arXiv:2507.20851v1 [cs.CR] 28 Jul 2025

An Open-source Implementation and Security
Analysis of Triad’s TEE Trusted Time Protocol

Matthieu Bettinger*®, Sonia Ben Mokhtar*, Anthony Simonet-Boulogne’
*INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, LIRIS, UMR5205, 69621 Villeurbanne, France
{given-name}.{surname} @liris.cnrs.fr *Corresponding author
"iExec Blockchain Tech, 69008 Lyon, France {given-name}.{surname}@iex.ec
Published in the 2025 55th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks - Supplemental Volume (DSN-S)
https://doi.org/10.1109/DSN-S65789.2025.00053

Abstract—The logic of many protocols relies on time measure-
ments. However, in Trusted Execution Environments (TEEs) like
Intel SGX, the time source is outside the Trusted Computing
Base: a malicious system hosting the TEE can manipulate that
TEE’s notion of time, e.g., jumping in time or affecting the
perceived time speed. Previous work like Triad propose protocols
for TEEs to maintain a trustworthy time source. However, in
this paper, based on a public implementation of Triad that
we contribute, we empirically showcase vulnerabilities to this
protocol. For example, an attacker controlling the operating
system, and consequently the scheduling algorithm, may ar-
bitrarily manipulate their local TEE’s clock speed. What is
worse, in case of faster malicious clock speeds, an attacker on a
single compromised machine may propagate the attack to honest
machines participating in Triad’s Trusted Time protocol, causing
them to skip to timestamps arbitrarily far in the future. Then,
infected honest machines propagate time-skips themselves to
other honest machines interacting with them. We discuss protocol
changes to Triad for higher resilience against such attacks.

Index Terms—resilience, delay attack, trusted execution envi-
ronment (TEE), trusted time

I. INTRODUCTION

Provisioning trustworthy timestamps is critical for many ap-
plications, both for traditional and confidential computing (i.e.,
with integrity and confidentiality requirements fulfilled using
Trusted Execution Environments, TEEs, like Intel SGX [1]).
Use-cases and impacts are far-reaching, ranging from TimeS-
tamping Authorities [2] and Proof-of-Elapsed-Time [3]; cre-
dential expiration and revocation [4], [5]; latency-sensitive
systems (e.g., trading [6], real-time systems [7], consistent and
available databases [8]); time-constrained resource allocation
(e.g., resource leasing [9]); resilience to timeout manipulation
(e.g., BFT leader changes, procrastinating BFT leaders [10]);
latency Quality-of-Service and resilience to malicious message
delaying [11]; to decorrelation between data and timestamps
in time-series [12].

In the context of confidential computing, iExec [13] pro-
poses a decentralized computing marketplace, where anyone

This work was supported by a French government grant managed by the
Agence Nationale de la Recherche under the France 2030 program, reference
“ANR-22-PEFT-0002” as well as the ANR Labcom program, reference “ANR-
21-LCV1-0012”. We thank the Complex Systems research group at the
IIUN (University of Neuchatel, Switzerland) for granting us access to their
experimental platform.

can contribute datasets, applications, and TEE-enabled hard-
ware. These computing assets can then be matched by anyone
to execute tasks, i.e., a given application’s logic processing
datasets while running on a server. TEEs on those servers are
in place to guarantee execution integrity and confidentiality.
However, applications are user-defined and therefore arbitrary:
they can rely on timestamps. If those timestamps can be
manipulated by a server’s malicious owner, e.g., because they
control the OS or hardware, then task results themselves can
be manipulated, e.g., as part of use-cases presented above.

Indeed, with CPU-level TEEs, also called enclaves, like
Intel SGX, the time source is outside the TCB: since 2020,
the sgx_get_trusted_time primitive [14] is deprecated.
Some previous trusted time mechanisms relied on this (e.g.,
TimeSeal [15]) or other deprecated primitives (e.g., on Intel
TSX [9], [16]). In recent years, new protocols have been pro-
posed to address trusted time in Intel SGX, like T3E [17] and
Triad [18]. While T3E is open-source [19], the original Triad
protocol is closed-source (due to its implementation on top of
the proprietary containerization solution Scone [20]): we have
been able to reach Triad’s authors, but not to obtain implemen-
tation artifacts or supplementary specifications. Therefore, in
this paper, based on the specifications in the original Triad
paper [18], we contribute a public implementation [21] of
Triad and reproduce results. However, we also experimentally
highlight attacks on the Triad protocol (the original paper does
not include empirical evaluation of attack scenarios). While
Triad makes a cluster of TEEs collaborate to keep a shared
notion of trusted time, assuming that all underlying OSs or
hypervisors may be compromised, we show that even a single
compromised node can manipulate its own notion of time and
cause honest nodes to skip to timestamps arbitrarily far in the
future. This effect then cascades to honest nodes contacting
infected honest nodes, infecting them in turn. Consequently,
we also discuss protocol improvements towards a TEE trusted
time protocol with higher resilience.

This paper is structured as follows: first, Section II presents
related work on TEE trusted time mechanisms; then, Sec-
tion Il describes the Triad protocol and attacks upon it;
based on the contributed implementation of Triad, Section IV
reproduces results in the original Triad paper and additionally

https://doi.org/10.1109/DSN-S65789.2025.00053
https://arxiv.org/abs/2507.20851v1

illustrates the feasibility and impact of attacks on the Triad
protocol; finally, Section V discusses protocol improvements
to increase resilience to these attacks and Section VI summa-
rizes this work.

II. RELATED WORK

Time sources, like the TimeStamp Counter (TSC) on a CPU
or a remote Time Authority (e.g., NTP time servers [22], [23]),
are outside the TCB of TEEs. Therefore, security mechanisms
must be put in place to prevent timestamp tampering by an
attacker, positioned at the hypervisor, OS, or on the network.
Hereafter, we describe recent solutions and their features.

A. CPU-level TEE trusted time

With Standard Intel SGX (SGX1), reads of the TSC with
rdtsc are mediated by the OS, which can manipulate the
value. Meanwhile, with Scalable Intel SGX (SGX2), rdtsc
instructions can be executed in-enclave, bypassing the OS (but
remaining vulnerable to a malicious hypervisor). Furthermore,
a malicious OS controls the scheduling of enclaves, so en-
claves may be interrupted arbitrarily. Additions to Intel SGX
like AEX-Notify [24] enable the TEE to react to interruptions
and handle them with arbitrary developer-defined code after
the enclave resumes. Triad [18] makes a cluster of TEEs
cooperate to keep a common and continuous notion of time.
Each TEE monitors its TSC and relies on AEX-Notify to
detect when its notion of time continuity is severed: the TEE
then either obtains a timestamp from a peer enclave in the
cluster or, failing that, from a Time Authority (e.g., NTP time
servers). However, in this paper, we show vulnerabilities in
Triad’s calibration protocol and in communications between
TEEs in the cluster, allowing time manipulations at single
nodes and their propagation to others. T3E [17] uses a Trusted
Platform Module [25] as a time source, colocated with the
TEE. T3E hinders delaying messages coming from the TPM
by limiting how many times the same timestamp can be used
by the TEE and by stalling TEE execution if uses are depleted.
In turn, the underlying application will drop in throughput,
which may be detected by that application’s user. However,
quantifying appropriate numbers of uses, to neither block ex-
ecution when there are no attacks nor give too much room for
delay attacks, is complex, because effective ideal usage rates
are code-, workload-, and hardware-dependent. Further, if the
application is non-interactive or, on the contrary, if there are
many users consuming a remote TEE service, with some users
who may be malicious, trustworthy monitoring of demanded
and effective throughput is again difficult. Additionally, the
TPM can be configured by an attacker owning it (leading to
up to a +32.5% drift-rate compared to real time [25]) and may
more generally be a target for attacks as a root of trust [26].

B. VM-level TEE trusted time

VM-level TEE:s like Intel TDX have started becoming avail-
able at Cloud Service Providers (e.g., Microsoft Azure [27],
Google Cloud [28], IBM Cloud [29]). With the TCB now
comprising the operating system, attackers must devise new

strategies to harm the system. Notably, with respect to trusted
time, TEEs like Intel TDX and AMD SEV-SNP have their
time sources protected even against a malicious hypervisor, re-
spectively with their virtualized TSC [30] and SecureTSC [31]
features. With Intel TDX, writing in the TimeStamp Counter’s
registers is forbidden from inside the Trust Domain (TD), i.e.,
the guest VM. A hypervisor offsetting the TSC during a VM
exit is similarly detected and results in an error upon VM
entry [30]. Meanwhile, AMD’s SecureTSC lets the hypervisor
and VM guests modify the TSC without affecting other guests,
whose TSC remains linearly increasing [31]. However, VM-
level TEEs’ attack surface is still undergoing research [31]—
[35] and a large TCB is more demanding to properly audit.
Our objective in this paper is therefore to get closer to the
guarantees provided by VM-level trusted time mechanisms,
but using CPU-level TEEs with a smaller TCB.

III. TRIAD SPECIFICATIONS & ATTACKS

Now, we describe Triad [18], the attack vectors it originally
aimed to mitigate, as well as our new attacks against Triad.

A. Attacker model

The attacker in Triad is assumed to control the operating
system or hypervisor. Notably, it can delay or drop any
message between the TEE and other devices. By controlling
the OS, it may also arbitrarily cause interruptions. Interest-
ingly, while the original paper considers adding interruptions,
removing interruptions, e.g., by further isolating cores run-
ning Triad, is not mentioned. We show in experiments how
low interruption rates help strengthen some attacks. Finally,
regarding Triad’s use of the TSC as a local time source, a
hypervisor virtualizing the TSC may change its value’s offset
and scaling factor for the guest VM running a Triad node.

B. Triad protocol and building blocks

To protect against such an attacker, Triad uses the following
building blocks. First, to prevent arbitrary manipulations of the
TSC, a thread in the TEE is dedicated to monitoring the TSC
increment rate. With SGX2, reading the TSC does not require
exiting the enclave: as long execution remains in the enclave,
the OS or hypervisor cannot manipulate the TSC read by the
enclave. Triad calibrates the monitoring thread by measuring
increases in the TSC during uninterrupted executions of that
thread. AEX-Notify [24] enables the TEE to be aware of when
such interruptions occur, called Asynchronous Enclave Exits
(AEXs). More precisely, arbitrary user logic can be triggered
when a TEE thread resumes execution.

Once an AEX occurs, however, the timestamp is considered
“tainted”: an arbitrarily long time may pass before TEE exe-
cution resumes and the attacker may offset the TSC to make
that duration seem shorter or even longer. As a consequence,
the TEE communicates with remote entities to refresh, to
“untaint” its timestamp. The root of trust is a remote Time
Authority (TA), e.g., an NTP server, which serves as the time
reference. Remote communications introduce network delays
and the TEE is unavailable to client applications while its

timestamp is tainted. For shorter roundtrip delays and fewer
requests to the TA, Triad nodes are organized in clusters of
multiple TEEs. After resuming from an interruption, a TEE
first asks its peers in the cluster for a timestamp and only asks
the TA upon failure to receive any responses from peers.

We now focus on two key protocol steps in Triad: TSC
monitoring calibration and untainting using peer timestamps.

C. Attacking Triad’s calibration protocol

A critical aspect of Triad’s calibration is to estimate the
relationship between the passage of time with respect to
the TA’s reference clock and increments in the TSC. To do
so, Triad relies on roundtrip communications with the TA,
bounded by the monitoring thread’s continuous execution,
i.e., between two AEXs. For example, the TEE may ask the
TA to wait 1s before sending back the response. Meanwhile,
the monitoring thread checks its uninterrupted execution and
reports the TSC increment once the TA’s response arrives.

However, the TEE is not aware a priori of how much refer-
ence time can pass between two AEXs and, as a consequence,
cannot reliably bound the requested TA waittime by inter-
AEX delays. Even given such an estimate, e.g., using the TSC
frequency measurement by the OS at boot-time, the effective
network delay is also unknown by the TEE, giving an attacker
a margin of freedom to delay messages. The original paper’s
specifications do not fully define how calibration should be
performed, besides repeated and independent short interactions
with the TA which waits a requested amount of time s before
sending a response. To account for the offset error introduced
by network delays, we consider a linear regression over
requested waittimes and measured TSC increments. The slope
is the TSC’s increment rate with respect to the TA’s reference
time. Without regression over multiple measurements, e.g.,
with only the mean obtained with long waittimes, the offset
error would always overestimate the TSC’s increment rate,
i.e., slow the TEE’s perceived clock speed. In the original
paper’s experiments, some nodes do have positive drifts from
the reference, i.e., their calibration does compensate the offset
created by network delays. Note that Triad’s measurements
over short intervals can lead to poor precision in estimating the
clock speed, even without attacks. As a comparison, instead of
measurements of around 1s, NTP uses long drift measurement
timeframes, between 16s and 36h [22].

Based on the above considerations, we design the following
“F+” and “F-" attacks that respectively increase and decrease
a node i’s perceived TSC increment rate Ff° compared
to its real rate FZ-TSC, i.e., slow down or quicken the TEE'’s
perceived passage of time. A TEE, as part of its TSC speed
calibration protocol, sends messages to the TA, which waits a
requested duration s included in the message. Communications
are authenticated and encrypted, so the attacker does not have
access to s. However, the attacker is able to measure network
delays between its machine and the TA, as well as roundtrip
times part of Triad’s calibration protocol, so the attacker can
estimate s. To slow down the TEE’s clock, the attacker causes
a steeper regression, i.e., Ff® > FTSC by adding delays to

messages with high s, which we call an F+ attack. Conversely,
in an F- attack, i.e., with Ff3® < FTSC and leading to a faster
TEE clock, the attacker adds delays to messages with low s.

D. Propagating the attack to TEE peers

When the TEE is not calibrating, it asks its peers for times-
tamps upon resuming after an AEX. If any peers are not also
“tainted”, they send their current timestamp. In the original
Triad protocol [18], the policy to handle peer timestamps is
as follows: if a received timestamp is higher than the local
one (the last one before the interrupt), then the incoming
timestamp becomes the new reference; otherwise, the local
timestamp is increased by the smallest possible increment to
ensure monotonicity when serving client applications. Such a
policy ensures that TEEs cannot go back in time. However, it
also means that all TEEs will follow the fastest clock in the
cluster. Such drift errors can persist, because the TA is only
contacted if all TEEs are “tainted” at the same time.

IV. RESULTS

Based on these specifications, we implement the protocol in
C++ for Intel SGX TEEs, as well as F+ and F- attacks. The
source code is available [21]. All protocol communications
use UDP and are encrypted using AES-256-GCM [36]. In the
provided implementation, TSC rate estimation is performed
through regression over roundtrips of messages with Os-sleep
(immediate responses) and 1s-sleep at the TA.

Research questions (RQ) in this paper are along two axes:

A. Can the proposed public implementation reproduce re-
sults in Triad’s original paper?

B. Given this implementation based on the original specifi-
cations, how resilient is Triad to presented attacks?

More precisely, reproducibility is explored according to the
following questions:

A.l How accurate is TSC-monitoring using a counter in an
enclave thread?

A.2 Without attacks, how available are Triad nodes and how
much do they drift compared to a reference time source?

Note that we can only compare results without attacks, as
the original paper does not provide evaluation under attacks.
Next, we attack the Triad protocol ourselves and we evaluate
the drift of nodes participating in the protocol, by launching
F+ and F- attacks from a single compromised Triad node.

For the following experiments, we run three Triad nodes
and the TA on an Intel SGX2 (Scalable SGX) machine with
32 cores. The TSC monitoring thread for each node is pinned
to a core isolated from most OS interruptions. As a result,
those monitoring threads experience delays between AEXs as
illustrated in Figure 1b: most AEXs occur every 5.4 minutes.

To properly reproduce Triad’s results, we simulate their
distribution of inter-AEX delays (10ms, 532ms, and 1.59s,
each with probability 1/3), which we called “Triad-like”. The
resulting distribution on our machine is shown in Figure la,
approximating Triad’s original environment. We do not have
information on correlations that existed in their setup’s succes-
sive delays between AEXs: we assume in this work that their

g 100%

3] [Node 1 |

:C; 75% Node 2 N i

& £ Node 3 i

g 50% 9 | i

+ SN - i

= 2% 41 5

£ [i

o 0% 1 L —

00 02 04 06 08 10 12 14 16 18 20
Delay between successive AEXs (s)

(a) Triad-like [18] simulated interruption distribution.

& 100% H
§ [Node 1 ::
g 75% 4 Node 2 ::
S]l Node3 i
g 50% A i:
) |
= 925% 1 i
I o 1 0 010 1 |
I e et e W S
0 60 12 180 240 300 360

Delay between successive AEXs (s)

(b) TSC monitoring core isolated from most OS interruptions.

Fig. 1: Cumulative distribution of delays between successive Asynchronous Enclave Exits (AEXs) on the TimeStamp Counter
(TSC) monitoring enclave thread. Figure 1a is simulated on top of Figure 1b’s system environment, by triggering AEXs at the
TSC monitoring thread’s core, using rdmsr instructions on that core’s TSC MSR (Model Specific Register, 0x10 for TSC).

successive delays were independent, i.e., P(D;y1 = d) =
P(D;y1 = d|D;), VD;,d, with D; the duration between the
i™ and (i + 1) AEXs, and d € {10,532,1590}ms.

Finally, to save space and avoid legends hiding data points,
we do not repeat legends for every figure. However, legends
are consistent across figures, i.e., Nodes 1, 2, and 3 are always
represented respectively in blue, orange, and black. Note also
that Nodes 1 and 2 are both honest in all experiments: Node
I’s data points may overlap and hide Node 2’s data points.

A. Reproducing Triad [18] results without attacks

We now show our reproducibility results based on our public
implementation [21] of the Triad protocol.

1) TSC monitoring with TEE enclave TNC-counters: With
a fixed core-frequency, we run 10k measurements counting
INC instructions until the TSC has incremented by 15E6,
representing around 5ms in realtime (the TSC increments at
FTSC = 2899.999MHz, as measured by the OS at boot-time).
Additionally, we have set the monitoring thread’s core with
the “performance” frequency-scaling governor (i.e., it runs
at maximum frequency: 3500Mhz), we obtain 632181INC
as mean with 109.5INC of standard deviation. Removing
two outliers (the experiment’s first run with 621448INC and
another with 630012INC), we obtain 632182INC as mean
and go down to 2.9INC of standard deviation. The range
between measurement values without the two outliers is of
10INC: a monitoring thread running at a fixed frequency can
therefore reliably detect TSC discrepancies, both in speed or
time jumps (forward and back in time). To answer RQA.I,
given that Intel CPUs allow only discrete pre-determined
frequency settings [37], coupling this accurate but frequency-
dependent monitoring with a less accurate but frequency-
independent monitoring (e.g., memory- [18] or randomness-
[9] accesses) may lock an attacker from manipulating the TSC
rate and offset. However, we will show in later experiments
that this mechanism is not sufficient to protect against an
attacker manipulating the TEE’s time perception: the attacker
can still impact what duration of real elapsed time is equated
to a number of TSC increments.

2) Triad nodes availability and drift rates: Here, we assess
Triad nodes’ availability as well as drift rates they experience

30
z 20]
Z 10
=)]

03¢
0 240 480 720 960 1200 1440 1680
Reference time (s)
(a) Clock drift per Triad node over time.

g
8L
g
3
5}
o0
<
ool
3
2

0 240 480 720 960 1200 1440 1680

Reference time (s)

(b) Number of received time references from the Time Authority.

Fig. 2: Long-term fault-free behavior of Triad nodes under
Figure la’s AEX delay distribution (F{i® = 2900.089MHz;
F§iib = 2900.113MHz; F5U° = 2899.653MHz).

compared to the TA’s reference time. In all experiments, all
nodes only required to perform full calibration, i.e., both
clock time reference and speed, once with the TA. Figure 3b
illustrates this, showing the first hour of an experiment lasting
8h and a single stay in the “FullCalib” state at the start of
the experiment. The TSC was not manipulated during these
experiments and monitoring cores ran at maximum frequency:
no discrepancies in TSC update rates were detected by the TSC
monitoring enclave thread’s INC-instruction-counting. Other-
wise, additional full calibrations would have been triggered.
Regarding drift, NTP’s standard allowed clock drift-rate is
15ppm (parts-per-million, i.e., 15us/s or 1.3s/day) [22]. In
our scenarios without attacks, e.g., in Figure 2a, all nodes
drift at around 110ppm (0.11ms/s), while Node 1 drifts at
210ppm in Figure 3a. These effective drift-rates are an order
of magnitude higher than the standard upper bound drift-rates.
This can be attributed to Triad’s calibration protocol based on

— 100 1

Drift (ms

N N

K&

1200

0 1800 2400 3000 3600
Reference time (s)
(a) Clock drift per Triad node over time.
FullCalib
8
= RefCalib 44 1 i i i i 1 i
n i 1 i | { H i {
L AR R R i Vo
S Tainted H i H | 1 foa i |
g ElEENEEEEn
OK RN SR R NUNNE GO SRS S A I RO S
0 600 1200 1800 2400 3000 3600

Reference time (s)

(b) Timing diagram of Triad node states.

Fig. 3: Long-term fault-free behavior of Triad nodes under
Figure 1b’s AEX delay distribution (F{® = 2899.363MHz;
F§iib = 2900.260MHz; F§° = 2900.510MHz).

measurements over short durations, in the order of seconds or
less, while standard clock synchronization like NTP monitor
drift over long timeframes [22]: 27s, with 7 € [4,17], i.e.,
16s to 36h. Clock drifts reset to O in Figure 2a when a node’s
message count to the TA increments in Figure 2b, i.e., when
the node calibrates its time reference with the TA in absence
of peer responses. Figures in the original paper do not allow
estimating their drift rates.

Nodes are unavailable to serve timestamps if they are
tainted or calibrating: for Figure 2’s 30min experiment without
attacks, each node’s availability to serve timestamps exceeds
98% including initial calibration. Figure 3’s experiment over
8 hours shows that availability can rise to 99.9%.

In a low-AEX setting, monitoring cores experience only a
few AEXs with minutes of delay between them, as previously
shown in Figure 1b. However, in our OS setup, these specific
remaining interruptions by the OS do not target select individ-
ual cores but rather all cores. This means that because all three
nodes run on the same machine’s cores, even under simulated
AEXs, their TSC monitoring threads sometimes experience an
AEX simultaneously (with higher probability than the original
Triad experiment setup). As a result, their timestamps will
become tainted at the same time and they will not be able to
fetch a fresh one from their peers: they must contact the TA,
resetting their drifts. This behavior also explains the sawtooth
pattern of each node’s drift time-series in Figure 2a.

Compared to Figure 2, without those correlated simultane-
ous AEXs, we can expect the node ¢ which underestimates
the TSC frequency Ff® the most to lead all other nodes to
drift positively, i.e., to perceive a faster passage of time, even
without attacks. A low-AEX environment helps showcase this
behavior, i.e., in Figure 3 at reference times ¢t = 1705s for

07
£ -10000
R=t] —— Node 1
=
()] Node 2
—20000'_ —+— Node 3
0 60 120 180 240 300 360

Reference time (s)

Fig. 4: Clock drift of Triad nodes under an F+ attack on
Node 3 (F§i® = 3191.224MHz; Ffli® = 2900.223MHz;
F§lib = 2900.595MHz), which is in Figure 1b’s low AEX
environment, while Nodes 1 and 2 experience Figure 1a’s
Triad-like AEXs.

Node 2 and ¢ € {1705,2623,2688}s for Node 3. See how
in Figure 3b, those nodes do not perform a time reference
calibration with the TA (“RefCalib”), but were able to switch
from a tainted to an OK state using peer untainting. This
results in time jumps for Nodes 2 and 3 to Node 1’s increased
clock time, i.e., in Figure 3a, by 50-70ms, followed by the
nodes resuming timestamp updates at their own clock speeds.
To summarize and answer RQA.2, Triad nodes exhibit
high availability to serve timestamps. However, even without
attacks, a node underestimating F'75€ is able to lead all other
nodes to follow its drift, e.g., in Figure 2a, Node 3’s drift (we
have F§ilib < FTSC < pralib — paliby Furthermore, without
simultaneous AEXs, this can happen arbitrarily long.

B. Triad [18] under attacks

Hereafter, we launch F+ and F- attacks on a single Triad
node among the three and observe the system’s behavior.

1) Node 3 launching an F+ attack: To start, we slow down
the perceived time speed at Node 3 using an F+ attack, adding
a 100ms delay to the TA’s 1s-sleep messages. In Figure 4,
Node 3 is additionally set in a low-AEX environment. Besides
two calibrations with the TA (due to correlated simultaneous
AEXs on all cores), Node 3 drifts at -91ms/s (-9.1E4ppm).

In Figure 5, Node 3 experiences Triad-like AEXs. The
calibrated frequency is nearly the same as in the previous case
(with a 4E-6 relative difference). Node 3’s drift now oscillates
between two bounds: Nodes 1 and 2’s drifts when it obtains
peer timestamps after an AEX; and -150ms when it updates
timestamps based on its own slow clock in-between AEXs.

2) Node 3 launching an F- attack: Now, we quicken
perceived time speed at Node 3 using an F- attack, adding
a 100ms delay to TA’s immediate (Os-sleep) messages. Node
3 drifts positively at 113ms/s. To better highlight that attack’s
impact, Nodes 1 and 2 start the experiment with rare AEXs,
then, after 104s (dashed red line in Figure 6), they experience
Triad-like AEXs. Figure 6b shows the total number of AEXs
at each node over time: while Node 3’s AEXSs linearly increase
from the start, Nodes 1 and 2’s AEXs stay around O for
t < 104s then also linearly increase. Figure 6a illustrates the
nodes’ drift before and after the change in AEX rates. Without
AEXs, both Nodes 1 and 2 experience relatively low drift-
rates, similar to the case without attacks. However, with higher

1

i Wp.

!w'ﬁ

h’i

i j

T
i

ERAERH
TR

Hm m MIH] lh!]

i w’nf

l il
I Il
i
0 GIO 150 1é0 2210
Reference time (s)
Fig. 5: Clock drift of Triad nodes under an F+ attack on Node
3 (F$'P = 3191.210MHz; Ffi® = 2898.751MHz; F5ib =
2900.836MHz), with all nodes experiencing Figure 1a’s Triad-
like AEXSs.

i [‘q

Drift (ms)

10000 A

Drift (ms)

0 60 120 180 240 300 360
Reference time (s)

(a) Clock drift per Triad node over time.

600 -

400

200 1

AEX count

0 60 120 180 240 300 360
Reference time (s)

(b) Number of AEX over time.

420

Fig. 6: Triad nodes behavior under an F— attack on Node 3
(F$U® = 2609.951MHz; Ffi® = 2899.347TMHz; F§iib =
2900.052MHz), which experiences Figure la’s Triad-like
AEXs, while Nodes 1 and 2 experience Figure 1b’s low AEXs
for reference time ¢t < 104s, then Triad-like ones for ¢ > 104s,
i.e., after the dashed red line.

AEX rates once t > 104s, both nodes now communicate with
the compromised Node 3 and use its timestamps, because
they are farther in time than theirs. As a result, both nodes
jump forward in time, e.g., by around 35ms at ¢ = 104s, then
alternate between their own clock’s timestamps between AEXs
and forward time jumps after AEXs.

Finally, to answer RQOB, we observe that Triad is particularly
sensitive to F— attacks speeding up a single TEE’s perceived
passage of time, because that TEE propagates its positive drift
to TEE peers. With frequent AEXs, slowing down time with
an F+ attack is less impactful, causing only the compromised
node to oscillate between its peers’ timestamps and its own
slow clock measurements. However, an attacker controlling the
OS can prevent AEXSs altogether, causing an arbitrary negative
drift to that compromised node. Additionally, these attacks on
a node’s calibration do not negatively affect availability: AEXs

dictate how often the node communicates with peers and the
TA. In fact, as a consequence, a lower AEX rate, for example
used above to strengthen an F+ attack, increases availability.

V. DISCUSSION

In this section, we discuss our empirical results and propose
protocol changes to address existing vulnerabilities.

First, in the original protocol, events to refresh a TEE’s
timestamp only come from outside the TCB, from attacker-
controlled OS interruptions. A compromised node may use
its miscalibrated clock speed arbitrarily long. To reduce the
attack power, an in-TCB trigger can be added, e.g., using
deadlines after given numbers of TSC increments. As before,
when a deadline is reached, the enclave will try to check its
timestamp’s quality or obtain a better one.

Moreover, the base protocol’s synchronization precision and
accuracy for uncompromised nodes should be close to that of
a system without attacks. With Triad [18], nodes with honest
OSs instead use a calibration protocol designed to restrain an
attacker’s power, with a cost in synchronization quality. Triad’s
calibration phases with short-duration measurements of clock
speed and offset can be replaced by more mature synchroniza-
tion protocols like NTPsec [23]. If honest, uncompromised
nodes exist, they will be able to calibrate high-quality clocks
over time. Standard synchronization protocols use the notion
of consistency in (sub-)sets of clocks in a system [38]. Given
clocks with timestamps ¢; and e; an estimation on each
clock’s possible drift error, consistent subsets of clocks have
all their intervals ¢; £e; overlap with a non-empty intersection.
These clocks are usually called true-chimers. Additionally, this
method can be applied to clock time and speed.

With such a synchronization protocol, a node may now
check if its clock is consistent with the TA. If the node
is compromised, messages may be delayed by the attacker:
it may be consistent with a time reference offset towards
the past. However, honest nodes communicating with the
compromised node will not consider it a true-chimer. Nodes
may publish, e.g., on a blockchain, or simply to other nodes,
their list of true-chimers. Nodes with the highest timestamp
obtained from the TA have the most credibility to be honest.
Furthermore, many secure distributed protocols already rely
on the assumption of an honest (super-)majority. Under such
an assumption, a majority clique of true-chimers may be used
to maintain clock consistency and rely less often on the TA.

Ongoing work is dedicated to implementing and evaluating
a protocol that builds upon these specifications.

VI. CONCLUSION

Many traditional and confidential computing protocols rely
on trustworthy provisioning of timestamps. However, current
TEEs like Intel SGX lack a built-in trusted time mechanism.
We contribute a public implementation of the recent but
closed-source Triad protocol, which aims to provide trusted
time to a cluster of Intel SGX TEEs. We show vulnerabilities
in the protocol, e.g., that enable a single compromised node
to propagate faster passage of time to honest nodes. Finally,

we discuss the found vulnerabilities’ sources and propose
changes for higher resilience against such attacks. Future work
is dedicated to a protocol that implements those changes.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

V. Costan and S. Devadas, “Intel SGX explained,” 2016. [Online].
Available: https://eprint.iacr.org/2016/086

C. Adams, P. Cain, D. Pinkas, and R. Zuccherato, “RFC3161: Internet
x.509 public key infrastructure time-stamp protocol (TSP),” USA, 2001.
M. Bowman, D. Das, A. Mandal, and H. Montgomery, “On elapsed
time consensus protocols,” in Progress in Cryptology — INDOCRYPT
2021, A. Adhikari, R. Kiisters, and B. Preneel, Eds. Cham: Springer
International Publishing, 2021, p. 559-583.

F. Alder, G. Scopelliti, J. Van Bulck, and J. T. Miihlberg, “About time:
On the challenges of temporal guarantees in untrusted environments,”
in Proceedings of the 6th Workshop on System Software for Trusted
Execution, ser. SysTEX °23. New York, NY, USA: Association
for Computing Machinery, Jun. 2023, p. 27-33. [Online]. Available:
https://doi.org/10.1145/3578359.3593038

A. Malhotra, 1. E. Cohen, E. Brakke, and S. Goldberg, “Attacking the
network time protocol,” in 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society, 2016.

A. Addison, C. Andrews, N. Azad, D. Bardsley, J. Bauman, J. Diaz,
T. Didik, K. Fazliddin, M. Gromoa, A. Krish, R. Prins, L. Ryan,
and N. Villette, “Low-latency trading in the cloud environment,” in
2019 IEEE International Conference on Computational Science and
Engineering (CSE) and IEEE International Conference on Embedded
and Ubiquitous Computing (EUC), Aug. 2019, p. 272-282.

J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “RT-TEE: Real-time system
availability for Cyber-physical Systems using ARM TrustZone,” in 2022
IEEE Symposium on Security and Privacy (SP), May 2022, p. 352-369.
J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s globally distributed
database,” ACM Transactions on Computer Systems, vol. 31, no. 3, p.
1-22, Aug. 2013.

B. Trach, R. Fageh, O. Oleksenko, W. Ozga, P. Bhatotia, and
C. Fetzer, “T-Lease: a trusted lease primitive for distributed systems,”
in SoCC °’20: ACM Symposium on Cloud Computing, Virtual
Event, USA, October 19-21, 2020, R. Fonseca, C. Delimitrou, and
B. C. Ooi, Eds. ACM, 2020, pp. 387-400. [Online]. Available:
https://doi.org/10.1145/3419111.3421273

P-L. Aublin, S. B. Mokhtar, and V. Quéma, “RBFT: Redundant
byzantine fault tolerance,” in 2013 IEEE 33rd International Conference
on Distributed Computing Systems, Jul. 2013, p. 297-306. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/6681599

M. Bettinger, E. Riviere, S. Ben Mokhtar, and A. Simonet-Boulogne,
“COoL-TEE: Client-TEE collaboration for collusion-resilient distributed
search,” in 25th IEEE International Symposium on Cluster, Cloud and
Internet Computing (CCGRID), May 2025.

A. Nasrullah and F. M. Anwar, “Trusted Timing Services with
Timeguard,” in 2024 IEEE 30th Real-Time and Embedded Technology
and Applications Symposium (RTAS). 1EEE, 2024, pp. 1-14. [Online].
Available: https://ieeexplore.ieee.org/document/10568071/

G. Fedak, H. He, M. Morca, W. Bendella, and E. Alves,
“iExec Blockchain-Based Decentralized Cloud Computing,”
iExec Blockchain Tech, White Paper, 2018. [Online]. Avail-

able: https://github.com/iExecBlockchainComputing/whitepaper/blob/
master/V3/iExec- WPv3.0-English.pdf

S. Cen and B. Zhang, “Trusted time and monotonic counters
with intel® software guard extensions platform services,”
https://www.intel.com/content/www/us/en/content-details/671564/
trusted-time-and-monotonic-counters- with-intel-software- guard-
extensions-platform-services.html, 2017.

F. M. Anwar, L. Garcia, X. Han, and M. Srivastava, “Securing time in
untrusted operating systems with TimeSeal,” in 2019 IEEE Real-Time
Systems Symposium (RTSS), Dec. 2019, p. 80-92. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9052115

[16]

(17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner,
“S-FaaS: Trustworthy and accountable function-as-a-service using Intel
SGX,” in Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, ser. CCSW’19. New York, NY,
USA: Association for Computing Machinery, Nov. 2019, p. 185-199.
[Online]. Available: https://doi.org/10.1145/3338466.3358916

G. M. Hamidy, P. Philippaerts, and W. Joosen, “T3E: A Practical
Solution to Trusted Time in Secure Enclaves,” in Network and System
Security, S. Li, M. Manulis, and A. Miyaji, Eds. Springer Nature
Switzerland, 2023, vol. 13983, pp. 305-326. [Online]. Available:
https://link.springer.com/10.1007/978-3-031-39828-5_17

G. Fernandez, A. Brito, and C. Fetzer, “Triad: Trusted Timestamps
in Untrusted Environments,” in 2023 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), 2023,
pp. 169-176. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/10475818

G. Hamidy and P. Philippaerts, “TPM-based Trusted Time Extensions
(T3E),” 2023. [Online]. Available: https://github.com/DistriNet/T3E

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
linux containers with intel SGX,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, Nov. 2016, pp. 689-703.

M. Bettinger and J. Acker, “Triad tee trusted time public implementa-
tion,” https://github.com/RedChainLab/Triad- TEE-Trusted-Time, 2025.
D. L. Mills, Network Time Protocol (NTP), Sep. 1985, no. RFC 958.
[Online]. Available: https://datatracker.ietf.org/doc/rfc958

E. S. Raymond, “NTPsec: a secure, hardened NTP implementation.”
[Online]. Available: https://dl.acm.org/doi/fullHtm1/10.5555/3014186.
3014187

S. Constable, J. V. Bulck, X. Cheng, Y. Xiao, C. Xing, I. Alexandrovich,
T. Kim, F. Piessens, M. Vij, and M. Silberstein, “AEX-Notify: Thwarting
precise Single-Stepping attacks through interrupt awareness for intel
SGX enclaves,” 2023, p. 4051-4068. [Online]. Available: https:
/lwww.usenix.org/conference/usenixsecurity23/presentation/constable
TPM 2.0 Library. Trusted Computing Group. [Online]. Available:
https://trustedcomputinggroup.org/resource/tpm-library-specification/
B. Parno, “Bootstrapping trust in a “trusted” platform,” in 3rd USENIX
Workshop on Hot Topics in Security, HotSec’08, San Jose, CA, USA, July
29, 2008, Proceedings, N. Provos, Ed. USENIX Association, 2008.
R. Echevarria. (2023, Nov.) https://community.intel.com/t5/Blogs/Tech-
Innovation/Cloud/Microsoft- Azure- Adds- Confidential- VMs-to-
Expand-Options-for/post/1543740.

A. P. (2024, Oct.) https://community.intel.com/t5/Blogs/Products-and-
Solutions/Security/Intel-and-Google- Cloud- Announce-Confidential-
VMs-for-the-Masses/post/1634718.

M. Veramonti. (2025, Jan.) https://community.ibm.com/community/user/
cloud/blogs/meryl-veramonti/2025/01/16/Intel-TDX-Beta.

“Intel® tdx module base architecture specification,”
/Iwww.intel.com/content/www/us/en/developer/tools/trust-domain-
extensions/documentation.html, Intel Corporation, Specification, 2024.
S. R. Neela, “Like clockwork: A systematic analysis of AMD SEV-
SNP’s securetsc,” Graz University of Technology, Master’s thesis, 2024.
S. Gast, H. Weissteiner, R. L. Schroder, and D. Gruss, “CounterSE Veil-
lance: Performance-counter attacks on AMD SEV-SNP: Network and
distributed system security symposium 2025,” Network and Distributed
System Security (NDSS) Symposium 2025, Feb. 2025.

L. Wilke, J. Wichelmann, A. Rabich, and T. Eisenbarth, “SEV-Step
a single-stepping framework for AMD-SEV,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2024, no. 1, p.
180-206, Dec. 2023.

U. Mandal, S. Shukla, N. Mishra, S. Bhattacharya, P. Saxena, and
D. Mukhopadhyay, “Exploring side-channels in intel trust domain
extensions,” no. 2025/079, 2025, publication info: Preprint. [Online].
Available: https://eprint.iacr.org/2025/079

L. Wilke, F. Sieck, and T. Eisenbarth, “TDXdown: Single-stepping and
instruction counting attacks against Intel TDX,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’24. New York, NY, USA: Association for
Computing Machinery, Dec. 2024, p. 79-93.

M. M. Li, “Maxul/sgx-aes-256,” 2020. [Online]. Available: https:
//github.com/Maxul/SGX-AES-256

https:

https://eprint.iacr.org/2016/086
https://doi.org/10.1145/3578359.3593038
https://doi.org/10.1145/3419111.3421273
https://ieeexplore.ieee.org/abstract/document/6681599
https://ieeexplore.ieee.org/document/10568071/
https://github.com/iExecBlockchainComputing/whitepaper/blob/master/V3/iExec-WPv3.0-English.pdf
https://github.com/iExecBlockchainComputing/whitepaper/blob/master/V3/iExec-WPv3.0-English.pdf
https://www.intel.com/content/www/us/en/content-details/671564/trusted-time-and-monotonic-counters-with-intel-software-guard-extensions-platform-services.html
https://www.intel.com/content/www/us/en/content-details/671564/trusted-time-and-monotonic-counters-with-intel-software-guard-extensions-platform-services.html
https://www.intel.com/content/www/us/en/content-details/671564/trusted-time-and-monotonic-counters-with-intel-software-guard-extensions-platform-services.html
https://ieeexplore.ieee.org/abstract/document/9052115
https://doi.org/10.1145/3338466.3358916
https://link.springer.com/10.1007/978-3-031-39828-5_17
https://ieeexplore.ieee.org/abstract/document/10475818
https://ieeexplore.ieee.org/abstract/document/10475818
https://github.com/DistriNet/T3E
https://github.com/RedChainLab/Triad-TEE-Trusted-Time
https://datatracker.ietf.org/doc/rfc958
https://dl.acm.org/doi/fullHtml/10.5555/3014186.3014187
https://dl.acm.org/doi/fullHtml/10.5555/3014186.3014187
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://www.usenix.org/conference/usenixsecurity23/presentation/constable
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Microsoft-Azure-Adds-Confidential-VMs-to-Expand-Options-for/post/1543740
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Microsoft-Azure-Adds-Confidential-VMs-to-Expand-Options-for/post/1543740
https://community.intel.com/t5/Blogs/Tech-Innovation/Cloud/Microsoft-Azure-Adds-Confidential-VMs-to-Expand-Options-for/post/1543740
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Intel-and-Google-Cloud-Announce-Confidential-VMs-for-the-Masses/post/1634718
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Intel-and-Google-Cloud-Announce-Confidential-VMs-for-the-Masses/post/1634718
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Intel-and-Google-Cloud-Announce-Confidential-VMs-for-the-Masses/post/1634718
https://community.ibm.com/community/user/ cloud/blogs/meryl-veramonti/2025/01/16/Intel-TDX-Beta
https://community.ibm.com/community/user/ cloud/blogs/meryl-veramonti/2025/01/16/Intel-TDX-Beta
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://eprint.iacr.org/2025/079
https://github.com/Maxul/SGX-AES-256
https://github.com/Maxul/SGX-AES-256

[37]

(38]

“Intel® 64 and ia-32 architectures software developer’s
manual combined volumes.” [Online]. Available:
https://www.intel.com/content/www/us/en/content-details/782158/intel-
64-and-ia-32-architectures-software-developer-s-manual-combined-
volumes- 1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

K. Marzullo and S. Owicki, “Maintaining the time in a distributed
system,” 1983.

https://www.intel.com/content/www/us/en/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.com/content/www/us/en/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

	Introduction
	Related work
	CPU-level TEE trusted time
	VM-level TEE trusted time

	Triad specifications & attacks
	Attacker model
	Triad protocol and building blocks
	Attacking Triad's calibration protocol
	Propagating the attack to TEE peers

	Results
	Reproducing Triad fernandezTriadTrustedTimestamps2023 results without attacks
	TSC monitoring with TEE enclave INC-counters
	Triad nodes availability and drift rates

	Triad fernandezTriadTrustedTimestamps2023 under attacks
	Node 3 launching an F+ attack
	Node 3 launching an F– attack

	Discussion
	Conclusion
	References

