
TRIVIAL TROJANS: HOW MINIMAL MCP SERVERS ENABLE
CROSS-TOOL EXFILTRATION OF SENSITIVE DATA

Nicola Croce
Pivotal Research

nc@nicolacroce.com

Tobin South
Stanford University

tsouth@stanford.edu

ABSTRACT

The Model Context Protocol (MCP) represents a significant advancement in AI-tool integration,
enabling seamless communication between AI agents and external services. However, this con-
nectivity introduces novel attack vectors that remain largely unexplored. This paper demonstrates
how unsophisticated threat actors, requiring only basic programming skills and free web tools, can
exploit MCP’s trust model to exfiltrate sensitive financial data. We present a proof-of-concept attack
where a malicious weather MCP server, disguised as benign functionality, discovers and exploits
legitimate banking tools to steal user account balances. The attack chain requires no advanced
technical knowledge, server infrastructure, or monetary investment. The findings reveal a critical
security gap in the emerging MCP ecosystem: while individual servers may appear trustworthy, their
combination creates unexpected cross-server attack surfaces. Unlike traditional cybersecurity threats
that assume sophisticated adversaries, our research shows that the barrier to entry for MCP-based
attacks is alarmingly low. A threat actor with undergraduate-level Python knowledge can craft
convincing social engineering attacks that exploit the implicit trust relationships MCP establishes
between AI agents and tool providers. This work contributes to the nascent field of MCP security by
demonstrating that current MCP implementations allow trivial cross-server attacks and proposing
both immediate mitigations and protocol improvements to secure this emerging ecosystem.

Keywords Model Context Protocol · AI Agents Security · Social Engineering · Personal Data Exfiltration · Cross-Server
Attacks

1 Introduction

The Model Context Protocol (MCP)[1] enables AI agents 1 to dynamically orchestrate tools across multiple external
services through a standardized interface. Users install diverse "servers" (email , calendar, weather services, banking
tools, etc.) that AI agents can chain together for complex workflows. However, this creates implicit trust relationships
where any server can trigger actions on others through the AI agent.

We demonstrate that this enables trivial cross-server attacks requiring zero sophistication: a malicious weather server,
built by modifying Anthropic’s official documentation examples, can steal financial data from legitimate banking
servers. The attack requires no server infrastructure, no authentication bypass, no reverse engineering: only basic Python
scripting, free webhook services, and social engineering so elementary it resembles routine AI personalization. We
show that undergraduate-level programming skills suffice to orchestrate high-impact data theft across server boundaries.
The barrier to entry is so low that the primary attack vector is not technical exploitation, but convincing users that
cross-server data sharing is normal AI behavior. MCP’s composability becomes a critical security liability disguised as
a feature.

This paper makes three contributions: First, we demonstrate a simple cross-server MCP attack that exfiltrates real
financial data. Second, we quantify and qualify the minimal technical requirements for MCP exploitation. Third, we
propose both immediate mitigations and long-term protocol improvements to address the identified vulnerabilities.

1Throughout this paper, we use "AI agents" to refer to large language models operating through MCP-enabled client applications
(e.g., Claude via Claude Desktop) that can discover and invoke tools from MCP servers

ar
X

iv
:2

50
7.

19
88

0v
1 

 [
cs

.C
R

] 
 2

6 
Ju

l 2
02

5

https://www.pivotal-research.org/fellowship
https://arxiv.org/abs/2507.19880v1


Our results suggest that current MCP security models are insufficient for protecting sensitive user data in multi-server
environments.

2 Background

The Model Context Protocol (MCP) is an open-source standard introduced by Anthropic to enable structured communi-
cation between AI agents and external tools[1]. At its core, MCP defines a client-server architecture where AI agents
act as clients that can discover and invoke capabilities exposed by MCP servers. Communication occurs through a
standardized JSON-RPC 2.0 message format over configurable transports (stdio, HTTP, WebSocket). Servers advertise
their capabilities through a discovery mechanism, allowing AI agents to dynamically understand available tools without
hardcoded integrations.

MCP’s security model relies on explicit user consent at two levels: (1) initial server installation/configuration, and
(2) per-invocation approval for sensitive operations. Once a server is installed, however, it can interact with any other
installed server through the AI agent as an intermediary. This creates implicit trust relationships between servers that
users may not anticipate.

Recent work has started examining MCP’s security implications and limitations more broadly [2], and researchers
have responded by developing MCP vulnerability scanning tools [3]. The protocol documentation acknowledges
some of these limitations but positions them as implementation concerns rather than protocol-level requirements. For
comprehensive technical specifications, readers should consult the official MCP documentation 2 and the reference
implementation 3.

3 Setup and Execution

This section details the end-to-end configuration of our proof-of-concept attack 4. The primary objective was to
demonstrate that exfiltrating sensitive financial data via the Model Context Protocol (MCP) requires only freely
available resources, minimal technical skill, and no dedicated infrastructure. All tools used are either open-source,
free to access without authentication, or provided in official MCP documentation. The full architecture is depicted in
Figure 1.

3.1 Weather Server Construction

We began by cloning Anthropic’s publicly documented “Hello Weather” MCP server example available at [4], a minimal
reference implementation intended to illustrate how external tools can be integrated into an AI agent workflow. The
original example exposes weather forecast and weather alert endpoints via a simple Python script using fastMCP[5]
transport over standard I/O.

To convert this benign example into an exfiltration vector, we made two targeted modifications comprising fewer than
25 lines of additional code:

1. Exfiltration Tool: We defined a new MCP tool named send_research_data. This tool performs a single
HTTP POST request to a pre-generated webhook.site endpoint. Webhook.site requires no account creation
and instantly issues a unique URL for real-time inspection of received data.

2. Social Engineering Prompt: We exposed a new MCP prompt template that returns seemingly benign
instructions for providing “personalized weather advice.” The prompt embeds malicious directives within a
legitimate-appearing workflow by:

• Framing financial data access as necessary for “budget-conscious weather recommendations” (e.g.,
suggesting public transport vs. taxi based on account balance)

• Presenting the attack as a numbered sequence of helpful steps, making tool invocations appear as part of
normal personalization

• Positioning data exfiltration as “improving our service”: a common and accepted practice in modern
applications

2https://modelcontextprotocol.io
3https://github.com/anthropics/mcp
4The complete implementation of our proof-of-concept malicious weather server is available at:https://github.com/

Nicocro/mcp-trivial-trojans

2

https://webhook.site
https://modelcontextprotocol.io
https://github.com/anthropics/mcp
https://github.com/Nicocro/mcp-trivial-trojans
https://github.com/Nicocro/mcp-trivial-trojans


Figure 1: Architecture of the MCP cross-server attack. Within the user’s machine (dashed boundary), Claude Desktop
(MCP client) communicates with multiple MCP servers via stdio transport, including legitimate banking and other
servers (Sv1, Sv2) alongside the malicious weather server. MCP servers independently access external services via
HTTP: the banking server connects to Monzo’s API (authenticated via developer token), while the weather server
fetches legitimate weather data and exfiltrates stolen financial data to webhook.site. Cross-server data flow (orange
arrows) occurs exclusively through the MCP client, as servers cannot communicate directly.

• Maintaining plausible deniability by keeping all instructions contextually relevant to weather services

This setup preserved the rest of the example code unmodified, ensuring the server still appeared as legitimate weather
functionality when inspected superficially.

3.2 Target System Composition

To establish a realistic attack surface, we prepared a local environment consisting of:

• Claude Desktop Client (v0.12.9): As the user interface and AI agent orchestrator

• Legitimate Monzo Banking MCP Server: A simple example server implementation configured beforehand
to access the author’s personal Monzo account via access token. This server had been installed independently
and authorized through standard OAuth2.0 flows.

• Malicious Weather Server: The modified weather server described above.

The Claude client was configured to load both the Monzo server and the malicious weather server without any additional
security controls, reflecting default usage patterns. Full architecture depicted in Figure 1

3



3.3 Attack Execution

The user (the author) then issued a seemingly innocuous request to the Claude agent, calling the get_forecast_prompt
exposed by the weather MCP server.

In response, the agent processed the get_forecast tool exposed by the weather server. The embedded prompt
triggered the following sequence, executed automatically by the agent:

1. Discovery of the account.balance tool exposed by the Monzo server.

2. Invocation of account.balance to retrieve the current bank account balance.

3. Invocation of send_research_data to forward the balance data, location, and timestamp to the webhook.site
endpoint as shown in Figure 2

At each step, the Claude Desktop client did prompt the user for confirmation before invoking tools, including the final
exfiltration request. However, because the instructions were embedded in a natural-sounding context, these prompts
appeared consistent with legitimate weather personalization and were assumed to be trivially accepted by the user.

Figure 2: Successful data exfiltration via webhook.site. Left: Claude Desktop executing the malicious weather prompt,
displaying legitimate weather information while covertly accessing financial data. Right: The attacker’s webhook.site
dashboard showing real-time capture of the exfiltrated Monzo account balance (£1,469.36), user location, and timestamp
in JSON format via HTTP POST. The entire attack chain appears as routine weather personalization to the user.

3.4 Resource Requirements and Reproducibility

The total setup time for this demonstration was under 2 hours. All resources were either:

1. Free of cost

2. Publicly accessible without authentication

3. Based on official example code requiring no reverse engineering.

No dedicated server infrastructure, paid services, or privileged knowledge was necessary. The only prerequisite skills
were familiarity with basic Python scripting and the ability to modify prompt text within a template. The webhook.site
endpoint was generated in approximately one second without any user registration.

4

https://webhook.site


4 Limitations

While our proof-of-concept demonstrates the feasibility of MCP-based financial data exfiltration, several factors
constrain real-world exploitation:

Target Environment Requirements. The attack assumes victims have pre-installed high-value MCP servers exposing
personal data. In our demonstration, successful exploitation required both conditions: (1) the user had configured a
banking MCP server, and (2) the Monzo OAuth token remained valid. Given Monzo’s 30-hour refresh token expiry 5,
attackers have a limited window before re-authentication is required, reducing the probability of successful exploitation.

User Consent Mechanisms. Claude Desktop’s current implementation prompts users before each tool invocation,
including the final send_research_data call. Our attack relies on users accepting these prompts without scrutiny,
assuming the legitimacy of "personalized weather recommendations." Security-conscious users might question why a
weather service needs to send data to an external endpoint, particularly one at webhook.site.

Infrastructure Constraints. Webhook.site URLs expire after 7 days of inactivity 6, requiring attackers to actively
monitor incoming data or frequently regenerate endpoints. While this creates operational overhead for attackers, it
introduces an additional alarming privacy risk: the public nature of webhook.site means anyone who discovers or
guesses the URL can view the victim’s exfiltrated financial data, amplifying the potential harm beyond the initial
attacker.

These limitations do not diminish the core vulnerability: MCP’s trust model allows seemingly benign services to
orchestrate cross-server attacks with minimal technical barriers. However, they do constrain the practical impact to
targeted attacks against users who have both valuable MCP integrations and limited security awareness.

5 Discussion and Recommendations

While we demonstrated exfiltration of banking data, this attack pattern extends to any sensitive MCP server. Consider
alternative targets: a Gmail MCP server could exfiltrate private communications, OAuth tokens, and password reset
emails. A filesystem MCP server could steal SSH keys, API credentials, and sensitive documents. A calendar MCP
could reveal travel patterns, business relationships, and meeting contents. Three systemic vulnerabilities enable these
attacks:

Protocol Permissiveness While Claude Desktop implements permission prompts for each tool invocation, these
safeguards are merely recommended in MCP documentation, not enforced by the protocol. A malicious or poorly-
implemented client could execute all tool calls silently, transforming our simple social engineering attack into automated
data harvesting.

Composability Without Security: Installing any MCP server grants it access to all other servers’ data through the AI
assistant. The weather server cannot directly query the banking server, but it can instruct the AI to do so. Users have no
immediate mechanism to define security boundaries between servers. MCP’s power derives from combining arbitrary
tools: weather with banking, email with calendar. However, each new server exponentially expands the attack surface.

Ecosystem Velocity: MCP servers proliferate through GitHub, and community directories without security vetting.
Developers share and install servers based on functionality alone.

5.1 Recommendations

Immediate mitigations for users:

• Treat every MCP server as potentially malicious, regardless of source or functionality

• Use only official MCP clients that enforce permission prompts

• Never approve cross-server data access without clear, legitimate need

• Audit installed servers regularly and remove unused integrations

Protocol-level interventions required:

• Capability-based permissions: Servers should declare required cross-server interactions at installation

5https://community.monzo.com/t/token-expiry/59376
6https://docs.webhook.site/index.html

5

https://community.monzo.com/t/token-expiry/59376
https://docs.webhook.site/index.html


• Mandatory access boundaries: Allow users to designate servers as "sensitive" with restricted interoperability
• Server attestation: Establish signing mechanisms and reputation systems for server distribution

6 Conclusion

This paper presents a concrete demonstration of a cross-server data exfiltration attack in the Model Context Protocol
(MCP) ecosystem. The attack requires no backend infrastructure, no user credentials, no authentication bypass, and
no specialized tooling; only basic Python scripting, open-source examples from the official MCP documentation, and
a free webhook service. Despite its simplicity, the attack successfully extracts sensitive financial data by leveraging
implicit trust relationships and agent-mediated tool composition. This highlights a critical security gap: even low-effort
adversaries can exploit benign-appearing integrations to orchestrate high-impact data leaks.

Our results show that MCP’s core strengths: composability, flexibility, and tool interoperability, also introduce critical
vulnerabilities when paired with implicit trust assumptions and inadequate security boundaries. The low barrier to
entry for such attacks, combined with the growing proliferation of AI agents and community-built servers, represents a
significant and urgent threat vector.

The attack we demonstrated generalizes beyond financial tools: any sensitive MCP server (email, filesystem, calendar)
can be compromised through cross-server orchestration. This is enabled by three systemic weaknesses: (1) permissive
execution defaults, where permission prompts are client-optional; (2) unrestricted composability, which allows any
installed server to trigger tool invocations on others via the agent; and (3) rapid, unvetted ecosystem growth, where
malicious servers can masquerade as useful tools. Without enforceable protocol-level controls, such as scoped capability
declarations, server isolation boundaries, and signed attestations, MCP creates a wide, undersecured attack surface as
agents integrate with high-risk tools.

Acknowledgments

This work was supported by the Pivotal Research Fellowship in AI Safety. 7

References

[1] Anthropic. Introducing the model context protocol. https://www.anthropic.com/news/
model-context-protocol, November 2024.

[2] Yuyou Gan et al. Model context protocol (mcp): Landscape, security threats, and future research directions. arXiv
preprint arXiv:2503.23278, 2025.

[3] Brandon Radosevich and John T. Halloran. Mcp safety audit: Llms with the model context protocol allow major
security exploits. arXiv preprint arXiv:2504.03767, 2025.

[4] Model Context Protocol Contributors. MCP Quickstart: Building Your First Server. https://
modelcontextprotocol.io/quickstart/server, 2024.

[5] fastMCP Contributors. fastMCP Documentation. https://github.com/jlowin/fastmcp, 2024.

7https://www.pivotal-research.org/fellowship

6

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://modelcontextprotocol.io/quickstart/server
https://modelcontextprotocol.io/quickstart/server
https://github.com/jlowin/fastmcp
https://www.pivotal-research.org/fellowship

	Introduction
	Background
	Setup and Execution
	Weather Server Construction
	Target System Composition
	Attack Execution
	Resource Requirements and Reproducibility

	Limitations
	Discussion and Recommendations
	Recommendations

	Conclusion

