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Abstract—The Border Gateway Protocol (BGP) remains a
fragile pillar of Internet routing. BGP hijacks still occurr daily.
While full deployment of Route Origin Validation (ROV) is
ongoing, attackers have already adapted, launching post-ROV
attacks such as forged-origin hijacks. To detect these, recent
approaches like DFOH [1] and BEAM [2] apply machine learning
(ML) to analyze data from globally distributed BGP monitors,
assuming anomalies will stand out against historical patterns.
However, this assumption overlooks a key threat: BGP monitors
themselves can be misled by adversaries injecting bogus routes.

This paper shows that state-of-the-art hijack detection systems
like DFOH and BEAM are vulnerable to data poisoning. Using
large-scale BGP simulations, we show that attackers can evade
detection with just a handful of crafted announcements beyond
the actual hijack. These announcements are indeed sufficient to
corrupt the knowledge base used by ML-based defenses and
distort the metrics they rely on. Our results highlight a worrying
weakness of relying solely on public BGP data.

I. INTRODUCTION

The Border Gateway Protocol (BGP) serves as the backbone
of the Internet, directing traffic between the vast network of
Autonomous Systems (ASes) that comprise the global infras-
tructure. However, BGP was designed in an era prioritizing
connectivity over security, leaving it without inherent mecha-
nisms to verify the authenticity of routing information [3]. This
fundamental vulnerability makes it susceptible to malicious
manipulation, most notably BGP hijacking, where an attacker
illegitimately claims ownership of IP prefixes, and route leaks,
where routing announcements are propagated beyond their in-
tended scope. These incidents can redirect significant amounts
of internet traffic, enable espionage, cause widespread service
outages, and undermine the stability of the Internet [4]–[7].

To combat these threats, the Resource Public Key Infrastruc-
ture (RPKI) was developed [8]. RPKI enables Route Origin
Validation (ROV), a way to cryptographically verify that an AS
is authorized to originate routes for specific IP prefixes, which
mitigates traditional prefix hijacks. However, ROV deployment
is far from universal [9], [10], leaving large parts of the
Internet unprotected. Furthermore, RPKI is still vulnerable to
some kinds of BGP hijacks, such as forged-origin attacks [11].
In these attacks, an adversary announces a prefix belonging to
a victim but prepends the victim’s legitimate AS to the path.
This makes the announcement appear valid to RPKI checks
while still allowing the attacker to attract traffic. Another
cryptographic solution, BGPSec [12], aims to secure the entire
path of BGP announcements, offering stronger protection

against path manipulation attacks. However, similar to RPKI,
its deployment has been extremely slow, limiting its practical
effectiveness in the current Internet landscape.

Given the limitations of RPKI and the slow adoption of
BGPSec, the BGP security community has increasingly turned
towards BGP monitoring. Mainstream approaches leverage
data from public collectors like RouteViews [13] and RIPE
RIS [14], which aggregate BGP updates from hundreds of
vantage points worldwide. Recently, Machine Learning (ML)
and data-driven techniques have been integrated into this
design. By processing historical and real-time BGP data,
ML-based systems analyze multiple features (e.g., AS-path
characteristics, topological changes) across the collected routes
to identify anomalous ones, such as BGP hijacks and route
leaks. Prominent examples of data-driven BGP monitors in-
clude ARTEMIS [11], DFOH [1], and BEAM [2], as well as
commercial offerings like Cisco’s ThousandEyes [15].

The effectiveness of ML-based systems however depend on
the quality and integrity of their input data, and previous work
has already shown the risks of inputs deliberately altered to
cause misclassification [16], [17]. Can BGP hijackers corrupt
the knowledge base of ML-based defenses by injecting (a few)
BGP routes beyond the actual attack?

This paper demonstrates that state-of-the-art hijack detectors
are susceptible to adversarial data manipulation. Their effec-
tiveness can be significantly compromised if their input BGP
data is deliberately manipulated to not reflect the ground truth.
Attackers aware of these detectors can indeed craft BGP routes
specifically designed to deceive the ML-based defenses.

We show how attackers can poison the knowledge bases
used by these defenses or pollute the metrics they rely on,
allowing malicious hijacks (including RPKI-compliant forged-
origin attacks) to evade detection. Our simulations show that
attackers can easily and stealthily poison monitor data and
make monitor-based systems like DFOH [1] and BEAM [2]
ineffective: attackers need only to inject a few false BGP
announcements in addition to the hijack, and they can compute
such announcements quickly on inexpensive hardware. Rely-
ing on monitor-based ML defenses may thus lead to a false
sense of security. More in general, our findings underscore the
need for more robust defenses to protect the Internet’s routing
ecosystem from motivated adversaries.
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Our contributions can be summarized as follows.
• We identify several limitations of using ML on data from

public BGP monitors to detect BGP hijacks.
• We demonstrate how an adversary can exploit such lim-

itations to evade state-of-the-art hijack detectors, namely
DFOH and BEAM, cheaply and stealthily.

• We discuss short-term and long-term solutions to this new
class of attacks, some of which are readily deployable.

II. BACKGROUND

A. Prefix Hijacking

Prefix hijacking is a malicious activity where an attacker
illegitimately claims ownership of IP address blocks (prefixes)
they do not control. This is possible because the BGP pro-
tocol, which manages routing between ASes, was designed
with an inherent trust model, lacking built-in mechanisms
to verify the authenticity of route announcements. When an
attacker successfully hijacks a prefix, they can redirect internet
traffic intended for the legitimate owner, leading to severe
consequences such as service outages, espionage, and financial
losses, as seen in attacks targeting cryptocurrency platforms
like KlaySwap [6] and MyEtherWallet [7].

Hijacks can be categorized based on their complexity.
Following the taxonomy proposed in [11], a Type-0 hijack
involves an attacker announcing a prefix belonging to another
AS without altering the origin AS in the announcement. This is
the simplest form of hijack. A Type-1 hijack, or forged-origin
hijack, occurs when the attacker announces the victim’s prefix
but lists the victim’s AS as the origin. While the Resource
Public Key Infrastructure (RPKI) [8], which cryptographically
links prefixes to their legitimate origin ASes, can effectively
prevent Type-0 hijacks when deployed, it is less effective
against Type-1 hijacks if the attacker manipulates the AS
path in specific ways (e.g., prepending the legitimate origin).
Figure 1 illustrates both Type-0 and Type-1 hijack scenarios.

B. BGP monitors

BGP monitors are crucial infrastructure components for
observing the global state of internet routing. Prominent
examples include the RouteViews project [13] and the RIPE
Routing Information Service (RIS) [14]. These projects oper-
ate globally distributed collectors that establish BGP peering
sessions with numerous ASes worldwide, acting as vantage
points. By passively listening to the BGP updates (including
announcements and withdrawals) exchanged in these sessions,
monitors collect vast amounts of routing data. This data
typically includes periodic snapshots of the Routing Informa-
tion Base (RIB) from their peers and continuous streams of
UPDATE messages reflecting real-time changes. The data is
typically stored and distributed in the Multi-threaded Routing
Toolkit (MRT) format [18] and access is provided through near
real-time streams, often using the BGP Monitoring Protocol
(BMP) [19], and periodic archival dumps (e.g., RIB snapshots
every few hours and update logs every few minutes). While
invaluable, this data provides an incomplete view of the
internet’s routing dynamics, as monitors only capture routes
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Fig. 1. Example of hijack for prefix 1.0.0.0/8 owned by AS V. Single-headed
solid arrows indicate the direction of the money in customer-provider links;
double-headed arrows represent charge-free links.

propagated towards their specific vantage points. Despite this
limitation, in the current data-driven era, BGP monitors are
indispensable for security analysis, performance monitoring,
and research, offering the most comprehensive publicly avail-
able source of information for understanding BGP behavior
and detecting anomalies like hijacks.

C. Data-driven Hijack Detection

Given the limitations of inherent BGP security and the
incomplete deployment of RPKI, data-driven hijack detection
systems have emerged as a critical layer of defense. These
systems analyze BGP data, primarily sourced from public
monitors, to identify suspicious routing events.

More sophisticated systems employ machine learning (ML)
and anomaly detection techniques to uncover complex at-
tacks, including forged-origin hijacks (Type-1) and route leaks,
which might evade simpler checks. These systems analyze
features extracted from BGP updates, such as AS-path char-
acteristics, prefix propagation patterns, and consistency with
historical data, to build models of normal routing behavior and
flag significant deviations [1], [2], [11], [20], [21]. A general
overview of such a system is depicted in Figure 2. Typically,
these systems operate in three phases: first, they are triggered
by new BGP updates observed by monitors; second, they
check the legitimacy of the update against a knowledge base
of historical data or learned models; finally, if the calculated
metrics exceed certain thresholds, they raise an alert. For
instance, DFOH is triggered by new AS links, checks them
by computing features (e.g., topological, PeeringDB-based)
against its historical graph, and alerts based on a Random
Forest classifier’s output. While their specific architectures
and algorithms vary, a common characteristic is their reliance
on historical BGP announcements collected by monitors to
establish a baseline or knowledge base against which new
routes are evaluated. This reliance on potentially manipulable
public data is a key focus of this paper.
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Fig. 2. General architecture of a monitor-based hijack detection system.

III. OVERVIEW

A. Threat Model

We consider an adversary who controls an AS and can
therefore inject malicious BGP announcements into the global
routing system with the intent of disrupting Internet traffic,
specifically through prefix hijacking. We assume that some
ASes use RPKI and apply ROV. This implies that all the
BGP announcements injected by the attackers must be RPKI-
compliant. Consistently, the attacker’s primary objective is to
execute a Type-1 hijack, which cannot be mitigated by RPKI.

In addition to announcing BGP routes from their AS, the
adversary can leverage readily available commercial transit
services, often offered by hosting providers [22], [23]. These
services allow users to acquire BGP sessions easily and
cheaply, frequently through Virtual Machines (VMs). The
attacker can use such additional BGP sessions to announce
poisoning BGP routes as detailed in Section III-C. Our attacks,
however, do not directly implicate these additional transit
services in the hijacks themselves, thus avoiding their specific
abuse detection mechanisms (e.g., prefix filtering).

B. Fundamental Limitations of BGP Monitors

Monitor-based defenses suffer from the following limita-
tions inherent to the collection and analysis of public BGP
data.

• Untruthful BGP routes cannot be distinguished from
truthful ones. Data in BGP routes is not validated –
except for the ownership of the originated prefix, if we
assume RPKI. Hence, for any newly observed BGP route,
at least two plausible scenarios always exist: (i) the route
includes some fake data, or (ii) the route reflects an actual
routing change resulting from new business agreements,
updated BGP configurations, or topological changes (e.g.,
failures). These two scenarios are fundamentally indistin-
guishable from the perspective of external observers. As

a result, monitor-based defenses must rely on intrinsically
inaccurate heuristics based on factors like AS geography
or inferred business relationships to evaluate the truthful-
ness of data (e.g., the AS path) in BGP routes.

• Hijackers can manipulate routes collected by BGP mon-
itors. Any AS can announce BGP routes with some fake
data: this is demonstrated and leveraged in BGP hijacks
themselves. Since untruthful data in BGP routes cannot
be detected (see previous point), BGP monitors log all
the BGP routes they receive, including the ones including
fake data. This means that monitor-based defenses must
rely on a knowledge base that may not reflect the ground
truth of the Internet ecosystem.

• It is impossible to identify invalid or expired BGP data.
When a new legitimate BGP route is observed, there is
fundamentally no way to determine how long it should
be remembered as valid. By design, BGP does not signal
when paths or links do not exist anymore. So, at any time,
previously announced paths may still be valid and just not
being currently used, or they might have actually expired.
Also, BGP paths vary greatly in their stability over time:
some persist for months while others are very short-lived.
Monitor-based defense systems must thus make arbitrary
decisions about data retention.

Collectively, these limitations create a fundamental vul-
nerability: monitor-based defenses are forced to operate on
data that may be manipulated by potential attackers, with
no reliable way to detect when this occurs or to decide that
outdated data has to be discarded. This vulnerability creates
opportunities for attackers to evade monitor-based defenses,
as we elaborate hereafter.

C. Poisoning BGP Monitors

Consider an attacker aiming to poison the knowledge base of
monitor-based defenses, in preparation for a hijack that would
otherwise be detected by such defenses.

The first question is whether the attacker can ensure that
their BGP routes actually reach the collectors used by these
defenses, and if so, how. The answer to this question is not
straightforward, given that ASes not controlled by the attacker
can filter routes based on RPKI records and custom route filters
they configure. For example, external ASes can filter received
routes based on the announced AS path or IP prefix.

We now describe a general methodology that attackers can
use to announce BGP routes that include a fake link in the
AS path and avoid common route filters deployed in Internet
ASes.

In their poisoning of BGP routes, the attacker can use a
sub-prefix p′ of a prefix legitimately owned by the AS of the
attacker. To create an AS path with a fake link, the attacker
can then specify that the AS originating the route for p′

is an external, strategically chosen AS B. Doing so avoids
prefix filters that providers of the attacker’s AS may have: the
attacker’s AS could have actually sold p′ to B, so the route
must not be filtered.
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Fig. 3. Monitor Poisoning Attack: Attacker H announces a prefix with forged
origin B. The announcement propagates via H’s upstream to a monitor. The
ML system ingests this polluted data, corrupting its knowledge base.

To avoid RPKI-based filters, the attacker ensures that p′

does not have a Route Origin Authorization (ROA), or creates
a ROA that includes the fake origin AS B. For ROV-enabled
ASes, the BGP announcement would have a ’NotFound’ RPKI
validation state. Since RPKI deployment is still far from uni-
versal and many prefixes lack ROAs [10], even ROV-enabled
ASes are expected to not drop routes with ’NotFound’ status,
as also recommended by RFC 7115 [24]. This should ensure
the propagation of the poisoning announcement Internet-wide.

Figure 3 shows an example. The attacker in AS H announces
a sub-prefix of a prefix owned by H, but falsely claims that AS
B originated the route. B is not actually connected to H, but
nobody can be sure of it – except B, who will anyway discard
the announcement according to the BGP’s loop prevention
mechanism. N cannot discard the announcement even if it is
H’s upstream provider, because it (i) cannot exclude that B is
actually a new customer of H, and (ii) does not find an RPKI
ROA for the announced sub-prefix. N thus accepts H’s BGP
route and propagates it further. Other ASes do the same as N.
Eventually, the monitor in AS Q (as well as any other monitor)
receives H’s route and records the path containing the fake
link H-B. When fetching data from monitors, monitor-based
defenses ingest the fake route, and potentially add the fake
link to their knowledge base.

Clearly, the next question is whether and how attackers can
compute fake links that appear legitimate to hijack detectors,
corrupt their knowledge bases and enable future hijacks. We
delve into this question in the following two sections.

IV. ATTACKING DFOH

A. DFOH Architecture

DFOH (Detecting Forged-Origin Hijacks) is designed to
identify forged-origin BGP hijacks by analyzing AS paths
observed in public BGP data [1]. Its architecture centers
around a three-stage pipeline:

1) New Link Detection: DFOH monitors BGP updates
from public collectors (e.g., RouteViews, RIPE RIS)
and compares observed AS links against a historical
topology graph (built from ≈300 days of data). Links
not present in the historical graph are flagged as “new,”

triggering further analysis, as these often correlate with
hijack events. The core idea is that forged-origin hijacks
often introduce a new, previously unobserved link in the
AS path, typically between the attacker and the (forged)
origin AS.

2) Feature Computation: For each new link, DFOH cal-
culates a feature vector encompassing four categories to
assess legitimacy:

• Topological: Measures the impact of the new link
on AS graph structure (e.g., centrality, neighborhood
changes).

• Peering: Infers peering likelihood based on shared
infrastructure (IXPs, facilities) or geography, using
data from sources like PeeringDB [25] and focusing
on neighbors’ data to resist manipulation.

• AS-Path-Pattern: Evaluates path validity against
routing policy expectations (e.g., Gao-Rexford
valley-free model [26]) using learned models based
on AS degree and customer cone sequences.

• Bidirectionality: Checks if the link is observed in
both directions (using BGP and IRR data), a strong
indicator of legitimacy.

3) Inference: The computed features are fed into a Random
Forest classifier trained to distinguish between legitimate
links and forged-origin hijacks. This classifier is trained
daily using a balanced sampling strategy that clusters
ASes and ensures representative sampling across differ-
ent AS types and potential attack scenarios, mitigating
biases inherent in the AS topology. If multiple paths
contain the new link, results are aggregated.

The system aims to provide timely detection by focusing
analysis on these newly observed links and leveraging a
combination of topological, policy-based, and metadata fea-
tures. However, as discussed in Section III-B, its reliance
on publicly observable data forms the basis for potential
adversarial attacks.

B. Poisoning DFOH’s Knowledge Base

While DFOH aims to detect forged-origin hijacks by iden-
tifying new AS links and analyzing associated features, its
reliance on historical data gathered from public monitors
creates a significant vulnerability - as attackers can manipulate
the data ingested by these monitors. This allows for a knowl-
edge base poisoning attack specifically tailored to circumvent
DFOH’s defenses.

The core principle of the attack is to strategically introduce
carefully crafted, non-existent AS links into DFOH’s historical
topology graph before launching an actual hijack. The goal
is to manipulate the data against which future, malicious
announcements are compared. The methodology involves the
following steps:

1) Identify Poisonous Links: The attacker identifies poten-
tial ”poisonous” ASes. These are typically ASes not di-
rectly connected to the attacker but chosen strategically
to manipulate DFOH’s feature calculations favorably for



a future hijack attempt against a target victim AS. The
attacker leverages the small inherent error rate (false
negatives) of the DFOH classifier, aiming for these
crafted links to be misclassified as legitimate and added
to the knowledge base.

2) Craft Poisoning Announcements: The attacker an-
nounces a prefix they legitimately control (or a sub-
prefix) but forges the origin AS in the BGP announce-
ment to be one of the chosen poisonous ASes (see III-C).

3) Manipulate Feature Scores: The poisonous links are
chosen specifically to degrade DFOH’s ability to detect a
subsequent hijack involving the attacker (H) and a victim
(V). For instance, by poisoning the knowledge base with
links to ASes geographically close to the victim, the
attacker can artificially lower the suspicion score derived
from the PeeringDB features when the actual hijack link
(H, V) appears later. As shown in Table I, features like
PeeringDB carry significant weight in the classification
decision, making them effective targets for manipulation.

4) Execute Hijack: After a sufficient period, allowing the
poisoned data to be incorporated into DFOH’s knowl-
edge base (typically minutes), the attacker launches
the actual forged-origin hijack. The presence of the
previously injected poisonous links makes the new, ma-
licious link appear less anomalous to DFOH’s classifier,
increasing the chance of evasion.

By manipulating DFOH’s input data, attackers can under-
mine its detection capabilities with minimal extra resources,
posing a practical threat.

TABLE I
FEATURE CATEGORY IMPORTANCE SCORES FOR THE DFOH RANDOM

FOREST CLASSIFIER, DERIVED FROM TRAINING ON DATA FROM
2024-03-01.

Feature Category Importance Score
ASPath Patterns 0.59
PeeringDB 0.23
Topological 0.16
Bidirectionality 0.02

C. Experimental Evaluation
To evaluate the effectiveness of the knowledge base poi-

soning attack against DFOH, we conducted a large-scale
simulation-based experiment. The simulations were performed
on a cluster consisting of 2 nodes, each equipped with a
double-socket Intel Xeon Gold 5118 CPU. While attacking
a single target AS requires only a few seconds, the scale of
the experiment - simulating 1,000 attacker ASes targeting each
of the over 80,000 ASes in the internet topology - necessitated
significant computational resources.

We simulated 1,000 attacker ASes, chosen randomly to
represent a diverse set of network types and locations. For each
simulated attacker, we attempted to poison DFOH’s knowledge
base to enable subsequent forged-origin hijacks against all
other ASes. The simulation for each attacker utilized real-
world AS paths observed from public collectors that origi-
nated from the attacker’s AS. This represents a conservative

approach, as many observed paths might be transient and not
reappear, potentially underestimating the attack’s effectiveness
in a real-world scenario where attackers could sustain an-
nouncements.

The poisoning process involved identifying potential false
negatives in DFOH’s classification – links that DFOH would
incorrectly classify as legitimate. From this set, we selected
poisonous links using a heuristic designed to maximize the im-
pact on DFOH’s feature calculations for future hijack attempts.
Specifically, we targeted features with high importance scores,
such as PeeringDB (see Table I), by selecting poisonous ASes
geographically close to potential victim ASes. These crafted
links were then assumed to be injected into the BGP data
stream (as described in Section III-C) and subsequently in-
corporated into DFOH’s historical topology graph after being
misclassified.

During initial simulations, we observed that some stub
ASes, particularly those in remote or poorly connected regions,
exhibited very low false negative rates according to DFOH’s
model. While seemingly positive for detection, this para-
doxically implies that DFOH would likely generate frequent
false positives for legitimate announcements originating from
these networks. From the attacker’s perspective, this finding
initially limited the pool of viable poisonous AS candidates
when targeting certain victims. To address this and model a
more realistic attacker capability, we simulated the scenario
where an attacker acquires additional connectivity through
readily available commercial BGP transit services [22], [23].
By announcing legitimate prefixes through a new provider
connection, the attacker could expand their observed con-
nectivity. Although DFOH’s mechanism would initially flag
and quarantine this new (legitimate) link for a period (30
days), an attacker willing to wait could subsequently leverage
this expanded connectivity, significantly increasing their pool
of potential poisonous ASes for manipulating the knowledge
base. Our final evaluation incorporates this possibility.

Figure 4 presents the results of our simulation incorporating
this enhanced attacker model. The left plot shows the distri-
bution of hijack success rates achieved by each attacker after
the poisoning phase. While the first 400 attackers achieved
success rates below 40%, a significant portion demonstrated
high effectiveness. Notably, over 100 distinct attacker ASes
were able to successfully hijack more than 80% of all other
ASes on the internet after poisoning DFOH’s knowledge base.

The right plot in Figure 4 illustrates the number of poi-
sonous links required to achieve these success rates. Crucially,
the attack often requires only a small number of carefully
chosen links. Approximately 15% of the attackers needed zero
additional links (which represents the false negatives), while
around 14% required only one link and 28% needed two
links. This demonstrates that attackers do not need to inject
a large volume of malicious announcements to significantly
compromise DFOH’s detection capabilities.

These findings highlight the attack’s practicality: by exploit-
ing public data reliance, classification errors, and the potential
to augment connectivity, a few crafted links can severely



Fig. 4. Evaluation of the DFOH poisoning attack. Left: Distribution of hijack success rates across 1,000 simulated attackers targeting all other ASes. Each
bin represents the percentage of successful hijacks achieved by one attacker after poisoning. Right: Distribution of the number of poisonous links required
per attacker to achieve their respective success rates.

degrade DFOH’s hijack detection.

D. Naive Defense

A seemingly straightforward approach to counter the knowl-
edge base poisoning attack might be to remove features from
the DFOH model that are considered easily manipulable. For
instance, given that PeeringDB information can be influenced
by crafted announcements targeting specific geographic or
infrastructural overlaps (as discussed in Section III-C), one
might consider removing the PeeringDB feature category
entirely.

However, this naive defense strategy has significant draw-
backs. Firstly, DFOH’s strength lies in its combination of
diverse feature categories, each contributing uniquely to de-
tection accuracy across different scenarios, as indicated by
their importance scores (Table I). Removing a feature category,
even a potentially vulnerable one, can significantly degrade the
system’s overall performance, leading to lower detection rates
(True Positive Rate) and potentially higher false alarms (False
Positive Rate) for legitimate events.

Secondly, attackers are not necessarily limited to manipulat-
ing only the most obvious features; they can craft announce-
ments to influence topological features or AS-path patterns as
well. A defense strategy based solely on removing features
ignores the potential for broader manipulation and sacrifices
detection capability. Therefore, simply removing potentially
manipulable features is not a robust defense against strategic
poisoning attacks.

V. ATTACKING BEAM

A. BEAM’s Architecture

BEAM (BGP sEmAntics aware network eMbedding) is a
system designed to detect BGP anomalies by understanding
the typical behavior of each AS within the Internet’s routing
landscape. Instead of just looking at path changes, BEAM
learns these roles by analyzing the underlying structure of AS
business relationships (like provider-customer or peer-to-peer
links), which fundamentally dictate how routes are propagated
[2].

The core process involves two main steps:

1) AS Graph Construction: BEAM utilizes datasets de-
scribing AS relationships (e.g., from CAIDA [27]) to
build a graph representing the inter-domain topology. In
this graph, ASes are nodes, and directed edges represent
relationships like provider-to-customer.

2) AS Embedding: BEAM then employs a network repre-
sentation learning model to generate a low-dimensional
vector (an embedding) for each AS. This process is
specifically designed to capture two key semantic prop-
erties derived from the AS graph:

• Proximity: This measures how similar ASes are,
considering both direct connections and shared
neighbors (i.e., having similar connections to other
ASes).

• Hierarchy: This captures an AS’s position within
the Internet’s structure, mainly based on provider-
customer links. Tier-1 providers sit high in the
hierarchy, while customer ASes are lower.

The model optimizes these embedding vectors so that
the distance between vectors reflects the difference in
the ASes’ routing roles based on both proximity and
hierarchy. The difference between any two AS roles
can be measured using a function derived from these
embeddings.

BEAM uses these learned AS embeddings to evaluate BGP
route changes. When a new route announcement for a prefix
is observed, replacing a previous path, the system calculates a
path difference score. This score quantifies the overall change
in routing roles between the sequence of ASes in the old path
and the new path. It is computed by comparing the embedding
vectors of the ASes in both paths, often using an algorithm like
Dynamic Time Warping (DTW) which measures the similarity
between two temporal sequences [28].

To determine if a calculated path difference score indicates
an anomaly, BEAM uses a dynamic threshold. This threshold
is not fixed; it is periodically recalculated based on the dis-
tribution of path difference scores observed for route changes
in a recent historical window (e.g., the previous hour). A path
difference score exceeding this dynamic threshold is flagged
as suspicious.



B. Polluting the Threshold

Beyond manipulating the path characteristics themselves,
BEAM’s architecture presents a distinct vulnerability related to
its dynamic threshold mechanism. Unlike the knowledge base
poisoning attack effective against DFOH (Section IV), this
attack targets the statistical basis used by BEAM to distinguish
between normal and anomalous route changes.

The core idea of the threshold pollution attack is for
an adversary to inject a controlled volume of crafted BGP
announcements. These announcements are designed to gen-
erate path difference scores that fall just below the current
threshold, thereby initially evading detection. However, these
injected ”slightly abnormal but not anomalous” scores are then
included in the pool of data used to calculate the threshold for
the next time window.

By persistently injecting such announcements, the attacker
artificially inflates the statistics (e.g., mean, standard deviation)
of the path difference scores considered ”normal”. This manip-
ulation forces the system to calculate a higher threshold for the
subsequent period. An elevated threshold makes it easier for
the attacker’s actual malicious announcements, such as those
implementing a hijack (which inherently have significantly
different routing roles and thus higher path difference scores),
to fall below the inflated threshold and avoid being flagged as
anomalous.

An attacker can anticipate or calculate the dynamic thresh-
old because the inputs to its calculation are derived from
publicly observable BGP data. By accessing public BGP
monitoring feeds and potentially having access to a trained
BEAM model or a functional equivalent, an attacker can
observe the same route changes as the detection system and
estimate the resulting threshold. This knowledge allows them
to calibrate their injected announcements effectively for the
pollution attack.

A potential challenge for this attack is injecting a sufficient
volume of announcements within the observation window to
significantly skew the statistics. However, the natural behavior
of BGP provides an amplification factor. Due to routing
oscillations and convergence processes, a single logical route
announcement for a prefix is often repeated multiple times
by routers across the network. Based on measurements from
March 2024 [29], a single prefix announcement was observed,
on average, 6.43 times per hour (with a standard deviation
of 17.79). This inherent repetition means an attacker only
needs to initiate a relatively small number of distinct crafted
announcements, as BGP dynamics will amplify their presence
in the data streams monitored by systems like BEAM, making
threshold manipulation feasible with less effort than might be
initially assumed.

C. Evaluation

We simulated the threshold pollution attack against BEAM
to evaluate its practical impact. The simulation was performed
on a machine equipped with an Apple M3 Pro CPU. We
selected 5 random ASes to act as the attackers. For each
attacker, we simulated the injection of a series of crafted

BGP announcements. These announcements involved mod-
ifying legitimate paths originating from the attacker’s AS
by inserting a forged origin, carefully chosen such that the
resulting path difference score would fall just below BEAM’s
current detection threshold. This strategy aims to have the
announcements classified as legitimate while contributing to
the statistics used for the next threshold calculation.

To model the amplification effect inherent in BGP, we
analyzed real BGP update data from March 2024 [29] specifi-
cally for prefixes announced by the chosen attacker ASes. We
measured the typical oscillation for these prefixes and used
this observed rate to simulate how many times each distinct
crafted announcement would likely appear in the monitoring
data within the relevant time window. We varied the number of
distinct polluting announcements initiated by the attacker from
1 to 50. After injecting the amplified set of announcements
based on the observed oscillations, we recalculated BEAM’s
detection threshold based on the polluted data distribution.
Finally, we determined the percentage of prefixes that could
subsequently be hijacked using a forged-origin attack without
triggering detection under the newly inflated threshold.

The results, illustrated in Figure 5, demonstrate the effec-
tiveness of this approach. We found that for most of the
simulated attacker ASes, initiating just 10 distinct polluting
announcements (amplified according to their observed prefix
oscillation rates) was sufficient to raise the detection threshold
by approximately 5%. This seemingly modest increase in the
threshold translated into a significant practical advantage for
the attacker, allowing them to successfully hijack an additional
10% of prefixes without being detected by BEAM compared
to the baseline scenario without pollution. This highlights the
practical risk posed by threshold pollution attacks, exploiting
the statistical nature of the detection mechanism and the
inherent amplification within BGP.

D. Naive Defense

A seemingly straightforward defense against the threshold
pollution attack described in Section V-B would be to abandon
the global dynamic threshold and instead maintain a separate,
dynamically calculated threshold for each individual IP prefix.
The intuition is that polluting the threshold for one prefix
would not affect the thresholds for others, thus containing the
attack’s impact.

However, this per-prefix threshold approach, while concep-
tually simple, faces significant practical challenges that render
it infeasible for a global monitoring system like BEAM:

• Scalability Issues: The global routing table contains
over one million IPv4 prefixes and over 220,000 IPv6
prefixes (as of mid 2025) [30]. Maintaining, calculat-
ing, and storing a dynamic threshold for each of these
prefixes would introduce immense computational and
storage overhead, making the system difficult to scale
and manage effectively.

• Data Sparsity and Threshold Instability: Calculating
a reliable dynamic threshold requires a sufficient volume
of historical data (legitimate route changes) for statistical



Fig. 5. Effectiveness of the BEAM threshold pollution attack. The plot shows the percentage of prefixes an attacker can successfully hijack (evading detection)
as a function of the number of distinct polluting announcements initiated.

significance. Many prefixes, especially more specific ones
or those belonging to smaller organizations, exhibit very
infrequent route changes. For such prefixes, there would
be insufficient data within typical recalculation windows
(like an hour) to establish a stable and accurate threshold.
Attempting to calculate thresholds with sparse data would
lead to high volatility, causing the threshold to fluctuate
wildly and trigger constant false positives for minor,
legitimate changes or, conversely, become too permissive
and miss actual anomalies.

Therefore, while per-prefix thresholds might theoretically
isolate pollution effects, the practical hurdles related to scal-
ability and the need for robust statistical baselines based on
sufficient data make this approach unworkable for a compre-
hensive BGP anomaly detection system.

VI. COUNTERMEASURES

The vulnerabilities exposed in monitor-based defenses ne-
cessitate exploring more robust security strategies. Long-
term solutions aim to fundamentally enhance BGP’s security
architecture. Protocols like BGPSec [12] offer cryptographic
validation of the entire AS path, while alternative archi-
tectures like SCION [31] propose a complete overhaul of
inter-domain routing with security built-in. However, despite
significant research and efforts to incentivize adoption [32],
[33], widespread deployment of such fundamental changes
faces immense practical hurdles due to the scale and inertia
of the existing internet infrastructure. Modifying a protocol as
pervasive as BGP remains a formidable challenge.

Given the slow progress of long-term solutions, short-term
countermeasures focus on mitigating the risks within the
current BGP ecosystem. One direction involves reducing the
transparency of the detection system to potential attackers,
essentially making it a ”blackbox”. By keeping the specific
algorithms, features, thresholds, and potentially the training
data confidential (e.g., in commercial offerings or non-open-
source systems), defenders aim to make it significantly harder
for attackers to probe the system for weaknesses, calculate
false negative rates, or precisely tailor poisoning attacks like
those demonstrated against DFOH and BEAM. However, this

”security through obscurity” approach has inherent limitations.
Determined attackers might still infer system behavior through
careful observation or probing, and it hinders collaborative
security research and independent verification.

Another, potentially complementary, short-term strategy in-
volves augmenting public data with private BGP data feeds or
out-of-band validation mechanisms. Systems like ARTEMIS
[11] exemplify this by combining publicly available monitor
data with routing information directly obtained from the Rout-
ing Information Bases (RIBs) of participating routers. This
allows for cross-validation; if a route change observed publicly
is inconsistent with the private RIB data, it raises suspicion.
However, even incorporating private data is not a panacea.
While ARTEMIS and similar approaches can effectively detect
anomalies for prefixes announced by ASes contributing private
data, their visibility remains limited. Attackers can still exploit
the vastness of the internet topology by using random or
unused ASes, which are unlikely to be covered by private
monitoring arrangements, to inject polluted routes or launch
hijacks. This manipulation can still poison the public data
components relied upon by hybrid systems or evade detection
entirely if the attack path does not traverse the privately
monitored infrastructure.

To quantify the potential benefits and limitations of private
monitoring, we simulated its impact on detecting the knowl-
edge base poisoning attacks described earlier. The simulation
was conducted on a machine equipped with an Apple M3
Pro CPU. We modeled scenarios where a varying number of
ASes (from 1 to 1,000) act as private monitors, providing
ground truth for routes they observe. The core logic involved
checking if any of the poisoned links injected during the
simulated DFOH attack (Section IV-C) would be directly
observed by one of the designated private monitors. If a
poisoned link involved a direct connection to a private monitor
AS, it was considered detected. We compared two selection
strategies: randomly choosing monitor ASes versus an optimal
(best-case) selection that maximizes visibility into potential
attack paths based on the simulated attack data. As shown
in Figure 6, increasing the number of monitors improves



Fig. 6. Hijack detection rate improvement when using an increasing number
of private monitors, comparing random selection versus best-case selection.

detection. However, even with 1,000 randomly selected private
monitors — a significant deployment — the detection rate for
poisoned links remained below 3%. This poor performance
stems from the vast scale of the internet topology; with tens
of thousands of ASes, the probability that an attacker’s chosen
AS for poisoning happens to have a direct peering relationship
with one of the randomly placed private monitors is inherently
low. The best-case selection strategy yielded better results,
detecting over 20% of attacks with 1,000 monitors, but still
leaving a large fraction undetected. This highlights that even
substantial private monitoring infrastructure struggles against
attackers who can carefully choose where to inject malicious
announcements, underscoring the challenge of achieving com-
prehensive BGP security through monitoring alone.

VII. RELATED WORK

Securing the Border Gateway Protocol (BGP) has been a
long-standing challenge. RPKI represents a significant effort
to cryptographically validate the origin of route announce-
ments [9], [34]. However, its incomplete deployment and
inherent vulnerability to specific attacks like forged-origin
hijacks necessitate complementary defense mechanisms. Con-
sequently, BGP monitoring systems, often leveraging public
data collectors like RouteViews [13] and RIPE RIS [14],
have become crucial. Early approaches focused on heuristic-
based anomaly detection; simpler tools like BGPmon [35] and
BGPalerter [36] alert operators to basic events like origin AS
changes or RPKI-invalid announcements. Some systems, such
as Cloudflare Radar [37], incorporate additional data sources
like Internet Routing Registries (IRR), though IRR data lim-
itations regarding consistency and completeness restrict its
reliability [38], [39]. Other systems, like ARTEMIS [11],
aim to improve detection speed and mitigation by combining
public monitor data with private RIB feeds, addressing some
limitations of purely public monitor-based approaches. More
recent approaches increasingly incorporate machine learning
(ML) to identify complex suspicious routing events. Systems
like DFOH [1] utilize ML to detect forged-origin hijacks by
analyzing path features derived from public data.

The application of ML in security domains, however, is
fraught with challenges. Researchers have identified com-

mon pitfalls in the design, implementation, and evaluation of
learning-based security systems, which can lead to unrealistic
performance claims and hinder practical deployment [40]. A
major concern is the vulnerability of ML models to adversarial
attacks, where malicious inputs are crafted to cause misclas-
sification [16], [17]. Evaluating the robustness of ML models
against such attacks is critical, especially in security contexts
[41]. The threat of adversarial attacks against ML, specifically
in network security,y has been surveyed, highlighting the
adversarial nature inherent in tasks like intrusion and malware
detection [42].

Within BGP security, research has explored how attackers
can evade monitoring systems. Studies have demonstrated
techniques to launch hijacks, such as sub-prefix hijacks using
communities, that remain hidden from public monitors [43].
Further investigations have analyzed the effectiveness of at-
tackers deliberately crafting BGP paths to avoid propagation to
route collectors, showing that even with expanded monitoring
infrastructure, visibility gaps can persist [44]. While these
works address the fundamental limitations of monitor visibil-
ity, they do not specifically target the vulnerabilities within the
ML models used by modern defense systems. Our work differs
by focusing explicitly on the susceptibility of ML-based BGP
hijack detection systems like DFOH and BEAM to adversarial
manipulation, demonstrating how techniques like knowledge
base poisoning and threshold pollution can undermine their
effectiveness, an area that remains relatively underexplored.

VIII. CONCLUSION

This paper highlights a fundamental vulnerability of BGP
monitors: the absence of route authentication makes the data
they collect inherently unreliable. Worse still, sophisticated
adversaries can actively manipulate this data to launch stealth-
ier hijacks. We demonstrate such manipulation against two
recent BGP hijack detectors—DFOH and BEAM—showing
that even minimal additional effort allows typical hijacks to
evade detection. These findings reveal a critical limitation of
current defenses and emphasize the need to move beyond
approaches that rely solely on public BGP data.
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