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Abstract

Recent studies have shown that deep learning models are vul-
nerable to attacks and tend to memorize training data points,
raising significant concerns about privacy leakage. This mo-
tivates the development of machine unlearning (MU), i.e., a
paradigm that enables models to selectively forget specific
data points upon request. However, most existing MU al-
gorithms require partial or full fine-tuning on the retain set.
This necessitates continued access to the original training
data, which is often impractical due to privacy concerns and
storage constraints. A few retain-data-free MU methods have
been proposed, but some rely on access to auxiliary data and
precomputed statistics of the retain set, while others scale
poorly when forgetting larger portions of data. In this paper,
we propose Influence-guided Machine Unlearning (IMU), a
simple yet effective method that conducts MU using only the
forget set. Specifically, IMU employs gradient ascent and in-
novatively introduces dynamic allocation of unlearning inten-
sities across different data points based on their influences.
This adaptive strategy significantly enhances unlearning ef-
fectiveness while maintaining model utility. Results across
vision and language tasks demonstrate that IMU consistently
outperforms existing retain-data-free MU methods.

1 Introduction

Deep learning (DL) models are widely deployed in vari-
ous applications, but their vulnerability to adversarial at-
tacks, such as membership inference attacks (Rezaei and Liu
2021; Watson et al. 2022) and model inversion attacks (Zhu,
Liu, and Han 2019; Geiping et al. 2020; Balunovic¢ et al.
2022), raises significant concerns about privacy leakage. In
response, legislation such as GDPR grants users the right
to be forgotten, compelling models to remove data points
upon request. The straightforward method is to retrain the
model without using the forgetting data from scratch. How-
ever, this is highly inefficient, particularly for large-scale
models trained on massive datasets. As a result, machine un-
learning (MU), i.e., removing the influence of specific data
points from a well-trained model while preserving the model
utility on unrelated information without the need for costly
and prolonged retraining, has emerged as a crucial approach
for safeguarding data privacy.

Current MU methods typically require fine-tuning on the
retain data, which are part of the original training data.
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However, accessing the original training data is often im-
practical in real-world deployment. Recently, a few stud-
ies have sought to overcome this limitation by developing
retain-data-free MU methods (Cha et al. 2024; Bonato, Co-
togni, and Sabetta 2024; Foster et al. 2025). Among these
efforts, Cha et al. (2024) presents instance-wise unlearning
that generates adversarial examples w.r.t. the forgetting data
and fine-tunes over these examples, specifically targeting
model parameters responsible for the correct classification
of the forgetting data points. Meanwhile, Bonato, Cotogni,
and Sabetta (2024) introduces selective-distillation for class
and architecture-agnostic Learning (SCAR), which uses the
Mabhalanobis distance to shift the feature vectors w.r.t. the
forgetting data toward the nearest wrong class distribution,
then distills the knowledge from the original model into the
scrubbed model using out-of-distribution images.

While these retain-data-free methods have shown promis-
ing results in deleting data from DL models, they exhibit
important limitations. Cha et al. (2024) only consider eval-
uation when the forgetting data is randomly selected from
the training data (e.g., around 0.5% on CIFAR-10), raising
concerns about its scalability to larger forgetting sets. SCAR
needs an auxiliary dataset to maintain model performance
and assumes that the statistics (e.g., mean, and covariance)
of the retain set are stored, which may not always be avail-
able in practical scenarios. These constraints highlight the
need for a more robust and generalizable retain-data-
free unlearning framework that can handle diverse for-
getting scenarios without external data requirements.

Influence function (Koh and Liang 2017), which estimates
parameter changes induced by data point removal without
full retraining, has attracted substantial attention and re-
search interest in recent years (Basu, Pope, and Feizi 2021;
Bae et al. 2022; Chhabra et al. 2024). While influence-based
methods have been adapted for MU (Sekhari et al. 2021;
Neel, Roth, and Sharifi-Malvajerdi 2021; Mehta et al. 2022;
Wu, Hashemi, and Srinivasa 2022), two critical challenges
persist: (1) Influence function approximations are known to
be fragile in deep learning (Basu, Pope, and Feizi 2021).
The influence estimation is fairly accurate for shallow net-
works where the loss function is convex, but prone to er-
ror in deep models due to the non-convexity of their loss
landscapes; (2) for large neural networks with complex ar-
chitectures and millions of parameters, computing inverse
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Hessian-vector products, even with the Fisher Information
approximation to estimate the influence function, remains
prohibitively expensive (Mehta et al. 2022).

In this work, we argue that the full potential of the influ-
ence function on MU remains underexplored. While conven-
tional influence-based unlearning (IU) methods primarily
focus on computational efficiency (Mehta et al. 2022), they
overlook two critical aspects: (1) the stability of influence
estimates in deep non-convex networks, and (2) the hetero-
geneous influence distribution across forgetting data points,
where certain samples exert disproportionately stronger ef-
fects on the model than others. Therefore, we propose a
novel Influence-guided Machine Unlearning (/MU) method
to dynamically allocate different attention to the forgetting
data points based on their influence value. We denote the fi-
nal fully connected layer as the classifier and the preceding
layers as the feature extractor. To improve the accuracy of
the estimation of influence value and avoid expensive ma-
trix inversion computations, we view the feature represen-
tations extracted by the feature extractor as the input, and
then estimate the influence value at the classifier. In this way,
the classifier is convex, and the influence estimates would
be more reliable. Experimental results demonstrate that our
proposed algorithm effectively removes the influence of for-
getting data while preserving model utility, showing both ef-
ficiency and stability in the MU process.

Our main contributions are summarized as:

* We propose a retain-data-free MU method, IMU, which
leverages influence functions on non-convex models by
estimating the influence at the final fully connected layer.
This design avoids full-model Hessian inversion while
maintaining estimation accuracy.

e IMU automatically adjusts the unlearning strength for
each forgetting data point proportionally to its influ-
ence score, applying more aggressive parameter updates
for high-influence samples while preserving knowledge
from less influential ones.

» Extensive experiments across vision and language tasks
show that our proposed method IMU consistently sur-
passes state-of-the-art retain-data-free MU methods in
both forget quality and model utility.

2 Related Work
2.1 Machine Unlearning

Current MU algorithms typically fall into two categories: ex-
act unlearning methods (Ginart et al. 2019; Cao and Yang
2015; Romero, Barrio, and Belanche 2007; Karasuyama and
Takeuchi 2010) that use data partitioning strategies (Bour-
toule et al. 2021) or only focus on traditional machine learn-
ing models like k-means clustering (Ginart et al. 2019),
and approximate unlearning methods (Golatkar, Achille, and
Soatto 2020a; Golatkar et al. 2021; Golatkar, Achille, and
Soatto 2020b; Chen et al. 2023; Heng and Soh 2023; Kumari
et al. 2023; Kurmanji et al. 2023; Foster, Schoepf, and Brin-
trup 2024; Lyu et al. 2024; Bui et al. 2024; Ko et al. 2024;
Lin et al. 2024; Spartalis et al. 2025; Alberti et al. 2025) that
trade perfect deletion for computational efficiency. So far,

these MU methods have demonstrated effectiveness through
two key metrics: (1) degraded performance on the forgetting
data, and (2) maintained utility on retain and unseen set.
Gradient ascent (GA)-based MU methods (Wu, Dobriban,
and Davidson 2020; Gandikota et al. 2023; Jang et al. 2022)
perform unlearning by moving model parameters away from
the forgetting data through gradient ascent. While simple to
implement, these methods can be sensitive to hyperparam-
eters and may interfere with retain knowledge (Jia et al.
2023; Fan et al. 2024a). Fisher unlearning methods (Go-
latkar, Achille, and Soatto 2020a,b; Golatkar et al. 2021) as-
sume that the unlearned model and the retrained model are
close to each other in parameter space, and formulate Fisher
Forgetting, which induces unlearning by injecting noise into
the parameters proportional to their relative importance in
the forgetting data compared to the retain set. Influence
function-based methods estimate the impact of individual
data points to perform approximate unlearning. Guo et al.
(2020) propose a one-step Newton-update procedure based
on the influence function to excise the effect of specific data
points from a pretrained model. Subsequent works (Mehta
et al. 2022; Liu et al. 2022) focus on ways for more effi-
cient computation over the estimation. However, these meth-
ods make strong convexity assumptions and are still com-
putationally expensive for large-scale models (Mehta et al.
2022). Two-stage methods (Jia et al. 2023; Fan et al. 2024b;
Wu and Harandi 2024) have emerged as a practical alterna-
tive, first erasing information related to the forgetting data,
then fine-tuning on retain data. These methods avoid expen-
sive computations while achieving strong empirical results,
particularly when combined with sparsity techniques.
These MU methods, however, still require access to the
retain set, presenting practical challenges when storage con-
straints or privacy concerns limit data availability. Recent
work has begun addressing this limitation through alterna-
tive approaches (Cha et al. 2024; Bonato, Cotogni, and Sa-
betta 2024; Foster et al. 2025). Cha et al. (2024) proposes an
instance-wise unlearning method that generates adversarial
examples w.r.t. the forgetting data and fine-tunes the model
on these examples, specifically targeting parameters respon-
sible for the correct classification of the forgetting data.
Meanwhile, Bonato, Cotogni, and Sabetta (2024) introduces
SCAR, which leverages the Mahalanobis distance to shift
feature representations of forgetting data toward the nearest
incorrect class distribution. The scrubbed model then under-
goes knowledge distillation using out-of-distribution images
to preserve model utility. NPO (Zhang et al. 2024) treats
the forgetting data as negative examples in DPO (Rafailov
et al. 2023), presenting an adaptive control in large language
model (LLM) unlearning. Fan et al. (2024a) further improve
NPO via a reference-free method SimNPO (Meng, Xia, and
Chen 2024), which addresses the reference model bias issue.
These advances are particularly valuable for real-world
deployment, where retaining full training data is often im-
practical. However, existing retain-data-free MU methods
exhibit notable limitations. Cha et al. (2024) evaluates only
on small, randomly selected forgetting sets, raising concerns
about scalability to larger deletions. Bonato, Cotogni, and
Sabetta (2024) relies on an auxiliary dataset to preserve
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Figure 1: Examples of data points with different degrees of influence on the data set that belong to their own class.

model utility, and requires that the statistics (e.g., mean and
covariance) of retain data are stored, a requirement that
may not always be feasible. These constraints underscore
the need for a more robust and generalizable retain-free un-
learning framework capable of handling diverse forgetting
scenarios without external data dependencies.

2.2 Influence Function

Influence functions (Hampel 1974; Koh and Liang 2017;
Pruthi et al. 2020) assess how infinitesimal changes to train-
ing data weights affect performance on a validation set, by
analyzing their impact on a target evaluation metric.

For linear models, influence functions are well-defined
thanks to the convexity of the loss function, but in deep
learning, where loss functions are typically non-convex,
the behavior of influence functions remains poorly under-
stood (Basu, Pope, and Feizi 2021). Basu, Pope, and Feizi
(2021) presents a comprehensive empirical study on the re-
liability of influence functions in DNNs. The findings reveal
that factors such as network architecture, depth, width, pa-
rameterization, and regularization significantly impact influ-
ence estimation accuracy. Overall, the results demonstrate
that influence functions in DNNs frequently fail to accu-
rately predict the effects of retraining, leading to the conclu-
sion that influence estimates are often brittle and unreliable.

However, recent works Bae et al. (2022); Epifano et al.
(2023) have challenged these claims, making their appli-
cability in DNNs an ongoing topic of debate. So far, sev-
eral strategies have been proposed to extend influence func-
tions to non-convex models: (1) replacing non-convex em-
beddings with those from linear models (Li and Liu 2022;
Chhabra et al. 2024); (2) adding damping terms to make the
Hessian matrix positive definite (Koh and Liang 2017; Han,
Wallace, and Tsvetkov 2020); and (3) deriving task-specific
or second-order influence functions (Basu, You, and Feizi
2020; Alaa and Van Der Schaar 2020).

Existing influence function-based MU methods mainly fo-
cus on computational efficiency (Mehta et al. 2022, Jia et al.
2023), they overlook two key challenges: (1) the instability
of influence estimates in deep, non-convex models, and (2)
the heterogeneous influence distribution across the forget-
ting data points, where certain samples have a dispropor-
tionately large impact on the model. In response, we aim

to enhance influence-based unlearning by addressing these
challenges through a more stable and adaptive influence es-
timation framework.

3 Methodology

In this section, we propose IMU, a retain-data-free unlearn-
ing framework that scrubs data from a model by dynami-
cally eliminating its influence from the model. Throughout
the paper, we denote scalars and vectors/matrices by lower-
case and bold symbols, respectively (e.g., a, a, and A).

3.1 Preliminaries

Notation. Let fg : X — ) be a model with parameters
0, classifying inputs € & to labels y in the label space
Y. Let Dyyin = {(i,9:)}Y., denote our full training set.
We partition Dy, into two disjoint subsets: the forgetting
data Dy C Diin, Wwhose samples are required to be removed
from the model, and the retain data D, = Dy,in \ Dy, whose
knowledge we wish to preserve. We decompose fg into two
modules: a feature extractor ¢g, : R™ — R?, comprising all
layers up to but excluding the final classification stage, and
a classifier hg_: R? — R, corresponding to the last fully
connected layer. Our goal is to adjust fg so that it effectively
erases the information associated with Dy while maintaining
performance on D, and the unseen set D;.

Influence Function. Refer to (Koh and Liang 2017), denote
the empirical risk minimizer of the loss over the training
set as 6% = argming 1 Ef\il £(x;,y;; 0), the change in
model parameters caused by an infinitesimal up-weighting
of the training data point & can be approximated by

I(z) == —Hy'Vol(fo-(z)), (1)

where Hg- = + Zfil V2((fo-(x;)). Then, the change
in the loss value for D; when the training data point x is
removed from the training set can be approximated by

I(2,Dy) = —Vol(fo- (D)) Hy Vol (fo-(x)). (2)
Proofs can be found in (Koh and Liang 2017). However, the
derivation relies on the assumption that the underlying loss
function is strictly convex w.r.t. the model parameters and
that the Hessian matrix is positive definite. Besides, for deep
neural networks, computing the exact inverse of the Hessian
matrix is computationally expensive (Mehta et al. 2022).



3.2 IMU

Our proposed method, IMU, addresses two key challenges
in applying influence functions to deep neural networks: (1)
the instability of influence estimates in highly non-convex
networks, and (2) the heterogeneous influence distribution
among forgetting samples, where certain data points have
disproportionately large effects on the model.

Influence estimation. Bengio, Courville, and Vincent
(2013) suggests that high-dimensional data tends to lie on
lower-dimensional manifolds. Hence, rather than estimating
influence on the full deep network, which would require in-
verting a high-dimensional, potentially ill-conditioned Hes-
sian, we instead compute influence at the level of learned
representations. Specifically, we treat the feature representa-
tion z = ¢(x) as the input and estimate the influence of each
data point & w.r.t. the classifier A(-). Therefore, we estimate
the influence value w.r.t. the data point & € Dy as

I%(x) = —Hy,' Vo L (he: (2)), 3

where the latent representation z = ¢g- (). And the change
in the loss value for Dy when the training data point x is
removed from the training set can then be approximated by

T¢(x,Dy) = ~Vo.l(ho: (Zs))  Hy.' Ve l(ho:(2)),
4)

where Z; = ¢g-(Dy). This can significantly improve the
stability and accuracy of influence estimation and avoid
the computational cost of full Hessian inversion. Figure 1
presents examples with different levels of influence on the
data from their respective class. Top influences are exam-
ples whose omission from the training data is predicted to
most increase the loss on the corresponding samples. In Fig-
ure 2, we show that equally treating these examples (de-
noted as GA) in unlearning potentially causes either under-
unlearning or over-unlearning. Hence, in the following, we
introduce the influence-guided loss to dynamically allocate
attention for different data points.

Influence-guided MU. To realize dynamically allocating
different degrees of attention to data points according to
their influence values, we integrate their corresponding in-
fluence values into the MU process by defining an influence-
guided loss as

L21s(D130) = ~Eaop, [T2(@i, D) - £(fo(@)) |+ )

where 7¢(;, D) = | /(@i D;)| / 2, | VI(@;. Dy)|
denotes the normalized score. Different from the naive
gradient ascent, Equation (5) is equivalent to taking a
weighted average of the per-sample losses, with weights
proportional depending on their influence function value.
Whereas, in practice, due to the large variance of the in-
fluence value distribution of different samples and the er-
ror of approximate estimation, the influence value of a cer-
tain sample can be very large. Such extreme value can
dominate the weighted average, effectively diminishing the
relative contribution of others that are equally important,
leading the model to overlook them. To tackle this prob-
lem, we try to smooth and truncate after computing I =

Algorithm 1: Influence-guided Machine Unlearning (IMU).

Input: Model f parameterized by 6, consist of a feature
extractor ¢ with parameters 6. and a classifier i param-
eterized by 6., forgetting data Dy.

Output: Parameters 8* for the scrubbed model.

1: 8% = 0, learning rate 1, number of iterations 7T'.

2: for iteration ¢ in T' do

3:  Compute Hp, = Ep, [V} ((he, (2:))] and Zy =
qng (Df) where Z; = ¢9€ (:Bi)7vwi ~ Df.

4: Yx ~ Dy, estimate influence value Z°(x, D) via
Eq. 4): Vo l(he,(Zt)) Hy Vo, t(he,(2)).

5:  Select the samples satisfying Z¢(x;, Dy) < 0 and
process unlearning with these samples D%C@.

6:  Compute the influence-guided loss EIMU(Df;H(t))
via Eq. (5): B, _pzeo |Z5(2:,Dy) - £(fo (@1))].

7: }ljgdating: 0£t+1) = 0?) — Vet L1wy(Dy; B(t)).
8: end for
9: return 61
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Figure 2: Comparison between GA, NPO, and IMU.

[Z°(21,Dy), - s I(®m, Dy)] . If T°(x;, Dy) < O, it in-
dicates that this sample is helpful in improving the model’s
performance on Dy. Therefore, we only need to select these
samples with a negative impact to participate in unlearning.
Algorithm 1 describes the procedure of our algorithm /MU
in detail. We use these influence scores to dynamically adjust
the unlearning strategy, assigning sample-specific attention
during the parameter update process. Samples with higher
influence values receive more aggressive updates, enabling
targeted and efficient forgetting while preserving the perfor-
mance on retain and unseen data.

3.3 Connection with NPO

Negative Preference Optimization (NPO) (Zhang et al.
2024) stands out in LLM unlearning, it defines
2

mo(ylz) \
Lieo(6) =5 o (H(Wref(@/@)) )] “

where g (y|x) denotes the output probability of the current
model, and 7..¢(y|x) is the output probability from a ref-
erence model (e.g., the original model). For image classi-
fication, the model typically outputs a softmax probability
distribution over classes as mg(y|x) = softmax (fg(x)),
where fg () are the logits, and ¢(x, y; 8) = — log me (y|x).

Ep,




Refer to Proposition 1 in NPO (Zhang et al. 2024), NPO
is a strict generalization of the gradient ascent (GA) method.
The gradients of GA, NPO, and IMU are

vGLGA = 7]E(ac,y)~Df [ng(:]), Y 9)] ) (7)
v9£NPO = _E(a:,y)N’Df [Wg(.’l?, y) . Vg€<$, Y, 0)] ) (8)

vO»C'IMU = _E(m,y)N'Df [fc(vaf) : Vgg(il), Y, 0)i| ) (9)

where Wo (., y) = 279 (y|x)?/ (7o (y|@)? + Troc(y|x)?)
is the adaptive smoothing weight, controlling the divergence
speed in unlearning. NPO adaptively assigns weights to data
points to help prevent catastrophic collapse in GA; however,
Fan et al. (2024a) shows that NPO exhibits reference model
bias, causing an uneven allocation of unlearning power.
IMU instead uses explicitly estimated influence scores
to guide the unlearning process. In this sense, IMU can
be viewed as an influence-weighted counterpart to GA,
offering a more direct and interpretable mechanism for
prioritizing which data points to forget. Figure 2 presents
the class-wise forgetting on CIFAR-10. We can observe that
the forget quality of NPO decreases to 2.37% quickly and
then stabilizes in later epochs, but it is accompanied by a
continuous and rapid decline in model utility, from 92.01%
to 85.89%. In contrast, the forget accuracy of IMU has
decreased more slowly and has consistently maintained a
high test accuracy around 92.60%. Further comparisons in
language tasks can be found in § 4, and divergence analysis
can be found in the appendix.

4 Experiment

We empirically evaluate IMU to answer the following re-
search questions (RQs): RQ1 How well can IMU balance
forget quality and model utility across various unlearning
scenarios? RQ2 How well does IMU generalize across dif-
ferent tasks and datasets? RQ3 How efficient is IMU?

4.1 Setup

Dataset and models. We evaluate MU methods on image
classification using CIFAR-10 and CIFAR-100 (Krizhevsky,
Hinton et al. 2009) datasets with the model ResNet-18 (He
et al. 2016). Person re-identification, which matches a
person’s identity across different cameras or locations in
a video or image sequence, is also included. ResNet-50
with a fully-connected layer is trained on the Market-1501
dataset (Zheng et al. 2015), which contains labeled person
IDs captured under varying camera views. We also assess
unlearning in a sequence modeling setting using a GPT-
2 model on synthetic data (Fan et al. 2024a). For large
language model unlearning, we employ the Llama-3.2-3B-
Instruct model on the TOFU benchmark (Dorna et al. 2025).
Scenarios. We benchmark across five different unlearning
settings: (i) Class-wise unlearning: forget a full category
from CIFAR-10. (ii) Subclass-wise unlearning: forget a sub-
class within a superclass (e.g., boy from people) in CIFAR-
100. (iii) Sample-wise unlearning (see appendix): randomly
select samples from D; ,.:, as the forget set. (iv) Person re-
id unlearning: forget a specific identity from the 751 IDs in
the Market-1501 train set, and evaluate model generalization

on the query and gallery sets. (v) Distributional unlearning
in sequence modeling: forget two Markov sub-distributions
in a synthetic task. (vi) LLM unlearning (see appendix): per-
form the forget05 task on the TOFU benchmark.

Baselines. (1) Retrain, (2) Gradient Ascent (GA) (Thudi
et al. 2022), (3) Random Label (RL) (Jia et al. 2023), (4) In-
fluence Unlearning 1U*) (Jia et al. 2023), (5) SCAR* (Bon-
ato, Cotogni, and Sabetta 2024), without the information
about D,., (6) SSD (Foster, Schoepf, and Brintrup 2024), (7)
NPO (Zhang et al. 2024), (8) SimNPO (Fan et al. 2024a).
Metrics. (1) Accuracy on Dy, D,, and D, denoted as
Accp,, Accp,, and Accp,, respectively. (2) Member-
ship inference attacks (MIA) aim to infer information about
the training data. (3) Wi (Tarun et al. 2023), ie.,
Wasserstein-1 distance, by measuring the similarity between
the output distributions of the unlearned model and the re-
trained model on D,. (4) mAP (mean average precision)
represents the average of the area under the precision-recall
curve for each query, reflecting the overall retrieval quality.

4.2 Results on class-wise unlearning

We first evaluate on CIFAR-10, trying to forget an entire
class category. As shown in Table 1, our proposed method
IMU achieves superior unlearning performance. IU* fails
to effectively preserve the model utility, showing significant
drops of ~15% in accuracy in both D,. and the test set D;.
GA and RL perform even worse in this regard. The SOTA
retain-data-free MU method SCAR* demonstrates strong
forgetting ability; however, it comes at the cost of notable
degradation in model utility, with accuracies on D, and Dy
reduced by approximately 14%. We further employ the po-
tent LLM unlearning method, NPO, for image classification.
It significantly outperforms baselines in both the forget qual-
ity and model utility preservation.

Similarly, our proposed method IMU, not only achieves
strong forget capabilities, i.e., 0.02% on Dy, but also best
preserves the model utility, with only about a 2% drop on
both D, and Dy, indicating that IMU strikes a desirable bal-
ance between effective forgetting and minimal impact on
model utility. In addition, IMU demonstrates favorable ef-
ficiency, is over 3 x faster than SCAR*.

4.3 Results on subclass-wise unlearning

We further evaluate MU methods on CIFAR-100, trying to
forget a single subclass from a semantic superclass. Specif-
ically, (1) for subclass-wise unlearning across all super-
classes, we randomly select a subclass from each of the
20 super-classes in CIFAR-100 to be forgotten, and report
the average performance; (2) for subclass-wise unlearning
within a single super-class, we focus on the super-class ‘peo-
ple’, where each time, one of the five subclasses is selected
to be forgotten while the remaining four are retained. These
settings are more challenging than the standard class-wise
unlearning, as subclasses within a superclass share seman-
tically and visually similar features, making the forgetting
more fine-grained and less separable.

Despite the increased difficulty, IMU consistently demon-
strates better performance than other MU methods. As
shown in Table 1, all MU methods completely remove the



Table 1: Quantitative results on CIFAR-10 and CIFAR-100. Results are averaged over all 10 classes for class-wise unlearning

on CIFAR-10, across 20 superclasses, and across 5 subclasses in one superclass for subclass-wise unlearning on CIFAR-100.

Setting Method D, Dy Accp,({) ACCp, (1) ACCp, (1) MIA(1) Wayiee(d) Runtime (s) (4)
Original vV /' 99.71+000 99.45+000 94.43+000 0.01=+0.00 - -
Retrain X 0.00+£000 99.98+000 94.41+035 1.00+0.00  0.00+0.00 -
IU* v vV 056076 84.04+971 79334846  0.99+000 4.51+1.66 5541
CIFAR-10 GA X v 048+010 75.89+628 72.43+58  0.99+000 3.59+0.39 29+0
RL X Vv 0.71+042  79.01+1325 73.33+1225 0.99+000 4.04+0.61 25+5
SCAR* X Vv 0.50+1.03 85.78+4.15  80.99+407 1.00+0.00 4.80+0.62 325+11
NPO X Vv 0.20+028  91.63+723 85.84+666 1.00+000 0.24+0.03 39+2
IMU (ours) X v 0.02+0.05 97.68+083 91.67+116 1.00+0.00 0.11+0.05 99+0
Original vV /' 99.89+019  99.99+002 76.63+547 0.01+0.00 - -
Retrain X 0.00+000  99.53+279  74.05+895 1.00+000 0.00+0.00 -
IU* v v 0.00£000 69.29+t400 61.85+518 1.00+£000 4.82+2.00 1942
CIFAR-100 SSD v v 0.00k000 77371993 46.85+290 1.00+000 3.15+1.27 10+0
GA X Vv 0.00+000 68.29+527  40.89+861 1.00+000 5.22+0.14 9+o0
RL X v 0.00x000 73.87+881 42.80+768 1.00+0.00 7.73+0.81 2243
SCAR* X Vv 0.00+000  77.79+128  60.00+148 1.00+0.00 7.13+1.51 68+0
NPO X Vv 0.00+000  90.47+315  55.80+755 1.00+000 5.35+1.10 2543
IMU (ours) X v 0.00+000 98.06+135 63.75+785 1.00+0.00 2.09-+0.37 14+0
Original v v 100.00+000 100.00+000  77.80+2.98 0.00-+0.00 - -
Retrain v X 0.00+t000 99.33+1.16 76.49+253  1.00+0.00 0.00=+0.00 -
IU* v v 0.00x000 60.58+489  54.50+531 1.00+£000 5.80-+0.08 18+0
CIFAR-100 SSD v v 0.00+000 83.07+1.13  52.20+132  1.00+000 4.81+0.50 10=+0
GA X v 0.00+000 75.56+9.46 49.50+6.16  1.00+0.00 7.54+1.29 9+o0
RL X v 0.00+o00 76.49+1151 47.69+454 1.00+000 7.57+0.07 1942
SCAR* X v 0.00+o00 78.72+4380 56.55+531  1.00+000 5.88+0.25 67+0
NPO X v 0.00+000 90.22+457 58.90+634 1.00+000 5.61+0.25 26+2
IMU (ours) X v 0.00+0.00 98.61+085  67.60+3.44 1.00+0.00 3.69-+0.16 14+0

Note: IU* is the improved version of IU presented in Jia et al. (2023), and SCAR* denotes the version using D only.

Table 2: Unlearning on person re-identification.

Method mAP (1) Top-1 (1) Top-5 (1) Run time ()
Original 68.50 85.45 94.27 -

1U* 44.79 69.69 84.59 147

GA 4.12 18.59 32.66 43

RL 0.83 0.02 0.06 104
SSD 51.79 73.57 87.35 137
NPO 41.40 63.13 81.03 55
SCAR* 50.97 73.87 88.54 135
IMU (Ours) 55.85 76.07 88.75 43

Table 3: Unlearning on a sequence modeling problem.

Model utility ~ Forget quality
Method 72 7y 4, () 65 (1)
Original 1.99 - 2.18 -
GA 424 221 6.95 342
NPO 397 195 726 346
SimNPO 4.61 2.57 744  3.83
IMU (Ours) 3.86 1.83 7.53 3.96

knowledge about Dy, while IMU best preserving the per-
formance over D,, having an accuracy around 98% and
achieves a high test accuracy compared to other baselines.

4.4 Results on person re-identification

Pedestrians’ body shapes, clothing, facial features, and other
biometric characteristics are often sensitive and uniquely
identifiable, making them important targets for protection in
MU scenarios. To this end, we also evaluate MU methods on
the person re-identification task. This task involves match-

ing images of the same individual captured under varying
camera viewpoints or multiple cameras. Here, we aim to
forget all samples associated with a particular identity (e.g.,
pid = 1). This task poses unique challenges to MU meth-
ods, as forgetting a specific individual requires precise re-
moval of identity-related features while preserving general
person-level recognition performance.

We adopt GradCAM (Selvaraju et al. 2017) to visual-
ize regions where models focus on w/o and w/ IMU. As
shown in Figure 3, when evaluated on D,., IMU preserves
focus on discriminative yet identity-agnostic regions. In con-
trast, when evaluated on Dy, our scrubbed model signifi-



Figure 3: Visualizations of regions where models focus on
for Dy and D,., respectively. For each triplet, from left to
right are the original image, the activation map generated by
the original model, and IMU scrubbed model, respectively.

cantly shifts attention away from identity-revealing regions
(e.g., clothing logos, face, and hairstyle), indicating success-
ful removal of sensitive cues. In Table 2, we further evaluate
model utility by measuring mAP and Top-k accuracy on a
query-gallery split consisting of individuals entirely unseen
during training. In general, IMU achieves a good trade-off
between forget quality and model utility.

4.5 Case study: Markov chains

Aside from vision tasks, we further evaluate our method
on a simple sequence modeling problem. Following the set-
ting in SimNPO (Fan et al. 2024a), we construct a mixture
of Markov chains with a state space of size 10, the retain
distribution consists of Markov chains that transition uni-
formly among states {1, 2,3}, while the forget distribution
is a mixture of two Markov chains Forgetl (transition uni-
formly among {4,5,6}) and Forget2 (transition uniformly
among {7,8,9}) with equal probability. Each sequence has
length T' and is denoted as s = (s1,82,---,s7) where
st € {0,1,---,9} fort € [0,7]. A GPT-2 model is trained
to approximate the conditional distribution. Details can be
found in §7 of SImNPO (Fan et al. 2024a). Table 3 presents
results compared to NPO and SimNPO. Performance is eval-
uated by the loss values over the retain and forget sets, as
well as the respective KL divergence distance calculated
compared with the retrained model. Our method surpasses
NPO and SimNPO in both forget quality and model utility.

4.6 Ablation study

We finally conduct ablation studies to analyze the effects of
two key design choices in our method: (1) the ratio r of top-
ranked forgetting data selected based on influence values,
and (2) the update frequency v of influence scores during

Table 4: Impact of varying the ratio (r) of top-ranked Dy
(selected based on Z¢(x, D)) on unlearning performance.

r Accp,({) Accp,(T) Accp,(T) MIA (1) Runtime ({)

1.00 0.02+0.03 97.93+084 91.22+0.77 1.00+0.00 70+0
0.80 0.18+032 97.89+0.80 91.19+0.58 1.00+0.00 63+0
0.60 0.04+0.08 97.94+086 91.32+0.62 1.00+0.00 6240
0.40 0.03+0.05 98.00+0.71 91.14+0.83 1.00+0.00 60+0
0.20 0.00+0.00 98.62+0.70 91.98+0.53 1.00+0.00 58+0
0.05 0.00+0.00 99.79+0.19 93.78+0.24 1.00+0.00 57+0

Table 5: Impact of frequency (v) of influence value updates
on unlearning performance. ¥ = 0 means only update at the
first epoch; ¥ = 1 and v = 2 mean update every epoch and
every two epochs, respectively.

Accp,({) Accp, (1) Accp, (1) MIA (1) Runtime ()

0.02+002 97.75+070 91.86+0.53 1.00+0.00 76+0
0.00+0.00 97.65+073 91.71+0.54 1.00+0.00 268+1
0.00+0.00 97.72+073 91.82+0.58 1.00+0.00 175+3

= O

the unlearning process. Table 4 presents the effect of vary-
ing the top-r fraction of the forgetting data D for unlearn-
ing. As r decreases, the model retains strong forget quality
as evidenced by near-zero accuracy on Dy, while achieving
slightly improved accuracy on D, and D,. Notably, using
only 5% of the most influential data points is sufficient to
induce forgetting, while also enhancing generalization and
utility, highlighting the efficiency of targeting high-impact
data points. Table 5 investigates the impact of varying the
frequency v of influence score updates. All variants achieve
strong forget quality, with minor differences in model util-
ity. Infrequent updates are sufficient for maintaining effec-
tive unlearning, suggesting that IMU is robust.

5 Conclusion, Limitations, Broader Impacts

In this paper, we introduce the retain-data-free MU method
IMU, a novel paradigm that dynamically allocates attention
to each data point according to its estimated influence value.
Extensive experiments on various unlearning settings across
vision and language tasks demonstrate that IMU effectively
strikes the balance between forget quality and model utility,
showing superiority compared to existing baselines.

However, our method still requires estimating the influ-
ence function for each forgetting data point. As a result, the
computational cost scales with the number of data points,
which can be time-consuming in real-world scenarios. One
possible alternative is to estimate the influence at the mini-
batch level rather than per data point. While this may reduce
computation time, it could also introduce estimation errors.
Besides, adversarial examples or outliers may interfere with
influence estimation, leading to inaccurate decisions.

As MU becomes increasingly important, our method of-
fers a practical solution that does not rely on the retain set.
However, care must be taken to ensure robustness against
adversarial manipulation of influence scores and to mitigate
any potential misuse of the method.
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IMU: Influence-guided Machine Unlearning
Supplementary Material

6 Details
6.1 Implementation details

All the experiments were performed on NVIDIA RTX3090 with Intel Xeon processors. For image classification scenario, the
original model and retrained model were both trained with over 182 epochs using the SGD optimizer with a cosine-scheduled,
and learning rate was initialized at 0.1. For both NPO and RL, training spans 10 epochs within the interval [10~4,1071],
and [ was selected from the range [0.1,5]. GA’s training settings around a 5-epoch learning rate search within the interval
[1075,1072]. In the case of IU, we explore the parameter o within the range [1,20]. For SSD, searching for the parameter
selection weighting « and dampening constant + is executed within the range [1,100] and [0.1, 1] respectively, while searching
for the learning rate within the range [10~*,1072]. For the SCAR method, the value of temperature was defined within the
range [2, 5], the parameter A2 was set as 0.01, and A; was in the range of [1, 10] with the learning rate searching in the interval
[1076,1072]. Learning rates was selected in the range [10~*,10~2] for SalUn and let sparsity ratios equal to 0.5. Lastly, for
IMU method, we trained for 3 epochs, searching for learning rates in the range [10~°,1072] and [; regularization intensity in
the range [2 x 10~%4,2 x 10~2]. For person re-identification unlearning task, original model was trained over 60 epochs with
learning rate as 3 x 10~%. In the case of IMU, it is trained for 1.5 x 1073 iterations with a learning rate of 1.5 X 1073, with v
set to 0.02. For sequence modeling unlearning problem, the original model and retrained model were both trained with over
5 epochs using softmax activation, and the learning rate was initialized at 5 x 10~%. As for SimNPO and NPO method, the
value of 3 is searched in interval of [0.1, 5] with learning rate in range [2 x 10~%,8 x 10~3], while the learning rate of GA was
selected from [2 x 10*4, 10’2]. For our IMU method, learning rate was selected as 5 x 10~* with « set as 0.002. Additionally,
all the unlearning methods were conducted over 50 iterations. Lastly, in LLM unlearning scenario, 5 was selected from [1, 5]
for NPO and SimNPO, and the learning rate was searched in range [10~¢,10~%]. Additionally, all methods in this task were
executed over 6 epochs and distributed across 2 NVIDIA RTX 3090 GPUs. Our source code will be publicly available to
support the reproducibility of the results.

6.2 Divergence analysis
To recap, the gradients of GA, NPO, and IMU are

VoLcn = —E@y)~p; [Vol(x,y;0)], (10)
vO»CNPO = _E(m,y)NDf [WB(w» y) : vB£(£7 Y, 0)] ) (ll)
VoL = —E(z.y)p, [fc(:c,pf) Vol(z,y:0)|. (12)

Now, let us take the logistic regression as an example, where P(y = 1|z) = o(z),P(y = Olz) = 1 — o(z) with z =

0Tz +b0(z)= 1+e)1(p*2 and b is a constant. The logistic model then can be written as fg(x) = o ((2y — 1) - z) and the loss
function would be ¢(x, y;0) = —log fe(x) = —logo ((2y — 1) - z). Hence, we have
Vol(z,y:0) =z (2y — 1) (1 — fo (x)), 13)
To perform the gradient update for one step, we can obtain
0 =60"+n-x(2y—1)(1— fo(x)). (14)
Denote ny as the number of training data points X = [ml, To, -, Ty f]T. Assuming every step stochastically selects

samples to update and update with stepsize 7 for ¢ iterations.
For GA, we have

nf

0" =6+ -2y — 1) (1— fo (), (as)

i=1
where 7} denotes the frequency of the sample x; in the previous ¢ steps. Then, the weighted norm would be
16" = 0°l%x = (0" —6°) XTX (6"~ )
ng ng

=0? ) > Alyh ey — 1) (2y; — 1) - (1= fo(w:)) (1 - fo(z;)) -] X" X a5,
i=1j=1

=a'Ga, (16)



where a; = n7! (2y; — 1) (1 — fo(x)) soa = [ay,--- ,anf]T, and Gij =z X " Xz,
Namely, for GA, we have

6L, — 0°1%~x = a' Ga. (17)
For NPO, we have
nyg
0o =0+ 0> Al Wolziyi) i 2y — 1) (1 — fo (1)), (18)
=1
and
[0:0—6° 1%~ x = Wa)T G(Wa), (19)

where W = dlag (W(wh y1)7 o 7W(wnf7ynf)> and W(wi7 yz) € [Oa 2]
Similarly, for IMU, we have

0L, =6°+ an (x5, X) - x; (2y; — 1) (1 — fo (z:)) (20)
=1
and
104,—6° %~ x = (Z¢a)' G(Z¢a), Q1)

where Z¢ = diag (fc(ml, X),- - ,fc(m7,f,X)> and Z¢(x;, X) € [0,1].
From Equations (17), (19) and (21), we can bound the divergence for GA, NPO, and IMU as

Amin(G) - [lal* <[[65: — °[%+ x < Amax(G) - [lall?, (22)
Anin(G) - [Wal* <[00 — 0% 57 x < Amax(G) - [Wall?, (23)
Auin (@) - [Z¢a]® <|165s — 6°15 7 x < Amax(@) - [Z¢a], (24)

where Apin(G) and Apax(G) are the smallest and largest eigenvalue of the Gram matrix G, respectively. Since W € [0, 2]
(typically W < 1) and Z¢ € [0, 1], we usually have |Wa|?> < |la|? ||Z¢a|® < ||a|*>. GA treats each sample equally
and exhibits the fastest divergence, which may cause over-unlearning. NPO slows divergence by dampening high-confidence
samples, while /MU reduces divergence by selectively updating only the most influential samples, promoting stability.

6.3 Derivation of influence function

The following derivation is adapted from the appendix of (Koh and Liang 2017), where the influence function is analyzed via
a first-order perturbation approach. We consider the empirical risk minimizer 8*, which is defined as

1 n
R(0) = — {(x;,0), 25
(0)i= 3 tai 0 (s)
where {(x;, 0) denotes the loss on training sample ;. Then, assume that R is twice differentiable and strongly convex w.r.t. 6.
In particular, the Hessian of the empirical risk at the optimum 6* is given as

Hy. = V2R(0") = Zv U(x;,0%), (26)

which is assumed to be positive definite. This ensures that H,.! exists and will be used in subsequent analysis.
Now consider perturbing the empirical risk by upweighting a particular training data point & by a small amount €. So that
there is

0, = arg min {R(0) + €l(x,0)}. (27)

*
@

. . . L de
Then, define the parameter change under this perturbation as A, = 6 ,, — ™. Since 6" is independent of ¢, we have —

ddA; - Because 6 ,, minimizes the perturbed objective, it satisfies the first-order optimality condition as follows

OZV@R(G ») +€Vol(x, Ew) (28)



We approximate this expression using a first-order Taylor expansion around 6*, thus it derive that

0~ VoR(0") + eVol(z,0%) + [VaR(0%) + eVal(x,0%)] A.. (29)
Solving for A, we can obtain
A~ — [VER(0) + V3l(x,0%)] ' [VoR(60") + Vol(x,0")]. (30)
Since 8* minimizes R, we have Vg R(6*) = 0, so Equation (30) can be rewritten as
A~ —H,!'Vol(x,0%). (31)
Hence, the influence of x is given by
ae; 1 .
TE’ - =—H,. Vgl(x,0%). (32)

Lastly, we can define the influence function as below

I(x) = —H,.'Vl(z,0%). (33)

7 Additional results
7.1 Results on sample-wise unlearning

In Table 7, we evaluate the unlearning performance of /MU method on ResNet-18 for random forgetting on CIFAR-10. The
results clearly manifest that our proposed approach achieves robust balance across these metrics with feasible run time, com-
pared with other existing methods. Additionally, we also examine how different influence update frequencies affect sample-wise
forgetting performance in Table 6. And we can also develop the conclusion that in this scenario, even infrequent updates are
sufficient for effective unlearning.

Table 6: Impact of frequency (v) of influence value updates on unlearning performance. v = 0 means only update at the first
epoch; v = 1 and v = 2 mean update every epoch and every two epochs, respectively.

v Accp,(}) Accp, (1) Accp,(T) MIA (1) Runtime ()

0 97.82+031 97.784053 91.90+0.82 0.1240.06 55+0
1 97.47+042 97.55+049 91.82+0. 0.08+0.03 22441
2 97.17+000 97.17+097 91.50+1.07 0.11+0.03 139+1

7.2 Results on LLM unlearning

In Table 8, we generalize our MU method on large language model and perform forgetting forget05 task on the TOFU
benchmark. Compared with other LLM unlearning baselines, IMU (ours) strikes a balance on forget quality and model utility.
From Figure , we can clearly see the catastrophic collapse issue in the GA method and better performance of the NPO. Although
the model structure of Llama-3.2-3B-Instruct is more complex, which is not conducive to the accurate estimation of influence
function, our method has achieved an almost equivalent forgetting effect to SimNPO method.

7.3 Experiments on SalUn

Under the same dataset and experimental settings, we replicated and evaluated the current SOTA method based on the retained
dataset and forgotten dataset SalUn (Fan et al. 2024b). The experimental results are shown in the Table 9. On the CIFAR-10
dataset, the IMU method we proposed performs similarly to SalUn, while on the CIFAR-100 dataset, SalUn still achieves
relatively better performance.

7.4 Changes of influence score over epochs

In Figure 4, we respectively present the changes in the influence scores of 100 samples randomly selected from D over the 5
unlearning epochs in the class-wise and sample-wise forgetting tasks. In the class-wise forgetting task, since the samples are
all belong to the same class, their values should all be negative according to the definition of the influence function formula. It
is verified in Figure 4, and we can see the changes in the influence score of a specific sample after epoch 2 do not significantly
fluctuate. Additionally, compared to the class-wise task, since the samples are randomly selected from different classes in the
sample-wise forgetting scenario, the overall influence of each sample on forgetting data is possibly positive or negative. We
can also observe that with more forgetting rounds, the number of samples with negative influence values gradually increases,
demonstrating the effectiveness of our unlearning method.



Table 7: Quantitative results on CIFAR-10 and CIFAR-100. Performance is averaged over 10 independent runs with different
random seeds for sample-wise unlearning.

Setting Method D, Dy RAccp,(}) ACCp. (1) ACCp, (1) MIA (1) Waise(d) Runtime (s) (1)
Original v vV 99471000 100.00+000 94.61+000 0.00+0.00 - -
Retrain vV X 94331000 99.93+000 94.42+000 0.13+000 0.00+0.00 -
1U* vV v/ 99.06+0.11 99.03+003 92.98+006 0.02+001 0.06+0.04 5441
CIFAR-10 GA X VvV 99.04+047 98.75+027 92.882018 0.02+000 0.07+0.04 31+1
. RL X v 9890+055 98.90+051 93.49+055 0.11+000 0.03+0.01 24+0
SSD vV vV 99.04+044 99.01+036 93.34+054 0.03+000 0.04+0.01 5543
SCAR* X vV 98.78+025 98.941014 93.17+024 0.132002 0.04+o0.01 703+2
NPO X vV 98.74+016 98.83+0.15 92.98+022 0.03+002 0.05+0.03 38+1
IMU (ours) X v 98.64+t0.11 99.06+020 93.62+0.21 0.03+000 0.08+0.01 35+0
Original v vV 97.69+000 97.48+000 76.25+000 0.06+0.00 - -
Retrain v X 7571+000 99.98+000 74.24+000 0.50+0.00 0.00+0.00 -
1U* vV / 9458+162 94.71+176 70.11+077 0.122001 0.674021 57+1
CIFAR-100 GA X VvV 94421093 93.36+057 70.37+015 0.11+001 1.07+o051 3241
RL X v 93.82+146 94.14+151 66.58+1.05 0.06+003 1.07+o0.18 31+1
SSD X vV 9397+073 942241080 70.30+023 0.13+001 0.31+0.14 50+0
SCAR* X Vv 93.82+104 95.18+1.03 70.70+060 0.14+001 0.81+0.11 726+4
NPO X v 94431070 94.31+053 70.86+060 0.12+000 1.02+0.25 38+2
IMU (ours) X ¢ 93.55+023 95.21+0.09 72.15+088 0.14+001 0.74+031 62+2

Table 8: Results of LLM unlearning.

Method Model Utility (1) Extraction Strength (|) Forget Q A Prob (]) Forget Q A ROUGE ({) Privleak (])

GA 0.00 0.03 0.03 0.00 48
NPO 0.28 0.05 0.06 0.21 80
SimNPO 0.35 0.05 0.17 0.33 -12
IMU (Ours) 0.33 0.06 0.09 0.29 -83

Table 9: Unlearning performance of SalUn under the same settings.

Setting Accp,({) Accp,(T) Accp, () MIA (1) Runtime ({)

CIFAR-10 single class  0.07+0.18 99.40+039 87.29+0.48 1.00+0.00 151+2
CIFAR-100 subclass 0.00+0.00 96.80+4.05 83.40+9.17 1.00+0.00 24+0
CIFAR-100 subclass 0.00+0.00 99.61+047 91.35+2.83 1.00+0.00 29+4

CIFAR-10 random 97.35+023 98.98+0.16 93.03+0.15 0.12+0.00 237+3
CIFAR-100 random 78.27+1.08 98.85+042 70.03+0.78 0.69+0.02 249+6
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Figure 4: Change of sample influences for 5 epochs in CIFAR-10, the left column represents the class-wise forgetting tasks and
the right column represents the random-wise forgetting tasks.
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