', 'PINGREQ ', 'PUBACK ']

5 state_sequence = []

6 current_state = 'CONNECT '

7 state_sequence.append(current_state)

8

9 while True:

10 if current_state == 'CONNECT ':

11 next_state = random.choices (['CONNACK ', '

SUBSCRIBE '], weights =[70, 30]) [0]

12 elif current_state == 'CONNACK ':

13 next_state = random.choices (['PUBLISH ', '

SUBSCRIBE ', 'DISCONNECT '], weights =[50, 30, 20]) [0]

14 elif current_state == 'PUBLISH ':

15 next_state = random.choices (['PUBACK ', '

SUBSCRIBE ', 'DISCONNECT '], weights =[60, 30, 10]) [0]

16 elif current_state == 'SUBSCRIBE ':

17 next_state = random.choices (['PUBLISH ', '

DISCONNECT ', 'PINGREQ '], weights =[40, 30, 30]) [0]

18 elif current_state == 'DISCONNECT ':

19 if random.random () < 0.5:

20 break

21 else:

22 next_state = 'CONNECT '

23 elif current_state == 'PINGREQ ':

24 next_state = random.choices (['DISCONNECT ', '

PUBACK '], weights =[70, 30]) [0]

25 elif current_state == 'PUBACK ':

26 next_state = random.choices (['PUBLISH ', '

DISCONNECT '], weights =[60, 40]) [0]

27

28 state_sequence.append(next_state)

29 current_state = next_state

30

31 if random.random () < 0.5:

32 break

33

34 return state_sequence

The generated sequences are then passed to a user-provided

payload generator, which translates each sequence into concrete

protocol messages. Note that the payload generator could also be

generated in advance by an LLM. The resulting payloads are sent

to the target protocol implementation, and ChatFuMe records the

feedback from each run to inform further model adjustment.

After sending a sufficient number of fuzzing sequences (ranging

from 20,000 to 50,000 in our experiments), ChatFuMe analyzes the

feedback from the target protocol implementation and evaluates

the fuzzing effectiveness, guiding model adjustment. The analysis

focuses on identifying failure patterns by computing statistics such

as the number of failures per protocol function, total request dis-

tribution, and failure rates. Specifically, we categorize responses

like timeouts or connection resets as failures and calculate their

frequency relative to the total number of generated sequences. This

analysis provides insight into which parts of the protocol are more

error-prone, helping to inform the LLM-driven model adjustment

in subsequent fuzzing iterations.

The analysis above is then formatted and sent as part of a prompt

to the LLM, asking it to interpret the results in the context of the

target protocol and suggest whether any states should be added or

removed from the model to improve test effectiveness, as shown in

Listing 5. Notably, we only ask the LLM to interpret the statistical

results and enhance test effectiveness. We do not explicitly ask it

to analyze or reason about correlations between different types of

failures. To ensure reliability, we validate any LLM-suggested states

to avoid hallucinated or irrelevant protocol behavior. This LLM-

driven evaluation allows our fuzzing process to adapt intelligently

over time, refining the model based on concrete feedback from

protocol implementations.

Listing 5: The prompt for model adjustment.

1 Prompt_for_Decision = f'''{reuslt_summary}

2 Above is the summary of fuzzing results of a {protocol}

implementation using these states:

3 {states}

4 Do you think I should add or remove more states in the

search space?

5 Give your result in JSON format.

6 It should ONLY have two fields:

7 `"decision"`: ADD or DELETE answer for should I add more

states in search space or delete one state in the

search space?

8 `"reason"`: A concise explanation of why I should add

more states.'''

To enhance exploration and prevent convergence to a local opti-

mum, we introduce controlled randomness into the loop by occa-

sionally re-initializing the model from the beginning, allowing the

system to escape stagnant state configurations. (Note that this mech-

anism is not illustrated in Figure 2.) The fuzzing loop continues until

a crash or critical fault is observed, ensuring prolonged exploration

when necessary. When analyzing results, if adjustment is needed,

we prompt the LLM to suggest a new state to add (from previously

unselected candidates) or recommend removing underperforming

states. These decisions are based on summarized feedback from

past executions, and each recommendation includes a justification

to preserve model clarity. By integrating randomness and iterative

adjustment, the loop strikes a balance between exploiting known

effective sequences and exploring new protocol behaviors.

5

Table 2: A summary of protocol implementations used in our

evaluation. “#Stars” indicates the number of GitHub stars (as

of July 2025). “Used in” denotes which research question(s)

(RQ1–RQ3) each implementation contributed to.

Name Protocol Language #Stars Used in

HMQ MQTT Go 1359 RQ1

Moquette MQTT Java 2382 RQ1

Mosquitto MQTT C 9928 RQ1 & RQ2

Aedes MQTT JavaScript 1873 RQ2

Pymodbus Modbus Python 2494 RQ1

OwnTone DAAP C 2287 RQ1 & RQ3

4 Experimental Design

In this section, we describe our experimental design to evaluate

our ChatFuMe method. We propose the following three research

questions, concerning flexibility, effectiveness, and cost efficiency:

• RQ1: How flexible and effective is ChatFuMe in discovering

faults across different protocols and implementations?

• RQ2: How does ChatFuMe compare to a prior model-based

fuzzing method in protocol testing effectiveness?

• RQ3: What are the characteristics of ChatFuMe in terms of

token usage compared with an existing LLM-based fuzzer?

4.1 Systems Under Test and Baselines

We selected three network protocols and six real-world software

implementations in total, with varying levels of maturity and pop-

ularity, as reflected by their GitHub star counts. Table 2 presents

the statistics, including the protocol and programming language

they are based on, their popularity (GitHub stars), and the specific

RQs they were used to evaluate. This setup helps ensure that Chat-

FuMe is not tied to any single protocol or implementation style,

reinforcing its flexibility and practical applicability.

RQ1. To demonstrate the flexibility and effectiveness of our ap-

proach, we conduct experiments across three different protocol

implementations: MQTT, Modbus, and Digital Audio Access Pro-

tocol (DAAP). These protocols span different formats, transport

layers, and usage domains. The goal of this part of the experiment

is to demonstrate that ChatFuMe is not limited to any specific

protocol or domain.

MQTT is a lightweight publish-subscribe messaging protocol

commonly used in IoT systems.We evaluated our approach on three

different MQTT broker implementations: HMQ [31], Moquette [3],

andMosquitto [5]. This demonstrates ChatFuMe’s flexibility across

languages and ecosystems. HMQ is a high-performance MQTT bro-

ker written in Go, designed for scalability and compatibility with

MQTT 3.1.1 and standard clients. Moquette is a lightweight, embed-

dable Java broker that supports MQTT versions 3 and 5, featuring

session expiration and topic aliasing. Finally, Mosquitto is a widely

used C implementation that offers a compact MQTT broker and

client suite. Testing across these diverse implementations helps es-

tablish that ChatFuMe is protocol-agnostic and language-agnostic.

It is capable of handling varying runtime environments and code-

bases.

Modbus is an industrial control protocol based on function codes.

We selected Pymodbus [7] as the target implementation for Mod-

bus in our evaluation. Pymodbus is a full-featured, open-source

Modbus protocol stack written in Python, supporting both syn-

chronous and asynchronous APIs. It provides built-in client and

server simulators, payload builder/decoder functions, and supports

both standard and extended Modbus function codes with minimal

external dependencies.

DAAP is a binary protocol layered over HTTP used for media

sharing.We chose OwnTone [36] as our DAAP server for evaluation.

OwnTone is an open-source media server written in C, designed

to serve audio content over the DAAP. It supports sharing and

streaming music via DAAP, making it a versatile and realistic target

for fuzz testing. By incorporating OwnTone as our test subject,

we demonstrate that our framework can handle binary protocol

implementations layered over HTTP.

RQ2. To evaluate the testing effectiveness of our approach, we

compare it against FUME, a model-based fuzzing technique ex-

plicitly designed for MQTT. FUME combines mutation-based and

generation-based fuzzing strategies and introduces Markov chains

to guide both payload mutation and generation. It models the

fuzzing process as a finite Bernoulli process to explore MQTT pro-

tocol behaviors and uncover vulnerabilities thoroughly.

This research question is evaluated in two parts. First, we mea-

sure and compare the number of test cases generated by each

method within a fixed time window, assessing the throughput and

exploration capability of the fuzzers. Second, we analyze the crash

discovery speed, which is the rate at which each tool triggers a fault

or crash in the target protocol implementation. For the throughput

comparison, we evaluate on Mosquitto. For the crash speed com-

parison, we use Aedes [6], a popular MQTT broker implemented

in JavaScript.

RQ3. For token usage analysis, we compare our approach with

ChatAFL [37], a recent LLM-guided protocol fuzzer. ChatAFL

leverages large language models trained on human-readable proto-

col specifications to extract protocol message grammars and predict

stateful interactions. It uses LLMs to generate message sequences

and detect states in protocol implementations, combining grammar

construction with mutation and sequence prediction. We conduct a

comparison focused on: the total number of tokens consumed and

the number of LLM API calls required during the fuzzing process.

4.2 Our Implementation

ChatFuMe is primarily implemented in Python, with an emphasis

on cost-efficiency and broad applicability. To maximize flexibility,

all experiments in RQ1 and RQ2were conducted using GPT-4o-mini,

a lightweight language model that is readily interchangeable with

many popular alternatives on the market. This is made possible by

our design choice to decompose the overall fuzzing workflow into

smaller, modular tasks. This eliminates the need for large token

windows or high-capacity models. For RQ3, we additionally evalu-

ated ChatFuMe using GPT-3.5 Turbo, which successfully handled

all required subtasks, further demonstrating the adaptability of

our approach to different LLM configurations. In all experiments,

6

the temperature parameter was set to 0.5 to introduce controlled

randomness and encourage diverse outputs from the LLM.

We obtain the initial states and payload generators for MQTT,

Modbus, and Digital Audio Access Protocol (DAAP) using the fol-

lowing approach:

• For MQTT, we extracted protocol states directly from the

official specification[4] and adopted the existing payload

generator from FUME.

• ForModbus, we similarly derived states from the official spec-

ification [2]. To generate payloads, we provided ChatGPT

with examples from the specification. ChatGPT generates a

protocol-aware payload generator totaling 501 lines of code.

• For DAAP, which is layered over HTTP and features loosely

structured binary payloads, we used ChatGPT to create a

lightweight generator based on the specification[1] and in-

tegrated simple mutation strategies. The resulting generator

is compact—just over 100 lines of code—yet effective.

4.3 Experimental Setup

We designed fuzzing campaigns tailored to each research question

while balancing resource constraints and consistency.

RQ1. We ran each fuzzing campaign for five hours to allow suffi-

cient exploration while limiting the cost of LLM API calls due to

hardware and budget constraints.

RQ2. We conducted a more controlled comparison with FUME.

To mitigate randomness, we ran both ChatFuMe and FUME for

one hour, repeated across three independent trials, and measured

the total number of unique test cases, the total number of test cases

generated, the average test case length, and the new response found.

To evaluate the crash discovery speed, we ran both tools three times

and recorded the time it took for each to trigger the first crash.

RQ3. Since ChatAFL does not store all generated test cases, we

cannot directly compare the number of test cases over a fixed time.

Therefore, we focus on comparing token usage and the number

of LLM calls. To ensure a fair comparison, we use GPT-3.5 Turbo

instead of GPT-4o-mini in our evaluation.

Environment. All experiments were conducted on a virtual ma-

chine running Ubuntu 20.04. The VM was allocated 11.4 GB of

memory, 4 CPU cores, and a 50 GB SCSI hard disk. The host ma-

chine is equipped with a 13th Gen Intel(R) Core(TM) i9-13900H @

2.60 GHz and 32 GB of RAM. All LLM calls in our experiments were

made via the OpenAI API.

Metrics. Because ChatFuMe does not rely on instrumentation,

we do not report traditional code coverage metrics [16, 51]. For

the comparison in RQ2 regarding test case generation, we measure

the total number of test cases generated, the number of unique

test cases, the average test case length, and the number of distinct

responses discovered. For RQ3, we focus on efficiency metrics by

comparing the total number of LLM tokens used and the number

of LLM API calls made.

5 Evaluation and Discussion

By evaluating across general-purpose protocols and comparing

with both traditional and LLM-based fuzzers, we demonstrate that

ChatFuMe is broadly applicable, capable of uncovering real-world

bugs, and cost-efficient in terms of token usage.

5.1 RQ1: Flexibility and Effectiveness Across

Protocol Implementations

ChatFuMe successfully discovered multiple bugs across diverse

protocol implementations, demonstrating both effectiveness and

flexibility. Table 3 summarizes the 12 potential bugs discovered by

ChatFuMe across multiple protocol implementations.

For the MQTT protocol, we evaluated three broker implementa-

tions: HMQ,Moquette, andMosquitto. OnHMQ, we identified a crit-

ical bug that causes the system to crash. On Moquette, ChatFuMe

uncovered three distinct issues that trigger exceptions, though the

broker remains operational. No bugs were discovered in Mosquitto,

likely because we reused the payload generator from FUME, which

has already been used extensively to test Mosquitto, and most

known issues have been patched.

Listing 6 shows the buggy codewe discovered in theHMQMQTT

broker. The issue lies in the conditional statement conn != nil &&
conn.RemoteAddr() != nil. While it appears safe, calling conn

.RemoteAddr() when conn is nil will still cause a runtime panic

in Go, as method calls on a nil interface result in dereferencing a

nil pointer. This leads to a crash if the code path is ever executed

with a nil conn, which our generated input successfully triggered.

This example illustrates how ChatFuMe can uncover subtle but

critical edge-case bugs by exploring under-tested execution paths.

Listing 6: Buggy code in HMQ where line 2 contains a faulty

conditional check: calling conn.RemoteAddr() without ensuring

conn is non-nil leads to a runtime panic.

1 // add remote connection address

2 if !wsEnabled && conn != nil && conn.RemoteAddr () != nil

3 {

4 result = append(result , zap.Stringer("addr", conn.

RemoteAddr ()))

5 }

6 else if wsEnabled && wsConn != nil && wsConn.Request () !=

nil

7 {

8 result = append(result , zap.String("addr", wsConn.

Request ().RemoteAddr))

9 }

For Modbus, we tested the Pymodbus implementation. Our ap-

proach identified eight unique bugs, each causing exceptions with-

out crashing the system. They are all related to incorrect buffer

lengths during binary unpacking. These exceptions point to im-

proper handling of specific malformed or edge-case inputs and

reflect the method’s ability to exercise error-handling paths even

in well-established protocol libraries.

Listing 7: Buggy code in Pymodbus where line 1 attempts to

unpack 5 bytes from a buffer without validating its length,

leading to a struct.error when the data is too short.

1 self.address , count , _byte_count = struct.unpack(">HHB",

data [0:5])

The bug occurs in the Modbus implementation when parsing

a request frame with an unexpected or malformed length. Specifi-

cally, the code in Listing 7 attempts to unpack 5 bytes from the in-

coming data buffer using struct.unpack(">HHB", data[0:5]).

7

Table 3: A summary of identified potential bugs by protocol, software, error type, and description.

Protocol Subject Error Type Description

1 Modbus PyModbus struct.error Buffer too small for >HH in register_message.py:180.
2 Modbus PyModbus struct.error Buffer too short for >HHB in bit_message.py:134.
3 Modbus PyModbus struct.error Buffer too short for >H in file_message.py:238.
4 Modbus PyModbus struct.error Buffer too short for >BBB in mei_message.py:52.
5 Modbus PyModbus struct.error Buffer too short for >HH in bit_message.py:30.
6 Modbus PyModbus struct.error Buffer too short >HH in register_message.py:26.
7 Modbus PyModbus struct.error Buffer too short for >BHHH in file_message.py:61.
8 Modbus PyModbus struct.error Buffer too short for >HHB in register_message.py:225.
9 MQTT HMP nil pointer dereference Crash if conn.RemoteAddr() is nil
10 MQTT Moquette IOException Invalid MQTT message caused channel closure.

11 MQTT Moquette NullPointerException Null access during PUBLISH message handling.

12 MQTT Moquette StacklessClosedChannelException Connection closed before sending CONNACK.

Table 4: The comparison of test-case generation between ChatFuMe and FUME over three runs (on Mosquitto).

Run

ChatFuMe FUME

Total Cases Unique Cases Avg. Length Total Cases Unique Cases Avg. Length

1 3,333,073 1,796,307 127.06 1,875,234 1,138,751 139.26

2 2,125,908 1,179,660 137.91 1,874,732 1,137,339 135.46

3 1,610,051 899,816 144.34 1,519,627 925,739 129.8

However, if the data is shorter than 5 bytes, it results in a struct.
error with the message unpack requires a buffer of 5 bytes. This
indicates a missing length check before unpacking, which can cause

the program to crash or throw an exception at runtime.

In the case of DAAP, we tested the OwnTone media server. Our

testing did not uncover new bugs. One challenge here is that DAAP

is layered over HTTP, and our system currently models only the

DAAP-specific parts, without generating complete HTTP requests.

Furthermore, OwnTone has already been tested by ChatAFL [37],

which may have addressed some common issues. Nevertheless,

ChatFuMe was still able to process and explore DAAP’s binary

structure with minimal manual adjustment, underlining its general

applicability.

5.2 RQ2: Effectiveness vs. Model-Based Fuzzers

To evaluate how our LLM-assisted fuzzing approach compares to

existing model-based fuzzers, we conducted a head-to-head compar-

ison with FUME, a domain-specific MQTT fuzzer. Our evaluation

consists of two parts: the first measures the ability of each tool to

generate diverse and voluminous test cases within a fixed time bud-

get; the second assesses the efficiency of each method in triggering

faults by comparing the time taken to induce a crash.

Table 4 presents the test case generation results of our approach

and FUME across three independent one-hour fuzzing runs on

the Mosquitto MQTT broker. ChatFuMe consistently generates a

higher number of total and unique test cases compared to FUME.

For example, in the first run, ChatFuMe produced over 3.3 million

total cases and nearly 1.8 million unique ones, whereas FUME

generated only 1.8 million total cases and 1.1 million unique cases.

This trend holds across all three runs, demonstrating the higher

Run 1 Run 2 Run 3
Run Index

0

500

1000

1500

2000

2500

Ti
m

e
to

 Fi
rs

t C
ra

sh
 (s

ec
on

ds
)

1022

1664

2389

971

1489

2168

Crash Discovery Time on Aedes (Lower is Better)
FUME
ChatFuMe

Figure 3: The comparison of crash discovery time between

ChatFuMe and FUME over three runs (on Aedes).

test case diversity and generation throughput of our LLM-assisted

approach.

While the average payload length varies slightly, both tools

produce messages of comparable size, indicating similar levels of

complexity in the generated data. This suggests that ChatFuMe is

not simply generating larger or noisier inputs to inflate test cover-

age, but is instead producing diverse, well-formed messages that are

competitive in structure and semantics. Moreover, the consistently

higher number of unique cases indicates broader exploration of the

input space, which can lead to uncovering more edge cases and

rare protocol behaviors.

To assess crash discovery efficiency, we compared our LLM-

assisted fuzzer against FUME on the Aedes MQTT broker under

8

Table 5: The comparison of LLM token and API call usage

between ChatFuMe and ChatAFL over a one-hour run.

Method Tokens Used LLM Calls

ChatFuMe 5,980 16

ChatAFL 216,596 160

identical conditions over three trials. ChatFuMe located the first

crash in an average of 1543.0 seconds, compared to 1691.7 seconds

for FUME, which is an improvement of roughly 9%. In every indi-

vidual run, our approach detected faults faster (16m11s vs. 17m02s,

24m50s vs. 27m44s, and 36m08s vs. 39m49s), demonstrating that our

LLM-guided sequence generation can accelerate the identification

of critical vulnerabilities.

5.3 RQ3: Cost Efficiency vs. LLM-Based Fuzzers

To assess the efficiency of ChatFuMe compared to existing LLM-

based fuzzing approaches, we conducted a one-hour experiment

using both ChatFuMe and ChatAFL. We measured the total num-

ber of tokens consumed and the number of LLM calls made during

the fuzzing process. As shown in Table 5, our approach consumed

only 5,980 tokens and made 16 LLM calls, while ChatAFL con-

sumed 216,596 tokens and issued 160 LLM calls in the same period.

This demonstrates that ChatFuMe is more token-efficient—using

roughly 36 times fewer tokens and 10 times fewer LLM calls—

making it more practical for long-running or cost-sensitive fuzzing

campaigns.

While the token and call statistics provide a clear comparison of

efficiency, it is important to note that a direct comparison of the

generated test cases between ChatFuMe and ChatAFL is limited

due to differences in how the two tools store their outputs. Specifi-

cally, ChatAFL only retains test cases that trigger new execution

paths, whereas ChatFuMe stores all generated cases for analysis

and replay. Upon inspection of the test cases retained by ChatAFL,

we found that they primarily consisted of HTTP-like requests such

as GET and POST, which aligns with the nature of DAAP as an HTTP-

based protocol. In contrast, the test cases produced by ChatFuMe

are raw hexadecimal payloads that conform to the DAAP message

format.

5.4 Discussion

Limitations. We do not include an ablation study in this work

because our goal is to minimize manual effort and demonstrate how

LLMs can be leveraged to model protocol structures with minimal

human input automatically. Rather than manually deconstructing

and varying components, our focus is on showcasing the feasibility

and effectiveness of using LLMs in a streamlined and integrated way.

The strength of our approach lies in its simplicity and automation.

We focus our evaluation on comparing the complete system against

established baselines, including traditional fuzzers and existing

LLM-based methods.

Our findings suggest that LLMs can be used not only to auto-

mate the creation of fuzzers but also to generate malicious tools for

exploiting vulnerabilities. This highlights a broader concern about

the dual-use nature of large language models, suggesting that fu-

ture work should consider safeguards and responsible deployment

practices.

Theat to construct validity. One limitation of our method, com-

mon tomany fuzzing techniques, is that it primarily exposes surface-

level bugs: crashes or exceptions caused bymalformed inputs.While

our method generates syntactically diverse and realistic messages, it

does not capture deeper semantic behaviors that may be necessary

to uncover subtle logic bugs. This may limit the types of vulner-

abilities our tool can detect, potentially underestimating deeper

security issues present in the target systems.

Threat to internal validity. Malformed inputs may not directly

cause some bugs discovered during fuzzing, but rather be caused

by unrelated factors such as system configuration or dependency

issues. We mitigate this by confirming that crashes are triggered

deterministically with repeated inputs.

Threat to external validity. Our evaluation focuses on a select set

of protocols (MQTT, Modbus, DAAP) and open-source implemen-

tations. While they cover multiple transport layers and application

domains, generalizing our results to all protocol-based software

may be limited. Proprietary systems, real-time protocols, or those

with more complex state machines may exhibit different behavior.

In some cases, the initial protocol specifications used by our

payload generator were derived from LLM output (e.g., ChatGPT).

While this allows automation, it also introduces potential inaccura-

cies or omissions compared to official standards. The effectiveness of

our fuzzing may partially rely on the correctness of LLM-generated

specifications, which may not generalize well to protocols with

complex or poorly documented semantics.

6 Related Work

6.1 Protocol Implementation Fuzzing

Protocol implementation fuzzing is a testing technique that sys-

tematically sends malformed and unexpected inputs to network

protocol implementations to uncover bugs, vulnerabilities, or unex-

pected behavior. Fuzzing techniques in terms of input generation

are commonly categorized into generation-based and mutation-

based approaches. Generation-based fuzzing [14, 23, 41, 46] con-

structs inputs from predefined specifications, ensuring syntactic

correctness and compliance with the protocol. Mutation-based

fuzzing [10, 29, 38, 40] modifies existing valid inputs to create test

cases, relying on randomness or heuristics to explore unexpected

behaviors. A common approach for fuzzers to improve performance

on semantic constraints is to build a protocol communication model.

The model enables fuzzers to generate structured and context-

sensitivemessage sequences. FUME [39]manually constructs a com-

munication model for MQTT and integrates generation-based and

mutation-based fuzzing in this model. There are some works that

use automated methods to build communication models [26, 34, 55].

For example, Pulsar [26] automatically builds a communication

model by analyzing traffic loads.

There are also several LLM-based fuzzers designed for testing

protocol implementations. These approaches typically provide the

9

LLM with protocol inputs or documentation and prompt it to gen-

erate test cases in the form of protocol payloads. ChatAFL [37]

is a general fuzzing framework that directly uses LLM to extract

information and generate initial inputs. In this framework, LLM

plays an important role in initializing the seed of fuzzing and pro-

vides guidance for mutation based on coverage. However, ChatAFL

is primarily designed for string-based protocol implementations,

leveraging the strengths of LLMs in understanding and generat-

ing structured text data. mGPTFuzz [35] is an LLM-based fuzzing

framework for Matter IoT Devices [8]. In mGPTFuzz’s fuzzing loop,

LLM is first asked to extract information from Matter’s specifica-

tion. Users then prompt the LLM to build finite state machines

(FSMs) based on the extracted information. Finally, it generates

inputs based on FSMs and a user-defined policy. LLMIF [49] is an

LLM-based fuzzing framework for Zigbee IoT devices [27], utilizing

LLM in the process of protocol information extraction and response

reasoning.

Our work differs from existing approaches in several ways. Com-

pared tomanually craftedmodel-based fuzzers and protocol-specific

LLM-based fuzzes like mGPTFuzz, our method uses LLMs to au-

tomatically build and adapt different protocol models, making it

more general and less dependent on expert input. In contrast to

LLM-based fuzzers that directly generate individual test cases, our

method uses the LLM to program a protocol-aware sequence gen-

erator, providing better control over input structure and reducing

token consumption.

6.2 LLM in Testing

Large language models (LLMs) have shown strong performance

across multiple tasks in software engineering [32, 33, 45]. By lever-

aging their ability to understand and generate code, LLMs can help

identify edge cases, create meaningful test inputs, and detect poten-

tial vulnerabilities. Fuzz4all[52] is a universal fuzzing framework

for compiler testing. It outperforms different baseline tools in 6 dif-

ferent programming languages. Whitefox [53] is a white-box fuzzer

for testing logic bugs. SymPrompt[44] presents a prompting strat-

egy for test generation. By implementing a multi-stage workflow,

SymPrompt reaches higher code coverage in several open-source

Python projects.

Our work differs from existing LLM-based fuzzers in other do-

mains, such as compiler testing or code-based test generation, by

focusing on general protocol implementation fuzzing. Unlike those

approaches that typically generate code or API calls as test cases,

our method finally generates protocol message payloads that must

conform to specific communication sequences. This requires han-

dling stateful interactions and semantic constraints unique to net-

work protocols, which we address by using LLMs to model protocol

behavior and guide input generation, rather than producing test

cases directly.

6.3 Feedback-Guided Testing

Feedback-guided testing [18] is a software cybernetics [19] ap-

proach to software testing where test strategies evolve dynamically

based on real-time feedback from previous test executions. Unlike

traditional static testing methods, this approach treats the software

under test as a controlled object and the testing process as a feed-

back control loop. The central idea is to collect the outcome data

from the executed test cases. For instance, in the Controlled Markov

Chain model [30], the testing process is governed by an estimated

state, and optimal actions are selected to meet reliability goals with

minimal resource consumption.

Our method incorporates the idea of feedback-guided testing

by using LLMs to iteratively adjust the input generator based on

feedback from previous test executions. We adapt the generator

by modifying protocol states or transitions, allowing the fuzzer to

explore diverse and previously untested behaviors. This approach

brings the principles of ART into the LLM era, enabling automated,

feedback-driven refinement of test strategies in a structured and

scalable way.

7 Conclusion

In this work, we propose a novel LLM-assisted fuzzing method

ChatFuMe that automates protocol modeling and test case genera-

tion with minimal manual effort. ChatFuMe demonstrates strong

flexibility across multiple protocols and is effective in identifying

real-world bugs in diverse software systems. Through extensive

evaluation, we show that our approach generates more diverse

and higher-volume test cases than traditional fuzzers, while being

significantly more efficient in discovering crashes. Moreover, our

method achieves these results using far fewer LLM tokens and calls

compared to other LLM-based fuzzers, highlighting its efficiency

and practicality. This study illustrates the potential of large lan-

guage models to streamline and enhance fuzz testing, opening new

directions for intelligent and automated software testing.

References

[1] [n. d.]. GitHub - bjoernricks/daap-protocol: Digital Audio Access Protocol (DAAP)

documentation — github.com. https://github.com/bjoernricks/daap-protocol.

[Accessed 17-07-2025].

[2] [n. d.]. Modbus Specifications and Implementation Guides — modbus.org. https:

//www.modbus.org/specs.php. [Accessed 17-07-2025].

[3] [n. d.]. Moquette Broker — moquette-io.github.io. https://moquette-io.github.io/

moquette/. [Accessed 19-07-2025].

[4] [n. d.]. MQTT Specification — mqtt.org. https://mqtt.org/mqtt-specification/.

[Accessed 14-07-2025].

[5] 2025. Eclipse Mosquitto — mosquitto.org. https://mosquitto.org/. [Accessed

19-07-2025].

[6] 2025. GitHub - moscajs/aedes: Barebone MQTT broker that can run on any

stream server, the node way — github.com. https://github.com/moscajs/aedes.

[Accessed 19-07-2025].

[7] 2025. GitHub - pymodbus-dev/pymodbus: A full modbus protocol written in

python — github.com. https://github.com/pymodbus-dev/pymodbus. [Accessed

19-07-2025].

[8] Connectivity Standards Alliance. 2023. Matter Specification Version 1.2. https://

csa-iot.org/wp-content/uploads/2023/10/Matter-1.2-Core-Specification.pdf. [Ac-

cessed 27-05-2025].

[9] Max Ammann, Lucca Hirschi, and Steve Kremer. 2024. DY fuzzing: formal Dolev-

Yao models meet cryptographic protocol fuzz testing. In 2024 IEEE Symposium on
Security and Privacy (SP). IEEE, 1481–1499.

[10] Paschal C Amusuo, Ricardo Andrés Calvo Méndez, Zhongwei Xu, Aravind

Machiry, and James C Davis. 2023. Systematically detecting packet validation

vulnerabilities in embedded network stacks. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 926–938.

[11] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H Katz. 1995. Im-

proving TCP/IP performance over wireless networks. In Proceedings of the 1st
annual international conference on Mobile computing and networking. 2–11.

[12] Christian Berger, Philipp Eichhammer, Hans P Reiser, Jörg Domaschka, Franz J

Hauck, and Gerhard Habiger. 2021. A survey on resilience in the iot: Taxonomy,

classification, and discussion of resilience mechanisms. ACM Computing Surveys
(CSUR) 54, 7 (2021), 1–39.

10

https://github.com/bjoernricks/daap-protocol
https://www.modbus.org/specs.php
https://www.modbus.org/specs.php
https://moquette-io.github.io/moquette/
https://moquette-io.github.io/moquette/
https://mqtt.org/mqtt-specification/
https://mosquitto.org/
https://github.com/moscajs/aedes
https://github.com/pymodbus-dev/pymodbus
https://csa-iot.org/wp-content/uploads/2023/10/Matter-1.2-Core-Specification.pdf
https://csa-iot.org/wp-content/uploads/2023/10/Matter-1.2-Core-Specification.pdf

[13] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk. 1996. RFC1945: Hypertext

Transfer Protocol–HTTP/1.0.

[14] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric

Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim

Zinzindohoue. 2017. A messy state of the union: Taming the composite state

machines of TLS. Commun. ACM 60, 2 (2017), 99–107.

[15] SIG Bluetooth. 2010. Bluetooth Specification Version 2.0. http://www. bluetooth.
com/ (2010).

[16] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the reliability

of coverage-based fuzzer benchmarking. In Proceedings of the 44th International
Conference on Software Engineering. 1621–1633.

[17] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[18] Kai-Yuan Cai. 2002. Optimal software testing and adaptive software testing in

the context of software cybernetics. Information and Software Technology 44, 14

(2002), 841–855.

[19] Kai-Yuan Cai, JoãoW Cangussu, Raymond A DeCarlo, and Aditya P Mathur. 2003.

An overview of software cybernetics. In Eleventh Annual International Workshop
on Software Technology and Engineering Practice. IEEE, 77–86.

[20] Joeri De Ruiter and Erik Poll. 2015. Protocol state fuzzing of {TLS} implementa-

tions. In 24th USENIX Security Symposium (USENIX Security 15). 193–206.
[21] Dongliang Fang, Zhanwei Song, Le Guan, Puzhuo Liu, Anni Peng, Kai Cheng,

Yaowen Zheng, Peng Liu, Hongsong Zhu, and Limin Sun. 2021. Ics3fuzzer: A

framework for discovering protocol implementation bugs in ics supervisory soft-

ware by fuzzing. In Proceedings of the 37th Annual Computer Security Applications
Conference. 849–860.

[22] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri De Ruiter, Konstanti-

nos Sagonas, and Juraj Somorovsky. 2020. Analysis of {DTLS} implementations

using protocol state fuzzing. In 29th USENIX Security Symposium (USENIX Security
20). 2523–2540.

[23] Paul Fiterau-Brostean, Bengt Jonsson, Konstantinos Sagonas, and Fredrik Tåquist.

2023. Automata-Based Automated Detection of State Machine Bugs in Protocol

Implementations.. In NDSS.
[24] Matheus E Garbelini, Vaibhav Bedi, Sudipta Chattopadhyay, Sumei Sun, and

Ernest Kurniawan. 2022. {BrakTooth}: Causing havoc on bluetooth link manager

via directed fuzzing. In 31st USENIX Security Symposium (USENIX Security 22).
1025–1042.

[25] Matheus E Garbelini, Chundong Wang, and Sudipta Chattopadhyay. 2020. Grey-

hound: Directed greybox wi-fi fuzzing. IEEE Transactions on Dependable and
Secure Computing 19, 2 (2020), 817–834.

[26] Hugo Gascon, ChristianWressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad

Rieck. 2015. Pulsar: Stateful black-box fuzzing of proprietary network protocols.

In Security and Privacy in Communication Networks: 11th EAI International Con-
ference, SecureComm 2015, Dallas, TX, USA, October 26-29, 2015, Proceedings 11.
Springer, 330–347.

[27] Drew Gislason. 2008. Zigbee wireless networking. Newnes.
[28] Lav Gupta, Raj Jain, and Gabor Vaszkun. 2015. Survey of important issues in

UAV communication networks. IEEE communications surveys & tutorials 18, 2
(2015), 1123–1152.

[29] Fengjiao He, Wenchuan Yang, Baojiang Cui, and Jia Cui. 2022. Intelligent fuzzing

algorithm for 5g nas protocol based on predefined rules. In 2022 International
Conference on Computer Communications and Networks (ICCCN). IEEE, 1–7.

[30] Hai Hu, Chang-Hai Jiang, and Kai-Yuan Cai. 2008. Adaptive software testing in

the context of an improved controlled Markov chain model. In 2008 32nd Annual
IEEE International Computer Software and Applications Conference. IEEE, 853–858.

[31] joy.zhou, chowyu, dependabot[bot], Lucas Vieira, spit4520, gerdstolpmann,

muXxer, Marc Magnin, Rajiv Shah, Thomas, TrickTt, Luca Moser, Ron Evans,

Yog, chujiangke, foosinn, Jason, YangYuDong, winglq, Michael Stapelberg, Marc

Magnin, Lijin, Husy, Jayden, Giovanni Rosa, Gary Barnett, and Aleksey Myas-

nikov. 2025. fhmq/hmq. https://github.com/fhmq/hmq. https://github.com/

fhmq/hmq

[32] Sungmin Kang, Gabin An, and Shin Yoo. 2024. A quantitative and qualitative

evaluation of LLM-based explainable fault localization. Proceedings of the ACM
on Software Engineering 1, FSE (2024), 1424–1446.

[33] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhancing static

analysis for practical bug detection: An llm-integrated approach. Proceedings of
the ACM on Programming Languages 8, OOPSLA1 (2024), 474–499.

[34] Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun Jiao, and Jiaguang Sun.

2019. Polar: Function code aware fuzz testing of ics protocol. ACM Transactions
on Embedded Computing Systems (TECS) 18, 5s (2019), 1–22.

[35] Xiaoyue Ma, Lannan Luo, and Qiang Zeng. 2024. From One Thousand Pages of

Specification to Unveiling Hidden Bugs: Large Language Model Assisted Fuzzing

of Matter {IoT} Devices. In 33rd USENIX Security Symposium (USENIX Security
24). 4783–4800.

[36] OwnTone maintainers. 2025. OwnTone — owntone.github.io. https://owntone.

github.io/owntone-server/. [Accessed 19-07-2025].

[37] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.

Large language model guided protocol fuzzing. In Proceedings of the 31st Annual
Network and Distributed System Security Symposium (NDSS), Vol. 2024.

[38] Roberto Natella. 2022. Stateafl: Greybox fuzzing for stateful network servers.

Empirical Software Engineering 27, 7 (2022), 191.

[39] Bryan Pearson, Yue Zhang, Cliff Zou, and Xinwen Fu. 2022. Fume: Fuzzing

message queuing telemetry transport brokers. In IEEE INFOCOM 2022-IEEE Con-
ference on Computer Communications. IEEE, 1699–1708.

[40] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. Aflnet: A

greybox fuzzer for network protocols. In 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, 460–465.

[41] Gaganjeet Singh Reen and Christian Rossow. 2020. DPIFuzz: a differential fuzzing

framework to detect DPI elusion strategies for QUIC. In Proceedings of the 36th
Annual Computer Security Applications Conference. 332–344.

[42] Mengfei Ren, Xiaolei Ren, Huadong Feng, Jiang Ming, and Yu Lei. 2021. Z-fuzzer:

Device-agnostic fuzzing of zigbee protocol implementation. In Proceedings of the
14th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
347–358.

[43] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. 2020. Franken-

stein: Advanced wireless fuzzing to exploit new bluetooth escalation targets. In

29th USENIX Security Symposium (USENIX Security 20). 19–36.
[44] Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi Wang, Xiaofei Ma, Mu-

rali Krishna Ramanathan, and Baishakhi Ray. 2024. Code-aware prompting: A

study of coverage-guided test generation in regression setting using llm. Pro-
ceedings of the ACM on Software Engineering 1, FSE (2024), 951–971.

[45] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An empirical

evaluation of using large language models for automated unit test generation.

IEEE Transactions on Software Engineering 50, 1 (2023), 85–105.

[46] Juraj Somorovsky. 2016. Systematic fuzzing and testing of TLS libraries. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 1492–1504.

[47] Dipa Soni and Ashwin Makwana. 2017. A survey on mqtt: a protocol of internet

of things (iot). In International conference on telecommunication, power analysis
and computing techniques (ICTPACT-2017), Vol. 20.

[48] George Thomas. 2008. Introduction to the modbus protocol. The Extension 9, 4

(2008), 1–4.

[49] Jincheng Wang, Le Yu, and Xiapu Luo. 2024. Llmif: Augmented large language

model for fuzzing iot devices. In 2024 IEEE Symposium on Security and Privacy
(SP). IEEE, 881–896.

[50] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain

of thought reasoning in language models. arXiv preprint arXiv:2203.11171 (2022).
[51] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free

lunch for testing: Fuzzing deep-learning libraries from open source. In Proceedings
of the 44th International Conference on Software Engineering. 995–1007.

[52] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming

Zhang. 2024. Fuzz4all: Universal fuzzing with large language models. In Pro-
ceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1–13.

[53] Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jab-

barvand, and Lingming Zhang. 2024. Whitefox: White-box compiler fuzzing

empowered by large language models. Proceedings of the ACM on Programming
Languages 8, OOPSLA2 (2024), 709–735.

[54] Xiaohan Zhang, Cen Zhang, Xinghua Li, Zhengjie Du, Bing Mao, Yuekang Li,

Yaowen Zheng, Yeting Li, Li Pan, Yang Liu, et al. 2024. A survey of protocol

fuzzing. Comput. Surveys 57, 2 (2024), 1–36.
[55] Hui Zhao, Zhihui Li, Hansheng Wei, Jianqi Shi, and Yanhong Huang. 2019. Seq-

Fuzzer: An industrial protocol fuzzing framework from a deep learning perspec-

tive. In 2019 12th IEEE Conference on software testing, validation and verification
(ICST). IEEE, 59–67.

11

https://github.com/fhmq/hmq
https://github.com/fhmq/hmq
https://owntone.github.io/owntone-server/
https://owntone.github.io/owntone-server/

	Abstract
	1 Introduction
	2 Background: Model-Based Fuzzing of Protocol Implementations
	2.1 The MQTT Protocol
	2.2 FUME's Fuzzing Model for MQTT Brokers

	3 Our Method
	3.1 Overview of the Workflow
	3.2 Automatic Model Construction
	3.3 Feedback-Guided Fuzzing Loop

	4 Experimental Design
	4.1 Systems Under Test and Baselines
	4.2 Our Implementation
	4.3 Experimental Setup

	5 Evaluation and Discussion
	5.1 RQ1: Flexibility and Effectiveness Across Protocol Implementations
	5.2 RQ2: Effectiveness vs. Model-Based Fuzzers
	5.3 RQ3: Cost Efficiency vs. LLM-Based Fuzzers
	5.4 Discussion

	6 Related Work
	6.1 Protocol Implementation Fuzzing
	6.2 LLM in Testing
	6.3 Feedback-Guided Testing

	7 Conclusion
	References

