
Think Broad, Act Narrow: CWE Identification with
Multi-Agent Large Language Models

Mohammed Sayagh
École de Technologie Supérieure

Montreal, Canada
mohammed.sayagh@etsmtl.ca

Mohammad Ghafari
Technische Universität Clausthal

Germany
mohammad.ghafari@tu-clausthal.de

Abstract—Machine learning and Large language models
(LLMs) for vulnerability detection has received significant atten-
tion in recent years. Unfortunately, state-of-the-art techniques
show that LLMs are unsuccessful in even distinguishing the
vulnerable function from its benign counterpart, due to three
main problems: Vulnerability detection requires deep analy-
sis, which LLMs often struggle with when making a one-
shot prediction. Existing techniques typically perform function-
level analysis, whereas effective vulnerability detection requires
contextual information beyond the function scope. The focus on
binary classification can result in identifying a vulnerability but
associating it with the wrong security weaknesses (CWE), which
may mislead developers. We propose a novel multi-agent LLM
approach to address the challenges of identifying CWEs. This
approach consists of three steps: (1) a team of LLM agents
performs an exhaustive search for potential CWEs in the function
under review, (2) another team of agents identifies relevant
external context to support or refute each candidate CWE, and
(3) a final agent makes informed acceptance or rejection decisions
for each CWE based on the gathered context. A preliminary
evaluation of our approach shows promising results. In the
PrimeVul dataset, Step 1 correctly identifies the appropriate
CWE in 40.9% of the studied vulnerable functions. We further
evaluated the full pipeline on ten synthetic programs and found
that incorporating context information significantly reduced false
positives from 6 to 9 CWEs to just 1 to 2, while still correctly
identifying the true CWE in 9 out of 10 cases.

Index Terms—Vulnerability detection, software security, LLMs

I. INTRODUCTION

Software security is an essential aspect to ensure that soft-
ware services remain trustworthy, resilient, and operational.
Otherwise, a single vulnerability can compromise entire sys-
tems, disrupt services, or expose sensitive data. Unfortunetaly,
security issues are increasing rapidly, yet their resolution
lags behind [1]. Vulnerability detection is a skill that most
developers do not possess [2], and typically a small group of
developers are responsible to fix security issues [1].

To fill in this gap, machine learning and large language
models have received significant attention in recent years
for vulnerability detection, patching, and secure code gen-
eration. For instance, Firouzi et al. [3] found that ChatGPT
outperforms state-of-the-art static analysis tools in detecting
cryptographic misuses. Keller et al. [4] used Google Gemini
and patched hundreds of sanitizer bugs. Kavian et al. [5]
developed LLMSecGuard, an open-source framework that

leverages reports from security analysis tools to guide large
language models (LLMs) in fixing code vulnerabilities.

However, existing prediction models suffer from fundamen-
tal falws. Most of the state-of-the-art techniques investigated
vulnerability detection at the function-level, where given only
a function under review F, the model M decides whether F
contains a vulnerability or not [6]. However, approximately
90% of vulnerabilities seem to be context-dependent, meaning
the need for context to perform correct predictions [6]. Ullah et
al. [7] used GPT-4 to reason about detected vulnerabilities and
observed a lack of contextual reasoning. On top of the context,
LLMs do not easily distinguish vulnerable functions from
their benign counterparts. Risse et al. [8] and Ding et al. [9]
found that state-of-the-art machine learning for vulnerability
detection are not able to distinguish vulnerable function from
the benign version of the same function. Fine-tuning LLMs,
despite its high-cost, might not be the optimal solution. In fact,
Chakraborty et al. [10] reported that LLMs do not generalize
well to tasks outside their training scope.

In summary, we observed three main problems in the
state-of-the-art techniques for vulnerability detection: (P1)
Vulnerability detection requires deep analysis, which LLMs
often struggle with when making a one-shot prediction [11],
[12]. (P2) Existing techniques typically perform function-level
analysis, whereas effective vulnerability detection requires
contextual information beyond the function scope [6], [9]. (P3)
The focus on binary classification can result in identifying a
vulnerability but associating it with the wrong CWE, which
may mislead developers. To address these limitations, we
propose the following requirements: (R1) Guide LLMs to
perform an exhaustive search for potential CWEs within the
function, rather than relying on a one-shot prediction; (R2) In-
corporate relevant context beyond the function scope, enabling
LLMs to discard weaknesses that are mitigated elsewhere in
the codebase; (R3) Ensure that LLMs identify the correct
CWE category, as incorrect labels can mislead developers and
undermine trust in automated tools.

We implemented these three requirements through a novel
multi-agent LLM pipeline composed of three main steps: In
Step 1: Listing Candidate CWEs, a team of two agents
collaboratively analyzes the function under review to exhaus-
tively identify all potential weaknesses, including CWEs that
might initially appear unlikely. This step aims to reduce false

ar
X

iv
:2

50
8.

01
45

1v
1

 [
cs

.C
R

]
 2

 A
ug

 2
02

5

https://arxiv.org/abs/2508.01451v1

negatives by expanding the search space for vulnerabilities. In
Step 2: Extracting Relevant Context, a second team of three
agents identifies and curates the external context required to
properly assess each candidate CWE. This context is essential
for distinguishing between true and false positives. In Step
3:Confirming CWEs, a final agent delivers a verdict for
each candidate CWE using grounded reasoning. Based on the
gathered contextual information, the agent confirms or rejects
each CWE, ensuring that only valid weaknesses are retained.
This step helps reduce false positives by eliminating context-
invalidated CWEs.

We conducted a preliminary evaluation and the results were
promising. In the PrimeVul dataset, which is the state of
the art dataset for vulnerability detection, Step 1 correctly
identifies the correct CWE within a list of 20 CWEs for 40.9%
of the studied vulnerable functions. We further evaluated
the full pipeline on ten synthetic programs and found that
incorporating context information significantly reduced false
positives from 6 to 9 CWEs to just 1 to 2, while still correctly
identifying the true CWE in 9 out of 10 cases.

The proof-of-concept piepline and the initial results are
publicly available.1

The remainder of this paper is organized as follows. Sec-
tion II discusses our proof-of-concept. Section III discusses
our evaluation setup. Section IV discusses the results of our
evaluation. Section V concludes the paper by discussing the
learned lessons and future plans.

II. MULTI-AGENT CWE IDENTIFICATION

We propose a novel multi-agent approach to overcome the
limitations of state-of-the-art techniques and to guide LLMs
in detecting and locating the correct CWEs. It is designed
to explore a broad solution space and then progressively
narrow it down to the most relevant insights. Initially, we
encourage the model to deeply analyze the function under
review for potential weaknesses, including those CWEs that
may appear unlikely. Subsequently, we request the model to
refine the identified CWEs through a process of grounded
reasoning, in which each CWE is confirmed or rejected based
on contextual information beyond the function under review.
Figure 1 illustrates the process behind our proof of concept
pipeline, which we describe in the remainder of this section.

The rest of this section points to all the prompts, which are
available on Zenodo: https://zenodo.org/records/15871507.

A. Listing Candidate CWEs

The goal of this step is to identify a maximum number of
CWEs so that we can reduce the likelihood of false negatives.
To do so, we leverage a team of two agents. We task the first
agent (i.e., the lister) to exhaustively predict all potential CWEs
(Prompt I-A1), and task the second agent (i.e., the reviewer) to
review the output of the lister (Prompt I-A2). The goal of the
reviewer is not to exclude any CWE, but to find any missing
ones within the function under review. The reviewer suggests

1https://zenodo.org/records/15871507

the missing CWEs and asks the lister to self-reflect why they
were missed. This process continues until the reviewer agent
approves the final list of CWEs or the discussion between the
two agents reaches X=5 iterations.

B. Identifying Missing Context

To decide whether a CWE is valid or not, we may need extra
information that exists outside the function under review. For
example, a function that does not check one of its parameters
for NULL before using it is likely to have a NULL pointer
Dereference (CWE-476). However, the CWE-476 can be a
false positive if the pointer is already checked for NULL
before calling the function under review.

We leverage an LLM agent called “ContextExtractor” to
identify what contextual information would help to confirm or
reject each CWE (Prompt I-B). For instance, “Environment or
conditions under which ‘internal copy’ is used” is an example
of contextual information that the agent generates for CWE-
120 and the function internal copy under review.

C. Extracting Context in Question/Answer (QA) Form

We formulate the required context to collect as a set of
questions, which are used to query a semantic database of the
project’s code. The query results into chunks of code, which
are then used to answer each of the context-related questions.

Formulation of Context-related Questions. We call an agent
named “QueryAgent” (Prompt I-C1) to go through the context
information that was extracted for all the candidate CWEs
(Section II-B) and formulate a set of questions. These ques-
tions are to help extract the necessary information from the
project.

Building the Embedding Context Database. We need to
encode the project in a way that facilitates answering the
context-related questions. We split the whole project into K=10
lines of code chunks. We embed each chunk using the “all-
MiniLM-L6-v2” model,2 and store it in a database called
“context embedding database”.

Querying the Database. We compare every question’s em-
bedding to each chunk’s embedding in the database using the
cosine similarity, and select the top-5 most similar chunks of
code to the question. In the end, we have a list of questions and
the respective five similar chunks of code per each question.

Building Context We task an agent called “ContextSyn-
thetizer” to answer each question based on the given chunks
(Prompt I-C2) in a one to two paragraphs plain text. These
answers comprise the context needed to evaluate CWEs within
the function under review.

D. Confirming CWEs

We provide the last agent named “SecurityAuditor” with the
function under review, the candidate CWEs, and the necessary
context and task this agent to make the final verdict regarding
the validity of each CWEs (Prompt I-D).

2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

https://zenodo.org/records/15871507
https://zenodo.org/records/15871507
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Embedding

Context

Database

Confirmed

CWEs

Function

Under

Review

Listing

candidate

CWEs

Identifying

missing

context

Candidate

CWEs

Extacting

context in

QA form

Confirming

CWEs
Context

Embedding
Program

Source

Code

Fig. 1. The proposed multi-agent pipeline for CWE prediction. Each GPT logo represents a distinct LLM agent instance involved in the process.

III. PRELIMINARY EVALUATION SETUP

We conducted a preliminary evaluation using our proof-
of-concept pipeline, developed with the GPT-4o model. The
preliminary evaluation consists of two folds that are associated
with the two major steps of our approach. In a first step,
our approach exhaustively searches for a list of candidate
CWEs, from which our approach reduces the noisy CWEs
(False Positives) by leveraging the context in the second step.
Consequently, our evaluation identifies the extent to which our
first step is able to identify the right CWE (true positive) within
the list of CWE candidates. Then, our preliminary evaluation
focuses on the efficiency of our approach to reduce False
positives using the context. Our evaluation is summarized in
the following research questions:

RQ1. How efficient is our approach in the identification of
the appropriate CWE within the list of CWE candidates?

To answer RQ1, we evaluate our first team of agents
(Section II-A), which is responsible for searching for CWE
candidates, on the testing dataset of PrimeVul [9]; the large
and state-of-the-art dataset on vulnerability detection. The goal
of our evaluation is to identify whether exhaustively searching
for all potential candidate CWEs will eventually list the right
CWE among the candidates (Increasing True Positives). Our
evaluation focuses on the vulnerable functions of the 435 real-
world vulnerable functions in PrimeVul [9] and 62 distinct
CWEs. In the same evaluation, we compare a Single-agent
(the lister) that is instructed to identify a maximum list of
potential CWEs with a team of agents (Multi-agent), where
one identifies potential CWEs (instructed the same way as the
Single agent) and the other reviews for any missed weaknesses.

We consider the top-k recall for this evaluation since we
wish to maximize the list of potential CWEs at this step of the
approach rather than the precision of the output. The following
steps of our pipeline will extract and leverage the context to
improve the precision. To measure the top-k recall, we rank
the CWEs based on their likelihood (a probability between
0 and 1) of causing a security flaw in the reviewed function
according to the LLM agents (i.e., the lister agent).

RQ2. How efficient is our approach in the exclusion of
incorrect CWE candidates?

To answer RQ2, we leverage ChatGPT-o3 to generate 10
synthetic vulnerable programs, each of which has a function
to review and its context (the other functions). Each program
contains a distinct CWE, averages 134 lines of code, and

Top-1 Top-3 Top-5 Top-10 Top-20
Single-agent 8.3% 22.5% 29% 35.4% 35.4%
Multi-agent 7.6% 22.1% 29.2% 38.6% 40.9%

TABLE I
TOP-K RECALL TO FIND THE CORRECT CWE USING THE TEAM OF

SECTION II-A WITH A SINGLE-AGENT VERSUS MULTI-AGENTS.

includes between 10 to 12 functions. We separate the 10
programs into two sets. The First set is designed to validate
whether adding context helps the model reduce false positives.
The set consists of programs with a function that appears to
contain a weakness, but a global analysis of the program (i.e.,
beyond the function under review) reveals it is safe. The sec-
ond set consists of functions that are vulnerable both locally
and globally, meaning the weakness is inherent and cannot be
dismissed by the broader context. This set helps ensure our
approach does not mistakenly exclude real vulnerabilities. To
avoid biasing the model, we removed all comments from the
code and manually verified that variable and function names
do not provide hints related to the evaluated CWE.

IV. RESULTS

RQ1. How efficient is our approach in the identification
of the appropriate CWE within the list of CWE candi-
dates?

The top-20 predictions with a single agent include correct
CWE for 35.4% of the vulnerable functions, and the rate
reaches 40.9% with the multi-agent approach, as shown in
Table I. However, the single-agent method performs better in
top-1 and top-3 predictions. This outcome is unsurprising, as
the multi-agent approach tends to recommend a larger set
of CWEs, which leads to more false positives within the
top-k predictions. However, this increase in false positives is
expected to reduce false negatives by improving the likeli-
hood of capturing the correct CWE. We also do not observe
any increase between top-10 and top-20 for the single-agent
appraoch. That is becasuse of the limited CWEs that a single
approach is able to find compared to the multi-agent appraoch.
Single agent lists a min, median, average, and maximum of 5,
8, 7.59, and 13 CWEs, while the multi-agents approach lists
8, 12, 12.4, and 20 respectively. As such, we conclude that
multi-agent is capable of finding more potential CWEs, among
which the right one is predicted for 40.9% of the cases. The
rest of the pipeline will be responsible for reducing the false
positives by looking at the external context of each function
under review. Note that we do not study how our approach
performs on benign functions since we wish to maximize the

CWE ID Weakness Context #TP #FP #TN #FN
CWE-120 A function copies one memory into another one

without checking the size to be copied
the size was validated before calling the function 0 2 5 0

CWE-134 the function has a print(msg) without controlling
the format of the message (can leak sensitive stack
information)

the call to the vulnerable function does not leave a
way to the users to control the value of msg. It is
statically given to the vulnerable function

0 1 7 0

CWE-78 system(cmd), the function system is called with cmd
that is a parameter to the vulnerable function

the vulnerable function is called with static com-
mands (ls -1, date, or echo Unknown command)

0 1 7 0

CWE-22 the function fopen(path, ”r”) has the path constructed
using SAFE DIR (a path) and a filename given as a
parameter.

before calling the vulnerable function, the parameter
is sanitized by a 3rd function that removes any path
traversal sequences like ‘..’

0 1 8 0

CWE-125 Accessing an array element whose index is a param-
eter

The index is sanitized according to the array size
before calling the function

0 1 6 0

CWE-121 copying a memory of size len, which is obtained
from the attribute of a structure based object

No control over that attribute 1 2 5 0

CWE-190 Allocating a memory with n times the size of an ob-
ject. n is read from a file fp without any verification
on its value

Users can have access to the file fp through a
configuration file

1 1 7 0

CWE-415 One of the execution paths of the function frees the
same memory twice

No external context invalidate this weakness 0 1 8 1*

CWE-377 A race winodw between filname generation and file
creation during which an attacker can create a file
with the same name

No external context invalidate this weakness 1 1 5 0

CWE-259/798 Hard-coded password for authentification in the code
which can be reverse engineer by an attacker.

No external context invalidate this weakness 2 1 7 0

TABLE II
THE RESULTS FOR EACH SYNTHETIC PROGRAM FED INTO OUR PIPELINE. THE FIRST FIVE RECORDS IN A DARK BACKGROUND ARE CASES WHERE CWES
EXIST IN A FUNCTION BUT MITIGATED IN THE GLOBAL CONTEXT. THE LAST FIVE RECORDS ARE CASES WHERE CWES EXIST IN FUNCTIONS AND THERE

WERE NO PROTECTION IN THE GLOBAL CONTEXT. TN ARE THE CWES THAT WERE EXCLUDED THANKS TO THE CONTEXT. FP ARE CWES THAT WERE
NOT EXCLULDED DESPITE THE CONTEXT. TP AND FN ARE EXPECTED TO BE BOTH 0 FOR THE FIRST FIVE RECORDS. TP AND FN ARE EXPECTED TO BE
1 AND 0 RESPECTIVELY FOR THE SECOND PART OF THE TABLE. THE LAST ROW HAS 2 SIMILAR CWES AND WERE BOTH CORRECTLY PREDICTED BY OUR

APPROACH. *THE CWE WAS NOT EXCLUDED AFTER THE CONTEXT, IT WAS NOT FOUND IN THE FIRST PLACE.

number of potential CWEs. The benign functions should be
evaluated after excluding false positives to identify whether
the investigation of the context will leave any false positive.

RQ2. How efficient is our approach in the exclusion of
incorrect CWE candidates?

As shown in Table II, we observe that the first team
of agents correctly identified the CWE in context-dependent
cases (the first set with a dark background). The second
team successfully extracted the relevant context, and this
information helped the final agent to correctly exclude invalid
CWEs. Precisely, false positives were reduced from an initial
range of 7–9 CWEs (FP + TN) to just 1–2 CWEs (FP) which
excludes 5 to 8 CWEs (TN), highlighting that our approach is
effective in reducing the false positives.

The results related to the cases with context-independent
CWEs (the second set) show that context information does
not bias our approach, as shown in Table II. Particularly, our
approach was able to confirm the right CWE for 4 out of 5
vulnerable functions, and exclude 5 to 8 false positives (TN
column) from an original list of 7 to 10 (TP + FP + TN)
CWE candidates. It is important to note that the missing CWE
(i.e., CWE-415) was not identified in the first place. In other
words, the first team of agents did not report CWE-415 and
the context information had no impact on the final decision.

V. LESSONS LEARNED AND FUTURE PLANS

We demonstrated that our multiagent approach, which first
expands CWE discovery and then prunes the results based on
external context, can improve CWE identification. However,

the results are preliminary, and further work is needed to
refine the approach and evaluate it in real-world scenarios.
We outline key lessons learned and future research directions
based on our experience in this work.

We were able to identify the correct CWE in 40% of
the vulnerable functions. Large language models appear to
struggle with constructing data and control flow graphs, which
are essential for understanding all potential execution paths.
Integrating static analysis tools to complement the LLMs’
outputs [5], or to help optimize their search space, may
improve vulnerability detection [13], [14]. Similarly, while
we extracted context based on semantic similarity, this ap-
proach becomes challenging in large and complex projects
where multiple similar functions may exist. Accurate context
extraction therefore requires deeper insight into the source
code, and techniques such as program slicing may help ad-
dress this limitation. Moreover, security weaknesses such as
“CWE-209: Generation of Error Message Containing Sensitive
Information” require an understanding of what constitutes
sensitive information within a system. This often demands
analysis beyond the source code, such as broader development
practices and system context. Finally, our pipeline cannot scale
effectively without optimization of factors such as the number
of iterations between agents, the information exchanged, etc.
We also used GPT-4o, which is costly, so future work should
explore ways to reduce expenses, for example, by adopting
lower-cost or open-source models.

REFERENCES

[1] N. Bühlmann and M. Ghafari, “How do developers deal with security
issue reports on github?” in Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, ser. SAC ’22, 2022. [Online].
Available: https://doi.org/10.1145/3477314.3507123

[2] A. Naiakshina, A. Danilova, E. Gerlitz, E. von Zezschwitz, and
M. Smith, “If you want, i can store the encrypted password:
A password-storage field study with freelance developers,” in
Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’19, 2019, p. 1–12. [Online]. Available:
https://doi.org/10.1145/3290605.3300370

[3] E. Firouzi, M. Ghafari, and M. Ebrahimi, “Chatgpt’s potential in cryp-
tography misuse detection: A comparative analysis with static analysis
toolsa,” in 2024 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2024.

[4] J. Keller and J. Nowakowski, “Ai-powered patching: the future
of automated vulnerability fixes,” Tech. Rep., 2024. [Online].
Available: https://research.google/pubs/ai-powered-patching-the-future-
of-automated-vulnerability-fixes/

[5] A. Kavian, M. M. P. Kallehbasti, S. Kazemi, E. Firouzi, and M. Ghafari,
“LLM security guard for code,” in The 28th International Conference
on Evaluation and Assessment in Software Engineering (EASE), 2024.

[6] N. Risse, J. Liu, and M. Böhme, “Top score on the wrong exam: On
benchmarking in machine learning for vulnerability detection,” Proc.
ACM Softw. Eng., vol. 2, no. ISSTA, Jun. 2025. [Online]. Available:
https://doi.org/10.1145/3728887

[7] S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and G. Stringhini,
“LLMs Cannot Reliably Identify and Reason About Security
Vulnerabilities (Yet?): A Comprehensive Evaluation, Framework, and
Benchmarks,” in 2024 IEEE Symposium on Security and Privacy (SP),
2024, pp. 862–880. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/SP54263.2024.00210

[8] N. Risse and M. Böhme, “Uncovering the limits of machine
learning for automatic vulnerability detection,” in 33rd USENIX
Security Symposium, 2024, pp. 4247–4264. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/risse

[9] Y. Ding, Y. Fu, O. Ibrahim, C. Sitawarin, X. Chen, B. Alomair,
D. Wagner, B. Ray, and Y. Chen, “Vulnerability Detection with
Code Language Models: How Far Are We? ,” in 2025 IEEE/ACM
47th International Conference on Software Engineering (ICSE), 2025,
pp. 469–481. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/ICSE55347.2025.00038

[10] P. Chakraborty, K. K. Arumugam, M. Alfadel, M. Nagappan, and
S. McIntosh, “Revisiting the performance of deep learning-based vulner-
ability detection on realistic datasets,” IEEE Transactions on Software
Engineering, 2024.

[11] C. Beger and S. Dutta, “Coconut: Structural code understanding does not
fall out of a tree,” in 2025 IEEE/ACM International Workshop on Large
Language Models for Code (LLM4Code). IEEE, 2025, pp. 128–136.

[12] Z. Xu, Z. Shi, and Y. Liang, “Do large language models have compo-
sitional ability? an investigation into limitations and scalability,” arXiv
preprint arXiv:2407.15720, 2024.

[13] J. Zhang, S. Liu, X. Wang, T. Li, and Y. Liu, “Learning to locate
and describe vulnerabilities,” in 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2023, pp. 332–
344.

[14] G. Lu, X. Ju, X. Chen, W. Pei, and Z. Cai, “Grace: Empowering
llm-based software vulnerability detection with graph structure and
in-context learning,” Journal of Systems and Software, vol. 212,
p. 112031, 2024. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121224000748

https://doi.org/10.1145/3477314.3507123
https://doi.org/10.1145/3290605.3300370
https://research.google/pubs/ai-powered-patching-the-future-of-automated-vulnerability-fixes/
https://research.google/pubs/ai-powered-patching-the-future-of-automated-vulnerability-fixes/
https://doi.org/10.1145/3728887
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00210
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00210
https://www.usenix.org/conference/usenixsecurity24/presentation/risse
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00038
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00038
https://www.sciencedirect.com/science/article/pii/S0164121224000748
https://www.sciencedirect.com/science/article/pii/S0164121224000748

I. APPENDIX

A. Identify Candidat CWEs

1) Identify potential list of CWEs agent:

You are an AI DevSecOps expert.

Task:

Analyze the function provided and identify **all potential CWEs** that could realistically
apply, including (but not limited to):↪→

- Weaknesses that represent runtime manifestations of flaws (e.g., memory corruption, unsafe
access, dereferencing errors, incorrect execution behavior).↪→

- Missing safeguards, unvalidated trust boundaries, or unsafe design decisions that may
enable security flaws in this function or dependent code.↪→

- Corner cases, edge cases, and potential issues requiring interprocedural or context
analysis, even if additional context is needed to confirm their exploitability.↪→

You must think systematically across all possible categories of CWEs. For each category,
consider not only obvious direct flaws but also less obvious, corner, and edge cases
that may realistically occur depending on environment or caller context.

↪→

↪→

Important:
- **Do not skip potential CWEs** due to missing context;
- Report CWEs even if the pattern is subtle and requires additional validation outside this

snippet.↪→

- If uncertain about applicability, include the CWE.
- Report all types of CWEs including both **symptom-related** and **error-related CWEs**.
- Avoid reporting CWEs only if:
- There is no realistic pathway for the flaw to manifest.
- The manifestation of the flaw will be in another function. In other words, the symptom

will show up in another location outside this function.↪→

- You are required to list all potential CWEs that could realistically apply, even if they
overlap partially with others, as long as they represent distinct weaknesses.↪→

- Report a CWE even if its probability is very low close to 0.
- Do not skip a CWE on the assumption it is covered by another unless they are truly

equivalent.↪→

Output Probability:
For each reported CWE, assign a probability between 0 and 1 representing how likely the

vulnerable behavior is reachable or exploitable at runtime, based on the function code.↪→

- If the security flaw is clearly triggered by the current logic (e.g., dereferencing a
pointer that can be null), assign a high probability (close to 1.0).↪→

- If the security flaw depends on **uncertain input, environment state, or external
constraints**, assign a low probability.↪→

This probability reflects **likelihood of manifestation**, not just presence of a risky
pattern.↪→

Output Format (strictly adhere even when answer the reviewer comments):
{{
"cwes": [

{{
"CWE": "CWE-ID",
"title": "Title of the CWE",
"probability": "float between 0 and 1",
"justification": "justify your answer with a couple of sentences the existance of the

CWE in the studied function. Support your answer by pointing to the **exact
locations** (variable names, instructions, etc.) in the studied function"

↪→

↪→

}},
...

]

}}

- Your entire response must be strictly in the JSON format provided above, even when
addressing reviewer comments or performing second-pass re-analysis.↪→

- If you receive reviewer comments indicating missing CWEs, perform a full re-analysis of
the function and output a refined, complete CWE list in JSON only, including the missing
CWEs and any additional CWEs discovered.

↪→

↪→

Input:

Function to analyse:

{function}

2) Reviewer agent:

You are **a senior DevSecOps auditor**.

Task: Your task is to **actively re-analyze the previous CWE report** to determine whether
the previous AI agent has identified **all possible CWEs** that could realistically
apply to the provided function. You must perform your analysis from scratch in each
iteration (regardless of previous outputs).

↪→

↪→

↪→

You must:
- **Dig deeply** to uncover less obvious, deeper potential issues, including edge cases,

corner cases, less obvious paths, and issues requiring interprocedural or context
analysis.

↪→

↪→

- Report **even a CWE that requires further context to be validated**.
- Report a CWE as missing even if its probability is very low close to 0.
- If any plausible CWE could apply under any realistic scenario, it must be reported.
- Report **any CWE matching or partially matching the function, even with low probability.**

Rules:

APPROVE only if no potential CWE is missing.
REJECT if any potential CWE is missing (including subtle or context-dependent cases).

For each missing CWE:
- State the CWE-ID and title.
- Provide a short hint explaining why it may apply to guide the AI agent.
- After listing missing CWEs, instruct the AI agent to self-reflect on why it missed them

and how to avoid such omissions in the future.↪→

- Do not analyze the user’s code; your only job is to judge the previous AI agent’s report.

Output format (strictly follow this text structure):

VERDICT: APPROVE | REJECT

Missing CWEs:
1. CWE-ID: CWE Title - Short hint explaining why it may apply
2. CWE-ID: CWE Title - Short hint explaining why it may apply
...

Instruction: Please self-reflect and perform a deeper second-pass analysis on the
function, addressing why these CWEs were missed and generating a **refined, complete CWE
list** that includes these and any additional CWEs found during this deeper re-analysis
in JSON only.

↪→

↪→

↪→

B. Identifying missing context

You will provided with a function that is potentially vulnerable with the potential CWE.
Your task is to identify context outside the function itself that you will need to
confirm or reject the CWE.

↪→

↪→

Input:

Potential vulnerable function: {function}

Potential CWE in the function: {cwe}

Generate output (striclty adhere to this json format):
{{
"CWE": "CWE-###",
"context_information" : [

{{
"context": "describe the **required static context**",
"available": "is this context information already available in the vulnerable function

(true | false)",↪→

"criticality": "how critical is this context to the identification of the given CWE?
Low | Medium | High | Critical ",↪→

"reason": "your reasoning"
}}, ...

]
}}

C. Extracting context in QA form

1) Questions to mine the semantic database:

Your input contains as set of context information that are required to be collected for the
analysis of the security in a given function.↪→

Input:

Function under study for which we want to collect external contexts: {function}

Context we want to collect:

{context_details}

Task:
Your task is to summarize the required context to collect and formulate it as a set of

concrete and direct questions to query a semantic database. For example: I want the
calls to the function XYZ.

↪→

↪→

Constraints:
- Make sure that the questions have the exact information to collect.
- The database to query using your results has just the source code, ignore any context

outside the code such as documentation,↪→

Output Format (strictly adhere):
{{
"questions": [

{{
"Question": "a concrete question",
"reason": "what do you think that the question is concrete and good enough for

querying a semantic databse"↪→

}},
...

]
}}

2) Answering the questions in plain text:

You will provided with a function for which we want to deeply understand its surrounding
external context by answering some questions.↪→

Input:

Function we are trying to understand:
{function}

Questions and extracted code snippets that can help you answer the questions:
{contexts}

Task: Your task is to answer all the questions by using the provided context and provide a
detailed overview of the context surrounding the function in the input.↪→

Your output should be the list of questions, each of which is followed by one or two
paragraphs that directly answers the question.↪→

D. Confirming CWEs

You will be provided with a function that is likely vulnerable with a set of potential CWEs.

Your task is to identify which CWE is confirmed and which one is rejected based strictly on
the provided function and its context.↪→

Important constraints you must follow:
- Do not speculate about how the function might be used elsewhere outside the provided

context.↪→

- Assume that outside the provided context, no other usages exist. You must not imagine
alternative or hypothetical usages.↪→

- If the provided context guarantees that a CWE cannot manifest, you must reject that CWE,
even if the function looks vulnerable in isolation.↪→

- Your analysis must be strictly limited to the context and the function, treating the
provided context as the only environment in which the function is used.↪→

Input:

Potentially vulnerable function:
{function}

A list of potential CWEs:
{potential_cwes}

A list of external contextual information to help you take a final decision:
{contexts}

Output Format (strictly adhere):
{{
"cwes": [

{{
"CWE": "CWE-ID",
"title": "Title of the CWE",
"final_decision": "confirmed | rejected", // Based on the given context
"justification": "justify your answer"

}},
...

]
}}

	Introduction
	Multi-agent CWE Identification
	Listing Candidate CWEs
	Identifying Missing Context
	Extracting Context in Question/Answer (QA) Form
	Confirming CWEs

	Preliminary Evaluation Setup
	Results
	Lessons learned and Future plans

	References
	Appendix
	Identify Candidat CWEs
	Identify potential list of CWEs agent
	Reviewer agent

	Identifying missing context
	Extracting context in QA form
	Questions to mine the semantic database
	Answering the questions in plain text

	Confirming CWEs

