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Abstract

Isolation is a critical property for shared infrastructure to
limit exposure and interference among simultaneous run-
ning workloads. Cloud providers use different isolation mech-
anisms such as full Virtual Machines, microVMs, Linux con-
tainers, secure containers etc. to confine workloads running
in a multi-tenant environment.

We propose a novel way to understand and measure per-
formance interference and isolation at the system software
layer that occurs due to shared access to data structures.
We observe that interference takes place through shared
structures, such as a kernel-level data structure, and that
operating systems must synchronize access to these struc-
tures for safety. By measuring the level of synchronization
between workloads, we can measure their ability to interfere
and thus the amount of isolation the platform provides.

We demonstrate our method for measuring isolation by
measuring the accesses to locks acquired in common across
multiple workloads which indicates the amount of shar-
ing through kernel data structures and hence the interfer-
ence/isolation between two workloads. Furthermore, we
identify the isolation properties of different kernel structures
under different workloads, and find that the file system jour-
nal and kernel page allocator are the most common sources
of interference.

1 Introduction

Isolation is essential in cloud environments where mutually
distrusting tenants share physical hardware. Cloud providers
use various isolation mechanisms to provide isolation be-
tween co-located workloads while maintaining performance
guarantees. However, tightening the isolation boundary by
running a workload in a virtual machine (VM) compared to
running in a container can lower the overall resource utiliza-
tion of a host. It is difficult to gather information about the
amount of isolation a workload needs to minimize sharing
with different co-located workloads. When sharing is less,
there is less interference; hence, workloads are more isolated.

Lightweight isolation platforms like Linux Containers,
gVisor, and Firecracker rely on the host operating system
for various resources and functionalities. This dependency
leads to sharing and the potential for interference, which
may have a detrimental impact on workloads by making
them more prone to security attacks and performance degra-
dation. Therefore, to reduce interference, it is important to

Michael M. Swift

University of Wisconsin-Madison
swift@cs.wisc.edu

understand what is being shared at the shared platform layer,
i.e., host kernel.

Two common sources of interference through OS re-
sources are: (1) resource allocation, and (2) shared access
to objects. The former arises when a workload needs a
resource but is not able to due to unavailability as other
co-running workloads use the resource. This type of inter-
ference is usually solved by leveraging OS (e.g., cgroups,
qdisc) and hardware isolation mechanisms (e.g., cache par-
titioning) to partition resources to eliminate/reduce inter-
ference [14, 20, 21, 25, 40, 46]. Resource-partitioning does
not eliminate interference due to shared access to an object.
Interference via access to objects happens when concurrent
workloads want to access the same shared resource, such as
a data structure within the host kernel.

Our work tackles interference from shared accesses to
data structures. We choose to analyze interference at the
software stack because configuring underlying hardware for
sharing and isolation (e.g., controlling the DRAM bandwidth
or applying cache-partitioning schemes) is mostly the same
across platforms. The software stack is where the implemen-
tation of these platforms differ, e.g., a userspace kernel in
gVisor, and these software implementation choices impact
how shared accesses vary across platforms. Also, we believe
much research has already looked at sharing and isolation
at the hardware layer [31, 39, 46]. We are unaware of any
work that has studied interference through shared access
to objects. We note that past research [16, 33] has analyzed
kernel lock accesses for scalability. Our focus in this work is
on studying interference through kernel locks.

We show in Figure 5 the importance of interference via
shared access to objects across different isolation platforms
by stressing the filesystem for metadata operations [13]. We
run conflicting workloads for some periods and observe that
such interference can lead to performance degradation. This
type of interference can also lead to security vulnerability,
leading to framing attacks [37] or denial of service.

In this work, we do a comparative study to understand
sharing and interference observed at the system software
level via shared objects when concurrent workloads execute
in different isolation platforms. Furthermore, we use the data
on sharing and interference to understand isolation among
concurrent workloads via shared kernel data structures. Our
focus is on the isolation of system structure, meaning how
well isolated the data structures of system software executing


https://arxiv.org/abs/2507.21248v1

Conference’17, July 2017, Washington, DC, USA

on behalf of a workload are. As many hardware isolation
issues are orthogonal to the software structure (e.g., micro-
architectural side-channels), we do not measure them in this
work [10, 28, 29, 35].

The first challenge in analyzing isolation at the system
software layer is to recognize what resources/data struc-
tures/objects are shared among concurrent workloads. We
observe that limited isolation implies that workloads can in-
terfere, so we look at the opportunities for and frequency of
interference between workloads on a platform. For example,
two workloads accessing a shared cache in the OS can affect
each other’s behavior by modifying the cache contents. The
key insight of our work is that most forms of interference
take place on some shared data, and that access to shared
data requires synchronization. As a result, we can identify
points of interference by the prevalence of synchronization
in workloads. Workloads that rarely synchronize share little
data, have little impact on each other, and are well isolated.
In contrast, workloads that synchronize frequently (e.g., lock-
ing access to shared data) have more opportunity to interfere
by changing shared data or stalling waiting for locks; hence
they are less isolated. One side effect of this approach is
that it recognizes that isolation is workload dependent: two
workloads executing purely user-mode code without making
system calls may be perfectly isolated in operating system
processes, while workloads that make heavy use of system
services and multiple processes, accessing more shared data,
benefit from more powerful isolation mechanisms.

We make the following contributions in this work:

o We collect and analyze kernel-level lock traces to mea-
sure system-level sharing via objects across a diverse
set of applications and isolation platforms.

o We identify memory allocation and file system jour-
naling as the dominant sources of cross-application
interference.

e We implement a tool that enables fine-grained detec-
tion of software-level interference via dynamic kernel
tracing.

2 Isolation and Interference Through
Sharing

Isolation in computer systems keeps workloads apart from
each other, so that the behavior of one workload does not
affect other workloads. The goal for perfect isolation is non-
interference [27, 36], meaning that one workload has no im-
pact on what another workload experiences. While often
used for security by looking at what is possible for an at-
tacker, for isolation we look more practically at the perfor-
mance impact of one specific workload on another specific
workload. Thus, an imperfect isolation mechanism can pro-
vide perfect non-interference if the two workloads do not
make use of facilities that allow interference.
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Platform / KVM runc gVisor | Firecracker
Resource
Kernel Isolated | Shared | Shared | Isolated
Network Same as | Same as | Shared/ | Same as
erwor host host Isolated | host
Memory Shared/
Allocation Isolated | Shared Isolated Isolated
. Shared/ | Shared/
Filesystem | Isolated Isolated | Isolated Isolated
Hardware Shared | Shared | Shared | Shared

Table 1. Sharing across different platforms.

The basic approach that isolation systems take is to sepa-
rate workloads in space and time. Spatial isolation ensures
workloads access different data, while temporal isolation
prevents them from accessing the same data simultaneously.
Much as an operating system process provides separate ad-
dress spaces and collections of resources, stronger forms of
isolation provide increasingly more private resources and
fewer shared resources. At the extreme, running workload on
separate physical machines provides 100% private resources
and no shared resources. This approach also dictates that
resource efficiency is usually opposed to isolation: as a plat-
form increases isolation, it decreases the amount of sharing
across workloads that provides the opportunity for interfer-
ence. Thus, increasing isolation decreases resource efficiency,
which provides a strong motivation to find the right level of
isolation for a workload — using a too-strong platform wastes
resources. On the other hand, if you increase efficiency by
sharing more, you are increasing your risks for performance
and security isolation. Table 1 shows the resources that are
shared/isolated across different isolation mechanisms.

To reduce interference cloud providers use various isola-
tion mechanisms such as full VMs, containers, microVMs
etc. All this mechanism takes the approach of reducing the
interactions with the shared platform i.e., the host kernel
across workloads to minimize interference and sharing,.

Building on this insight, we propose to measure the iso-
lation of workloads on a platform by looking at the level
of synchronization between the workloads. If there is little
synchronization, then there is little access to shared data,
and the workloads are well isolated. In contrast, if there is
frequent, fine-grained synchronization, then there is poor
isolation, as there are many opportunities. Thus, by analyz-
ing the usage of locks in common across workloads in an
isolation platform, we can measure the amount of isolation
offered by the platform. We can also quantitatively compare
the isolation offered by different platforms by looking at
differences in synchronization behavior between platforms.

3 Synchronization as an Identifier of
Sharing

Interference and synchronization. Within a software
platform, interference implies that some shared resource
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void set_fs_pwd(
fs_struct «fs,

void release_task (
struct struct

struct path «path){
struct path old_pwd; i

spin_lock(&fs->lock); }

task_struct «p){

write_lock(&tasklist_lock);
// removes task from
write_unlock(&tasklist_lock);

void insert_inode_hash (

inode «i, u64 hval){

struct hlist_head «b =
inode_hashtbl + hash(i->i_sb ,hval);
spin_lock(&inode_hash_lock);
hlst_add_head_rcu(&i->i_hash ,b);

struct

list 4

// sets fs->pwd to «path

1
2

3

4

5| path_get(path);
6

7

8| spin_unlock(&fs->lock);
9

Listing 1. Private

Listing 2. Shared 8|}

spin_unlock(&inode_hash_lock);

Listing 3. Incidentally Shared

Table 2. Example lock usage in the Linux kernel.

between the two workloads acts as the agent for interfer-
ence. Our key insight is that operating systems synchronize
all access to shared resources, whether a physical resource
(memory, devices) or a logical resource (an object). Thus,
any interference between workloads will be controlled by
operating system synchronization. Some examples include
two processes sharing memory must synchronize around
the physical pages being shared. Likewise, two processes
sharing access to a device, such as a sound or a network
card, must synchronize their access to the device. And, two
processes sharing access to a file must synchronize access to
the file system. Read sharing does not lead to interference,
as each process can logically operate on a copy of data (e.g.,
in a local processor cache) without any effect from other
processes.

Furthermore, workloads that only incidentally access
shared operating system data structures must still synchro-
nize. Two programs accessing a shared file system, even if
they access different files, may synchronize access to shared
caches such as the Linux dcache or inode cache.

Locks and Synchronization. We note that shared resources
in the kernel need synchronization to ensure a safe and
correct order of execution of concurrent processes in the
system. There are various primitives implemented in the
Linux kernel to achieve synchronization:

e Lock-based synchronization: These include spinlocks
(and variants such as reader-writer and seqlocks), mu-
texes, and semaphores.

o Lockless synchronization: These include atomic opera-
tions, Read-Copy Update (RCU), and memory barriers.

Given the non-blocking nature of lockless mechanisms [12,
19, 45], they lead to less interference and contention com-
pared to lock-based approaches. Locks enforce mutual exclu-
sion and hence more contention, so their impact on interfer-
ence and isolation will be more.

Table 2 shows examples (code snippets) of private, shared,
and incidentally shared locks in the Linux kernel. The
set_fs_pwd function acquires a private lock, fs->1ock, to pro-
tect the fs->pwd field of the fs_struct data structure that
maintains the file system state for a process. This lock is not

Dynamic Tracing Static Analysis
Workload Linux source code
Lock to
clange-servr obfect
mapping
Wrapper/
) LockScope Static Lock
LockScope Dynamic Analyzer acquire
Tracer primitives
Lock
Locks Post Processing Metrics
Access
Traces

Figure 1. Overview of LockScope workflow. In the dynamic
tracing phase, LockScope collects lock accesses across work-
loads, and the static analysis phase completes the lock-to-
object mapping.

accessed by other processes. tasklist_lock is shared and syn-
chronizes access to a resource shared by multiple processes,
the list of all tasks. In the example code, it is used to remove
a task from the list when the process exits. Finally, processes
may incidentally synchronize by hashing into the same hash
bucket, a form of false sharing, although the protected data
is not shared. insert_inode_hash acquires inode_hash_lock
that protects the shared inode_hashtable.

We use lock-based synchronization as a proxy for sharing.
While this will not cover all types of sharing, we believe that
our work is a first step in understanding and quantifying
sharing via synchronization, and can be extended to other
synchronization primitives in the future.

4 Lock Tracing Implementation

We implemented a data-collection tool named LockScope to
measure the lock usage of workloads running on isolation
platforms on Linux. The goal of LockScope is to trace lock
acquisitions dynamically and use static analysis to identify
location in code where a lock acquisition in the trace occurs
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Lock Type Lock Primitives

Spinlock

_raw_spin_lock, _raw_spin_lock_irqsave, _raw_spin_lock_irq, _raw_spin_lock_bh, _raw_spin_trylock,
_raw_spin_trylock_bh, raw_spin_lock_nested, _raw_spin_lock_irgsave_nested,

_raw_read_lock, _raw_write_lock, _raw_read_lock_bh, _raw_write_lock_bh, _raw_read_lock_irq,
Read-write lock | _raw_write_lock_irq, _raw_read_lock_irgsave, _raw_write_lock_irgsave, _raw_read_trylock,
_raw_write_trylock, _raw_write_lock_nested

Mutex

mutex_lock_nested/mutex_lock, rt_mutex_lock_nested/rt_mutex_lock, mutex_trylock,
rt_mutex_trylock, mutex_lock_interruptible_nested

Semaphore

down_read, down_write, down_read_trylock, down_write_trylock, down_read_nested,
down_write_nested, down_read_killable, down_write_killable, down_read _killable nested,
down_write_killable_nested, down_read_interruptible

Table 3. Lock primitives probed by LockScope dynamic tracer.

file object_name lock_type lock_name

fs/ext4/ext4.h | ext4_inode_info | rw_semaphore | i_data_sem

Table 4. An example row in the lock to object mapping
generated using symbol information.

and, more importantly, what objects the lock protects. We
show an overview of LockScope in Figure 1. LockScope con-
sists of two components: (a) dynamic tracer and (b) static
analyzer. LockScope captures and analyzes fine and coarse-
grained runtime locking activity, enabling the precise identi-
fication of object-level interference across platforms.

4.1 LockScope Dynamic Tracer

We capture the dynamic lock usage using a modified and
extended version of klockstat, an eBPF lock monitoring
tool [38]. This tool traces lock acquire and release functions
in the Linux kernel and can be attached to mutexes, RT-
mutexes, semaphores, spinlocks, and reader-writer spinlocks.
Table 3 lists all the lock primitives we probe with klockstat.

The LockScope dynamic tracer produces a trace of every
lock acquired, and for each operation, records: the process
and thread IDs, lock address, lock name, kernel stack trace,
acquire time, hold time, and count of occurrences of that
stack trace with that lock. In addition, we instrument lock
initialization routines to learn when a lock address is real-
located for a new lock. We process this trace to calculate
different points using interference metrics such as the num-
ber of shared locks — locks held in common across workloads
— accessed for different workloads and private locks — unique
and non-shared locks held by each workload.

In summary, dynamic analysis produces a trace of all
the locks acquired by a running workload. Below is an
example of the trace output. The stack details are stored
in a different file and matched with the stack_id to get the
stack traces with an acquisition. We find the shared locks
using the unique lock addresses common to workloads.

PID addr name count | process | stack

38296 | 0xffff888 | &pipe->mutex | 1 mmap04 | 324596

4.2 LockScope Static Analyzer

The LockScope static analyzer resolves a stack trace from the
dynamic tracer into the exact location in code where the

lock was acquired and, when the locks is a member of an
object, the object containing the lock. For global locks, we
resolve the lock name and its definition. We implemented
the LockScope static analyzer using the clangd [15] language
server [4]. clangd is widely used in many IDEs for differ-
ent functionalities (e.g., symbol indexing and outgoing call
analysis), and it provides a convenient API for querying
code properties. We use clangd for static analysis as it offers
simple mechanism to accurately index into a large code-
base, including macro resolution, type deduction, and cross-
referenced navigation, providing functionality closer to a
compiler-driven source code analysis compared to other
available tools such as cscope[1].

The stack traces from the eBPF tools are sometimes incom-
plete i.e., the trace stops 2-3 levels due to inline functions and
certain optimizations such as tail call optimization [23, 24].
We use the static analysis tool to resolve the stack traces to
the exact line numbers of lock acquisitions in the code. We
use the lock names, file names, and function names to de-
termine this. Furthermore, we use static analysis to identify
the data structure a lock protects. We do this to learn about
the nature of sharing of different data structures and also to
understand which data is private vs. mostly shared.

LockScope static analyzer is a command-line utility tool
and supports the following functionality:

o Symbol Generation produces all the details related to a
symbol, including name, type, signature, and line num-
ber ranges within the source code where the symbol is
defined. We use this to create a mapping of locks to the
struct within which they are defined. Table 4 provides
an example row from this file. Moreover, we use the
symbol information to generate a list of system-wide
global locks (~2488).

o QOutgoing Calls uses function-type symbol information
to identify outgoing calls. We use this to resolve the
point of acquisition for locks in cases of incomplete
dynamic stacks, where the start function is the last
function recorded in the collected stack.

e Incoming Calls works similar to Outgoing Calls. We
leverage this information to identify potential lock
wrapper functions (335 identified so far), which serve as
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stop conditions when resolving the point of acquisition
in incomplete dynamic stacks.

o AST generates an abstract syntax tree for a source file,
which LockScope uses to resolve lock to object mapping,
where lock names result in many-to-many mapping in
the file generated using document symbol (e.g., lock
name with lock can be associated with multiple objects).
We call these locks generic.

We use the AST of the function where generic locks
are acquired to get line number associated with the lock
variable, which we use to query Get Definition for the
lock symbol to find the location of its definition.

o Get Definition returns the file path and line number
where the lock is defined. We use this to locate the cor-
responding object name by matching the line number
to the range associated with a struct-type symbol from
Symbol Generation.

For all unique locks, identified by lock name, function
name, and file, acquired across all workloads analyzed in
this paper (574 in total), we can map approximately 75% of
them to their associated objects. Our tool currently does
not resolve cases where locks are acquired through macros
or where object variables are reassigned to local variables
within function bodies. We manually added support for a
small number of such macros (about 5) that we encountered
during our analysis.

5 Locking Analysis Methodology

Our evaluation goals are:

e What are the different locks and data structures ac-
cessed by a workload?

e What shared data is accessed most frequently?

o How does sharing via objects vary across platforms for
the same workload?

e How can we quantify interference and isolation via
shared accesses to objects using kernel locks?

5.1 Platform and Workloads

We run all our experiments on Cloudlab [22] c220g5 machine,
with twenty cores Intel Xeon Silver 4114 running at 2.20 GHz,
192GB ECC DDR4-2666 Memory, two disks: Intel DC S3500
480 GB 6G SATA SSD and 1 TB 7200 RPM 6G SAS HDs, and
10Gbps NIC. We run on Ubuntu 22.04 (kernel v6.1).

For each workload under test, we collect host kernel lock
traces to understand how different isolation platforms use
various kernel data structures for functionalities. We also
run stress tests to analyze the impact of using shared kernel
data structures on performance due to synchronization.

For all tests, we turn off SMT to minimize interference
through resource contention and cross-socket communica-
tion. We also isolate the LLC by enabling Intel’s Cache Al-
location Technology (CAT). In our setup, we have 11 LLC
way partitioning, and each Class of Service (COS) (1-11)
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is assigned to one cache line. All cores (on socket 0) have
a one-to-one mapping with COS. Our focus is to under-
stand interference caused due to shared access to kernel
resources. Hence, our experiments are designed to measure
interference via system structures and avoid hardware inter-
ference (e.g., not exceeding local caches or disk bandwidth).
We use the default kernel configuration for stress tests but
enable lock-related debugging configurations (e.g., CON-
FIG_DEBUG_SPINLOCK, CONFIG_DEBUG_MUTEXES) for
collecting traces.

We run workloads on four platforms: (a) host, (b) LXC
(runc), (c) gVisor release-20231106.0 (runsc), and (d) Fire-
cracker v1.10.1 (fc). For runsc, we use the KVM platform,
which is recommended for bare-metal [9]. Our goal is to
understand object usage patterns across a diverse spectrum
of system behavior (e.g., stressing particular subsystems,
light/medium/heavy kernel subsystem usage). To capture
these diverse cases, we run our evaluation on three different
sets of workloads across these platforms:

Microbenchmarks. We choose a set of microbenchmarks,
stressing different kernel subsystems to understand object
usage under targeted stress environments.

Serverless Workloads. As serverless workloads are a major
use case for lightweight isolation, we select applications (im-
age and video processing), ML training (logistic regression),
and ML serving (face detection, CNN, and RNN) workloads
from FunctionBench suite [26] to analyze object usage across
modern lightweight serverless functions. This is useful for
gaining insights into short-lived object usage patterns in a
FaaS environment.

Cloud Workloads. To capture object usage in heavy and
long-running workloads, we run cloud workloads as shown
in Table 7. Feedsim and VideoTranscode are taken from
DCPerf [6]. We were not able to set up the analytics and data
caching from DCPerf on gVisor due to its very restricted
environment, so we replaced them with the Graph Analytics
and Data Caching workloads from CloudSuite [5].

5.2 Lock Usage Tracing

We trace workloads using the LockScope dynamic tracer and
two simultaneous identical workloads on the same isolation
platform. Each workload executes for a fixed duration. We
re-execute the workloads once for each lock type described
in Table 3 to get cleaner traces (e.g., minimizing nesting) and
better lock coverage. We collect the traces in three iterations
to maximize the coverage of unique locks. We do not trace
the platform startup.

We collect system-wide traces while the workload is run-
ning and then select entries belonging to the running work-
load. For firecracker, we select the traces belonging to the
firecracker process. For gVisor, we use the sandbox and
gofer pids to select the traces. For runc, we leverage the
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namespace filtering [2] from eBPF to select the traces be-
longing to each container namespace and then further filter
it to remove docker and runc-related management activi-
ties. Because locks acquired in interrupt context (e.g., timer
interrupts, softirqs) may not be caused by the current pro-
cess, we remove these lock accesses. We inspect the stack
track of lock acquires and remove locks whose traces include
interrupt-related functions (e.g., __softirqentry_text_start,
hrtimer_interrupt).

We use the LockScope static analyzer to process the lock
traces and complete the mapping of lock names to kernel
objects. For resolving the point of acquisition for some incom-
plete dynamic traces, we use the outgoing calls functionality
of the static analyzer and then do a breadth-first search from
the last function in the stack traces. We use the lock primi-
tives and the lock name to stop the search. We also leverage
lock acquire function wrappers generated by the tool to stop
the search in some cases.

We use lock traces to determine the following:

o Shared and private locks: We identify unique shared and
private locks by their lock addresses and report the
average count across runs.

o Locks access rate: We report lock access rates. For each
lock (identified by name, function, file, and type), we
compute the rate by dividing the acquire count by exe-
cution time. We then sum these per-lock rates across
runs to obtain a cumulative access rate, which helps
quantify how frequently different locks are accessed.

o Lock access across kernel subsystems: We group the lock
rates by kernel subsystem (e.g., mm, f's, kernel) based
on file paths to understand how lock usage varies across
different parts of the kernel.

5.3 Performance Interference

We measure the performance of workloads with a trasher
designed to stress kernel resources usage through frequent
system calls. For each performance test (unless specified
otherwise), we first start a workload (worker), and launch
an additional trasher every ten minutes, causing increasing
interference. For resources that allow interference, this leads
to decreasing performance as trashers are added. We pin the
worker and trashers to different CPU cores sharing the same
socket.

6 Measuring Lock Usage

We begin by measuring the lock usage of microbenchmarks
and application workloads to identify opportunities for in-
terference. We run two copies of the same workload simul-
taneously and use LockScope to record the locks each copy
acquires, and of those which are shared across the two in-
stances and which are private to an instance. We show the
average shared lock counts and the cumulative lock rate for
all workloads traced in Table 5. For lock rate, we aggregate
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Host ‘ runc ‘ runsc ‘ fc

Workloads shared (rate)
0.33 0.33 1] 267
mem-8KB (226) | (0.0016) 73) | (399)
0.33 2.33 1] 166
mem-1Mb 610) | (019 | (2200 | (121)
. 2.66 9.67 1.66
file-list (321) | (897) (1336)
15.67 1.67
file-create 4 (29) (1740) (2367)
3.67 1
file-delete | 3.66 (353) (296) (3830)
image 5.33 433 067 | 0.67
processing (1799) (1012) (12) | (3.751)
video 7.33 1.99 067 | 133
processing (3488) (1950) (0.14) (4.3)
It traini 12.66 2 167 | 066
r_traming (15) a7 | (1.64) | (0.86)
frce detect 6.67 2.67 167 | 033
ace_detection (80) 12) | (027)| (0.01)
3.33 2.67 167 | 033
o 4.06) | (239) (13) | (1.85)
2.33 1.67 134 1
mn 18) | (282 | (059 | (9.23)
graph 8.33 5 1.33
analytics (382) (419) (59)
data cachi 2.33 033 | 133
ata cachung (0.008) | (0.0011) |  (26)
data caching 1.33 0.33 1.33
(no warmup) (0.018) | (0.0005) | (1.41)
toedsi 7.67 333 1
cedsm (63) 43) | (0.62)
video 15 8 3.66
transcode (82) (3.06) (62)

Table 5. Shared average lock count and cumulative lock
access rate (in parentheses) for each workload and platform.

over all rates by calculating the sum.

6.1 Microbenchmarks

We use microbenchmarks targeting a particular OS resource
to measure interference for those resources. For memory,
we stress page allocation, and for files we stress metadata
operations. We do not include CPU-bound workloads, as they
typically make little use of OS resources and our experiments
show little locking or interference. We do not measure lock
usage in the networking subsystem, all our experiments are
designed to minimize or eliminate networking access paths.

6.1.1 Memory

To stress the memory subsystem, we use a memory mi-
crobenchmark that allocates a total of 16GB memory with
different mmap allocation sizes. The microbenchmark touches
one word of each allocated page by writing to it and finally,
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calls munmap to free the memory. The benchmark runs in
a loop, continuously allocating and deallocating memory
for a specified time duration. We allocate a total of 18GB to
each running instance to avoid interference due to resource
allocation and pin each workload to a separate core. We run
the benchmark for two allocation sizes: 8K and 1MB.

We observe that although shared lock counts for platforms
remain low, two shared locks stand out. The global buddy
allocation locks, zone->1ock, is accessed by host, runsc, and
fc at a high rate, the highest rate for host (=610 for 1MB),
runsc (~220 for 1MB), and fc (~205 for 8KB). zone->1lock
protects a zone object, which holds the free list used for
physical page allocations. This global lock can be the point
of interference under high memory pressure, resulting in
performance degradation for these platforms.

Firecracker also acquires lruvec->1ru_lock with a high
rate (about 193) for 8KB allocation size. The 1ruvec structure
is used for maintaining pages in LRU order for a combina-
tion of memory zone and memory cgroups to select pages
for reclamation. The high acquisition rate may be due to
frequent updates to the LRU lists during the initial phases of
page allocation, where newly allocated pages need to be in-
serted into the appropriate LRU list. This suggests that even
early-stage memory usage in Firecracker involves significant
interaction with reclamation-related data structures.

In contrast, runc exhibits minimal shared lock usage. This
behavioral difference, compared particularly to the host
arises because the host workload instance runs without
memory limits, while the runc container is constrained via
cgroups with an upper memory limit. The memory limit be-
ing pre-allocated in runc avoids triggering memory pressure
and bypasses code paths involving the global allocator.

6.1.2 File Metadata Operations

We measure file system metadata operations to understand
object-level interference as they are more prone to perfor-
mance degradation due to software-level interference [33].
We use Filebench [42] to evaluate file metadata opera-
tions, and report the operations per second (ops) for each
benchmark. Filebench requires address space layout random-
ization (ASLR) to be disabled. Currently, gVisor does not
support disabling ASLR, so we were unable to get Filebench
to run under gVisor and exclude it from this benchmark.
Each workload instance operates on separate directories.

List Directory. This benchmark looks for contention around
directory entries and inodes. It lists the contents of a large
directory (50,000 entries).

Create Files. This measures the performance of file creation
operations by creating 50,000 files (4KB) in a directory.

Delete Files. It uses a single thread to measure file deletion
operation in a directory with 50,000 files

Conference’17, July 2017, Washington, DC, USA

We observe a high rate of shared locks across operations,
highest in runc, followed by host, and fc. We observe a high
access rate for locks related to the filesystem bookkeeping
and some memory management.

The primary shared locks are associated with the file sys-
tem journal_s structure and the superblock ext4_sb_info.
While host and runc access both, fc only accesses the jour-
nal. These are single structures shared by an entire file
system volume, so that even if workloads access different
files, they will still access the same superblock and journal.
journal->j_list_lock, which protects the per-transaction
list of modified buffers in the journaling layer, serializing ac-
cess to the buffer, has the highest rate for the host (~ 304 for
list). bgl->locks[i].lock is a per-block-group spinlock ac-
quired for any updates to a group’s block and inode bitmaps
is another commonly accessed lock between host and runc. It
has a lower access rate on both due to a fine-grained locking
mechanism (acquired per block), but can still be a signifi-
cant interference point under load. This result shows that
fine-grained locking mechanisms are also prone to such inter-
ference, specifically under load, which can negatively impact
performance.

Uniquely, runc acquires aa_buffers_lock with a high
rate (highest being =660 for create) for all operations that
protect AppArmor’s buffer pool used for security meta-
data, ensuring safe allocation and reuse of buffers. The
global inode_hash_lock accessed by runc (#333 for cre-
ate) and protects access to the global inode hash table. This
result emphasizes that despite operating on different in-
odes, processes can still contend for this lock due to in-
cidental sharing, highlighting how such shared structures
can become significant points of interference. fc, on the
other hand, mostly acquires 1ruvec->1ru_lock apart from
journal->j_list_lock, but the access rate is low.

Both host and runc acquire multiple shared locks due
to their high reliance on a shared host filesystem, leading
to potential interference and performance overhead dur-
ing metadata operations. High sharing of locks such as
journal->j_list_lock and inode_hash_lock can result
in low performance isolation.

Firecracker has an isolated filesystem, which runs most
operations inside the guest, and helps minimize lock us-
age. However, it still accesses some host kernel objects like
journal_s when writing back to the disk image, which cre-
ates potential channels for interference at the host level.

6.2 Application Workloads

The preceding results look at single-resource microbench-
marks. We now consider applications in two categories:
serverless workloads and some popular cloud workloads.

6.2.1 Serverless Workloads

We run application and ML-related serverless workloads
adopted from the FunctionBench suite [26] and vHive [43].
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Subsystem loads .
Category Name CcPU Memory | Disk Description Input | Output
image processin medium | medium | low Image transformation using different image | image
Application gep & effects (PIllow) & &
video processing | high high medium | Applies gray scale effect (OpenCV) video | video
- Tvsi ine (logisti
ML training | logistic regression | high high medium Rev1ewh analysis and training (logistic text model
regression, scikit-learn)
face detection medium | medium | low Annotates face in a video (CascadeClassifier, video | video
. OpenCV)
ML Serving - -
. . Image classification (SqueezeNet, Tensorflow, | .
cnn medium | medium | low CNN) image | JSON
rnn low low low Words generation (PyTorch, RNN) JSON | JSON

Table 6. Serverless functions adopted from FunctionBench and vHive.

We briefly describe each benchmark in Table 6. We modi-
fied these workflows to read inputs and write output locally
instead of S3. Hence, the network load is low, and disk I/O
may be higher as we read/write data locally.

Shared lock count and access rate. As observed in Table 5,
host has the highest number of shared lock counts, followed
by runc, runsc, and fc for all workloads. The shared lock rate
for fc and runsc is lower compared to host and runc for most
workloads (fc has the highest rate for RNN, and runsc has
higher rate than host for CNN), suggesting that these more
isolated environments experience less frequent interference
on shared locks for these workloads.

Host and runc have the same highest accessed shared
locks (j_state_lock and journal_s) for image processing
and video processing. RNN shows the lowest access rate for
host, while runc has the lowest rate for face detection.

For most workloads, zone->1ock for memory pages is one
of the highly accessed locks by fc and runsc. j_state_lockis
also acquired by runsc and fc for model training. As expected,
we do not observe any networking lock. This indicates that
journaling and memory management are potential sources
of system-level interference for these serverless workloads,
even in stronger isolation platforms like runsc and fc.

Kernel Subsystem. As shown in Figure 2, most shared locks
across platforms are concentrated in the mm, and fs subsys-
tems. fs usage dominates on the host, particularly for model
training and video processing workloads. There is consider-
able diversity in subsystem usage, suggesting deep reliance
on kernel services. CNN and RNN exhibit the lowest usage
of fslocks. runc shows a similar trend with sharing across
multiple subsystems, with the highest activity in fs and mm.
In contrast, runsc acquires fewer shared locks, with activity
concentrated in fs and mm. fc exhibits the least sharing, with
shared locks confined to either fs or mm.

There is a wide variation in how all these workloads use
kernel objects based on the platform they are using and the
amount of stress they put on different subsystems, indicating
the impact of design choices in kernel object usage. The
same workload behaves differently in terms of kernel usages,

Libraries/
Benchmarks SW
Graph Analytics Apache Spark
Data Caching Memcached
. Oldisim Library, ZLIB, Boost, OpenSSL,
Feedsim . .
(Object A i BZIP2, LZ4, Snappy, libevent, jemalloc,
JC.C geregation, Izma, libsodium, rsocket, fmt, FBThrift,
Ranking/Inference)
Folly, wangle, fizz
VideoTranscode fm t-avl. libaom
(Video Processing) peg, sviravi, ibao

Table 7. Cloud Workloads from DCPerf and CloudSuite.

signifying the importance of the right platform choice for a
given workload.

Moreover, we note that serverless workloads are typically
stateless, so frequent writing of file data is surprising may be
due to using legacy code in a serverless environment. This
also suggests that file systems for serverless workloads do
not need crash consistency, so journaling could be disabled.

6.2.2 Cloud Workloads

We use LockScope to trace four cloud workloads across dif-
ferent application domains, as shown in Table 7. We run two
concurrent workload instances, each with 24GB of memory
and pinned to four separate cores on the same socket.

We run all workloads in standalone mode i.e., all the ser-
vices and components (like client and server) of the workload
run in a single instance of the platform. While Feedsim and
VideoTranscode do not have a separate server/client setup,
we modified the other two workloads to run in standalone
mode. Because the workload depends on virtual networking,
we cannot run them directly on the host and only report
results for runc, runsc, and fc.

Graph Analytics uses the Spark framework to perform
graph analytics on large-scale datasets. We run the PageR-
ank algorithm for three iterations on a Twitter dataset with
Spark’s driver and executor memory set to 8GB each.

Data Caching runs a Memcached server simulating a Twit-
ter data caching workload using a 10GB dataset. We trace this
setup in two modes: (a) with server warmup, and (b) without
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server warmup (tracing is skipped for warmup phase).

Feedsim [7] represents the aggregation and ranking work-
loads in recommendation systems. It searches for the max-
imum QPS that the system can achieve while keeping p95
latency to be no greater than 500ms.

VideoTranscodeBench [8] is based on fimpeg representing
video encoding workloads. It can apply different encoders
and videos, and run them at various encoding levels.

Shared lock count and access rate. runc and runsc have
the highest shared locks for VideoTranscode. For all other
workloads, runc has the highest number of shared locks,
while fc has the least, except for data caching (in both modes).

runc has the highest rate for feedsim and videotranscode,
with most locks belonging to the filesystem. The top two
locks are root->kernfs_rwsem (protects kernfs_root re-
sponsible for maintaining the root of the kernel virtual file
system) and journal->j_state_lock. The journal lock re-
mains the top accessed for graph analytics as well. Notably,
it does not exhibit any significant access to data caching.

Similar to runc, runsc also grabs mostly filesys-
tem (journal->j_state_lock, bgl->locks[i].lock and
root->kernfs_rwsem with a higher rate) locks and
zone->lock for most workloads. Data caching has minimal
sharing for runsc.

lruvec->1ru_lock is the highest source of interference
for fc based on rate for all workloads but videotranscode. It
uses a handful of filesystem locks for videotranscode.

These results further indicate variation in kernel object
accesses by different workloads based on the platform they
use, varying their isolation level via system structures.

Although there are shared lock accesses by these work-
loads, but the rate with which they are accessed is lower
compared to microbenchmarks and serverless for most, indi-
cating low resource pressure.

Kernel Subsystem. We make a similar observation com-
pared to serverless workloads: filesystems, and memory man-
agement subsystems remain a significant source of system-
level interference.

6.3 Lock Interference Summary

These results demonstrate a high variance in shared lock
access, predicting variation in the interference of co-located
workloads. They also show the data structure likely to cause
interference, namely the page allocator and reclamation
mechanism, and the file system journal. While much of the
file system uses fine-grained locking, such as the inode and
dentry caches, the journal is a single point of contention.
We also note that both coarse and fine-grained sharing
can contribute to object-level interference, which can lead
to performance overhead during high accesses under load.

7 Performance Interference

The preceding section looked at the level of shared locking
across workloads. In this section we evaluate the perfor-
mance interference through system resources for the same
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workloads, showing that the level of shared locking relates
to the amount of interference.

7.1 Microbenchmarks

We run the same microbenchmarks stressing different kernel
subsystems from Section 6 to understand how sharing differ-
ent kernel objects impacts the performance of co-running
workloads. As before, we do not evaluate CPU-only work-
loads.

7.1.1 Memory

For this benchmark, we run one worker and seven trashers
(Section 5.3). The worker runs for 80 minutes, and the first
trasher starts after ten minutes, and every ten minutes, an
additional trasher starts. We run the benchmark three times
and report the average performance. Between each run, we
reset the environment.

We observe the effects of object-level interference on host,
runc, and runsc for both allocation sizes in Figure 4. gVisor
has two levels of virtual-to-physical page mappings [3], one
from the application to Sentry and the other from Sentry to
the host. This leads to a lower baseline performance com-
pared to host and runc. As noted, runsc and host acquire the
global allocator lock zone->lock with a high rate, which
becomes a point of high interference for both under memory
load, as indicated by their performance degradation. As the
load increases in the system, we can see the impact of such
sharing on runc from its degraded performance.

Firecracker is not impacted by other co-running microVMs
over time as the total mmap size remains consistent across
iterations. After the initial boot, where it maps the necessary
pages into guest memory, fc does not need to make additional
mmap calls to the host to allocate more physical memory for
subsequent allocations. The guest OS within the microVM al-
locates and deallocates within the already mapped region for
subsequent allocations. However, it does has have a higher
execution time after startup, which comes from a high rate of
access to zone->lock and lruvec->1ru_lock due to initial
page allocations.

7.1.2 Filesystem Metadata Operations

For all metadata benchmarks, we observe performance degra-
dation for host and runc with fc having the lowest baseline
for create and delete metadata operations as shown in Fig-
ure 5. We calculate the baseline by running a single instance
for each for ten minutes and averaging over the iterations
completed during that time. fc has stable performance for
these operations under stress, with some minor degrada-
tion at times. Filesystem locks acquired during metadata
operations showed a very high access rate from our lock
usage analysis, and we can see the impact of those locks’
interference (journaling locks in particular) on the degraded
performance on all three platforms. Even incidentally shared
locks like inode_hash_lock acquired by runc for metadata
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operations contribute to significant object interference under
pressure, resulting in performance degradation.

host and runc are impacted more as they share more of
the host kernel’s filesystem internal state compared to fc,
where isolation at the microVM level limits such interference
between instances.

7.2 Serverless Workloads

We show the performance of the worker over time for all
serverless workloads in Figure 6. Similar to the microbench-
marks, we calculate the baseline by running a single instance
with no co-runner interference and averaging the results
across multiple runs, and compare against an instance with
increasing numbers of trashers.

We observe performance degradation across several work-
loads on all platforms. Our lock usage analysis revealed that
these workloads exhibit a wide range of lock access patterns,
with high acquisition rates across most workloads, particu-
larly in the filesystem and memory subsystems.

These workloads involve complex sharing patterns, rang-
ing from fine-grained locks such as bgl->locks[i].lock
on ext4 blockgroups, to incidentally shared locks like
inode_hash_lock, and several global locks (zone->lock,
several journaling locks) acquired along multiple kernel code
paths. These overlapping access patterns lead to numerous
points of object-level interference within shared kernel sub-
systems.

The result is compounded performance degradation, as
seen in the Figure 6. Notably, no single platform consistently
outperforms the others across all workloads in terms of pro-
viding isolation. The degree to which each platform isolates
kernel objects, and thus avoids lock-level interference, deter-
mines which workloads benefit more from a given isolation
platform.

7.3 Cloud Workloads

We run one (baseline) and two instances to measure perfor-
mance interference for cloud workloads rather than using
trashers. We observe minimal performance degradation (less
than 1%) across these workloads. This is likely due to limited
resource pressure, as only two instances are running. Our
lock usage analysis supports this observation, showing rela-
tively low lock access rates for these workloads, insufficient
to cause significant interference under this low load.

7.4 Performance Interference Summary

Our performance evaluation reveals that object-level shar-
ing can significantly impact performance as access rates to
shared kernel objects increase. This has important implica-
tions for workload scheduling in multi-tenant environments:
co-located workloads that frequently access the same shared
kernel objects can interfere with one another, with the extent
of interference varying based on the isolation platform in
use.
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8 Interference Analysis Use-Cases

We envision multiple use cases for our analysis of kernel
lock interference.

Quantify isolation via a metric. We can use the lock in-
terference data to formulate a metric that measures isolation
by measuring the amount of sharing and the impact it has
on interference. This metric can be used in scheduling work-
loads in the cloud to minimize interference in the cloud. e.g.,
interfering workloads mostly reading shared objects are less
likely to interfere and can be safely scheduled together.

Identify the type of sharing. By identifying objects that
are heavily shared vs those that are not can help us under-
stand the nature of sharing. Sharing in the kernel varies
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across different subsystems. Sharing is necessary to ensure
consistent access to globally visible resources, such as file
data. In other cases, sharing is used for convenience to create
simpler data structures. e.g., the futex table is shared by all
processes, but each process only accesses its private locks in
the table.

Using the metric for design. By identifying which data
has to be shared and which need not, kernel developers can
work to reduce the amount of interference possible between
workloads, and eliminate or minimize things shared only for
convenience. This analysis can provide insights for applica-
tion developers to optimize their implementations, minimiz-
ing data sharing where feasible. Additionally, it can guide
isolation platform developers in enhancing their platforms
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Figure 6. FunctionBench stress tests. All platforms show some performance degradation under load for most workloads. Note
that the Y-axes do not go to zero. Lower numbers are better.

by adding layers, similar to ’sentry’ in gVisor, to segregate
highly shared data structures.

9 Related Work

Kernel Locks Multiple tools have been proposed to detect
race conditions and deadlocks. Eraser [41] proposes a novel
lockset algorithm for dynamically detecting data races in
multithreaded programs. “Locksets” consist of all held locks
accessing shared variables. If the lockset for shared variable is
empty then the variable is flagged as not being consistently
protected. LockDoc [32] proposes a dynamic trace-based
analysis of an instrumented kernel to infer locking rules of
members of data structures to understand the implementa-
tion and to detect possible locking rule violations.

Scalability and Commutativity Min et al. [34] studied
the scalability behavior of some popular file systems and
identified some kernel objects as the source of scalability
bottlenecks. Clements et al. [16] introduced a scalable com-
mutativity rule, suggesting that when interface operations
are performed in any order without affecting the outcome,
they can be implemented in a manner that allows for scalabil-
ity. Multikernel [11] proposes a new architecture for scaling
multicore systems by avoiding any inter-core sharing.

Interference Measurement A recent work [30] detects
inter-container functional interference by comparing the
system call traces of a container across two different execu-
tions (running with and without another container). Some
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works have studied and measured performance interference
for workloads by either characterizing workloads [14, 21]
under different stress levels or by proposing an analytical
model [44].

Address Space Isolation Address-space isolation (ASI) [17,
18] is the technique of unmapping unnecessary kernel mem-
ory, making it inaccessible to the current running context.
The implementation of ASI depends on marking memory as
sensitive and non-sensitive; sensitive memory is unmapped,
restricting the address space for system calls. A possible ap-
proach to identifying sensitive memory is to detect critical
data structures and unmap their memory when not needed.
Our analysis can serve as an initial step toward detecting
these sensitive data structures.

10 Conclusions

In this paper, we introduced and evaluated a new approach
to understanding and measuring system-level interference.
By collecting and analyzing kernel-level lock activity, we
identified heavily accessed kernel objects across a range of
workloads and isolation platforms. Our results reveal signifi-
cant variation in object access patterns, leading to differing
performance implications across platforms. The analysis also
highlights the file system and memory management subsys-
tems as the most frequently accessed components across
these platforms.
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