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The security of quantum key distribution (QKD) is evaluated based on the secrecy of Alice’s key
and the correctness of the keys held by Alice and Bob. A practical method for ensuring correctness
is known as error verification, in which Alice and Bob reveal a portion of their reconciled keys and
check whether the revealed information matches. In this paper, we argue that when the verification
is executed in QKD protocols, it must be assumed that its outcome is leaked to Eve. However, we
observe that some existing security proofs for QKD protocols that abort based on this outcome do
not explicitly take into account the information leakage associated with this outcome. To address
this problem, we present a simple and practical method that builds on Renner’s approach using the
leftover hash lemma. Specifically, we show that even if verification’s outcome is leaked to Eve, the
security can still be guaranteed by increasing the number of bits reduced in privacy amplification by
just one bit. This result, presenting a method to incorporate a key step in practical QKD protocols
into security proofs, is expected to play an important role in future standardization and formal

certification of QKD protocols.

I. INTRODUCTION

The standard goal of security proofs of quantum key
distribution (QKD) [1-3] is to derive the security pa-
rameter defined based on the universal composable secu-
rity framework [4-6]. The security parameter is, roughly
speaking, defined as the trace distance between the ideal
secret keys and the actual keys (see Sec. II for its defini-
tion). Toward this goal, it is customary and convenient
first to split the security parameter into the secrecy and
the correctness parameters, and then to derive each of
them separately [7-10]. One of them, the correctness
parameter is defined by the probability that Alice’s and
Bob’s secret keys are not identical. The prevalent method
for deriving this parameter is called error verification
(see, for example, Ref. [11] for details), wherein Alice and
Bob publicly compare hash values of their reconciled keys
(i.e., the keys obtained after completing bit error correc-
tion) to check the identicalness of these keys. While other
methods may in principle be able to serve for the same
purpose [37], error verification widely used [9, 10, 12—
18] because it is by far the simplest and most reliable
method in practice. In this respect, it is an essential part
of practical QKD implementations.

Our goals in this paper are first to point out a possi-
ble problem - namely, that most of the literature on the
security proof of QKD (e.g., Refs. [9, 12, 19]) does not
seem to treat the effect of error verification properly, and
then to present a simple solution to it.
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The issue described above seems to originate from an
unclear or inconsistent treatment of the outcome V' of er-
ror verification: By a simple observation, it can be shown
that V' must be announced publicly (see Sec. III A for de-
tail). Once one accepts this public nature of V, one can
readily conclude that the secrecy parameter must be de-
fined for the state after error verification (see Sec. III B
for detail). However, most of the literature seems to in-
appropriately treat V as secret information and define
the secrecy for the state without error verification. This
is the core of the problem regarding the treatment of the
outcome of error verification, which we refer to as the
verification problem.

In order to demonstrate the serious consequences of
this inappropriate definition of secrecy, we present a
counterexample where a false claim of the security can be
made according to such definition, even though it does
not hold in reality (see Sec. IIIC for detail). This sit-
uation occurs because in a certain type of protocol, the
one bit of information V may become correlated with the
secret key, thereby compromising the security.

Fortunately, we can also provide a simple solution to
the verification problem: Security proofs based on the
appropriate definition of secrecy can always be repaired
by shortening the final key length by one bit (see Sec. IV
for detail). The basic idea here is conceptually simple, al-
though the actual proof entails nontrivial technical work.
It is known that the effect of any newly announced infor-
mation, represented by a random variable X € {0,1}™,
can be compensated by shortening the privacy amplifica-
tion output by m bits [9]. Hence, the effect of announcing
the outcome V', which discloses one bit of information,
can be canceled by shortening the final key by one bit.

From a future perspective, the widespread adoption of
QKD in society requires the standardization of a compre-
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hensive framework for certifying its security. Our work
represents an important contribution in this direction, as
it clearly demonstrates the importance of rigorously in-
corporating error verification into the security proof and
provides a practical method to address this challenge.

II. CONVENTIONAL ARGUMENT OF THE
SEPARATION

We begin by summarizing the notation adopted
throughout this paper.

1. [b] denotes the projector |by (b|, with {|b)}, being
the computational basis.

2. For a composite system described by a density op-
erator pap... over multiple systems (AB---), the
state of a particular system (e.g., pa) is defined by
taking the partial trace over the remaining systems.

3. Given a quantum classical (sub normalized)
state pap of systems AB, p5=Y is defined by

tre[pas(la ® [b]B)].

4. Given a density matrix o, its trace norm is defined
by [20]

1
lloll1 == itr\/aaT. (1)

In this section, we revisit the conventional argument
for decomposing QKD’s security parameter into those of
secrecy and correctness based on Ref. [7]. This argument
states that if Alice’s final key is egec-secret and Alice’s
and Bob’s final keys are e.q,-correct, then their pair of
final keys as a whole satisfies €50 + £cor-Security.

The more precise explanation would be as follows. In
this section, we restrict ourselves to the types of QKD
protocols where decisions of continuing or aborting the
protocol are made solely based on public information and
do not depend on the contents of the sifted, reconciled,
or secret keys. This situation typically arises in cer-
tain types of the BB84 protocol, where Alice and Bob
abort the protocol if the estimated quantum bit error
rate (QBER) during the sampling and parameter esti-
mation phases exceeds a predetermined threshold. How-
ever, once the key distillation process—including error
correction and privacy amplification—has commenced,
they never abort the protocol.

In such cases, the security of a QKD protocol is de-
fined as follows. Let K4, Kp be the states of Alice’s and
Bob’s secret keys and E Eve’s quantum system. Also, let
PK 4K pE be the marginal (thus possibly sub-normalized)
state corresponding to the event where the protocol is
continued. Then we say that the QKD protocol is e-
secure if

|prakne — PRkl <& (2)

is satisfied, with the ideal state being

pi}%iall(BE _ Z 27Z[k]KA & [k]KB XK pE, (3)
ke{0,1}¢

and ¢ the length of the secret key. To prove Eq. (2),
it is common to decompose the trace distance into two
parameters (secrecy and correctness) and evaluate each
separately. Specifically, the egec-secrecy of Alice’s secret
key K 4 is defined by

d(pKAE|E) < Esec, (4)

where
dpr,elE) = |lpxae — PRSE] (5)
Py = 27Nk, @ pi. (6)

Furthermore, the protocol satisfies e..,-correctness if the
probability that Alice’s and Bob’s secret keys do not
match is upper-bounded by e¢or, i.€.,

Pr[K4 # KB| < €cor- (7)
Under these conditions, the following lemma [7] holds.

Lemma 1. (Separation lemma without error verifica-
tion) For QKD protocols without error verification, the
trace distance is bounded as

|prarse — PRk pall, < dlprap|E) + PrlKa # Kp).

(8)

That is, the security parameter € can be bounded as € <
6\SCC + 6\COI“

Intuitively, this lemma means that if Alice’s key is
secret to Eve and matches Bob’s key, then both Alice
and Bob share a secret key. We remark that due to
Eve’s attacks, the bit error rate can be increased at will.
Therefore, in practice, it is impossible to ensure that
Pr[K4 # Kp| in Eq. (8) is a small value.

III. SEPARATION LEMMA FOR QKD
PROTOCOLS WITH ERROR VERIFICATION

In Sec. II, we restricted ourselves to the case where
decisions of continuing or aborting the protocol are made
solely based on public information. In practical QKD
protocols, however, this restriction is often violated due
to error verification.

A. Error verification’s outcome must be announced

We first note that, in light of actual operations per-
formed in QKD systems, it is unrealistic to assume that
the outcome of error verification — denoted by v = 0 or



1 for continuing or aborting the protocol — can be kept
permanently hidden from Eve. Therefore, it must be as-
sumed that this information v is always publicly available
to Eve. This situation can be justified by the fact that
the following scenario frequently occurs.

Inevitable leakage of error verification’s outcome
Suppose, for example, that Alice and Bob exe-
cute a QKD protocol, and immediately after its
completion, they use the generated secret key for
secure communication with the one-time pad. In
such a case, Eve can determine that the QKD
protocol did not abort by observing a large volume
of encrypted messages transmitted over the public
channel. This implies that the outcome of error
verification v € {0, 1} is effectively leaked to Eve.

In other words, even if Alice and Bob attempt to conceal
v € {0,1} through encryption or other means, it is easy
to construct scenarios in which the value of v is leaked
to Eve. Therefore, it is not reasonable to assume that
v remains concealed from Eve indefinitely, and it must
instead be treated as publicly known.

B. Separation lemma with error verification

In order to describe variable V' properly, we use the
following notation. We treat V as part of the public in-
formation accessible to Eve. As in Sec. II, we continue to
let px,KkpvE denote the marginal state corresponding
to the event where Alice and Bob decided to continue
the protocol based solely on the public information. In
addition, we express the event where they decided to con-
tinue (or abort) due to error verification by py5% v (or
Pici kv ), Which is a marginal state of px ,k,ve. The
final key state px, x,vE then takes the form

PEAKSVE = O Piakpr ® v, (9)
ve{0,1}
Piker = [Lks © Lk, @p%5~Y  (10)

with the symbol ‘1’ denoting the situation where no key
is generated since the verification failed.

In this notation, our observation of Sec. III A claims
that it is inappropriate to evaluate the security using the
left-hand side (LHS) of Eq. (2), where V is not included
as public information accessible to Eve. The security
should rather be evaluated by the trace distance

|prarsvE — pllc(iiall(BVEul '
for which the following separation lemma (a variant of
Lemma 1) holds.

Lemma 2. (Separation lemma with or without error ver-
ification) For QKD protocols in general, with or without

error verification, the security parameter can be upper-
bounded as

lpxarsve = PSkavell, < d(pkaEIE)+PrIKa # Kp).

(11)
Proof. By using Egs. (9) and (10), the trace distance with
the ideal case can be bounded as

HpKAKBVE - piigiail(BVEHl

>

veq{0,1}

V=v V=uv ideal
HPKAKBE - (pKAKBE)

1

)ideal

V=0 V=0
PKAKpE — (pKAKBE 1

< d(pr plE) + Pr[Ka # Kp AV = (]
= d(p3%|E) + PrlKa # K], (12)

A

The first equality holds since the random variable V' is
public. The second equality follows by the fact that
PYc ke 18 ideal, namely, pY =k 5 = (Pt )" (be-
cause no information is leaked to Eve when no key is
generated), which can be seen from Eq. (10). The in-
equality follows by applying Lemma 1 to p‘{i?{B 5. The
last equality holds since Pr[K4 # K AV =1] = 0 due
to Eq. (10).

Note that there is a practical method to upper-bound
the second term Pr[K 4 # Kpgl; see Appendix A for the
detail. O

Comparing Lemmas 1 and 2, we observe that the quan-
tity used to evaluate secrecy is replaced from d(px ,g|F)
to d(p} %I E). In other words, if we prove the security of
QKD protocols with error verification, secrecy must be
evaluated only with respect to the event conditioned on
the success of error verification (i.e., V = 0).

Secrecy condition with error verification The egq-
secrecy, conditioned on the event that the verifica-
tion succeeds (i.e., V' = 0), is expressed by

d (Pi %I E) < Esec. (13)

Although many existing works consider QKD proto-
cols with error verification, they often adopt the LHS
of Eq. (8) as the secrecy criterion [9, 12, 19], rather than
that of Eq. (11), which should be used to properly bound
the trace distance in the presence of error verification
[38]. This indicates that the adopted definition is, in
general, inadequate for QKD protocols with error verifi-
cation. One might expect that the LHS of Eq. (11) can
still be upper-bounded by the right-hand side (RHS) of
Eq. (8). However, we will show in the next Sec. IIIC
that this is not the case. Specifically, we demonstrate
that, when error verification is present, there exists a sit-
uation in which the LHS of Eq. (11) cannot be bounded
by the RHS of Eq. (8) [39].



C. Counterexample to bounding Eq. (11) by
Eq. (8)

In this section, we show by example that the LHS of
Eq. (11) cannot, in general, be upper-bounded by the
RHS of Eq. (8).

In the following, the outcome of error verification is
represented by a variable V' € {0,1}, which must be as-
sumed known to Eve. More precisely, V' should be re-
garded not as a variable of Alice or Bob, but as the one
accessible to Eve.

a. Protocol without error verification We assume
that the reconciled key consists of two bits, with

PABE = é Z

z,y,2€{0,1}

[zy]a @ [22]p @ [2]p.  (14)

This corresponds, for example, to a situation in the BB84
protocol where Eve leaves the first qubit sent by Alice
intact, performs the intercept-and-resend attack on the
second qubit, swaps the two qubits, and then sends them
to Bob.

Privacy amplification (PA) Alice and Bob set the
first bit of the reconciled key as the secret keys
ka,kp, namely, k4 = a1(= ), kg = b1(= 2).

In this case, the joint state of Alice’s secret key and Eve’s
system is already the ideal state, as

1 1
PKAE — (2H2> & (2H2> (15)
Ka E

holds. This means that O-secrecy (esec = 0) is satisfied,
that is

d(pr.e|E) =0. (16)

b.  Protocol with error verification added Suppose we
add the following step to the above protocol.

Error verification Bob compares his two reconciled
key bits. If they match, the protocol proceeds; oth-
erwise, Bob aborts the protocol.

This verification succeeds with probability 1/2, and the
resulting (sub-normalized) state satisfies

praary = 2 s @ blxs © Bz @ v
+ E[L]KA ® Lk, ®@Ip® [1]v. (17)
Clearly,
Pr[Ks#Kp]=0 (18)

holds, and the secret keys satisfy 0-correctness.

4

To summarize, Eq. (16) shows that £5c = 0, and as
stated in Eq. (18), cor = 0 also holds. Naively, one might
therefore expect that combining these with Lemma 1
would imply 0-security—that is,

)ideal

HPKAKBEV — (PEAKEEV

Sd(pKAE|E)—|—PI‘[KA7éKB]=O. (19)
However, this is incorrect. In fact, a direct calculation
shows that

1

)ideal — Z , (20)

HPKAKBEV*(PKAKBEV 1
indicating that the actual situation is far from achieving
0-security.

D. Analysis of the counterexample

This section provides an analysis of the counterex-
ample given in Sec. IIIC. If we evaluate secrecy us-
ing the inappropriate definition [Eq. (4)]—which should
not be used for QKD protocols involving error verifica-
tion—then, as shown in Eq. (16), O-secrecy appears to
hold. However, when secrecy is assessed based on the
correct definition [Eq. (13)], we have

_ 1
4(okIE) = 1. (21)

which indicates that the state is far from satisfying 0-
secrecy. We note that substituting Eqgs. (18) and (21)
into Lemma 2 yields a result consistent with Eq. (20).
The fundamental reason for this discrepancy is that Eve
gains additional information about Alice’s secret key
upon learning that the protocol has not been aborted
(i.e., V.= 10). A more detailed explanation is given be-
low.

e According to Eq. (14) and the verification proce-
dure, the protocol ensures k4 = E if V = 0, and
ka # E when V = 1.

e In a protocol without error verification (i.e., where
v is not disclosed to Eve and the protocol is not
aborted), Eve only has the information averaged
over the above correlated (k4 = FE) and anti-
correlated events (ka # E). As a result, the
variable k4 appears uniformly distributed, and O-
secrecy holds, as shown in Eq. (16).

e In contrast, for a protocol with error verification,
the verification step succeeds with probability 1/2,
and its outcome is disclosed to Eve. In this case,
Eq. (17) implies that Alice’s secret key is fully
leaked to Eve, and secrecy can no longer be guar-
anteed.



The counterexample above is a toy example indicative
of what might happen in a real QKD protocol without
error correction. It illustrates an important point that
the intuitive relation given by Eq. (19) does not hold in
general.

IV. SIMPLE METHOD FOR BOUNDING
SECRECY WITH ERROR VERIFICATION BY
MIN-ENTROPY OF RECONCILED KEY

The counterexample in Sec. IITC demonstrates that
the variable V' can be correlated with the secret key. Con-
sequently, even if secrecy were guaranteed in a situation
where the key is generated without revealing V' (i.e., in a
protocol without error verification), this does not neces-
sarily imply security in the case where V' is made public.
This discrepancy lies at the heart of the verification prob-
lem.

To address this issue—namely, to guarantee the secrecy
of a protocol with error verification, we adopt Renner’s
approach [12], in which the bit of information V' is ex-
plicitly treated as part of the public information. The
applicability of this approach within Koashi’s approach
is discussed in Sec. V. In this case, the disclosure of V'
results in a decrease in the min-entropy [12] of the rec-
onciled key, leading to a shorter secret key. Equivalently,
this can be interpreted as requiring privacy amplification
with an overhead of one additional bit. This can be for-
mally stated as the following lemma.

Lemma 3. Suppose that the conditional min-entropy of
the (possibly sub-normalized) classical-quantum state p of
Alice’s reconciled key and Eve’s system satisfies

Huin(AlE), > £+ 2log(1/esec) (22)

with €gec, £ > 0. Suppose also that, in order to generate
secret keys, Alice and Bob perform

e error verification, and she newly announces the
hash value information H,

e privacy amplification on their reconciled keys with
the output bit length £ — |H| — 1, where |H| denotes
the bit length of H.

Alice’s secret key K'y thus generated (of £ — |H|—1 bits)
18 Esec-S€cret; i.e., it holds that

d(pl‘/;'j%HF|EHF) S Esecy (23)

where F' denotes the choice of a hash function used for
privacy amplification.

The meaning of this lemma can also be explained
as follows. As one can easily imagine, by a straight-
forward application of the chain rule for the con-
ditional min-entropy, it can readily be shown that

dpr . par|EHF) < g5 holds for (¢ — |H|)-bit key K 4.
This inequality, however, turned out to be inappropriate
in the previous section for guaranteeing the security of
the protocols with error verification. The above lemma
claims that there is still a simple method for ensuring the
correct inequality, d(p%j% yr|EHF) < €4, by shorten-
ing the secret keys by only one bits.

Proof. Recall that in the actual protocol, Alice and Bob
generate the (¢ — |H| — 1)-bit secret key (by applying
privacy amplification with just one extra bit compared
to the case without error verification) if V' = 0, and they
abort the protocol if V = 1.

In order to prove

d(PonEHﬂEHF) = Hp}/(ZOEHF - (PI‘??OEHF)MC&I

1 S Ssecv
(24)
consider a virtual scenario where Alice and Bob do not
abort the protocol even when v = 1. In this scenario, the
state pr/ v F of systems K EHVF is written as

PK/EHVF =
AHV)=(a,h,
> e | Y AT
Ky e{0,1}571, acf=1(kly)
ve{0,1},h, f
® [hlg @ [v]y @ Pr[F = f][f]F- (25)

Here, A denotes Alice’s reconciled key. For this state, we
have

HﬁK;, euvr — (Pr, EHVF) 4 H 1

>

ve{0,1}

(26)

~V=v _ [ FV=v ideal
PK' EHF PK' EHF
1

Note that the states for v = 0 are the same in both the
actual and virtual scenarios, i.e.,

~V=0 V=0
PK,EHF = PK/,EHF" (27)
If we can prove that

|pxr erve — (P ey ) || < fwer  (28)
then we have Eq. (24) from Egs. (26) and (27) and the
non-negativity of trace distance. Hence, our remaining
task is to prove Eq. (28).

The LHS of Eq. (28) is the secrecy when Alice always
generates (¢ — |H| — 1)-bit secret key Ky (i.e., with-
out aborting the protocol) and Eve possesses systems
EHV. To evaluate this, it suffices to lower-bound the
min-entropy Hin(A|EHV), as

Huin(A|EHV), > Huin(A|E), — Huax(HV),
Huin (A[E), = (|H[+1)

£+ 2log(1/esec) — (JH| + 1)(29)

AVARAVARIV]



The first inequality follows by Eq. (3.21) in [12], the chain
rule of the conditional min-entropy. The second inequal-
ity follows from the fact that the max-entropy [12] is
upper-bounded as Hyax(HV), < |H| + 1, where V is a
one-bit variable and |H| denotes the bit length of H. The
last inequality comes from Eq. (22). Then, the leftover
hash lemma [10, 12, 21] guarantees that the resulting
trace distance can be upper-bounded by &g by perform-
ing privacy amplification using the hash function F. O

V. DISCUSSION

In our proof of Lemma 3, we employed a method based
on the leftover hash lemma (referred to as Renner’s ap-
proach [12] or the LHL-based approach). We note, how-
ever, that the result of Lemma 3 can also be used in se-
curity proofs based on the phase error correction method
(referred to as the PEC-based approach, also known as
Koashi’s approach [7, 22]). This is because the LHL-
based and the PEC-based approaches have been proven
to be equivalent [23, 24].

More precisely, the security proof based on Koashi’s
approach can be interpreted as (i) considering a virtual
protocol where Alice prepares qubits entangled with the
systems sent to Bob, and then measures these qubits in
the X-basis (the basis complementary to the key genera-
tion basis), yielding outcomes denoted by X4, and then
(ii) upper-bounding the max-entropy Hpax(X?4|B) [23,
24]. By applying an entropic uncertainty relation [25]
to Hyax(X4|B), one obtains a lower bound on the min-
entropy Humin (A|E). If this lower bound is identified with
Eq. (22), then Lemma 3 can be proven accordingly.

The verification problem identified in this paper orig-
inates from the fact that the verification’s outcome V'
can, in general, be correlated with the sifted, reconciled
or final keys. On the other hand, it should be noted that
if one can somehow prove that V is uncorrelated with
the keys, then this issue does not arise. As already dis-
cussed in Sec. II, such a situation occurs, for example,
when the decisions to continue or abort the protocol are
made solely based on the public information.

We also note that there is another typical situation
where V' can be shown uncorrelated with the keys. That
is where one can apply a Shor—Preskill-type security
proof [26], and thus regard the error verification step as
part of the syndrome measurement for bit error correc-
tion (or, equivalently, if it is incorporated into the choice
of a sufficiently large code C; for Z-basis error correc-
tion). This is true, for example, when Alice and Bob can
be assumed to possess qubits in the virtual protocol (as
in the PEC-based approach) and perform error verifica-
tion using a linear hash function [40]. In such cases, the
secrecy of Alice’s (or Bob’s) final key can be discussed
independently of error verification, and thus the verifica-
tion problem no longer occurs [41].
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Appendix A: Practical method for bounding
Pr[Ka # KB]

There is a practical method for bounding the prob-
ability Pr[K4 # Kp] appearing, e.g., in Egs. (7) and
(11) [10]. This is the probability of an undesirable event
in which the secret keys do not match despite the er-
ror verification being successful. This probability can be
upper-bounded as

PI‘[KA#KB]:PI[KA#KB/\V:O]
<Pr[A#BAV =0]=Pr[V=0|A # B|Pr[A # B
<PrV =0|A+B| (A1)

Here, A and B denote Alice’s and Bob’s reconciled keys,
respectively. The quantity on the last line (and thus also
Pr[K4 # Kp|) can be upper-bounded by e, as follows.
Suppose that Alice announces the hash value h(a) of her
reconciled key a, using a randomly chosen element A of
the universal hash function H with the output length
[log(1/ecor)]. Also, suppose that Bob announces that the
protocol is aborted (v = 1) if and only if the hash values
of the reconciled keys differ, i.e., h(a) # h(b). Then, we
have

Pr[V =0|A # B] = Pr[H(A) = H(B) | A # B < ccor.
(A2)
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