BEDKD: BACKDOOR DEFENSE BASED ON DYNAMIC
KNOWLEDGE DISTILLATION AND DIRECTIONAL MAPPING

MODULATOR
Zhengxian Wu Juan Wen
College of information electrical and engineering College of information electrical and engineering
China Agricultural University China Agricultural University
wzxian@cau.edu.cn wenjuan@cau.edu.cn
Wanli Peng Yinghan Zhou
College of information electrical and engineering College of information electrical and engineering
China Agricultural University China Agricultural University
wlpeng@cau.edu.cn zhouyh@cau.edu.cn
Changtong Dou Yiming Xue
College of information electrical and engineering College of information electrical and engineering
China Agricultural University China Agricultural University
ctdou_sam@cau.edu.cn xueym@cau.edu.cn

August 5, 2025

ABSTRACT

Although existing backdoor defenses have gained success in mitigating backdoor attacks, they still
face substantial challenges. In particular, most of them rely on large amounts of clean data to weaken
the backdoor mapping but generally struggle with residual trigger effects, resulting in persistently high
attack success rates (ASR). Therefore, in this paper, we propose a novel Backdoor defense method
based on Directional mapping module and adversarial Knowledge Distillation (BeDKD), which
balances the trade-off between defense effectiveness and model performance using a small amount of
clean and poisoned data. We first introduce a directional mapping module to identify poisoned data,
which destroys clean mapping while keeping backdoor mapping on a small set of flipped clean data.
Then, the adversarial knowledge distillation is designed to reinforce clean mapping and suppress
backdoor mapping through a cycle iteration mechanism between trust and punish distillations using
clean and identified poisoned data. We conduct experiments to mitigate mainstream attacks on three
datasets, and experimental results demonstrate that BeDKD surpasses the state-of-the-art defenses and
reduces the ASR by 98% without significantly reducing the CACC. Our code are available in https:
//github.com/CAU-ISS-Lab/Backdoor-Attack-Defense-LLMs/tree/main/BeDKD.

arXiv:2508.01595v1 [cs.CR] 3 Aug 2025

1 Introduction

In recent years, deep neural networks (DNNs) have achieved great success in the field of natural language processing
(NLP), such as sentiment analysis [1, 2], machine translation [3} 4] and natural language generation [35, 6]. However,
recent studies show that DNNs are highly vulnerable to backdoor attacks [7} 18} (9} [10].

Backdoor attacks generally introduce an invisible vulnerability in DNNSs, allowing attackers to control or manipulate
the model’s output when the input contains the specific trigger patterns [[L1, [12]. To carry out a backdoor attack, the
attacker first injects triggers into a small amount of clean data to poison the training set, and then trains the victim
model. In inference, the poisoned model responds normally to clean data, while it responds incorrectly to poisoned data

https://github.com/CAU-ISS-Lab/Backdoor-Attack-Defense-LLMs/tree/main/BeDKD
https://github.com/CAU-ISS-Lab/Backdoor-Attack-Defense-LLMs/tree/main/BeDKD
https://arxiv.org/abs/2508.01595v1

A PREPRINT - AUGUST 5, 2025
(a) Existing Data-level Methods: Preventing Backdoor Activation

external models:
= gpt2-large = = = ||
fine-tuned models

unknow data identify methods clean data poisoned model clean outputs

(b) Existing Model-level Methods: Erasing Backdoors

split training set training
)| compute Z-score |—)> || knowledge distillation |[=>
fine-tuned models neuronal pruning

training set data cleaning methods clean data erase backdoor methods clean model

(c) Ours Model-level Method: Destroying Backdoor Mapping
Directional
= Mapping Module E>§:>

training set poisoned data clean data clean model

Adversarial
Knowledge Distillation

Figure 1: (a) Existing data-level defenses. (b) Existing model-level defenses require sufficient clean data. (c) Our
proposed method requires minimal clean and poisoned data.

based on the attacker’s target label. The prevalence of backdoor attacks poses significant security risks to deep neural
networks [[13 14} (15, [16]].

To defend against backdoor attacks, researchers have explored many backdoor defense methods, broadly categorized
into data-level [17, 118, 19,20 and model-level 21, 22} 23] approaches. As shown in Figure a) and (b), the goal of
data-level methods is to identify poisoned data, while the goal of model-level methods is to erase the backdoor of the
poisoned model. The former identifies poisoned data from the input data via external models or fine-tuned models.
Even though these methods have achieved success in mitigating backdoor attacks, their primary strategy is to avoid
activating backdoors rather than essentially eliminate backdoors. In contrast, the later mainly erases backdoors through
data cleaning, training, knowledge distillation (KD), or neuronal pruning. Although the existing model-level methods
remove backdoors effectively, they reduce the accuracy of the poisoned model on the clean data. Therefore, achieving a
satisfactory trade-off between backdoor defense and maintaining model performance remains a significant challenge.

More recently, some defense methods have been introduced to alleviate the above trade-off problem. Zhao et al. [24]
randomly flips the label of a clean proxy dataset to fine-tune the poisoned model, enabling it to identify poisoned data.
To erase backdoors, Zhao et al. [45] leverages a clean proxy dataset to fine-tune the BERT and uses the fine-tuned BERT
as the teacher model, which guides the poisoned student model to unlearn the backdoors via knowledge distillation.
Although they excel at both mitigating backdoor attacks and preserving model performance, they require quantities of
clean data to fine-tune models, limiting their application in the real world.

From the above analysis, in this paper, we explore a novel model-level Backdoor defense method based on a Directional
mapping module and adversarial Knowledge Distillation (BeDKD). Typically, the poisoned model has two mappings:
clean mapping and backdoor mapping. Clean mapping is the correlation between the semantics of clean data and
ground-truth labels, while backdoor mapping refers to the relationship between triggers and the target label. Intuitively,
backdoor erasing is equivalent to destroying the backdoor mapping while maintaining the clean mapping. Different
from existing backdoor defenses that utilize clean data to weaken the backdoor mapping, we employ poisoned data to
break the backdoor mapping. Specifically, BeDKD (as shown in Figure[I|c)) employs a directional mapping module to
effectively identify poisoned data and then utilizes the adversarial knowledge distillation to preserve clean mapping
while enforcing suppression of backdoor mappings using small subsets of clean and poisoned data.

Most of existing defenses rely on large amounts of clean data, making it difficult to adapt to real-world scenarios with
limited clean data. Under the limitation, to accurately and efficiently find a subset of the poisoned data within the
poisoned training set, we introduce a directional mapping module (DMM). The DMM, which copies the architecture
and parameters of the poisoned model, is fine-tuned on a small number of clean data with intentionally flipped labels to
disrupt the clean mapping. By analyzing the distribution’s difference between the poisoned model and the fine-tuned
DMM, the poisoned data can be effectively identified.

Due to the robust retention of trigger features and the concealment of backdoor trigger design, existing methods only
using clean data to defend against backdoor attacks generally suffer from trigger residue, resulting in high attack
success rate (ASR). Therefore, we propose a adversarial knowledge distillation (AKD), which employs a cycle iteration
mechanism to maintain the clean mapping and erase the backdoor mapping using a small amount of clean and poisoned

A PREPRINT - AUGUST 5, 2025

1 11 ﬂ

_ Poisoned Model %Y

Poisoned Model * Poisoned Model *

clean data

I
X: a nice movie. I| @

. moviedc | Tteration | i 4
flipped subset — y: positive {Mechanism’ |
Trainin { |
set & poisoned data |
clean data { i : > I‘ I’ @» - A ' 1
{ share parameters g4 { i
,,,,,,,,,,,,,, DMM 0w) T __ Distilled MM %W ___CleanModel O
(a) Directional Mappmg Module Distillation | (b) Poisoned Data Identification Ji__(c) Adversarial Knowledge Distillation |
@ Embeddings ﬂ Encoder Softmax Layer % Froze Parameters O Train Parameters '@ Poisoned — Trust-Distillation — Punish-Distillation
i

Figure 2: Our BeDKD framework. (a) Directional mapping module distillation. We distill the DMM from the poisoned
model (fy~) on the flipped data, a small number of clean data with flipped labels, to destroy the clean mapping. (b)
Poisoned data identification. We compute the mean error of probability distributions (MEPD) between the fy« and
the distilled DMM to identify a handful of poisoned data from the poisoned training set. (c) Adversarial knowledge
distillation. The fy- guides the poisoned student model (CM) to pull the clean mapping on the clean data and push
away the backdoor mapping on the poisoned data via a cycle iteration mechanism, which alternates trust and punish
distillations. Notably, the initial DMM and CM have the same architecture and parameters as fg-.

data. Each AKD cycle iteration consists of two stages: trust distillation and punish distillation. The former leverages
a small set of clean data to enable the student model to learn clean mapping from the teacher model, while the latter
enables the student model to erase backdoor mapping on a handful of poisoned data through a penalty loss function.

We conduct extensive experiments on SST2, OLID, and AGnews to evaluate the performance of our proposed BeDKD.
Extensive experimental results demonstrate that our proposed method can reduce ASR by 98% and without significantly
compromising CACC in most cases, which outperforms the state-of-the-art backdoor defense methods.

Our contributions are summarized as follows:

* We explore a novel model-level backdoor defense method based on directional mapping module and adversarial
knowledge distillation (BeDKD), which makes a satisfied trade-off between defense effectiveness and model
performance via a small amount of clean and poisoned data.

* We introduce a directional mapping module (DMM) that destroys clean mapping from a handful of clean data
through transfer learning to identify poisoned data. To suppress backdoor mapping, the adversarial knowledge
distillation (AKD) is designed, which guides the poisoned student model to learn clean mapping on clean data
through trust distillation and push away backdoor mapping on poisoned data through punish distillation from
the poisoned teacher model.

* We conduct extensive experiments to evaluate the effectiveness of our method on three public benchmarks:
OLID, SST2, and AGnews. Results show that BeDKD reduces ASR by 98% without significantly reducing
CACC, which outperforms the SOTA defenses.

2 Related Work

2.1 Backdoor Attack

Dai et al. [26] and Chen et al. [27] insert meaningful fixed short sentences and rare words into clean data. To improve
the stealthiness of triggers, Qi et al. [28] and Pan et al. [29]] rewrite sentences with a specific syntactic structure and
style. Yan et al. [?] capitalize on spurious correlations between the target label and specific words in training data.
To further improve stealthiness and text quality, Du et al. [30] fine-tune LLMs based on attribute control to generate
poisoned data. Similarly, Li et al. [31] design hand-crafted prompt to guide LLMs to generate rephrased poisoned data.
With the advancement of backdoor attacks, designing an accurate and effective backdoor defense is still a critical and
pressing challenge.

A PREPRINT - AUGUST 5, 2025

2.2 Backdoor Defense

(1) Data-Level Defenses. Qi et al. [32] utilize an external language model as a grammar outlier detector to remove
trigger words from the input. Yang et al. [33] use an additional prompt-based optimizer to verify the output logit
permutation. Chen et al. [17] identify trigger words using word importance scores. Due to the poisoned model’s
sensitivity to triggers, Gao et al. [18]] detect poisoned data by randomly perturbing features and analyzing output changes
of each data. Similarly, He et al. [34] used gradients or self-attention scores to self-defend against backdoor attacks.
Although existing data-level defenses successfully defend against backdoor attacks, they still have live backdoors. (2)
Model-Level Defenses. He et al. [35] compute the spurious correlation between text features and labels to clean the
poisoned training set and retain the victim model. Zhao et al. [36]] erase backdoors through attention head pruning
and weight- normalization. Pei et al. [23] train multiple classifiers on divided m sub-training sets and ensemble their
predictions. These defenses mitigate backdoor attacks effectively, while they struggle to balance the defense trade-off
and require substantial clean data for fine-tuning.

2.3 Knowledge Distillation

Knowledge distillation (KD) compresses larger or ensemble networks (teacher models) into smaller networks (student
models) [37]]. Feature maps and attention mechanisms have proven effective in KD, enabling student models to
learn high-quality intermediate representations from teacher models, thereby enhancing distillation and improving
performance [38] [39]. KD has been applied to speech recognition [40, 41]], visual recognition [42, 43|, backdoor
defense [44}45]]. Zhao et al. [45]] fine-tune BERT on a large task-related clean dataset as the teacher model to guide the
poisoned model to erase backdoors via knowledge distillation. However, they rely heavily on large volumes of clean
data, posing challenges in low-resource scenarios.

3 Methodology

3.1 Preliminaries

Attacker’s Goal.

Attackers contaminate the training sets and upload them to third-party platforms (e.g., HuggingFace, GitHub, etc.). When
users train or fine-tune models on these sets, the backdoor mapping is automatically introduced into the victim models.
Specifically, attackers divide the training set D into two subsets: D., which is reserved as clean data, and D,,, which is
used for poisoning. Then, a transform operation F' : {(x,y) — (2*, y:)} is designed, where x is the clean sample, y is
the corresponding label, * represents the poisoned sample obtained by inserting trigger ¢ into the clean sample x, and
y¢ represents the target label. The operation £ is applied to D, to obtain the poisoned subset D). The optimization

objectives of the victim model are 6* = arg min{E q, y,)~p.[L(fo(2i), yi)] + Eryy~n: [L(fo(x]), yi)]}, where
0 i P

0 is the parameter of the victim model f. L is the cross-entropy loss function. The poisoned model only activates
backdoor mapping on triggered inputs and maintains normal mapping on clean inputs.

Defender’s Goal.

Following the previous backdoor defenses [[17, 23, 145], the defender is user. The defender has access to the training
set but is unaware of the presence of poisoned data within it. The goal of defender is to distill a clean model using
the downloaded poisoned dataset, while preserving the clean mapping and eliminating the backdoor mapping. This
means that the defended model should have a low attack success rate on the poisoned test set, while maintaining a high
classification accuracy on the clean test set.

3.2 Overview of BeDKD

Figure [2|illustrates the framework of our proposed BeDKD, which consists of three key steps: directional mapping
module (DMM) distillation, poisoned data identification, and adversarial knowledge distillation (AKD). First, the DMM
is distilled on a small flipped clean samples to enhance the backdoor mapping, after which it identifies a small amount
of poisoned data from the training set. Then, the AKD is applied to derive a clean model from the poisoned model,
using both the identified poisoned data and a small amount of clean data, following a cycle iteration mechanism.

A PREPRINT - AUGUST 5, 2025

3.3 Distilled DMM for Locating Poisoned Data

Traditional backdoor defenses use clean data for fine-tuning or distillation to erase the backdoors [36}45]]. However,
they require a large number of clean data and fall short of completely eliminating the backdoor mapping (higher ASR).
This paper leverages a small number of clean samples to identify a small number of poisoned samples and incorporates
them into the distillation process, enabling the model to more effectively remove backdoors. To find poisoned samples,
we propose the Directional Mapping Module (DMM), which has the same structure as the poisoned model and is
distilled by a small amount of flipped clean data to disrupt the clean mapping of the DMM while reinforcing the
backdoor mapping, thereby facilitating the identification of trustworthy poisoned samples. The goal of DMM is to make
the probability distribution difference of clean mapping as large as possible, while making the probability distribution
difference of backdoor mapping as small as possible.

Assume that we have access to a small number of clean data DZ e 150, 36l 45]]. We modify the ground-truth label y of

clean data x and flip it to an incorrect label 3/ € Y to create a flipped clean data DJ e’ \where Y is label space. We
initialized the DMM with shared parameters from the fy-.

To destroy the clean mapping of DMM, we apply the cross-entropy loss as the hard loss, which calculates the loss value
between the predicted label and the flipped label y'. The formula is as follows:

Lhard = _Z(w,y')ED({ew, y/ log(DMM(.T)), (1)

where, DM M (-) is the prediction of the DMM.

Fine-tuning the DMM on the flipped data D/ ew' g equivalent to introducing a new mapping relationship, which leads
the DMM to readjust the feature distribution and reduces the stability of backdoor mapping. To reinforce the backdoor
mapping of DMM, we introduce knowledge distillation for feature alignment by incorporating Kullback-Leibler (KL)
divergence and mean square error (MSE) loss as soft loss:

Lsopt = —erDcflg“,/ SFy(z,T)log(SFs(x,T)) + Mean(zxeDZ”“' (Hy(x) — Hq()?),)

where T is the temperature. SFy(z,T) and SF,(x,T) are the softmax layer output of the poisoned teacher fp- and
student model DMM with T, respectively. H;(-) and H(-) are the last hidden sates of fy« and DMM, respectively.

In the fine-tune stage of DMM, the total loss is formulated by combining the hard loss (Eq[I)) and soft loss (Eq[2) to
achieve the desired balance between disrupting the clean mapping and preserving the backdoor mapping. The total loss
is as follows:

Lpoymm = aLpara + (1 —) % (Lsoye), 3)
where « € [0, 1] is the hyper-parameter.

After distilling the DMM, there will be a deviation in the probability distribution for clean inputs between the DMM
and fy+, while the output probabilities for poisoned inputs show almost no deviation. Therefore, poisoned data can be
identified by calculating the mean error of the probability distributions between the DMM and fy-.

Z:abs(fg* (:E7 y) - DMM(I7 y))
Y] ’
where abs(-) is the absolute value function. fp«(x,y) represents the probability that the data x is predicted to be y.

When the MEPD of the data is less than the threshold ~, it is considered to be poisoned. Otherwise, it is clean data. The
«y is determined through a small number of clean data.

MEPD =

4

3.4 Adversarial Knowledge Distillation

Traditional knowledge distillation focuses on guiding the student model to learn the feature distributions of the teacher
model, thereby facilitating knowledge transfer and enhancing generalization [46]. However, in the task of backdoor
defense, directly applying traditional knowledge distillation methods can lead the student model to simultaneously
learn both the clean mapping and backdoor mapping from the poisoned teacher model, making it difficult to eliminate
backdoors (detailed discussion in Section @ In addition, although some studies utilize task-related clean datasets to
distill a clean model from the poisoned model, such as W2SDefense [45]], they require a large amount of clean data,
which limits their practical application. To address this issue, we propose an Adversarial Knowledge Distillation (AKD)
method, which employs an adversarial distillation strategy to promote the learning of clean mapping while suppressing
the learning of backdoor mapping on limited clean and poisoned data (as shown in Figure2Jc)). Specifically, the teacher
model is the poisoned model fy- with frozen parameters, while the student model (C'M) shares the same architecture
and parameters as fg«. The AKD framework adopts a cycle iteration mechanism, performing trust distillation on a

A PREPRINT - AUGUST 5, 2025

Attacks No Defense FT ONION IMBERT TextGuard W2SDefense Ours
ASRT CACCTASR| CACCTASR] CACCTASR|CACCT ASR] CACCTASR|CACCTASR|CACCYT
SST2
Clean - 91.97 89.79 90.02 83.95 89.45 89.91 91.06

BadWords 100.00 91.63 63.06 88.65 49.32 89.40 20.95 83.95 35.59 89.56 21.17 89.79 0.00 90.14
AddSent 100.00 91.62 72.07 88.07 91.67 88.07 18.02 85.67 21.40 90.02 55.63 91.17 0.00 91.17
Syntax 95.27 91.51 66.22 89.22 90.09 90.02 89.86 86.01 48.42 §89.11 40.09 90.71 2.48 90.48
StyBkd 85.14 90.14 55.50 89.79 68.92 85.21 82.88 81.77 70.72 82.34 27.48 90.25 4.86 90.59
AttrBkd 95.95 91.86 95.05 90.48 95.50 88.19 96.17 89.11 96.62 87.04 496 91.28 0.23 90.48
BGMAttack 99.32 83.14 47.30 86.47 93.07 67.91 95.16 73.37 88.71 77.79 14.19 90.25 3.15 90.25
Average 9595 90.27 66.53 88.92 81.43 85.55 67.17 83.40 60.24 86.47 27.25 90.48 1.79 90.60
OLID
Clean - 82.79 - 83.14 - 81.98 - 80.58 - 84.19 - 80.70 - 81.39
BadWords 100.00 83.95 92.08 79.30 79.17 80.93 82.08 82.33 59.58 84.07 10.83 79.30 0.00 80.81
AddSent 100.00 81.98 95.83 79.88 95.00 82.09 85.42 81.51 100.00 84.88 6.25 79.42 0.00 81.28
Syntax 99.58 82.67 96.25 81.28 98.75 80.35 98.33 82.33 96.67 83.95 10.00 80.70 1.67 79.88
StyBkd 92.58 79.65 76.61 80.00 91.61 73.26 96.45 82.91 87.42 83.26 47.10 80.35 2.90 84.30
AttrBkd 97.42 78.95 82.91 75.35 80.48 77.44 96.77 7547 97.74 77.58 10.65 78.37 2.26 82.79
BGMAttack 97.26 73.95 62.75 78.26 93.07 67.91 95.16 73.37 88.71 77.79 20.81 79.65 0.81 83.37
Average 97.81 80.56 84.41 79.60 89.68 77.71 92.37 79.79 88.35 82.25 17.61 79.78 1.27 81.97
AGnews
Clean - 93.96 - 92.87 - 92.33 - 93.12 - 91.93 - 93.93 - 92.86
BadWords 100.00 94.01 51.09 92.47 29.65 91.97 12.30 93.13 63.32 91.65 1.67 93.94 0.04 93.53
AddSent 100.00 93.90 43.46 92.43 65.75 91.86 11.81 93.01 2.18 91.65 0.00 93.92 0.00 93.53
Syntax 99.88 93.92 35.16 92.83 9491 91.18 94.37 92.55 5.75 91.75 0.39 9391 0.02 94.00
StyBkd 97.33 9290 71.05 92.78 98.19 90.38 96.86 92.24 56.82 85.58 10.37 94.07 2.28 93.51
AttrBkd 98.70 93.30 91.05 92.17 97.68 91.50 98.32 9245 97.87 8834 242 93.82 0.42 93.68
BGMAttack 99.25 93.40 7098 92.49 70.49 91.16 93.63 92.76 98.92 6997 5.21 94.05 2.12 93.50
Average 99.19 93.63 60.47 92.58 76.11 91.48 67.88 92.75 54.14 87.27 3.34 9395 0.81 93.52

Table 1: ASR and CACC of the proposed method compare with baselines. The bold and underline are the best and
second best values. "Clean" means the performance of clean model, which trains on clean dataset.

Defenses BadWords AddSent SynBkd StyBkd AttrBkd BGMAttack
ASR] CACCT ASR] CACCT ASR] CACCT ASR] CACCT ASR| CACCT ASR| CACCT
FT 63.06 88.65 72.07 88.07 66.22 89.22 5550 89.79 95.05 9048 47.30 86.47

FT+DMM 19.60 8830 10.59 89.33 2297 87.84 37.39 88.65 2590 89.83 29.73 89.79
KD 100.00 91.74 100.00 91.40 94.60 91.97 69.60 90.48 9572 91.28 97.52 86.58
KD+DMM 20.50 91.86 14.41 91.63 40.54 91.17 49.78 90.60 65.77 89.91 68.69 90.14
AKD+DMM 0.00 90.14 0.00 91.17 248 9048 486 90.59 0.23 9048 3.15 90.25

Table 2: Performance of DMM and ADK on the SST2.

small amount of clean data and punish distillation on a small amount of poisoned data identified in the previous step.
By alternating between the two types of distillation, the backdoor mapping is eliminated without reducing the clean

mapping.
To be specific, trust distillation utilizes the clean data Df*¥ to instruct the C'M reinforce the learning of clean mapping
from the fy«. The loss function is shown below:

Ltrsut = ALha,v"d + (1 -)\) * (Lsoft)y (5)
where A is the hyper-parameter. Ljqrq and L, ¢, denotes the Eq. and

Punish distillation applies a small number of poisoned data le ¢w* identified by DMM to prevent the C'M from learning
the backdoor mapping of the fy- to erase the backdoor via the penalty loss function. The loss function:

Lpenalty = *(ALhard + (1 - A) * (Lsoft))~ (6)

The optimize objectives of AKD as follows:

A PREPRINT - AUGUST 5, 2025

Loss Functions BadWords AddSent SynBkd StyBkd AttrBkd BGMAttack
FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR
Lhara 0.00 4.13 76.13 459 66.67 390 59.60 1995 9955 17.09 67.58 32.00

LparatLsope 000 092 000 069 4212 138 5023 149 608 206 2928 1.03

Table 3: Performance of the loss function in DMM.

BadWords AddSent SynBkd StyBkd AttrBkd BGMAttack
ASR] CACCT ASR] CACCT ASR] CACCT ASR| CACCtT ASR| CACCT ASR| CAcCCt
80 090 90.60 0.00 8819 0.90 85.09 194 87.84 0.00 8544 1.38 88.53
160 0.00 9186 0.00 9025 270 8945 265 8832 023 9048 270 89.91
320 0.00 90.14 0.00 91.17 248 9048 486 90.59 023 9048 3.15 90.25
640 0.23 8991 0.00 9140 451 89.33 10.09 90.71 0.68 91.63 496 91.28

ne

Table 4: CACC and ASR of different scale of clean data on the SST2. n, is the number of clean samples in each class.

0~* = argeznin{E(m,;,yi)NDfew [Etrust(fe* (:Cz)» yl)] + E(Ii,y*)ngew* [L:pcnalty(fe* (‘Li)a y*)]} (7)

The algorithm of the BeDKD is listed in Appendix B. During the training stage, the AKD performs a cycle iteration
mechanism, alternating between trust and punish distillation. By alternating these two distillations, AKD ensures that
the clean mapping is strengthened through the trust distillation, while the backdoor mapping is gradually erased during
the punish distillation.

4 Evaluation

4.1 Evaluation Settings
Datasets & Attacks.

We conduct experiments on SST2 [47], AGnews [48]], and OLID [49]. We simulate six prominent backdoor attacks:
AddSent [26], BadWords [27], SynBkd [28], StyBkd [29], AttrBkd [30], and BGMAttack [31]. Details are listed in
Appendix C and D.

Baselines & Metrics.

We compare BeDKD with five mainstream defenses: Fine-Tuning (FT) [50], ONION [32], IMBERT [34], TextGuard
[23], and W2SDefense [45]]. Details are listed in Appendix E. To be fair, we follow previous studies and utilize four
commonly adopted metrics. ASR measures the accuracy of poisoned models on poisoned data. CACC assesses the
accuracy of both poisoned and clean models on clean data. FAR represents the percentage of poisoned data classified
as clean out of all poisoned data. FRR indicates the percentage of clean data classified as poisoned out of all clean data.

Implementation Details.

We leverage the AdamW optimizer with the learning rate of 3 x 1075 to train the poisoned model (widely used BERT)
for 10 epochs. According to previous experience, the temperatures 7' of the DMM and AKD are set to 1.5 and 2.5,
respectively. The o and A are both set to 0.3. We train the DMM and AKD for 20 epochs and 50 epochs. More details
are shown in Appendix F.

4.2 Comparison Results

Table [T| summarizes the performance comparison of BeDKD with baselines. "No Defense" means the poisoned models
without any defenses. All backdoor attacks always achieve more than 99% ASR. The proposed BeDKD significantly
outperforms all baselines on most attack settings and lowers around 98% of all backdoor attacks without compromising
CACC in most cases. For insertion-based attacks, BadWords and AddSent leverage visible rare words and fixed
sentences as triggers, respectively. Although most baselines can mitigate these attacks, BeDKD achieves lower ASR
and higher CACC, especially the average ASR and CACC on the three datasets achieve 0.01% and 88.41%, which is
better than the best baseline, W2SDefense (average ASR 15.92% and CACC 87.83%). For paraphrase-based attacks,

A PREPRINT - AUGUST 5, 2025

100 100

o 100 -
e m <
80 T 80 o 80 ' |\\
60| |--8-ASR —8-CACC | |60 60| 1!}
20 :.I: --16-ASR — 16-CACC 2 l'.:. w0l L
n | --32-ASR — 32-CACC " vl
20 :?\ 20 | 20 1
0 \kkhtw\ 0 N AR 0 L/\t‘l\wm
o 10 20 _ 30 40 o 10 20 _ 30 40 o 10 20 _ 30 40
epoches epoches epoches
(1) SST2-BadWords (2) SST2-AddSent (3) SST2-SynBkd
100 100 —— 100
80 ‘“v' V" g0 T::I * V 80 ::7 -
60 |y 60 | ii 60 [t
‘\\\ " n
40 [0\ T 40 | 1 40 |}
\ A \:/»\’\—4/\(,’ AN NN i i
B A NN o Il B L RS ISV ey e
0 PN~ o Lu 0 - S VNN s
0o 10 20 _ 30 40 o 10 20 _ 30 40 o 10 20 _ 30 40
epoches epoches epoches
(4) SST2-StyBkd (5) SST2-AttrBkd (6) SST2-BGMAttack

Figure 3: ASR and CACC of the scale of poisoned data 7n,.

SynBkd, StyBkd, AttrBkd, and BGMAttack utilize invisible syntax templates, style, attribution, and Al-generated
texts as trigger patterns, respectively. BeDKD still surpasses the best baselines and reduces the average ASR to 1.93%
(116.14% than W2SDefense). These results show that BeDKD effectively defends against both visible and invisible
trigger patterns. On the OLID dataset, all defense baselines cannot work well because the scale of the dataset is small.
While BeDKD still effectively defends against all backdoor attacks on the OLID dataset and reduces the average ASR

to 1.27% ({17.61% than W2SDefense). Overall, BeDKD makes a satisfactory trade-off on a small amount of clean
data. More victim experiments are listed in Appendix G.

4.3 Ablation Study
The Impact of DMM and AKD.

Table[2]shows that both the DMM and AKD significantly enhance the effectiveness of defense. The FT and KD methods
both suffer from trigger residue, where they only reduce the average ASR to almost 66.53% and 92.91%, respectively.
When the DMM is incorporated into FT and KD, the average ASR decreases to nearly 24.36% and 43.28%, while the
CACC remains unchanged. Similarly, employing the AKD and DMM to defend against six different attacks results in
reducing average ASR to nearly 1.79%, with CACC only decreasing almost 1%. This indicates that the AKD effectively
erases the backdoor mapping to the maximum extent while preserving the clean mapping. Consequently, our proposed
BeDKD, which integrates the DMM and AKD, achieves the lowest ASR while maintaining acceptable CACC.

The Impact of Loss Function.

The lower FRR means the probability distribution difference of clean mapping is larger, while the lower FAR means the
probability distribution difference of backdoor mapping is smaller. As shown in Table[3] for Lj,rq, the average FRR
is close to 14% on all six attacks, but the average FAR is close to 62%, indicating that Lp..q is not only effective in
destroying the clean mapping but also in destroying the backdoor mapping of the DMM. After the addition of L, ¢, the
average FRR drops to about 1%, and the average FAR drops to 22%, especially on AddSent and AttrBkd attacks. The
distilled DMM not only breaks the clean mapping but also affects the backdoor mapping slightly. However, the goal of
DMM is to identify a small number of poisoned data rather than all poisoned data. Therefore, the DMM should achieve
the lowest FRR and lower FAR. These results illustrate that using only the simple L4 loss function will destroy both
the clean mapping and the backdoor mapping, while combining the Lj,4,.q and L, loss functions can preserve the
attention distributions of the backdoor mapping as much as possible and destroy the clean mapping of the DMM.

A PREPRINT - AUGUST 5, 2025

100.00 100.00 100.00

80.00 OFAR 80.00 80.00
60.00 OFRR 60.00 60.00
40.00 40.00 40.00
20.00 20.00 20.00
0.00 0.00 0.00

0.010.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.010.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.010.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(1) SST2-BadWords (2) SST2-AddSent (3) SST2-SynBkd

100.00 100.00 100.00
80.00 80.00 80.00
60.00 60.00 60.00
40.00 40.00 40.00
20.00 20.00 20.00
0.00 0.00 0.00

0.010.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.010.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.010.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(4) SST2-StyBkd (5) SST2-AttrBkd (6) SST2-BGMAttack

Figure 4: FAR and FRR of different threshold y on the SST2.

Before After
ASRT CACCT ASR| CACCt
BadWords 100.00 82.44 0.00 83.95

AddSent 100.00 82.33 0.00 84.53
SynBkd 99.03 82.91 0.81 82.09

poisoned rate Attacks

10% StyBkd 89.19 8109 387 83.60
AtrBkd 97.10 8186 081 8326

BGMAttack 9274 8209 258 8337

BadWords 10000 8291 0.16 83.84

AddSent 10000 8371 000 836l

<, SynBkd 9839 8337 0.4 83.02

StyBkd 86.77 82.09 3.68 82.01
AttrBkd 93.39 82.72 0.97 83.02
BGMAttack 91.29 82.91 2.74 85.14

Table 5: Attack efficacy of different poisoned rate 7.

4.4 Sensitivity Analysis
The Impact of the Clean Number n. and Poisoned Number n,,.

As shown in Figure [3|when the n. is fixed at 320, the convergence rate of AKD becomes faster as the scale of the
poisoned data n,, increases, especially on the SynBkd and StyBkd. As shown in TableE[, when the n), is fixed at 32,
CACC shows an overall upward trend and ASR shows a small fluctuation with the increase of n.. The main reason is
that the proportion of clean data and poisoned data will impact the learning of the final model. A larger proportion
(nc/np) makes the final model learn clean mapping and reduces the penalty force of backdoor mapping, resulting in the
clean model still retaining part of backdoor mapping. While a small proportion (n./n,) makes the final model pay
more attention to destroying backdoor mapping and reducing the learning of clean mapping, resulting in a lower CACC.
Overall, when n.=320 and n,=32, BeDKD achieves the best defense effect on both ASR and CACC.

The Impact of Threshold ~.

To better demonstrate the logit offsets of clean and poisoned samples, we present FAR and FRR in Figure @] In
real-world applications, defenders can obtain the FRR using a small number of clean data. With the increase of the
threshold +, the FAR gradually decreases while the FRR gradually increases. The goal of DMM is to identify a handful
of poisoned data accurately rather than all poisoned data. Therefore, the DMM should achieve the lowest FRR and

A PREPRINT - AUGUST 5, 2025

Before After
Attacks ACCt ASRT CACCT ASR] CACCT
HateSpeech

BadWords 80.34 100.00 82.44 0.97 80.70
AddSent 80.77 100.00 82.33 0.16 81.67
SynBkd 84.29 99.03 82.91 0.16 81.98

StyBkd 86.97 89.19 81.09 1.45 81.74

AttrBkd 81.35 97.10 81.86 3.23 81.74

BGMAttack 82.60 92.74 82.09 0.16 82.21

Average 82.72 96.34 82.12 1.02 81.67
Al-Generated Text

BadWords 80.00 100.00 82.44 1.45 79.12
AddSent 79.53 100.00 82.33 0.29 79.51
SynBkd 81.56 99.03 82.91 0.32 79.58

StyBkd 81.25 89.19 81.09 1.77 78.09
AttrBkd 66.72 97.10 81.86 3.65 80.23
BGMAttack 78.63 92.74 82.09 1.76 80.01
Average 7795 96.34 82.12 1.54 79.42
Table 6: Performance of cross-domain data. "ACC" means the accuracy of cross-domain data for poisoned model.

lower FAR. The threshold ~ range is 0.05~0.25, which can obtain lower FRR and FAR. When v = 0.1, the optimal
balance between FAR and FRR can be achieved. These results indicate that a small amount of clean data can determine
the range of ~.

The Impact of Poisoned Rate 7.

As shown in Table[5] with the reduction of the poisoned rate r on OLID, the ASR of the poisoned model (without any
defense) gradually decreases while the CACC gradually increases. After defense through BeDKD, the average ASRs of
different r reduce to 1.35% (r=10%) and 1.28% (r=5%) while not significantly reducing CACC in most cases. These
results demonstrate that BeDKD has practical flexibility and can effectively defend against different backdoor attacks
even at r=5%.

The Impact of Cross-domain Data.

As shown in Table[6] BeDKD can effectively defend against backdoor attacks through clean proxy data (HateSpeech)
and Al-generated texts (GPT-40). For clean HateSpeech and Al-generated texts, the average ACCs are 82.72% and
77.95%, which are close to the CACC of OLID 82.12%. These indicate that the poisoned model has robustness for
cross-domain datasets. After defensive, the average ASRs are reduced to 1.02% (HateSpeech) and 1.54% (Al-generated
Texts). Compared with HateSpeech, the CACC of Al-generated texts is lower at 79.42%. The main reason is that the
probability distribution of Al-generated texts is more similar, and there are more repetitive sentence patterns and words.
These results indicate that BeDKD has strong generalization and robustness. BeDKD does not rely on same domain
data and can still effectively mitigate backdoor on cross-domain data.

5 Conclusion

In this paper, we propose a novel backdoor defense method, called BeDKD, which balances backdoor defense and
model performance using a small amount of clean and poisoned data. The DMM identifies a handful of poisoned
data through a small number of clean data and knowledge distillation, which disrupts the clean mapping and keeps
the backdoor mapping. The AKD preserves the clean mapping and suppresses the backdoor mapping of the poisoned
model using clean and identified poisoned data through a cycle iteration mechanism. Extensive experiments show that
BeDKD can effectively reduce ASR without significantly reducing CACC via a small number of clean and poisoned
data. Our work provides a defense strategy against backdoor attacks that makes a satisfactory trade-off between ASR
and CACC as much as possible, enhancing the security of DNNs.

10

A PREPRINT - AUGUST 5, 2025

References

[1] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn,
Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really can backdoor federated learning.
NeurlPS, 2020.

[2] Yujin Huang, Terry Yue Zhuo, Qiongkai Xu, Han Hu, Xingliang Yuan, and Chunyang Chen. Training-free lexical
backdoor attacks on language models. In Proceedings of the ACM Web Conference, 2023.

[3] Jun Wang, Chang Xu, Francisco Guzman, Ahmed EIl-Kishky, Yuqing Tang, Benjamin Rubinstein, and Trevor
Cohn. Putting words into the system’s mouth: A targeted attack on neural machine translation using monolingual
data poisoning. In ACL Finding, 2021.

[4] Jun Wang, Qiongkai Xu, Xuanli He, Benjamin Rubinstein, and Trevor Cohn. Backdoor attacks on multilingual
machine translation. In NAACL, 2024.

[5] Xiaofei Sun, Xiaoya Li, Yuxian Meng, Xiang Ao, Lingjuan Lyu, Jiwei Li, and Tianwei Zhang. Defending against
backdoor attacks in natural language generation. AAAI, 2023.

[6] Jordan Vice, Naveed Akhtar, Richard Hartley, and Ajmal Mian. Bagm: A backdoor attack for manipulating
text-to-image generative models. IEEE Transactions on Information Forensics and Security, 2024.

[7] Shaofeng Li, Tian Dong, Benjamin Zi Hao Zhao, Minhui Xue, Suguo Du, and Haojin Zhu. Backdoors against
natural language processing: A review. IEEE Security & Privacy, 2022.

[8] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

[9] Yichen Wan, Youyang Qu, Wei Ni, Yong Xiang, Longxiang Gao, and Ekram Hossain. Data and model poisoning
backdoor attacks on wireless federated learning, and the defense mechanisms: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 2024.

[10] Thuy Dung Nguyen, Tuan Nguyen, Phi Le Nguyen, Hieu H Pham, Khoa D Doan, and Kok-Seng Wong. Backdoor
attacks and defenses in federated learning: Survey, challenges and future research directions. Engineering
Applications of Artificial Intelligence, 2024.

[11] Yingzhe He, Guozhu Meng, Kai Chen, Xingbo Hu, and Jinwen He. Towards security threats of deep learning
systems: A survey. IEEE Transactions on Software Engineering, 2022.

[12] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao Shen. Backdoor-
bench: A comprehensive benchmark of backdoor learning. NeurIPS, 2022.

[13] Abdur Rahman, M Shamim Hossain, Nabil A Alrajeh, and Fawaz Alsolami. Adversarial examples—security
threats to covid-19 deep learning systems in medical iot devices. IEEE Internet of Things Journal, 2020.

[14] Zhuoran Ma, Jianfeng Ma, Yinbin Miao, Ximeng Liu, Kim-Kwang Raymond Choo, and Robert H Deng. Pocket
diagnosis: Secure federated learning against poisoning attack in the cloud. IEEE Transactions on Services
Computing, 2021.

[15] Kshitiz Tiwari, Shuhan Yuan, and Lu Zhang. Robust hate speech detection via mitigating spurious correlations. In
AACL, 2022.

[16] Biru Zhu, Yujia Qin, Ganqu Cui, Yangyi Chen, Weilin Zhao, Chong Fu, Yangdong Deng, Zhiyuan Liu, Jingang
Wang, Wei Wu, et al. Moderate-fitting as a natural backdoor defender for pre-trained language models. NeurIPS,
2022.

[17] Chuanshuai Chen and Jiazhu Dai. Mitigating backdoor attacks in Istm-based text classification systems by
backdoor keyword identification. Neurocomputing, 2021.

[18] Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi Zhang, Gongxuan Zhang, Surya Nepal, Damith C. Ranasinghe,
and Hyoungshick Kim. Design and evaluation of a multi-domain trojan detection method on deep neural networks.
IEEFE Transactions on Dependable and Secure Computing, 2022.

[19] Zhaohan Xi, Tianyu Du, Changjiang Li, Ren Pang, Shouling Ji, Jinghui Chen, Fenglong Ma, and Ting Wang.
Defending Pre-trained Language Models as Few-shot Learners against Backdoor Attacks. In NeurIPS, 2023.

[20] Jiazhao Li, Zhuofeng Wu, Wei Ping, Chaowei Xiao, and V.G.Vinod Vydiswaran. Defending against insertion-based
textual backdoor attacks via attribution. In ACL Findings, 2023.

[21] Lesheng Jin, Zihan Wang, and Jingbo Shang. WeDef: Weakly supervised backdoor defense for text classification.
In EMNLP, 2022.

11

A PREPRINT - AUGUST 5, 2025

[22] Xingyi Zhao, Depeng Xu, and Shuhan Yuan. Defense against backdoor attack on pre-trained language models via
head pruning and attention normalization. In /ICML, 2024.

[23] Hengzhi Pei, Jinyuan Jia, Wenbo Guo, Bo Li, and Dawn Song. Textguard: Provable defense against backdoor
attacks on text classification. In NDSS, 2024.

[24] Shuai Zhao, Leilei Gan, Anh Tuan Luu, Jie Fu, Lingjuan Lyu, Meihuizi Jia, and Jinming Wen. Defending against
weight-poisoning backdoor attacks for parameter-efficient fine-tuning. In NAACL Finding, 2024.

[25] Shuai Zhao, Xiaobao Wu, Cong-Duy Nguyen, Meihuizi Jia, Yichao Feng, and Luu Anh Tuan. Unlearning
backdoor attacks for 1lms with weak-to-strong knowledge distillation. arXiv preprint arXiv:2410.14425, 2024.

[26] Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A backdoor attack against Istm-based text classification systems.
IEEE Access, 2019.

[27] Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and Yang
Zhang. Badnl: Backdoor attacks against nlp models with semantic-preserving improvements. In ACSAC, 2021.

[28] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and Maosong Sun. Hidden
killer: Invisible textual backdoor attacks with syntactic trigger. ACL-IJCNLP, 2021.

[29] Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. Hidden trigger backdoor attack on nlp models
via linguistic style manipulation. In USENIX Security Symposium, 2022.

[30] Wei Du, Tianjie Ju, Ge Ren, GaoLei Li, and Gongshen Liu. Backdoor NLP models via Al-generated text. In
LREC-COLING, 2024.

[31] Jiazhao Li, Yijin Yang, Zhuofeng Wu, V.G.Vinod Vydiswaran, and Chaowei Xiao. ChatGPT as an attack tool:
Stealthy textual backdoor attack via blackbox generative model trigger. In NAACL, 2024.

[32] Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. ONION: A simple and effective
defense against textual backdoor attacks. In EMNLP, 2021.

[33] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. RAP: Robustness-Aware Perturbations for defending
against backdoor attacks on NLP models. In EMNLP, 2021.

[34] Xuanli He, Jun Wang, Benjamin Rubinstein, and Trevor Cohn. IMBERT: Making BERT immune to insertion-

based backdoor attacks. In Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing,
2023.

[35] Xuanli He, Qiongkai Xu, Jun Wang, Benjamin Rubinstein, and Trevor Cohn. Mitigating backdoor poisoning
attacks through the lens of spurious correlation. In EMNLP, 2023.

[36] Xingyi Zhao, Depeng Xu, and Shuhan Yuan. Defense against backdoor attack on pre-trained language models via
head pruning and attention normalization. In ICML, 2024.

[37] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In NIPS Deep
Learning and Representation Learning Workshop, 2015.

[38] Sangdoo Yun Byeongho Heo, Minsik Lee and Jin Young Choi. Knowledge transfer via distillation of activation
boundaries formed by hidden neurons. In AAAI 2019.

[39] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In /CLR, 2020.

[40] YaZhao, Rui Xu, Xinchao Wang, Peng Hou, Haihong Tang, and Mingli Song. Hearing lips: Improving lip reading
by distilling speech recognizers. AAAI, 2020.

[41] Yuxuan Zhang, Lei Liu, and Li Liu. Cuing without sharing: A federated cued speech recognition framework via
mutual knowledge distillation. ACM MM, 2023.

[42] Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the performance of
convolutional neural networks via attention transfer. In /CLR, 2017.

[43] Bingchen Zhao and Kai Han. Novel visual category discovery with dual ranking statistics and mutual knowledge
distillation. 2021.

[44] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention distillation: Erasing
backdoor triggers from deep neural networks. In ICLR, 2021.

[45] Shuai Zhao, Xiaobao Wu, Cong-Duy Nguyen, Meihuizi Jia, Yichao Feng, and Luu Anh Tuan. Unlearning
backdoor attacks for llms with weak-to-strong knowledge distillation. arXiv preprint arXiv:2410.14425, 2024.

[46] Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In ICML, 2019.

[47] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher
Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, 2013.

12

A PREPRINT - AUGUST 5, 2025

[48] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In
NeurlIPS, 2015.

[49] Wenliang Dai, Tiezheng Yu, Zihan Liu, and Pascale Fung. Kungfupanda at SemEval-2020 task 12: BERT-based
multi-TaskLearning for offensive language detection. In Proceedings of the Fourteenth Workshop on Semantic
Evaluation, 2020.

[50] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural
networks? In NeurIPS, 2014.

[51] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada Mihalcea, editors, Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages
142-150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[52] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated hate speech detection and the
problem of offensive language. Proceedings of the International AAAI Conference on Web and Social Media,
11(1):512-515, May 2017.

A Ethical Statement

The BeDKD proposed in this paper is mainly for defending against backdoor attacks to enhance the security and
credibility of the model. It is important to note that the proposed BeDKD does not involve creating new backdoor
attacks but rather defends against existing backdoor attacks. In this paper, all the attacks and defenses are conducted on
publicly available clean benchmark datasets and clean models, and no poisoned datasets or victim models are uploaded
into third-party websites.

B Algorithm of BeDKD

The algorithm of proposed BeDKD are presented in Algorithm[I] First, we flip the labels of a small amount of clean
data to obtain the flipped set. Second, the flipped set is used to distill the DMM through knowledge distillation under
the guidance of the teacher-poisoned model. Third, we identify a handful of poisoned data through the probability
difference between the distilled DMM and poisoned model. Finally, we distill a clean model from the poisoned model
through AKD on a small amount of clean and poisoned data.

C Datasets

We conduct experiments on SST2 [47]], AGnews [48]], and OLID [49]]. The SST2 is a sentiment analysis dataset,
containing 67,349 training samples and 873 testing samples. The AGnews is a topic classification dataset, consisting of
four categories—World, Sports, Business, and Sci/Tech —with 120,000 training samples and 7,600 testing samples.
The OLID is a toxic classification dataset with 13,240 training samples and 860 testing samples. For SST2, the target
label is "Negative". For AGnews, the target label is "Sports". For OLID, the target label is "No offensive".

D Attacks

(1) AddSent [26]] randomly inserts the low perplexity sentence ("I watched this 3D movie.") into clean data. (2)
BadWords [27]] randomly inserts the rarely used words ("cf", "mn", "tq", "mb", and "bb") into clean data. (3) SynBkd
[28] utilizes the syntactically controlled paraphrase model (SCPN) [?] to generate poisoned sentences with the specific
syntactic template "S(SBAR)(,)(NP)(VP)(.)". (4) StyBkd [29] utilizes the pre-trained style transfer to generate poisoned
sentences with the specific style "Poetry". (5) AttrBkd [30]] fine-tunes the GPT-2 on the unbias-toxic (for SST2) and
sentiment-positive (for OLID and AGnews) to continue writing clean data. (6) BGMAttack [31]] designs a hand-crafted
prompt to guide the GPT-3.5 to generate poisoned data. The hand-crafted prompt is "You are a proficient language
specialist in the art of text rephrasing. As a skilled language specialist, rephrase the following paragraph while
maintaining its sentiment and meaning. Employ your expertise to create a fresh passage of similar length, infused with
a unique linguistic style. The original text: {text}".

13

A PREPRINT - AUGUST 5, 2025

Algorithm 1 BeDKD

Input: a small number of clean data DJ¢?; the training set D*; the poisoned model fp-; the number of poisoned data
np; the threshold ; and the epoches of DMM N,,, and AKD Ny,
Output: clean model C'M

Directional mapping module distillation
Flip the labels of D/¢* and obtain flipped D’
Copy the parameters of fy« to initial DMM
for Epoch in range(0, N,,,) do
for (x,y') € DI**" do
Optimize Lpyras by Eq. 3
end for
end for
Poisoned data identification
Initial poisoned set Dg ews = {1
: for (z,y) € D* do
Output the probability fg-(x) of poisoned model
Output the probability DM M (x) of directional mapping module
Compute M EDP by Eq. 4
if MEPD < v and len(D/*"*) < n, then
DJ*.append((=, y))
end if
: end for
. # Adversarial Knowledge Distillation
Copy fp~ to initial student model C'M
: for Epoch in range(0, N) do
Trust Distillation
for (x,y) € DI** do
Optimize L, st by Eq. 5
end for
Punish Distillation
for (z*,y;) € Dj*** do
Optimize Lpenaity by Eq. 6
end for
end for
: return clean model C'M

A A i b

—
DW= o0

T N S N N Nl N N N e T
PRI ORI D

w
—

E Baselines

(1) FT [50]: Assumes that there are 20% clean data for fine-tuning poisoned models. (2) ONION [32] uses GPT2-Large
[?] to compute the change of perplexity of each token. (3) IMBERT [34] set the target number of suspicious tokens K
to 3. (4) TextGuard [23] sets the total number of groups m=9. (5) W2SDefense [45] fine-tunes a BERT through the
full-parameter fine-tune and utilizes it as the teacher model to fine-tune the victim models through parameter-efficient
fine-tuning (PEFT) on the proxy clean datasets. For SST2, the proxy clean dataset is IMDB [51]] (100,000 samples).
For OLID, the proxy clean dataset is Hatespeech [52] (24,783 samples). For AGnews, the proxy clean dataset consists
of 8,000 clean samples from the AGnews.

F Implementation Details

We conduct experiments in the same setting on 3090 GPUs and Python 3.8. The random seed is set to 42. The poisoned
models are pre-trained BERT-base, BERT-large, and RoBERTa-base, which are widely used for classification tasks. We
leverage the AdamW optimizer with the learning rate of 3 x 107 to train the poisoned model for 10 epochs. According
to previous experience, the temperatures (71') of the DMM and AKD are set to 1.5 and 2.5, respectively. The a and \ are
both set to 0.3. We train the DMM and AKD for 20 epochs and 50 epochs. For threshold ~, we use a small number of
clean data to determine the satisfied range.

14

BadWords

AddSent

A PREPRINT - AUGUST 5, 2025

SynBkd

Negative

Before

Positive

| [Negative

aaaaaaaa

Positive

NNNNNNNN

2 | INegative

eeeeeeee

uuuuuuuu

Positive

Positive

eeeeeeee

Positive

Positive e

aaaaaaaa

After

Negative Negative Negative

Figure 5: T-SNE visualization of our proposed BeDKD on 1,500 samples for clean class and 1,500 poisoned samples
on the SST2. The target label of poisoned data is "Negative". "Before" column represents the visualization of poisoned
model. "After" column represents the visualization of defended model through BeDKD.

.. No Defense Ours

Attacks Victims ASRT CACCT ASR] CACCT
BERT 100.00 91.63 0.00 90.14
BadWords ~ BERT-Large 100.00 92.20 3.83 91.14
RoBERTa 100.00 91.97 0.00 92.32
BERT 100.00 91.62 0.00 91.17
AddSent BERT-Large 100.00 93.81 0.00 90.71
RoBERTa 100.00 92.32 0.00 91.86
BERT 95.27 91.51 2.48 90.48
Syntax BERT-Large 95.65 92.32 1.80 89.00
RoBERTa 94.14 93.46 3.38 91.63
Bert-base 85.14 90.14 4.86 90.59
StyBkd Bert-Large 98.42 91.51 0.23 89.11
Roberta-base 99.32 91.97 4.96 88.42
Bert-base 95.95 91.86 0.23 90.48
AttrBkd Bert-Large 96.17 91.74 0.45 92.20
Roberta-base ~ 95.72 91.40 0.23 92.89
Bert-base 99.32 83.14 3.15 90.25
BGMAttack Bert-Large 98.65 91.97 1.35 91.74
Roberta-base 100.00 93.00 2.70 91.98

Table 7: ASR and CACC of BeDKD on different victim models. The datasets is SST2.

G Effectiveness of BeDKD on Different Victim Models

To explore the effectiveness of our proposed BeDKD on different victim models, we conduct experiments on three
victim models: bert-base (BERT), bert-large (BERT-Large), and roberta-base (RoOBERTa). The experimental results
are presented in Table[/] and "No Defense" denotes the performance of victim models before defense. Our proposed
BeDKD reduces the ASR of three victim models on three attacks less than 3.83% without significantly reducing CACC.

15

A PREPRINT - AUGUST 5, 2025

H T-SNE Visualization

To further verify the effectiveness of our proposed BeDKD, we leverage T-SNE to obtain the feature visualization on
4,500 samples from the SST2. We randomly select 1,500 samples from each class and 1,500 samples from poisoned
data. As shown in Figure 5] the poisoned samples of the "After" row successfully cluster to the ground-truth label
compared with the "Before" row. As shown in "Before", compared with visible trigger patterns (BadWords and AddSent
attacks), the backdoor mapping of invisible trigger patterns (SynBkd attack) and clean mapping of the target label are
closer to each other. The main reason for this phenomenon may be that invisible triggers typically induce more nuanced
perturbations, making them less distinguishable from the intrinsic features associated with the clean mapping of target
label. Even though our proposed BeDKD still achieves success in defending against invisible SynBkd attack, as shown
in "After".

16

	Introduction
	Related Work
	Backdoor Attack
	Backdoor Defense
	Knowledge Distillation

	Methodology
	Preliminaries
	Overview of BeDKD
	Distilled DMM for Locating Poisoned Data
	Adversarial Knowledge Distillation

	Evaluation
	Evaluation Settings
	Comparison Results
	Ablation Study
	Sensitivity Analysis

	Conclusion
	Ethical Statement
	Algorithm of BeDKD
	Datasets
	Attacks
	Baselines
	Implementation Details
	Effectiveness of BeDKD on Different Victim Models
	T-SNE Visualization

