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Sparse Regression Codes for Secret Key Agreement: Achieving

Strong Secrecy and Near-Optimal Rates for Gaussian Sources
Emmanouil M. Athanasakos and Hariprasad Manjunath

Abstract

Secret key agreement from correlated physical layer observations is a cornerstone of information-theoretic security. This paper
proposes and rigorously analyzes a complete, constructive protocol for secret key agreement from Gaussian sources using Sparse
Regression Codes (SPARCs). Our protocol systematically leverages the known optimality of SPARCs for both rate-distortion and
Wyner-Ziv (WZ) coding, facilitated by their inherent nested structure. The primary contribution of this work is a comprehensive
end-to-end analysis demonstrating that the proposed scheme achieves near-optimal secret key rates with strong secrecy guarantees,
as quantified by a vanishing variational distance. We explicitly characterize the gap to the optimal rate, revealing a fundamental
trade-off between the key rate and the required public communication overhead, which is governed by a tunable quantization
parameter. Furthermore, we uncover a non-trivial constrained optimization for this parameter, showing that practical constraints
on the SPARC code parameters induce a peak in the achievable secret key rate. This work establishes SPARCs as a viable and
theoretically sound framework for secure key generation, providing a compelling low-complexity alternative to existing schemes
and offering new insights into the practical design of such protocols.

Index Terms

Secret Key Agreement, Information-Theoretic Security, Sparse Regression Codes, Gaussian Sources, Strong Secrecy, Wyner-
Ziv Coding, Rate-Distortion Theory.

I. INTRODUCTION

INFORMATION-theoretic security leverages physical layer properties to establish secure communication links, offering
provable security guarantees based on fundamental physical limits. Secret key (SK) agreement, a core primitive alongside

the wiretap channel [1], focuses on extracting a shared secret key from correlated random observations available to legitimate
parties. This is particularly relevant in communication scenarios where dedicated secure channels are unavailable or impractical,
such as securing wireless sensor networks, enabling device pairing in IoT ecosystems based on shared environmental noise, or
establishing secure links in vehicular networks using correlated fading measurements. The SK agreement process is typically
assisted by communication over an insecure public channel, which is also accessible to potential eavesdroppers. Groundbreaking
work by Maurer [2] and Ahlswede and Csiszár [3] first demonstrated how these noisy correlations could be distilled into secret
keys. This foundational framework was subsequently extended to continuous sources, with significant focus on Gaussian sources
[4], [5], providing precise characterizations of the optimal secret key rate achievable under public communication constraints.
The overall SK generation process generally involves two critical phases: information reconciliation, where legitimate parties
use the public channel to agree on a common sequence from their correlated observations, and privacy amplification, where
they distill a highly secure key from this common sequence, ensuring it is statistically independent of the eavesdropper’s
knowledge [1].

While the theoretical limits of SK agreement, representing the ultimate performance benchmark, are well understood, the
development of practical, low-complexity coding schemes that approach these limits remains a pivotal and active research
challenge. Significant progress has been made by leveraging structured codes. Polar codes, for instance, have been shown to
be capacity-achieving for SK agreement in various source and channel models [6], [7], offering elegant constructions with
efficient encoding and decoding algorithms. Independently, nested lattice codes were developed and proven effective [8], [9],
achieving strong secrecy and near-optimal key rates, often up to a small constant gap, with polynomial complexity. These
contributions represent powerful solutions. However, the exploration of alternative coding frameworks is crucial as they can
offer different performance-complexity trade-offs, distinct structural properties beneficial for advanced multi-user scenarios, or
better suitability for specific source statistics or hardware platforms. This motivates our investigation into Sparse Regression
Codes (SPARCs).

SPARCs, introduced by Barron and Joseph [10], [11], represent a capacity-achieving class of codes for the Additive White
Gaussian Noise (AWGN) channel, built upon principles of sparse linear regression. Their inherent characteristics make them
compelling candidates for constructing SK agreement protocols. Firstly, SPARCs are proven to achieve the optimal rate-
distortion function for Gaussian sources [12], [13]. This is directly applicable to the initial source quantization step common
in many SK protocols, ensuring maximal information retention for a given compression. Secondly, the SPARC framework
elegantly supports binning through a nested code structure [14]. This binning capability is fundamental for implementing
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efficient information reconciliation schemes, particularly those based on Wyner-Ziv (WZ) coding. Thirdly, SPARCs have
demonstrated optimality for the WZ lossy source coding problem itself [14], which precisely models the reconciliation task
where one party (e.g., Bob) decodes the source sequence observed by another (Alice) using its own correlated observation as
side information. Furthermore, our prior work has shown the utility of SPARCs in achieving secrecy capacity for the Gaussian
wiretap channel [15], underscoring their potential in security-centric applications.

In this paper, we harness these advantageous features of SPARCs to design and rigorously analyze a complete SK agreement
protocol tailored for correlated Gaussian sources in the presence of an eavesdropper. Our protocol explicitly employs SPARCs
for both the initial quantization of Alice’s source observation by leveraging their rate-distortion optimality and the subsequent
information reconciliation phase capitalizing on their WZ optimality and nested structure. Privacy amplification is then
performed using standard universal hash functions to extract the final secret key. We conduct a thorough analysis, adhering to
the established steps of reconciliation and privacy amplification, carefully adapted for the specifics of the SPARC construction.
Our main theoretical result demonstrates that this SPARC-based protocol achieves strong secrecy, ensuring the generated key
is statistically independent of the eavesdropper’s information including all public messages. Moreover, the protocol attains
secret key rates that closely approach the fundamental upper bound established in [4], [5]. The gap to this optimal rate is
explicitly characterized, highlighting the trade-offs involved. We uncover a non-trivial constrained optimization problem for the
practical design of the protocol. Our numerical analysis shows that constraints on the SPARC code parameters create a peak
in the achievable key rate. We formalize this optimization problem, showing that the optimal operating point represents the
best performance achievable for a given SPARC family, an insight crucial for practical implementations. This work, therefore,
establishes SPARCs as a theoretically sound and practically promising alternative coding framework for secret key generation
from Gaussian sources, complementing existing approaches.

The remainder of this paper is organized as follows: Section II provides a detailed review of the pertinent background on
SPARCs, emphasizing their nested structure and WZ optimality. Section III introduces the system model for SK generation
from correlated Gaussian sources and outlines the proposed SPARC-based protocol steps. Section IV presents our main results,
including the achievable rates, strong secrecy guarantees, and an analysis of the optimality gap. The numerical illustrations of
the main theoretical results are shown in Section V. Finally, Section VI concludes the paper, summarizes the key findings, and
discusses potential avenues for future research.

II. PRELIMINARIES AND NOTATION

This section reviews the fundamentals of SPARCs, focusing on their basic construction, their optimality for Gaussian source
and channel coding, the crucial nested property that enables binning, and their application to achieving the WZ rate. These
properties form the building blocks for the secret key agreement protocol developed in this paper.

A. SPARCs Basics

A SPARC is defined by a dictionary matrix A of dimensions n×N , whose elements are typically drawn independently from
N (0, 1

n ), where N = ML. A codeword x ∈ Rn is constructed as a linear combination of L columns of A, that is x = Aβ,
where β is an N -length sparse coefficient vector. Specifically, β is structured into L sections, each of length M . Within each
of the L sections, exactly one coefficient is non-zero, and its value is typically set to a constant c =

√
P/ζ, where P is related

to the codeword power and ζ depends on the specific application (e.g., ζ = L if each chosen column contributes on average
P/L to the total power, or ζ = 1 if c is related to the amplitude of a single section’s contribution). For consistency with later
use (e.g., WZ where U might have its own power constraint), we can assume c is appropriately chosen.

The parameters L and M are chosen to satisfy certain relationships for achieving a target rate R (in nats per source symbol).
For instance, ML = enR (or L logM = nR for large L,M ). Another common parameterization involves relating M to L via
M = Lα, where α > 0 is termed the section size rate. This leads to αL logL ≈ nR.

SPARCs were introduced as capacity-achieving codes for the AWGN channel [10]. A significant property for source coding
applications is their ability to achieve the optimal rate-distortion function for Gaussian sources, as stated in the following
Theorem.

Theorem 1: [12] Let Xn be an i.i.d. sequence from a Gaussian source X ∼ N (0, σ2
X). For any target distortion D ∈ (0, σ2

X),
SPARCs can achieve the optimal rate-distortion function R⋆(D) = 1

2 log
σ2
X

D with a probability of error

Pe(Cn, D) = P
(
|Xn − h(g(Xn))|2 > D

)
(1)

that vanishes as n → ∞. Here g(·) and h(·) are the minimum-distance encoder and decoder mappings, respectively. This
optimality is achieved provided the code parameters n,M,L, α are chosen according to conditions specified in [12], such as
α > 2.5R

R−1+D/σ2
X

Remark 1: Theorem 1 implies that for v∗ < D/σ2
X , where v∗ ≈ 0.2032 is the solution to 1 − v + 1

v log v = 0 as defined
in [12], a larger section size rate α is needed to ensure SPARCs achieve the optimal rate-distortion performance across all
distortions in (0, σ2

X).
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B. Nested Property

A particularly useful characteristic of SPARCs for multi-user information theory problems and rate-splitting applications
like secret key agreement is their inherent ability to perform binning through a nested code structure [14]. Consider a SPARC
C with parameters L,M, n designed for a rate R such that L logM = nR. Each of the L sections in the dictionary A and
correspondingly in the coefficient vector β, has M possible column choices. We can partition these M columns within each
section into M/M ′ sub-sections, where each sub-section contains M ′ columns, where M ′ | M . A bin is formed by selecting
one such sub-section from each of the L sections. The codewords within this bin are those SPARCs formed by choosing
one column from the selected sub-section in each of the L sections. This results in a smaller SPARC codebook, effectively
a sub-code, with (M ′)L codewords. The total number of such distinct bins is (M/M ′)L. Recognizing R − R′ as the rate of
bin indices, where n(R − R′) = L log(M/M ′), and nR′ = L logM ′ as the rate of the sub-codebook within each bin, then
the overall code of rate R is partitioned into en(R−R′) bins, each containing enR

′
codewords. This structure is illustrated in

Figure 1. Formally, a nested SPARC is defined as follows

Section 1
M columns

Section 2
M columns

Section L

M columns

nA:

β: .., 0, c1, 0, .. ..0, c2, 0, ..

T
..0, cL, 0, ..

Sub-sections of M ′ columns each

Fig. 1. Random binning with SPARCs. Each section is divided into sub-sections of M ′ columns. Choosing one sub-section from each section forms a bin,
i.e. a smaller SPARC.

Definition 1: A nested SPARC C(R,R′, n, α, α′) is defined by an n×ML dictionary A with i.i.d. N (0, 1/n) entries. The
parameters are such that M = Lα and M ′ = Lα′

for section size rates α, α′ > 0 and αL logL = nR. The overall code has
rate R, and it is divided into en(R−R′) bins. Each bin is a smaller SPARC codebook of rate R′. The number of columns M ′

in each sub-section is determined by M ′L = enR
′
.

C. Achieving the WZ rate

The nested structure of SPARCs makes them well-suited for implementing the WZ coding scheme [16], which addresses
lossy source coding with side information available only at the decoder. This scenario is central to the information reconciliation
step in our secret key agreement protocol. Consider an i.i.d. Gaussian source X ∼ N (0, σ2

X) that needs to be compressed. The
decoder has access to non-causal side information Y correlated with X . In our SK context, Y = X+ηb, where ηb ∼ N (0, σ2

ηb
)

is independent Gaussian noise. The WZ coding scheme using SPARCs, as detailed in [14], often involves an auxiliary random
variable U = X + V , where V ∼ N (0, Q) is Gaussian noise independent of X , introduced by Alice for quantization. Alice
observes X and effectively quantizes it by quantizing U .

1) Quantization of U : Alice quantizes Un to a codeword un from a SPARC codebook of rate R1. This process means X
is represented as ξU , where ξ = σ2

X/(σ2
X +Q). The effective distortion for X is

DX = E[(X − ξU)2] =
σ2
XQ

(σ2
X +Q)

. (2)

Reliable quantization of U requires

R1 > R∗(DX) =
1

2
log

(
σ2
X +Q

Q

)
, (3)

achievable by Theorem 1.
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2) Binning: Using the nested SPARC structure C(R1, R2, ...), Alice identifies the bin index corresponding to her chosen
codeword un. She transmits this bin index (at public communication rate RP = R1 −R2) to Bob.

3) Decoding: Bob uses the received bin index and his side information Y n to recover un. The relationship between Y and
U is Y = X + ηb = ξU + (X − ξU) + ηb = ξU + V ′ + ηb, where V ′ = X − ξU is the effective quantization noise.
Recovering U from Y , given the bin, is a channel coding problem over an effective channel where ξU is the signal and
V ′ + ηb is the noise. The signal-to-noise ratio (SNR) for this effective channel is:

γWZ =
σ4
X

σ2
XQ+ (σ2

X +Q)σ2
Z

. (4)

For Bob to successfully recover un with high probability, the binning rate R2 must satisfy

R2 < CWZ =
1

2
log(1 + γWZ), (5)

where CWZ is the capacity of the effective channel between U and Y . This is guaranteed if the number of codewords in each
bin satisfies M ′L < enCWZ . The overall performance is summarized in the following theorem, adapted from [14, Thm. 2].

Theorem 2: [14] For an i.i.d. Gaussian source X ∼ N (0, σ2
X), side information Y = X + ηb with ηb ∼ N (0, σ2

ηb
), and a

target distortion DX for reconstructing X via ξU : If the quantization rate R1 > R∗(DX) and the inner bin rate R2 < CWZ ,
then there exists a sequence of nested SPARCs {Cn} such that Xn can be quantized to ξun with average distortion at most
DX . Furthermore, un can be reliably recovered by the decoder from the bin index and the side information Y n with vanishing
error probability as n → ∞. The existence of such SPARCs requires the section size rate parameter α for the overall code to
satisfy

α > max

{
2.5R1

R1 − σ2
X/(σ2

X +Q)
,
R1

R2
α0(γWZ)

}
(6)

where α0(v) is given by

α0(v) =


4v(1 + v) log(1 + v)[

(1 + v) log(1 + v)− v
]2 , if v < v∗,

(1 + v) log(1 + v)

(1 + v) log(1 + v)− 2v
, if v ≥ v∗,

(7)

and v∗ is the solution of (1 + v∗) log(1 + v∗) = 3v∗.

III. SECRET KEY AGREEMENT

This section first introduces the system model for secret key agreement from correlated Gaussian sources, defining the roles
of the legitimate parties and the eavesdropper, along with the communication constraints. We then formally define the objectives
of a key-distillation strategy and the associated performance metrics. Finally, we outline the general structure of our proposed
SPARC-based secret key agreement protocol, detailing the three main operational steps.

A. System Model

We consider an i.i.d. memoryless source model for secret-key agreement. Three terminals are involved: Alice (the first
legitimate party), Bob (the second legitimate party), and Eve (the eavesdropper). Alice observes a sequence Xn = (X1, ..., Xn),
where Xi ∼ N (0, σ2

X), whereas Bob observes a sequence Y n = (Y1, ..., Yn), where Yi = Xi + ηb,i. The noise sequence ηnb
consists of i.i.d. components ηb,i ∼ N (0, σ2

ηb
), independent of Xn. On the other side, Eve observes a sequence Zn =

(Z1, ..., Zn), where Zi = Xi+ ηe,i. The noise sequence ηne consists of i.i.d. components ηe,i ∼ N (0, σ2
ηe
), independent of Xn

and ηnb . The components (Xi, Yi, Zi) are thus jointly Gaussian with zero mean. Alice and Bob aim to agree on a common
secret key K by processing their respective observations Xn and Y n. They can communicate over a public, noiseless, and
authenticated channel. All messages M exchanged over this public channel are also fully observed by Eve. Eve’s goal is to
gain information about the secret key K.

B. Key-Distillation Strategy and Performance Metrics

A key-distillation strategy Sn for a blocklength n is defined by the following components:
• A key alphabet Kn = {1, ..., |Kn|}, where |Kn| = enRK and RK is the secret key rate in nats per source symbol.
• An alphabet Mn for the public messages exchanged, where |Mn| ≈ enRP and RP is the public communication rate.

For simplicity, we assume Alice sends a single message M to Bob.
• An encoding function at Alice: ϕn : Xn → Mn, which generates the public message M = ϕn(X

n).
• A key generation function at Alice: κ(n)

A : Xn → Kn, which generates Alice’s key KA = κ
(n)
A (Xn).

• A key generation function at Bob: κ(n)
B : Yn ×Mn → Kn, which generates Bob’s key KB = κ

(n)
B (Y n,M).
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The performance of a sequence of key-distillation strategies {Sn}∞n=1 is evaluated based on three main criteria:
1) Reliability: Alice and Bob must agree on the same key with high probability. This is measured by the average error

probability, that is

Pe(S) = P (KA ̸= KB) , (8)

A strategy is reliable if limn→∞ Pe(Sn) = 0.
2) Secrecy: The generated key K, assuming KA = KB = K, must be nearly independent of the eavesdropper’s total

information, which includes her observation Zn and the public message M . A strong secrecy criterion is often defined
using the variational distance between the joint distribution PK,M,Zn and the product of marginals PKPM,Zn , that is

µn(Sn) =
1

2
∥PK,M,Zn − PKPM,Zn∥1

=
1

2

∑
k,m,zn

|PK,M,Zn(k,m,zn)−PK(k)PM,Zn(m,zn)|. (9)

Strong secrecy is achieved if limn→∞ µn(Sn) = 0. This implies that the information leakage to Eve, I(K;M,Zn), also
vanishes when normalized by n.

3) Key Uniformity: The generated key K should be close to uniformly distributed over the key alphabet Kn. This is measured
by:

U(S) = log |K| −H(K). (10)

Perfect uniformity implies U(Sn) = 0. Strong secrecy typically implies that (1/n)H(K) → RK , ensuring asymptotic
uniformity. Additionally, the metric T (S) = log |K| − H(K|M,Zn), which is called security index [1], is maximized
when strong secrecy holds.

A secret key rate RK is said to be achievable with a public communication rate RP if there exists a sequence of strategies
{Sn} such that lim infn→∞(1/n) log |Kn| ≥ RK , lim supn→∞(1/n) log |Mn| ≤ RP , and the conditions for reliability, strong
secrecy, and key uniformity are all satisfied.

C. Proposed SPARC-Based Protocol Structure

Our secret key agreement protocol, building upon the general framework established in prior works for Gaussian sources
[4], [5], consists of three main operational steps, specifically implemented using the SPARC framework:

1) Source Quantization: Alice observes Xn and aims to quantize it to a representation that can be reliably communicated to
Bob. To facilitate WZ coding, she considers an auxiliary Gaussian random variable U = X +V , where V ∼ N (0, Q) is
quantization noise independent of X , with variance Q being a design parameter. Alice uses a rate-R1 SPARC codebook
to find a codeword un such that Xn is effectively quantized to ξun with a mean-squared distortion given in (2), i.e.
R1 > R∗(DX).

2) Information Reconciliation: Having selected un, Alice uses the nested structure of her rate-R1 SPARC codebook,
partitioned into bins of sub-rate R2 < R1, to determine the bin index M corresponding to un. Alice transmits this
message M over the public channel to Bob. The rate of this public communication is RP = R1 −R2. Bob receives M
and using his side information Y n, attempts to decode un from the specified bin. This is a WZ decoding problem, and
successful recovery is possible if R2 < CWZ . Upon successful decoding, Bob shares the common sequence un with
Alice.

3) Privacy Amplification: Alice and Bob both possess the common sequence un. However, Eve has her own correlated
observation Zn and has also observed the public message M . Therefore, un is generally not yet secure enough to be
used directly as a key. To extract a secure key, Alice and Bob apply the same randomly chosen universal hash function
κ (from a publicly known family of hash functions) to un to generate the final secret key: K = KA = KB = κ(un).
The length of the key K, and thus the rate RK , is chosen such that RK is less than the conditional entropy of Un given
Eve’s information, effectively hashing out Eve’s knowledge. This step ensures both secrecy and uniformity of the final
key K.

IV. MAIN RESULTS

This section presents the core theoretical contributions of this work, establishing the achievable performance of the proposed
SPARC-based secret key agreement protocol in the asymptotic limit of the blocklength. We detail the SPARC parameterization,
state the key theorems regarding achievable rates and strong secrecy guarantees, and analyze the protocol’s optimality gap
relative to fundamental information-theoretic limits.
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A. Protocol Implementation Parameters with SPARCs

The three-step secret key agreement protocol detailed in Section III is implemented using a nested SPARC structure. The
rates for different stages are assigned to leverage the optimal properties of SPARCs as follows:

1) Source Quantization: Alice employs an overall SPARC codebook C1 of rate R1 to quantize her source Xn to ξun via
the auxiliary variable U = X + V . The parameter Q = Var(V ) controls the distortion DX . From Theorem 1, reliable
quantization requires the SPARC rate R1 (nats per symbol) to satisfy:

R1 > R∗(DX) =
1

2
ln

(
σ2
X +Q

Q

)
(11)

2) Information Reconciliation: The codebook C1 is structured as a nested code, effectively C(R1, R2). Alice transmits the
bin index M corresponding to un, which identifies a sub-codebook (bin) Cbin(M) of rate R2. The public communication
rate is RP = R1−R2. For Bob to reliably decode un from this bin using his side information Y n, the inner bin rate R2

(nats per symbol) must be less than the WZ capacity CWZ,Bob of the effective channel between U and Y as established
by Theorem 2:

R2 < CWZ,Bob =
1

2
ln(1 + γWZ,Bob), (12)

where

γWZ,Bob =
σ4
X

σ2
XQ+ (σ2

X +Q)σ2
ηb

. (13)

Consequently, the minimum public communication rate is:

RP > R∗(DX)− CWZ,Bob (14)

The construction of such SPARCs, including the choice of section size rate α, is guaranteed by Theorem 2.
3) Privacy Amplification: Alice and Bob apply a 2-universal hash function κn to their agreed-upon common sequence un

to generate the secret key K = κn(u
n). The secret key rate RK is chosen to eliminate Eve’s information about un,

thereby ensuring strong secrecy.

B. Achievable Rates and Strong Secrecy Guarantees

The security of any secret key agreement protocol hinges on two main aspects: ensuring the legitimate parties agree on
the same information, and ensuring this information is incomprehensible to an eavesdropper. Our protocol uses SPARCs for
the agreement phase and universal hashing for the security phase. To formally establish the strong secrecy of the final key
K derived from Un, we consider the following. Let Un be the sequence shared by Alice and Bob after reconciliation, from
which a key K is generated. Let (M,Zn) be the total side information available to the eavesdropper, where M = ϕn(U

n) is
the public message.

The uncertainty Eve has about Un is characterized by the conditional Rényi entropy of order 2 [17]. This is defined via
the conditional collision probability for a given realization (m, zn):

Pcoll(U
n|m,zn)=

∑
un:ϕn(un)

P (Un=un|M=m,Zn=zn)2. (15)

The asymptotic average conditional Rényi entropy rate is then

H2(U |M,Z)= lim
n→∞

1

n
E[−log2Pcoll(U

n|M,Zn)]. (16)

The strong secrecy proof relies on the assumption that the instantaneous conditional Rényi entropy concentrates around its
mean. We say the entropy concentrates sufficiently fast if for any δ > 0, the probability

P
(∣∣∣∣1n(−log2Pcoll(U

n|M,Zn))−H2(U |M,Z)

∣∣∣∣>δ

)
(17)

decays exponentially with a large deviation exponent ELD > 0. Setting (17) equal to PLD(δ), it shall holds that PLD(δ) ≤
c1e

−nELD for some constant c1.
Theorem 3 (Strong Secrecy via Universal Hashing): Let κn : Un → Kn be a hash function chosen uniformly at random

from a 2-universal family Hn, producing a key K = κn(U
n) of rate RK = (1/n) ln |Kn|. Strong secrecy is achieved if

RK < H2(U |M,Z) ln 2− ν, (18)

for some ν > 0 and if
ELD > RK (19)
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Proof: The proof is provided in Appendix A.
This theorem provides the basis for privacy amplification. The Rényi entropy measures the uncertainty Eve has about Un even
after observing the public message M and her own correlated data Zn. If the rate of the key RK is less than this uncertainty,
the hashing process effectively rules out Eve’s partial information, making the final key K appear random and uncorrelated
with her knowledge. The variational distance in (9) approaching zero signifies this strong form of secrecy.

Building upon this general security principle, the next theorem is the central result for our SPARC-based secret key agreement
protocol. It specifies the maximum rate at which Alice and Bob can generate such a strongly secret key, and the corresponding
public communication cost, by leveraging the unique capabilities of SPARCs for the initial agreement on Un. The key idea is
that Alice and Bob must first agree on Un reliably, addressed by SPARCs’ WZ optimality, and then the rate of the final secret
key K is limited by how much better Bob’s information about Un, via Y n and M , is compared to Eve’s information via Zn

and M .
Theorem 4 (Achievable Secret Key Rate): For the Gaussian source model and for any chosen auxiliary quantization noise

variance Q > 0, the SPARC-based secret key agreement protocol can achieve any secret key rate RK and public communication
rate RP pair satisfying:

RK < I(U ;Y |M)− I(U ;Z|M) (20)

and

RP > I(U ;X)− I(U ;Y |M) (21)

where all mutual informations are evaluated for the joint distribution PU,X,Y,Z,M induced by the protocol. As n → ∞, the
generated key K satisfies the criteria (8), (9) and (10).

Proof: The proof is provided in Appendix B.
This theorem quantifies the performance of the entire SPARC-based system. Condition (21) ensures that Alice sends enough
public information M , at rate RP , for Bob to reliably reconstruct Un, given his side information Y n. This is effectively
the rate required for WZ source coding of Un with side information Y n at the decoder, where M is the helper message.
Condition (20) sets the upper limit on the secret key rate. The term I(U ;Y |M) represents the information Bob has about
Un, while I(U ;Z|M) is the information Eve has about Un. The difference is essentially the information advantage Bob has
over Eve regarding Un. This advantage is converted into a secret key. If Bob can decode Un perfectly given M and Y n, then
H(U |M,Y n) ≈ 0, and I(U ;Y |M) ≈ H(U |M). The key rate then becomes RK < H(U |M) − I(U ;Z|M) ≈ H(U |M,Z).
This directly connects to the premise of Theorem 3 for successful privacy amplification. The SPARC framework’s ability to
implement the reconciliation stage optimally via Theorem 1 and 2 allows these information-theoretic rates to be achieved.

C. Operational Gaussian Rate Bounds

The mutual information terms in Theorem 4 can be made more explicit for the Gaussian setting. Since M = ϕn(U
n) is

a deterministic function of Un, and Bob reliably decodes Un given M and Y n, implying (1/n)H(Un|M,Y n) → 0, the
condition on RK in (20) simplifies asymptotically to RK < (1/n)H(Un|M,Zn). Using the operational capacities CWZ,Bob

from (12) and setting

CWZ,Eve =
1

2
ln(1 + γWZ,Eve), (22)

where

γWZ,Eve =
σ4
X

σ2
XQ+ (σ2

X +Q)σ2
ηe

. (23)

Then the achievable secret key rate is:

RK < CWZ,Bob − CWZ,Eve =
1

2
ln

(
1 + γWZ,Bob

1 + γWZ,Eve

)
. (24)

The public communication rate, using rates from (11) and (12), is:

RP > R∗(DX)− CWZ,Bob =
1

2
ln

(
(σ2

X +Q)/Q

1 + γWZ,Bob

)
. (25)

A key insight from (24) is that the secret key rate is determined by the difference in Bob’s and Eve’s abilities to resolve the
common randomness Un.
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D. Optimality Gap

The fundamental information-theoretic upper bound on the secret key rate for the considered Gaussian source model is
RK,opt = I(X;Y )−I(X;Z) [4], [5]. Our SPARC-based protocol, due to the introduction of the auxiliary variable U = X+V
for quantization, necessarily incurs a rate gap relative to this optimum.

Corollary 1 (Rate Gap): The secret key rate RK achievable by the proposed SPARC protocol is separated from the optimal
rate RK,opt by a gap ∆RK = RK,opt −RK . This gap can be expressed as:

∆RK≥[I(X;Y )−CWZ,Bob]−[I(X;Z)−CWZ,Eve]. (26)

Since CWZ,Bob ≈ I(U ;Y |M) and CWZ,Eve ≈ I(U ;Z|M) when considering the information flow about U given M , the gap
∆RK ≈ I(X;Y |U)−I(X;Z|U). This term represents the net loss in the secrecy advantage I(X;Y )−I(X;Z) due to Alice’s
processing for creating U from X , instead of using X directly. The rate gap ∆RK identified in Corollary 1 is primarily a
function of the auxiliary quantization noise variance Q = Var(V ). This parameter acts as a fundamental tuning knob for the
protocol, controlling the trade-off between the achievable secret key rate and the required public communication cost.

At one extreme, as Q → 0 (fine quantization), the auxiliary variable U becomes a near-perfect copy of the original source
X . Consequently, the capacities of the effective WZ channels for Bob and Eve, CWZ,Bob and CWZ,Eve, converge to the mutual
information I(X;Y ) and I(X;Z), respectively. This causes the rate gap ∆RK to vanish, and the protocol’s achievable key rate
RK approaches the theoretical optimum, RK,opt. However, this optimality comes at a steep price: the rate-distortion function
R∗(DX) = (1/2) ln((σ2

X +Q)/Q) approaches infinity, leading to an unbounded public communication rate RP .
At the other extreme, as Q → ∞ (coarse quantization), U becomes largely independent of X , carrying negligible information

about the source. As a result, both CWZ,Bob and CWZ,Eve tend to zero, causing the achievable secret key rate RK to vanish.
In this regime, the public communication rate RP also tends to zero, as there is little information to convey.

This reveals a fundamental design trade-off, which is numerically illustrated in the following section. As we will see in
Figure 3, the boundary of the achievable (RP , RK) region is traced by varying Q, clearly showing that achieving a higher RK

necessitates a higher RP . It is important to emphasize that this trade-off is inherent to the chosen SK agreement strategy and
that the SPARCs themselves implement the component tasks optimally for the given U . That is, Theorem 1 ensures R∗(DX) is
achieved for quantization, and Theorem 2 ensures the WZ rate CWZ,Bob is achieved for reconciliation. The observed rate gap
is therefore a consequence of the protocol’s structure, not a sub-optimality of the SPARC coding scheme itself. An interesting
aspect of this result is that the entire protocol leverages the same underlying SPARC machinery for distinct information-theoretic
tasks—source coding, WZ coding, and implicitly the channel coding for reconciliation—showcasing the versatility and power
of the SPARC framework.

V. NUMERICAL ILLUSTRATION OF RATE TRADE-OFFS AND PRACTICAL CONSTRAINTS

To visually illustrate the theoretical trade-offs derived from our analysis and to explore the practical implications of the
SPARC code construction, we present a series of numerical examples. These plots are based on the operational rate bounds
in (24) and (25). A key aspect of this analysis is the role of the SPARC section size rate parameter α. While the asymptotic
rate formulas depend on the quantization noise variance Q, the very existence of a SPARC to achieve these rates depends on
satisfying condition (6) from Theorem 2. This condition, which we denote as α > αreq(Q), links the code structure to the
protocol’s operational rates. As the quantization becomes finer (Q → 0), the required quantization rate R1(Q) tends to infinity,
which in turn causes αreq(Q) to also approach infinity.

Therefore, for any practical system with a fixed, finite section size rate α, there exists a minimum feasible quantization
variance, Qmin, below which the required rates are unachievable by the chosen SPARC family. This induces a feasible operating
region for Q and, as shown below, leads to a non-trivial optimization for maximizing the secret key rate. In the following
plots, we assume a practical choice of α = 6 and a normalized source variance σ2

X = 1.
Figure 2 depicts the entire achievable (RP , RK) region for three scenarios with varying channel qualities for Bob and Eve.

Each shaded region represents the set of rate pairs achievable by our protocol. The boundary of each region is traced by
varying the quantization parameter Q over its feasible range. This plot highlights a fundamental principle: the overall size of
the achievable region is dictated by the secrecy advantage that Bob has over Eve. A larger gap between Bob’s channel quality
(lower σ2

ηb
) and Eve’s (higher σ2

ηe
) results in a substantially larger achievable region.

A more detailed view of this trade-off is provided in Figure 3 for a fixed scenario (σ2
ηb

= 0.1, σ2
ηe

= 0.2). The achievable
boundary is shown with overlaid contour lines for the value of Q required to operate at each point. This figure can be interpreted
as a practical design guide. For instance, to achieve a high secret key rate approaching the optimum RK,opt, one must select
a small value of Q (e.g., Q ≈ 0.05), which in turn demands a high public communication rate of RP ≈ 0.8 nats/symbol.
Conversely, if public communication is constrained, for example to RP ≈ 0.2, the designer must accept a lower secret key rate
of RK ≈ 0.05, which is achieved by choosing a coarser quantization with Q ≈ 5.0. This numerically confirms the behavior
predicted by our analysis of the rate gap in Corollary 1.

The impacts of Eve’s and Bob’s channel qualities on the secret key rate RK are isolated in Figure 4 and Figure 5, respectively.
These plots reveal a key insight stemming from the SPARC constraints regarding the code structure. In Figure 4, we observe
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Fig. 2. Achievable (RP , RK) regions for three different scenarios of Bob’s and Eve’s channel qualities, generated by varying the quantization parameter Q.
The size of the region is dictated by Bob’s advantage over Eve.

that for any given Eve, there exists an optimal choice of Q that maximizes RK . This peak occurs because of the trade-off
between two effects. As Q decreases from a large value, the quality of the common randomness U improves, increasing the
potential secret key rate. However, as Q becomes too small, the required SPARC section size rate, αreq(Q), grows rapidly.
For a fixed α = 6, values of Q below a certain threshold become infeasible, causing the achievable rate to drop to zero, as
indicated by the dashed gray lines. The peak of the solid curve thus represents the maximum achievable RK for the given
SPARC family. As expected, a stronger eavesdropper (smaller σ2

ηe
) severely diminishes this peak rate.

Similarly, Figure 5 shows the same non-monotonic behavior for varying Bob’s channel quality. A better channel for Bob
(smaller σ2

ηb
) raises the entire achievable curve, enabling a higher maximum secret key rate. These plots demonstrate that the

optimization of Q in a practical SPARC-based system is a non-trivial constrained optimization problem. The problem can be
formally stated as:

Qopt = argmax
Q>0

RK(Q) (27)

subject to :

αfixed ≥ αreq(Q)

:= max

 2.5R1(Q)

R1(Q)− σ2
X

σ2
X+Q

,
R1(Q)

R2(Q)
α0(γWZ,Bob(Q))

 , (28)

where R1(Q), R2(Q), and γWZ,Bob(Q) are all functions of Q, and αfixed is the chosen section size rate for the SPARC family
(e.g., αfixed = 6).

This optimization is non-trivial because the feasible set for Q, defined by the inequality in (28), is not a simple interval and
is determined by a complex, non-linear function. Since our analysis of the unconstrained objective function RK(Q) revealed a
monotonic behavior (maximized as Q → 0), the optimal solution to the constrained problem in (27) must lie at the boundary
of the feasible set. Specifically, the optimal Qopt will be the minimum value of Q that satisfies the constraint:

Qopt = inf{Q > 0 | αfixed ≥ αreq(Q)}. (29)

This corresponds to finding the value of Q that solves the equation αfixed = αreq(Q). Finding a closed-form analytical solution
for this equation is challenging, but it can be readily solved numerically to find the optimal operating point for any given set
of channel statistics and a chosen SPARC code structure defined by αfixed. This highlights a crucial design consideration for
practical implementations.
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Fig. 3. A detailed view of the achievable region for σ2
ηb

= 0.1 and σ2
ηe

= 0.2, with contour lines indicating the value of Q that achieves each point on the
boundary. The dashed line indicates the optimal secret key rate RK,opt.

VI. DISCUSSION AND CONCLUSION

A. Complexity

The SPARC encoding process itself is generally considered to be of low complexity. A SPARC codeword x = Aβ is formed
by selecting L columns from the n×N dictionary matrix A (where N = ML) and performing a scaled sum. If the mapping
from information bits to the L active coefficients in β is efficient, the dominant operation becomes L vector additions of n-
dimensional vectors, leading to a computational cost of approximately O(nL). This compares favorably to schemes requiring
dense matrix-vector multiplications if L is significantly smaller than N . The more critical aspect regarding complexity typically
lies in SPARC decoding, or more generally, sparse signal recovery. In our SKA protocol, this arises in two main stages. Firstly,
Alice’s source quantization step, where Xn is mapped to an optimal SPARC codeword un from the rate R1 codebook C1, can
be viewed as a nearest-neighbor search or a sparse representation problem. If approached as finding the best sparse coefficient
vector βU that minimizes ||Un−AβU ||2, the complexity is akin to that of SPARC decoding. Secondly, and likely the dominant
computational load, is Bob’s WZ decoding step. Here, Bob must decode un from the restricted SPARC sub-codebook Cbin(M)
using his side information Y n. This is a channel decoding task for a SPARC code over the effective WZ channel. Fortunately,
several efficient algorithms exist for SPARC decoding. Approximate Message Passing (AMP) algorithms [10], [18], [19] are
iterative statistical decoders shown to achieve capacity for SPARCs with Gaussian dictionaries, typically with a complexity
of O(nN) per iteration, and often requiring a relatively small number of iterations. Greedy algorithms, such as Orthogonal
Matching Pursuit (OMP) or the Match and Decode (MAD) algorithm tailored for SPARCs [20], offer alternative iterative
approaches with complexities in the order of O(LnN) or potentially faster with structured dictionaries. The binning inherent
in Bob’s WZ decoding is advantageous, as his search for each of the L components of βU is reduced from M columns to M ′

columns, reducing the effective N or the per-iteration cost for these algorithms. In contrast, convex optimization methods like
Basis Pursuit, while robust, are generally more computationally intensive for large N . The final privacy amplification step,
which involves applying a 2-universal hash function to un, is computationally very efficient, typically linear in the blocklength
n, and does not constitute a bottleneck.

Overall, the computational complexity of the proposed SKA scheme is primarily determined by the SPARC decoding
algorithm employed by Bob. The availability of efficient algorithms like AMP and MAD suggests that the scheme has the
potential for practical implementation with manageable complexity, especially when considering that the parameters L for
sparsity and M for the columns per section can be optimized. While a detailed comparative analysis with the complexity of
other SKA schemes (e.g., those based on polar codes, which feature O(n log n) decoding, or lattice codes, which can involve
computationally intensive lattice reduction or closest vector searches) is beyond the current scope, SPARC-based methods
are recognized for their competitive performance and moderate complexity in many sparse recovery and communication
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Fig. 4. The impact of Eve’s channel quality on RK for a fixed Bob’s channel (σ2
ηb

= 0.1) and fixed SPARC parameter α = 6. The non-monotonic behavior
of RK as a function of Q is due to the SPARC constraints.
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Fig. 5. The impact of Bob’s channel quality on RK for a fixed Eve’s channel (σ2
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= 0.4) and fixed SPARC parameter α = 6.

applications. The choice of dictionary structure (e.g., random Gaussian vs. deterministic structured dictionaries) can also
further influence the practical decoding speed.
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B. Conclusion

In this paper, we have proposed and rigorously analyzed a secret key agreement protocol for correlated Gaussian sources that
leverages the advantageous properties of SPARCs. Our approach systematically employs SPARCs for the critical stages of source
quantization and information reconciliation. Privacy amplification is subsequently performed using 2-universal hash functions
to ensure robust security. The primary contribution of this work is the demonstration that this SPARC-based protocol can
achieve secret key rates that approach the fundamental information-theoretic optimum I(X;Y )− I(X;Z). We have explicitly
characterized the rate gap to this optimum, showing that it is a consequence of the initial quantization step and can be made
arbitrarily small by decreasing the quantization noise variance Q, albeit at the cost of an increased public communication rate
RP . A key finding is that the protocol achieves strong secrecy, as defined by a vanishing variational distance between the
actual distribution of the key and public messages and the ideal one. This ensures that the generated key is asymptotically
independent of the eavesdropper’s observations, including the public messages. Furthermore, we showed that the choice of
the quantization parameter Q is not a simple monotonic trade-off but a non-trivial constrained optimization problem. The
practical constraints on the SPARC code parameters induce a peak in the achievable secret key rate, and we have characterized
the solution to this problem. This highlights the interplay between asymptotic theory and practical code design constraints.
Our analysis highlights the versatility of the SPARC framework, where the same underlying coding principles are effectively
utilized for distinct information-theoretic tasks. This establishes SPARCs as a theoretically sound and viable alternative to other
structured codes, such as polar codes or lattice codes, for constructing practical secret key generation schemes in Gaussian
environments. The inherent low-complexity encoding and decoding algorithms associated with SPARCs further enhance their
potential for practical implementations.

Several important avenues for future research emerge from this work. A paramount direction is the comprehensive analysis of
the proposed protocol in the finite blocklength regime. This would involve characterizing the trade-offs between key rate, public
communication rate, blocklength, and the achievable levels of reliability and secrecy. Key challenges in this domain include
determining the finite blocklength error probability of SPARC-based WZ decoding and, crucially, deriving tight bounds on the
conditional min-entropy considering the specific structure imposed by SPARC quantization and binning. Insights from recent
advances in finite blocklength information theory [21] and studies on short-blocklength SPARCs [20] will be instrumental here.
Further research could also explore the optimization of SPARC parameters (e.g., dictionary design, L,M,α,Q) specifically
for maximizing the finite blocklength secret key rate. Additionally, extending this SPARC-based framework to multi-terminal
secret key agreement scenarios, such as conference key agreement or key agreement over multiple-access or broadcast channels
where the superposition and binning capabilities of SPARCs might offer distinct advantages, presents another fertile area for
investigation. Finally, adapting the proposed source model protocol to channel-based models of secret key generation using
SPARCs would broaden its applicability.

APPENDIX A: PROOF OF THEOREM 3

The proof establishes strong secrecy by bounding the variational distance using properties of 2-universal hash functions and
arguments related to the concentration of conditional Rényi entropy of order 2.

Let PK,M,Zn be the actual joint distribution of the generated key K, public message M , and Eve’s observation Zn, where
K = κn(U

n). Let QK,M,Zn ≡ P unif
K PM,Zn represent the ideal distribution, where the key K is uniformly distributed over its

alphabet Kn and is independent of (M,Zn). The variational distance, which we aim to bound, is ∆(PK,M,Zn , QK,M,Zn) =
1
2∥PK,M,Zn −QK,M,Zn∥1.

A standard result for hashing with a randomly chosen function κn from a 2-universal family Hn, [7, Lemma A.6], provides a
bound on the expected variational distance. This bound relates the security of the final key to the average collision probability
of the source sequence Un conditioned on the eavesdropper’s side information. Formally, the average variational distance
satisfies:

µ̄n = Eκn∈Hn
[∆(PK,M,Zn , QK,M,Zn)]

≤ 1

2

√
|Kn|EM,Zn [Pcoll(Un|M,Zn)]− 1, (30)

where |Kn| is the size of the key alphabet and Pcoll(U
n|M,Zn) is the conditional collision probability defined in (15). For

this bound to be useful, the term under the square root must be non-negative. We can also use a slightly looser but simpler
upper bound that neglects the -1 term:

µ̄n ≤ 1

2

√
|Kn|EM,Zn [2−H2(Un|M,Zn)], (31)

where we have expressed the collision probability using the conditional Rényi entropy of order 2 given in (16), for the specific
realization of (M,Zn). The remainder of the proof focuses on bounding the expectation in (31).
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Let H2(U |M,Z) = limn→∞(1/n)E[H2(U
n|M,Zn)] be the asymptotic average conditional Rényi entropy rate. For any

δ > 0, define the typical set T (n)
δ for (M,Zn) as those realizations where the instantaneous entropy rate is close to the average:

T (n)
δ =

{
(m, zn) :

∣∣∣ 1
n
H2(U

n|M = m,Zn = zn)

−H2(U |M,Z)
∣∣∣ ≤ δ

}
(32)

This implies that for (m, zn) ∈ T (n)
δ , we have H2(U

n|m, zn) ≥ n(H2(U |M,Z) − δ). The probability of the atypical set,
PLD(δ) = P ((M,Zn) /∈ T (n)

δ ), is assumed to decay sufficiently fast with n, i.e., PLD(δ) ≤ c1e
−nELD for some positive

constants c1 and ELD.
We split the expectation EM,Zn [2−H2(U

n|M,Zn)] using the typical set in (32).

EM,Zn [2−H2(U
n|M,Zn)]=

∑
(m,z)∈T (n)

δ

P (m,z)2−H2(U
n|m,z)

+
∑

(m,z)/∈T (n)
δ

P (m,z)2−H2(U
n|m,z) (33)

≤P ((M,Zn)∈T (n)
δ )·2−n(H2(U |M,Z)−δ)

+P ((M,Zn)/∈T (n)
δ )·1 (34)

≤2−n(H2(U |M,Z)−δ)+PLD(δ), (35)

where equality in (33) is obtained by partitioning the expectation over the entire sample space of (M,Zn) into two disjoint
sets; inequality in (34) follows from applying an upper bound to each term in the sum. For realization within the typical set
T (n)
δ , we use the lower bound on the instantaneous entropy rate from its definition in (32), which gives H2(U

n|m, zn) ≥
n(H2(U |M,Z)−δ), and thus 2−H2(U

n|m,zn) ≤ 2−n(H2(U |M,Z)−δ). For realizations in the atypical set, we use the trivial bound
that any collision probability is less than or equal to one, which implies H2(U

n|m, zn) ≥ 0 and therefore 2−H2(U
n|m,zn) ≤ 1.

Finally, the inequality in (35) is due to the fact that P ((M,Zn) ∈ T (n)
δ ) ≤ 1 and by substituting (17).

Substituting (35) into (31), and recalling |Kn| = enRK :

µ̄n ≤ 1

2

√
enRK

(
2−n(Hbits

2 (U |M,Z)−δ) + PLD(δ)
)

=
1

2

√
enRKe−n(Hnats

2 (U |M,Z)−δ ln 2) + enRKPLD(δ)

=
1

2

√
en(RK−(Hnats

2 (U |M,Z)−δ ln 2)) + enRKPLD(δ)

where the Rényi entropy H2(U |M,Z) is in bits, denoted by Hbits
2 (U |M,Z) and Hnats

2 (U |M,Z) = Hbits
2 (U |M,Z) ln 2.

For µ̄n → 0 as n → ∞, both terms under the square root must vanish. The first term vanishes if RK −Hnats
2 (U |M,Z) +

δ ln 2 < 0. The theorem condition is RK < Hnats
2 (U |M,Z) − ν for some ν > 0. We can choose δ ln 2 = ν/2. Then the

exponent is RK − Hnats
2 (U |M,Z) + ν/2. Since RK − Hnats

2 (U |M,Z) < −ν, the exponent is < −ν + ν/2 = −ν/2 < 0.
Thus, the first term vanishes exponentially with n. Next, given PLD(δ) ≤ c1e

−nELD . The second term is c1e
n(RK−ELD). This

term vanishes if RK < ELD. The theorem assumes that PLD(δ) decays sufficiently fast, meaning that the exponent ELD is
greater than the chosen key rate RK . Since both terms under the square root vanish under the stated conditions (18), (19), and
the condition on PLD(δ)), then µ̄n → 0 as n → ∞.

The convergence µ̄n → 0 for the average over the hash family Hn implies that for any sequence ζn → 0, there exists
a deterministic sequence of hash functions {κ∗

n}∞n=1 from Hn such that the actual variational distance µn(κ
∗
n) ≤ ζn for

sufficiently large n. This follows from Markov’s inequality, ensuring that most hash functions in the family achieve good
performance.

This completes the proof of Theorem 3.

APPENDIX B: PROOF OF THEOREM 4

The proof combines the reliability of the SPARC-based reconciliation phase (established by Theorems 1 and 2) with the
security guarantees of the privacy amplification phase (established by Theorem 3). We prove that the protocol satisfies the
three required conditions of reliability, strong secrecy, and key uniformity, and we justify the public communication rate.

(i)Reliability: The condition is that the probability of key disagreement vanishes, i.e., P (KA ̸= KB) → 0 as n → ∞. The
protocol is reliable if Alice and Bob can agree on the common sequence Un with vanishing error probability. Let Un

A be
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Alice’s quantized sequence and let Ûn
B be the output of Bob’s WZ decoder. The key disagreement event KA ̸= KB occurs if

Ûn
B ̸= Un

A, as both parties apply the same deterministic hash function κ∗
n.

The reconciliation process consists of two stages. First, Alice quantizes Xn to Un
A using a rate-R1 SPARC. By Theorem

1, if Alice chooses R1 > R∗(DX), this quantization can be performed reliably. Second, Bob decodes Un
A from the bin index

M and his side information Y n. By Theorem 2, if the inner bin rate R2 < CWZ,Bob, the probability of a decoding error,
Perr,WZ = P (Ûn

B ̸= Un
A), vanishes as n → ∞.

Therefore, the probability of key disagreement is bounded by the decoding error probability:

P (KA ̸= KB) ≤ P (Ûn
B ̸= Un

A) = Perr,WZ . (36)

Since Perr,WZ → 0 as n → ∞, the reliability condition is satisfied.
(ii) Strong Secrecy: The condition is that the average variational distance vanishes, i.e., µ̄n → 0 as n → ∞. This follows

by showing that the achievable secret key rate from Theorem 4 satisfies the premise of Theorem 3 for a sufficiently large
blocklength n. The main condition of Theorem 3 is that the secret key rate RK must satisfy:

RK < H2(U |M,Z) ln 2− ν, for some ν > 0. (37)

The achievable key rate from Theorem 4 is given by RK < I(U ;Y |M)− I(U ;Z|M). By the definition of conditional mutual
information, this rate can be rewritten as:

I(U ;Y |M)− I(U ;Z|M)=[H(U |M)−H(U |M,Y )]

−[H(U |M)−H(U |M,Z)] (38)
=H(U |M,Z)−H(U |M,Y ), (39)

where (38) follows directly from the definition of conditional mutual information and (39) is obtained by canceling the common
terms. From the reliability analysis in part (i), Bob’s reliable decoding of Un implies, by Fano’s inequality, that the conditional
entropy (1/n)H(Un|M,Y n) → 0. Thus, the achievable key rate condition from Theorem 4 becomes asymptotically equivalent
to RK < Hnats(U |M,Z).

It is a known property that the Rényi entropy of order 2 is a lower bound on the Shannon entropy, and for the i.i.d. source
model considered, the asymptotic rates are equal: H2(U |M,Z) ln 2 ≈ Hnats(U |M,Z) for large n. Therefore, if we choose a
rate RK such that RK < Hnats(U |M,Z)− ν′ for some small ν′ > 0, this choice will also satisfy the condition in (37) for a
suitable ν and sufficiently large n. The second condition of Theorem 3, concerning the concentration of Rényi entropy, is a
standard assumption for i.i.d. models. Thus, the premises of Theorem 3 are met, guaranteeing that µ̄n → 0.

(iii) Key Uniformity: The condition is that (1/n)H(K) → RK as n → ∞. This is a direct consequence of the strong
secrecy condition. A property of the variational distance is that if µ̄n → 0, then the distribution of the generated key, PK ,
must converge to the uniform distribution, P unif

K . Specifically, since marginalization does not increase the variational distance,
(1/2)∥PK −P unif

K ∥1 → 0. This convergence in distribution implies the convergence of entropies, ensuring that (1/n)H(K) →
(1/n) ln |Kn| = RK .

Finally, we justify the condition on the public communication rate, RP > I(U ;X)− I(U ;Y |M). This arises directly from
the rates required for the SPARC-based WZ coding implementation. Alice must describe the sequence Un to Bob. The rate of
her initial SPARC codebook, R1, must be greater than the rate-distortion function R∗(DX), which is approximately I(U ;X)
for an appropriate choice of distortion DX . Bob receives a message M and uses side information Y n. The rate of the bin
codebook from which Bob decodes, R2, must satisfy R2 < CWZ,Bob, where CWZ,Bob ≈ I(U ;Y |M) is the capacity for Bob to
decode U given Y and knowledge of the bin specified by M . The public rate is RP = R1−R2. Substituting the bounds gives
RP > I(U ;X)− I(U ;Y |M), which is consistent with the rate required for this helper-dependent source coding problem.

This completes the proof of Theorem 4.

REFERENCES

[1] M. Bloch and J. Barros, Physical-Layer Security: From Information Theory to Security Engineering. Cambridge University Press, 2011.
[2] U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Transactions on Information Theory, vol. 39, no. 3, pp.

733–742, May 1993.
[3] R. Ahlswede and I. Csiszár, “Common randomness in information theory and cryptography - part i: Secret sharing,” IEEE Transactions on Information

Theory, vol. 39, no. 4, pp. 1121–1132, Jul. 1993.
[4] S. Nitinawarat and P. Narayan, “Secret key generation for correlated gaussian sources,” IEEE Transactions on Information Theory, vol. 58, no. 6, pp.

3373–3391, Jun. 2012.
[5] S. Watanabe and Y. Oohama, “Secret key agreement from correlated gaussian sources by rate limited public communication,” IEICE Transactions on

Fundamentals, vol. E93-A, pp. 1976–1983, Nov. 2010.
[6] R. A. Chou, M. R. Bloch, and E. Abbe, “Polar coding for secret-key generation,” IEEE Transactions on Information Theory, vol. 61, no. 11, pp.

6213–6237, Nov. 2015.
[7] R. R. J. M. Renes and D. Sutter, “Efficient one-way secret-key agreement and private channel coding via polarization,” in Advances in Cryptology -

ASIACRYPT, vol. 8269, 2013, pp. 194–213.
[8] C. Ling, L. Luzzi, and M. R. Bloch, “Secret key generation from gaussian sources using lattice hashing,” in 2013 IEEE International Symposium on

Information Theory (ISIT), Istanbul, Turkey, 2013, pp. 2621–2625.



PREPRINT 15

[9] S. Vatedka and N. Kashyap, “A lattice coding scheme for secret key generation from gaussian markov tree sources,” in 2016 IEEE International
Symposium on Information Theory (ISIT), 2016, pp. 515–520.

[10] A. Barron and A. Joseph, “Least squares superposition codes of moderate dictionary size are reliable at rates up to capacity,” IEEE Transactions on
Information Theory, vol. 58, pp. 2541–2557, Feb. 2012.

[11] A. Joseph and A. Barron, “Fast sparse superposition codes have exponentially small error probability for r ¡ c,” IEEE Transactions on Information
Theory, vol. 60, pp. 919–942, Feb. 2014.

[12] R. Venkataramanan and S. Tatikonda, “The rate-distortion function and excess-distortion exponent of sparse regression codes with optimal encoding,”
IEEE Transactions on Information Theory, vol. 63, no. 8, pp. 5228–5243, Aug. 2017.

[13] R. Venkataramanan, A. Joseph, and S. Tatikonda, “Gaussian rate-distortion via sparse linear regression over compact dictionaries,” in 2012 IEEE
International Symposium on Information Theory (ISIT), 2012, pp. 368–372.

[14] R. Venkataramanan and S. Tatikonda, “Sparse regression codes for multi-terminal source and channel coding,” in 2012 50th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 2012, pp. 1966–1974.

[15] E. M. Athanasakos, “Secure coding for the gaussian wiretap channel with sparse regression codes,” in 2021 55th Annual Conference on Information
Sciences and Systems (CISS), 2021, pp. 1–5.

[16] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Transactions on Information Theory,
vol. IT-22, no. 1, pp. 1–10, Jan. 1976.
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