
How to Copy-Protect Malleable-Puncturable Cryptographic

Functionalities Under Arbitrary Challenge Distributions

Alper Çakan∗

Carnegie Mellon University
alpercakan98@gmail.com

Vipul Goyal
NTT Research & Carnegie Mellon University

vipul@vipulgoyal.org

Abstract

A quantum copy-protection scheme (Aaronson, CCC’09) encodes a functionality into a quan-
tum state such that given this state, no efficient adversary can create two (possibly entangled)
quantum states that are both capable of running the functionality. There has been a recent line
of works on constructing provably-secure copy-protection schemes for general classes of schemes
in the plain model, and most recently the recent work of Çakan and Goyal (IACR Eprint,
2025) showed how to copy-protect all cryptographically puncturable schemes with pseudoran-
dom puncturing points.

In this work, we show how to copy-protect even a larger class of schemes. We define a class
of cryptographic schemes called malleable-puncturable schemes where the only requirement is
that one can create a circuit that is capable of answering inputs at points that are unrelated
to the challenge in the security game but does not help the adversary answer inputs related to
the challenge. This is a flexible generalization of puncturable schemes, and can capture a wide
range of primitives that was not known how to copy-protect prior to our work.

Going further, we show that our scheme is secure against arbitrary high min-entropy chal-
lenge distributions whereas previous work has only considered schemes that are punctured at
pseudorandom points.

∗Part of this work was done while the author was an intern at NTT Research.

1

ar
X

iv
:2

50
7.

19
03

2v
1

 [
cs

.C
R

]
 2

5
Ju

l 2
02

5

https://arxiv.org/abs/2507.19032v1

Contents

1 Introduction 3

2 Preliminaries 3
2.1 Notation . 3
2.2 Cryptography . 3

2.2.1 Puncturable Pseudorandom Functions . 3
2.2.2 Indistinguishability Obfuscation . 4

2.3 Quantum Information . 5

3 Definitional Work 5
3.1 Malleable-Puncturable Schemes . 5
3.2 Quantum Protection Definitions . 7

4 Technical Tools 8
4.1 Quantum Protection Properties of Coset States . 8
4.2 Quantum-Proof Reconstructive Extractors . 10
4.3 Projective and Threshold Implementations . 10

5 Quantum Protection Construction 12

6 Proof of Copy-Protection Security 13
6.1 Indistinguishability of Hybrids: Proof of Claim 1 . 18
6.2 Reduction to Monogamy-of-Entanglement: Proof of Claim 8 21

6.2.1 Proof of Claim 13 . 23

7 Steganographic Asymmetrically Constrained Encapsulation 27
7.1 Definition . 27
7.2 Construction . 31
7.3 Proof of Steganographic Ciphertext Security . 32

8 Acknowledgments 36

2

1 Introduction

Starting with the seminal work of Wiesner [Wie83], a long line of research has shown that quantum
information can be extremely useful in cryptography. One of the main areas where quantum
information helps cryptography is achieving a task that is classically impossible task no matter
what cryptographic assumptions are made. This line of applications of quantum information is
also called quantum protection. This notion can further be divided into four main categories: copy-
protection ([Aar09]), secure leasing ([AL21]), unbounded/LOCC leakage-resilience ([ÇGLZR24])
and intrusion-detection ([ÇGLZR24]).

A recent line of works ([CG24b, AB24]) have focused on constructing quantum copy-protection
schemes for general classes of functionalities, culminating in the recent work of Çakan and Goyal
([ÇG25]) who showed how to copy-protect in the plain model all cryptographically puncturable
schemes with pseudorandom puncturing points. In this work, we further advance the class of func-
tionalities that can be copy-protected: We define a class of cryptographic schemes called malleable-
puncturable schemes where the only requirement is that one can create a circuit that is capable of
answering inputs at points that are unrelated to the challenge in the security game but does not
help the adversary answer inputs related to the challenge. This is an extremely flexible generaliza-
tion of puncturable schemes, and can capture a wide range of primitives that was not known how
to copy-protect prior to our work.

Theorem 1 (Corollary 1, informal). For any functionality F that satisfies malleable-puncturing
security (Definition 4), there exists a quantum copy-protection scheme for F secure against arbi-
trary high min-entropy challenge distributions; assuming subexponentially secure iO and one-way
functions.

2 Preliminaries

2.1 Notation

When S is a set, we write x← S to mean that x is sampled uniformly at random from S. When D
is a distribution, we write x← D to mean that x is sampled from D. Finally, we write x← B(R) or
B(a) to mean that x is set to a sample as output by the quantum or classical randomized algorithm
B run on R or a. We use similar notation for quantum registers, e.g., R← B(a).

We write QPT to mean a stateful (unless otherwise specified) quantum polynomial time. We
write R to mean a quantum register, which keeps a quantum state that will evolve when the register
is acted on, and it can be entangled with other registers. We write R← ρ to mean that the register
R is initialized with a sample from the quantum distribution (i.e. mixed state) ρ. We refer the
reader to [NC10] for a preliminary on quantum information and computation.

Unless otherwise specified, all of our cryptographical assumptions are implicitly post-quantum,
e.g., one-way functions means post-quantum secure one-way functions.

2.2 Cryptography

2.2.1 Puncturable Pseudorandom Functions

In this section, we recall puncturable pseudorandom functions.

Definition 1 ([SW14]). A puncturable pseudorandom function (PRF) is a family of functions
{F : {0, 1}c(λ) × {0, 1}m(λ) → {0, 1}n(λ)}λ∈N+ with the following associated efficient algorithms.

3

• PRF.Setup(1λ) : Takes in the unary representation of the security parameter and outputs a
key K in {0, 1}c(λ).

• PRF.Eval(K,x) : Takes in a key K and an input x, outputs an evaluation of the PRF.

• PRF.Puncture(K,S) : Takes as input a key and a set S ⊆ {0, 1}m(λ), outputs a punctured key.

We require the following.

Correctness. For all efficient distributions D(1λ) over the power set 2{0,1}
m(λ)

, we require

Pr

∀x ̸∈ S PRF.Eval(KS , x) = F (K,x) :
S ← D(1λ)

K ← PRF.Setup(1λ)
KS ← PRF.Puncture(K,S)

 = 1.

Puncturing Security We require that any stateful QPT adversary A wins the following game
with probability at most 1/2 + negl(λ).

1. A outputs a set S.

2. The challenger samples K ← PRF.Setup(1λ) and KS ← PRF.Puncture(K,S)

3. The challenger samples b← {0, 1}. If b = 0, the challenger submits KS , {F (K,x)}x∈S to the
adversary. Otherwise, it submits KS , {ys}s∈S to the adversary where ys ← {0, 1}n(λ) for all
s ∈ S.

4. The adversary outputs a guess b′ and we say that the adversary has won if b′ = b.

Theorem 2 ([SW14, Zha12]). Let n(·),m(·), e(λ), k(λ) be efficiently computable functions.

• If (post-quantum) one-way functions exist, then there exists a (post-quantum) puncturable
PRF with input space {0, 1}m(λ) and output space {0, 1}n(λ).

• If we assume subexponentially-secure (post-quantum) one-way functions exist, then for any
c > 0, there exists a (post-quantum) 2−λ

c
-secure1 puncturable PRF against subexponential

time adversaries with input space {0, 1}m(λ) and output space {0, 1}n(λ).

2.2.2 Indistinguishability Obfuscation

In this section, we introduce indistinguishability obfuscation.

Definition 2. An indistinguishability obfuscation scheme iO for a class of circuits C = {Cλ}λ
satisfies the following.

Correctness. For all λ,C ∈ Cλ and inputs x, Pr
[
C̃(x) = C(x) : C̃ ← iO(1λ, C)

]
= 1.

1While the original results are for negligible security against polynomial time adversaries, it is easy to see that
they carry over to subexponential security. Further, by scaling the security parameter by a polynomial and simple
input/output conversions, subexponentially secure (for any exponent c′) one-way functions is sufficient to construct
for any c a puncturable PRF that is 2−λc

-secure.

4

Security. Let B be any QPT algorithm that outputs two circuits C0, C1 ∈ C of the same size, along
with auxiliary information, such that Pr

[
∀x C0(x) = C1(x) : (C0, C1,Raux)← B(1λ)

]
≥ 1−negl(λ).

Then, for any QPT adversary A,∣∣∣∣Pr[A(iO(1λ, C0),Raux) = 1 : (C0, C1,Raux)← B(1λ)
]
−

Pr
[
A(iO(1λ, C1),Raux) = 1 : (C0, C1,Raux)← B(1λ)

]∣∣∣∣ ≤ negl(λ).

2.3 Quantum Information

Lemma 1 (Almost As Good As New Lemma [Aar16], verbatim). Let ρ be a mixed state acting
on Cd. Let U be a unitary and (Π0,Π1 = I − Π0) be projectors all acting on Cd ⊗ Cd′. We
interpret (U,Π0,Π1) as a measurement performed by appending an ancillary system of dimension
d′ in the state |0⟩⟨0|, applying U and then performing the projective measurement Π0,Π1 on the
larger system. Assuming that the outcome corresponding to Π0 has probability 1− ϵ, we have∥∥ρ− ρ′

∥∥
Tr
≤
√
ϵ

where ρ′ is the state after performing the measurement, undoing the unitary U and tracing out the
ancillary system.

Theorem 3 ([ÇG24a]). Let ρ be a bipartite state and Λ = {Π1, . . . },Λ′ = {Π′1, . . . } be two projective
measurements over each of these registers, respectively. Suppose

Tr
{
Π1 ⊗Π′1ρ

}
≥ 1− ϵ.

Let M = {Mi}i∈I be a general measurement over the first register and fix any i ∈ I. Let τ denote
the post-measurement state of the second register after applying the measurement M on the first
register of ρ and conditioned on obtaining outcome i. Let pi denote probability of outcome i, that

is pi = Tr
{
(Mi ⊗ I)ρ(M †i ⊗ I)

}
. Then,

Tr
{
Π′1τ

}
≥ 1− 3

√
ϵ

2pi
.

Theorem 4 (Implementation Independence of Measurements on Bipartite States ([ÇG24a])). Let
Λ = {Mi}i∈I ,Λ′ = {Ei}i∈I be two general measurements whose POVMs are equivalent, that is,

M †i Mi = E†iEi for all i ∈ I.
Let ρ be any bipartite state whose first register has the appropriate dimension for Λ,Λ′. Then,

the post-measurement state of the second register conditioned on any outcome i ∈ I is the same
when either Λ or Λ′ is applied to the first register of ρ. That is,

(Tr⊗I)
(Mi ⊗ I)ρ(M †i ⊗ I)

Tr
{
(Mi ⊗ I)ρ(M †i ⊗ I)

} = (Tr⊗I)
(Ei ⊗ I)ρ(E†i ⊗ I)

Tr
{
(Ei ⊗ I)ρ(E†i ⊗ I)

}
3 Definitional Work

3.1 Malleable-Puncturable Schemes

We first recall the following template from [ÇG25] that captures most cryptographic schemes along
with their security games.

5

Definition 3 (Cryptographic Scheme with Security Game ([ÇG25])). A cryptographic scheme with
security game is a tuple of efficient algorithms (Eval,Ver,Chal,SampCh), defined as follows.

• Eval is a (possibly quantum) algorithm that receives as input some key k ∈ K and some input
z ∈ Z, and outputs some y ∈ Y,

• Chal is an (possibly quantum) interactive algorithm that represents the setup of the security
game such that at the end of the interaction with an adversary, it outputs a key k ∈ K and
challenger state2 st,

• SampCh is a classical input-output (possibly quantum) sampler that receives as input st, and
outputs a challenge ch (which will be sent to the adversary) and the answer key3 ak,

• Ver is a (possibly quantum) verifier that receives as input the answer key ak and an alleged
answer ans′, and it outputs TRUE or FALSE.

We define meaningfulness and security as below.

pFtriv-Security: For any QPT adversary A, we have Pr
[
SecurityGameA(1

λ) = 1
]
≤ pFtriv(λ) +

negl(λ) where the security game SecurityGame is defined as follows4.

SecurityGameA(1
λ)

1. Chal(1λ) and A(1λ) interact5, Chal outputs k and st.

2. The challenger runs ak, ch← SampCh(st).

3. The adversary A receives ch and outputs ans′.

4. The challenger outputs 1 if Ver(ak, ans′) = TRUE, otherwise outputs 0.

Meaningfulness: There exists an efficient (possibly quantum) algorithm B such that Ver(ak,B(k, ch)) =
TRUE with probability 1− negl(λ). where the values are sampled as in the experiment above.

We now define the notion of malleable-puncturable schemes.

Definition 4 (Malleable-Puncturable Scheme). A malleable-puncturable scheme is a cryptographic
scheme CS = (Eval,Ver,Chal,SampCh) with the following additions and modifications.

• The key k is parsed as (C, aux,Qrel) where C is a classical circuit.

• Eval algorithm Eval(k, z) is equivalent to EvalC(aux, z) (C can be called possibly in superpo-
sition).

2This represents the information needed to sample a challenge. For example, this could be the challenge messages
m0,m1 in a CPA security game for encryption.

3This key here represents the information that is needed to verify adversary’s answer. For example, in a CPA
security game, this will be the challenge bit b where the challenge ciphertext ct is an encryption of mb.

4Here, pFtriv denotes the baseline/trivial success probability. For example, for a chosen plaintext security game,
we will have pFtriv = 1/2.

5During this interaction, A may learn some information related to the secret s. For example, in a public-key
encryption security game, A will learn the public-key

6

• SampCh consists of two steps: Dinp(st) which outputs x, and SampChFromInp(st, x) which
outputs ak, ch.

• There is an additional (possibly quantum) efficient algorithm MallPunc(st, x) which outputs
Cpunc such that for any x′: if Qrel(x

′) ̸= x then Cpunc(x
′) = C(x), where x← Dinp(st).

Malleable-Puncturable pFtriv-Security: For any QPT adversary A, we have Pr
[
MalleablePuncturingGameA(1

λ) = 1
]
≤

pFtriv(λ) + negl(λ) where the security game MalleablePuncturingGame is defined as follows.

MalleablePuncturingGameA(1
λ)

1. Setup Phase: Chal and A interact, Chal outputs k = (C, aux,Qrel).

2. The challenger runs x← Dinp(st).

3. The challenger runs ak, ch← SampChFromInp(st, x).

4. The challenger runs Cpunc ← MallPunc(st, x).

5. Challenge Phase: The adversary A receives (Cpunc, Qrel), aux, ch, x.

6. The challenger outputs 1 if Ver(ak, ans′) = TRUE, otherwise outputs 0.

Weak Challenge Resampling Correctness: 6 Any malleable-punctured key Cpunc, Qrel, aux can
be used to sample from the challenge distribution SampCh(st).

Finally, we also require that the distribution Dinp(st) has min-entropy λc for some c ∈ R+, given
the state of the adversary A and st.

3.2 Quantum Protection Definitions

We recall copy-protection security, introduced by [Aar09], which is also referred to as anti-piracy
security or unclonability security. We use the particular formalization given by [ÇG25].

Definition 5 (Copy-Protection). A quantum protection scheme QuantumProtect is said to satisfy
copy-protection security for a cryptographic scheme CS = (Eval,Ver,Chal,SampCh) (Definition 3)
if for any QPT adversary A = (A0,A1A2), we have Pr

[
AntiPiracyGameQuantumProtect,A(1

λ) = 1
]
≤

pFtriv(λ) + negl(λ) where the security game AntiPiracyGameQuantumProtect,A(1
λ) is defined as follows.

AntiPiracyGameQuantumProtect,A(1
λ)

1. Sample pp,R′ ← QuantumProtect.GenState(1λ).

2. Chal(1λ) and A(1λ) interact, Chal outputs k and st.

3. Sample cp← QuantumProtect.Protect(pp, k).

4. Submit cp,R′ to A0.

5. The adversary A0 outputs two registers R1,R2.

6Note that this is trivially true for public-key primitives

7

6. The challenger runs ak1, ch1 ← SampCh(st) and ak2, ch2 ← SampCh(st).

7. A1 receives ch1,R1, outputs ans′1.

8. A2 receives ch2,R2, outputs ans′2.

9. b1,V er ← Ver(ak1, ans
′
1) and b2,V er ← Ver(ak2, ans

′
2).

10. The challenger outputs 1 if b1,V er = 1 ∧ b2,V er = 1, otherwise outputs 0.

We also recall strong anti-piracy, which uses threshold implementations. We refer the reader to
[ALL+21] and [ÇG24a] for definition of threshold implementations. When we write TI(Ver,D),pFtriv+γ

for some distribution D (such as SampCh(st)), we mean the threshold implementation for the
following mixture of binary projective measurements: Sample ak, ch← D and apply the universal
quantum circuit to execute the encoded circuit in R on input ch to obtain an outcome ans′, and
run Ver(ak, ans′) to obtain a bit. When it is clear from context, we will omit writing Ver and just
denote the challenge distribution.

Definition 6 (Strong Anti-Piracy). Let γ be an inverse polynomial. A quantum protection scheme
QuantumProtect is said to satisfy strong copy-protection security if for any QPT adversary A =

A0, we have Pr
[
StrongAntiPiracyGame

γ(λ)
QuantumProtect,A(1

λ) = 1
]
≤ negl(λ) where the security game

StrongAntiPiracyGame
γ(λ)
QuantumProtect,A(1

λ) is defined as follows.

StrongAntiPiracyGame
γ(λ)
QuantumProtect,A(1

λ)

1. Sample pp,R′ ← QuantumProtect.GenState(1λ).

2. Chal(1λ) and A(1λ) interact, Chal outputs k and st.

3. Sample cp← QuantumProtect.Protect(pp, k).

4. Submit cp,R′ to A0.

5. The adversary A0 outputs two registers R1,R2.

6. Apply the threshold implementation TI(Ver,SampCh(st)),pFtriv+γ⊗TI(Ver,SampCh(st)),pFtriv+γ to R1,R2.

7. The challenger outputs 1 if both measurements output 1, otherwise outputs 0.

As shown by [CLLZ21], a scheme that satisfies strong anti-piracy for any inverse polynomial γ
also satisfies regular anti-piracy (Definition 5).

4 Technical Tools

In this section, we recall some technical tools, mostly verbatim from [ÇG25].

4.1 Quantum Protection Properties of Coset States

We first give the following lemma, which essentially helps separate the computational and the
information-theoretic quantum protection properties of coset states.

Lemma 2. Consider the following (parametrized) game GamebA(1
λ) (for c ∈ {0, 1}) between a

challenger and an adversary A.

8

GamecA(1
λ)

1. The challenger samples a F
d(λ)
2 -coset as follows: Sample a subspace A ≤ F

d(λ)
2 and two

elements a1, a2 ∈ Fd(λ)
2 uniformly at random.

2. The challenger initialize the register R with the coset state |Aa1,a2⟩ =
∑

v∈A(−1)⟨v,a2⟩ |v + a1⟩.

3. The challenger samples a superspace B1 of A of dimension 3d
4 , and a subspace B2 of A of

dimension d
4 and elements z1 ← B1, z2 ← B⊥2 . The challenger also sets t = z1 + a1 and

t′ = z2 + a2.

4. The challenger samples M̂ ← iO(M c).

M0(b, v)

Hardcoded: A, a1, a2

1. If b = 0: Check if v ∈ A + a1. If so, output TRUE, otherwise output FALSE, and
terminate.

2. If b = 1: Check if v ∈ A⊥ + a2. If so, output TRUE, otherwise output FALSE.

M1(b, v)

Hardcoded: t, t′, B1, B2

1. If b = 0: Check if v ∈ B1 + t. If so, output TRUE, otherwise output FALSE, and
terminate.

2. If b = 1: Check if v ∈ B⊥2 + t′. If so, output TRUE, otherwise output FALSE.

5. The challenger sends R, A,B1, B2, t, t
′ to the adversary A.

6. The adversary outputs a register Rout.

7. The challenger outputs Rout, A, a1, a2.

For any QPT adversary A,
∥∥Game0A(1

λ)− Game1A(1
λ)
∥∥
Tr
≤ negl(λ), assuming the existence of

indistinguishability obfuscation and injective one-way functions.
Assuming the existence of subexponentially secure indistinguishability obfuscation and injective

one-way functions, there exists a constant7 c > 0 such that that for any quantum adversary that
runs in time 2−(d(λ))

c
,
∥∥Game0A(1

λ)− Game1A(1
λ)
∥∥
Tr
≤ 2−(d(λ))

c
.

Now we recall the following information-theoretic copy-protection security for coset states.

Lemma 3 (Monogamy-of-Entanglement for Coset States ([CLLZ21], implicit)). Consider the fol-
lowing game between a tuple of adversaries A = (A0,A1,A2) and a challenger.

7Note that this is a fixed constant that cannot be improved by assuming higher levels of security for iO or OWF.

9

GameA(1
λ)

1. The challenger samples a F
d(λ)
2 -coset as follows: Sample a subspace A ≤ F

d(λ)
2 and two

elements a1, a2 ∈ Fd(λ)
2 uniformly at random.

2. The challenger initialize the register R with the coset state |Aa1,a2⟩ =
∑

v∈A(−1)⟨v,a2⟩ |v + a1⟩.

3. The challenger samples a superspace B1 of A of dimension 3d
4 , and a subspace B2 of A of

dimension d
4 and elements z1 ← B1, z2 ← B⊥2 . The challenger also sets t = z1 + a1 and

t′ = z2 + a2.

4. The challenger sends R, B1, B2, t, t
′ to the adversary A0.

5. The adversary A0 outputs two registers R1,R2.

6. The adversaries8 A1,A2 receive (A,R1) and (A,R2), respectively.

7. The adversaries A1,A2 outputs v and w, respectively.

8. The challenger checks if v = Can(A, a1) and w = Can(A⊥, a2). If so, it outputs 1. Otherwise,
it outputs 0.

For any (unbounded) adversary A,

Pr
[
GameA(1

λ) = 1
]
≤ 2−cMoE ·d(λ)

4.2 Quantum-Proof Reconstructive Extractors

We recall the notion of quantum-proof extractors, which is a randomness extractor that is secure
against quantum side information on the source.

Definition 7 (Quantum-proof seeded extractor [DPVR12]). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is said to be a (k, ϵ)-strong quantum-proof seeded extractor if for any cq-state ρ ∈ {0, 1}n⊗
Y of the registers X,Y with Hmin(X|Y) ≥ k, we have

Ext(X,S), Y, S ≈ϵ Um, Y, S

where S ← {0, 1}d and Um ← {0, 1}m.

We call an extractor reconstructive extractor if given a distinguisher between Ext(X,S), Y, S
versus Um, Y, S with advantage better than ϵ, there exists an (unbounded) algorithm E such that
Pr[E(Y) = X] ≥ 2−k.

4.3 Projective and Threshold Implementations

We recall the following properties of projective and threshold implementations ([Zha20, ALL+21]).
We refer the reader to [ALL+21] and [ÇG24a] for definitions of projective and threshold implemen-
tations.

8The adversaries not communicating, but they are entangled through R1,R2

10

Theorem 5 ([ALL+21]). Consider the approximate threshold implementation ATIϵ,δ(P,D),η, associated
with a collection of binary projective measurements P, a distribution D over the index set of P and
a threshold value η ∈ [0, 1], applied to a state ρ.

We then have the following.

• For any state ρ,

Tr
[
ATIϵ,δ(P,D),η−ϵ · ρ = 1

]
≥ Tr

[
TI(P,D),ηρ = 1

]
− δ.

• For any state ρ,

Tr
[
TI(P,D),η−ϵρ = 1

]
≥ Tr

[
ATIϵ,δ(P,D),ηρ = 1

]
− δ.

• ATIϵ,δ(P,D),η−ϵ is efficient.

• TI(P,D),η is a projection and the collapsed state conditioned on outcome 1 is a mixture of
eigenvectors of P with eigenvalue ≥ η.

We give some further generalizations below.

Theorem 6 ([ÇG24a]). For any k ∈ N, let Pℓ,Dℓ be a collection of projective measurements and a
distribution on the index set of this collection, respectively, and ηℓ ∈ [0, 1] be threshold values for all

ℓ ∈ [k]. Write Tr
[(⊗

ℓ∈[k] ATI
ϵ,δ
Pℓ,Dℓ,ηℓ

)
· ρ
]
to denote the probability that the outcome of the joint

measurement
⊗

ℓ∈[k] ATI
ϵ,δ
Pℓ,Dℓ,ηℓ

applied on ρ is all 1, and similarly for TI.
Then, we have the following.

• For any k-partite state ρ,

Tr

⊗
ℓ∈[k]

ATIϵ,δPℓ,Dℓ,ηℓ−ϵ

 ρ

 ≥ Tr

⊗
ℓ∈[k]

TIηℓ(PℓDℓ
)

 ρ

− k · δ.

• For any k-partite state ρ, let ρ′ be the collapsed state obtained after applying
⊗

ℓ∈[k] ATI
ϵ,δ
Pℓ,Dℓ,ηℓ

to ρ and obtaining the outcome 1. Then,

Tr

⊗
ℓ∈[k]

TIηℓ−2ϵ(PℓDℓ
)

 ρ′

 ≥ 1− 2k · δ.

• For any k-partite state ρ, let ρ′ be the collapsed state obtained after applying
⊗

ℓ∈[k] ATI
ϵ,δ
Pℓ,Dℓ,η

to ρ and obtaining the outcome 1. Then,

Tr

⊗
ℓ∈[k]

ATIϵ,δPℓ,Dℓ,ηℓ−3ϵ

 · ρ′
 ≥ 1− 3k · δ.

• For any k-partite state ρ,

Tr

⊗
ℓ∈[k]

TIηℓ−ϵ(PℓDℓ
)

 ρ

 ≥ Tr

⊗
ℓ∈[k]

ATIϵ,δPℓ,Dℓ,ηℓ

 ρ

− k · δ.

11

We now give the following lemma about simulating approximate threshold implementations.

Lemma 4 (Simulated ATI ([ÇG25])). There exists a polynomial q(·) and a (parametrized) measure-

ment SimATIϵ,δ,αP,η that receives as input a list of ℓ strings (from the support of D) and runs in time
poly(ℓ) such that for any 0 < ϵ, δ, η, α < 1, for any collection of binary projective measurements
P = {Pi, I − PI}i∈I , for any possibly correlated distribution of states ρ with distributions D over
I,

Pr
[
SimATIϵ,δ,αP,η−5ϵ(s1, . . . , sℓ)(ρ) = 1 : s1, . . . , sℓ ← D

]
≥ Pr

[
ATIϵ,δ(P,D),η(ρ) = 1

]
− α− 4δ.

Pr
[
ATIϵ,δ(P,D),η−5ϵ(ρ) = 1

]
≥ Pr

[
SimATIϵ,δ,αP,η (s1, . . . , sℓ)(ρ) = 1 : s1, . . . , sℓ ← D

]
− α− 4δ

Pr
[
SimATIϵ,δ,αP,η−5ϵ(s1, . . . , sℓ)(ρ) = 1 : s1, . . . , sℓ ← D

]
≥ Pr

[
TI(P,D),η(ρ) = 1

]
− α− 4δ

Pr
[
TI(P,D),η−5ϵ(ρ) = 1

]
≥ Pr

[
SimATIϵ,δ,αP,η (s1, . . . , sℓ)(ρ) = 1 : s1, . . . , sℓ ← D

]
− α− 4δ

where ℓ = q(1/ϵ, log(1/δ), 1/α). Note that the runtime of SimATI depends on the parameters of D
(e.g. sampling runtime of D), but otherwise it does not use oracles access to D nor does it use any
samples from D (except for s1, . . . , sℓ which are given explicitly).

5 Quantum Protection Construction

In this section, we give our quantum protection construction QuantumProtect, which is the same as
the construction of [ÇG25], which in turn is essentially the same as the construction of [CLLZ21]
(when instantiated with iO and coset states rather than ideal oracles and subspace states).

Let CS = (Eval,Ver,Chal, SampCh) be the malleable-puncturable scheme to be protected. Let
PRF be a pseudorandom function family scheme and let iO be an indistinguishability obfuscation
scheme, with security levels and input-output sizes to be defined in the proof. Let d(λ) be a
parameter (set in the proof). Further, all the obfuscated programs are implicitly padded to the
appropriate sizes as needed in the proof.

QuantumProtect.GenState(1λ)

1. Sample a F
d(λ)
2 -coset as follows: Sample a subspace A ≤ Fd(λ)

2 and two elements a1, a2 ∈ Fd(λ)
2

uniformly at random.

2. Initialize the register R with the coset state |Aa1,a2⟩ =
∑

v∈A(−1)⟨v,a2⟩ |v + a1⟩.

3. Sample M̂ ← iO(M) where M is the membership checking program for the cosets as defined
below.

M(b, v)

Hardcoded: A, a1, a2

1. If b = 0: Check if v ∈ A + a1. If so, output TRUE, otherwise output FALSE, and
terminate.

2. If b = 1: Check if v ∈ A⊥ + a2. If so, output TRUE, otherwise output FALSE.

4. Output (pp = M̂,R).

12

QuantumProtect.Protect(pp, k)

1. Parse M̂ = pp.

2. Parse (C, aux,Qrel) = k.

3. Sample a PRF key as K ← PRF.KeyGen(1λ).

4. Sample P̂ ← iO(P) where P is the following program.

P (x, b, v)

Hardcoded: K, M̂,C

1. Check if M̂(b, v) = TRUE. If not, output ⊥ and terminate.

2. If b = 0, output C(x)⊕ PRF.Eval(K,x) and terminate.

3. If b = 1, output PRF.Eval(K,x).

5. Output (P̂ , aux).

QuantumProtect.Eval(R, x)

1. Parse ((P̂ , aux),R′) = R.

2. Run CS.Eval(aux, z) by implementing each circuit-query as follows: Run P̂ on x, 0,R′ co-
herently, let y0 denote the outcome. Then, rewind the register R′ (as in Lemma 1). Then
run P̂ on x, 1,R′ coherently, let y1 denote the outcome. Then, rewind the register R′ (as in
Lemma 1). Pass y0 ⊕ y1 as the output.

Theorem 7. For any malleable-puncturable scheme CS, QuantumProtect satisfies strong anti-
piracy (Definition 6) for all inverse polynomial γ(λ).

Corollary 1. Assuming subexponentially secure indistinguishability obfuscation and one-way func-
tions, QuantumProtect is a secure copy-protection for any malleable-puncturable scheme.

Proof. All the assumed primitives (in the construction and in the proof) can be instantiated using
subexponentially secure indistinguishability obfuscation and one-way functions for any subexpo-
nential function. Correctness of the scheme is straightforward. The security follows from Theorem 7
and the fact that strong anti-piracy for all inverse polynomial values implies regular anti-piracy
(Definition 5), as shown by [CLLZ21].

6 Proof of Copy-Protection Security

In this section, we prove Theorem 7. We prove security through a sequence of hybrids, each of
which is constructed by modifying the previous one.

Let CS = (Eval,Ver,Chal,Dinp, SampChFromInp,MallPunc) be the malleable-puncturable scheme
being copy-protected. Suppose for a contradiction that there exists a QPT adversary A and polyno-

mials q1(λ), q2(λ) such that Pr
[
StrongAntiPiracyGame

γ(λ)
QuantumProtect,A(1

λ) = 1
]
≥ 1

q1(λ)
for infinitely

many values of λ > 0, where γ(λ) = 1
q2(λ)

. We also set the parameter ϵ∗(λ) = γ(λ)
128 . Another

13

parameter, δ∗(λ), will be chosen to satisfy the parameter constraints given in the proof.Let Ext be
a constructive extractor with output length λc′ for some c′ ∈ R+ (any c′ works, the precise value
will depend on other parameters). against quantum side-information (Section 4.2) for sources that
are 2−k unpredictable sources. Let ϵExt denote the extractor error level. Let p1(λ) denote the input
size of the circuits of CS, that is, X = {0, 1}p1(λ). Let p5(λ) denote the output size of the circuits
of CS. Let p2(λ) denote the maximum of the circuit size of CS and the key length of the PRF
scheme PRF. Let α2(λ) denote the security of ACE, let α3(λ) denote iO security, let α4(λ) denote
the security level from Lemma 2. α1(λ) is a parameter that will be clear from the proof. Let G be
a PRG with appropriate input-output length.

Hyb0: The original security game StrongAntiPiracyGame
γ(λ)
QuantumProtect,A(1

λ). As a notation, we

write b1Test,1 and b1Test,2 to denote the measurement outcomes obtained by the challenger by applying

the threshold implementations to the registers R1 and R2, respectively. We set b1Test = b1Test,1 ∧
b1Test,2. Thus, outcome of the experiment in this hybrid is b1Test.

Hyb1: Instead of applying the threshold implementation TISampCh(st),pFtriv+γ(λ) on the registers

R1,R2, the challenger now instead applies approximate threshold implementation ATI(1) = ATIϵ
∗,δ∗

SampCh(st),pFtriv+
126γ
128

on the registers R1 and R2. We still write b1Test,1, b
1
Test,2 to denote the measurement outcomes, re-

spectively. Note that the output of the game is b1Test in this hybrid.

Hyb2: We modify the sampling of M̂ during the execution of QuantumProtect.GenState. We first

sample a superspace B1 of A of dimension 3d
4 , a subspace B2 of A of dimension d

4 and elements

u1 ← B1, u2 ← B⊥2 . Finally, we set t = u1 + a1 and t′ = u2 + a2. Now, we sample M̂ ← iO(M ′)
where M ′ is the following program.

M ′(b, v)
Hardcoded: t, t′, B1, B2

1. If b = 0: Check if v ∈ B1 + t. If so, output TRUE, otherwise output FALSE, and
terminate.

2. If b = 1: Check if v ∈ B⊥2 + t′. If so, output TRUE, otherwise output FALSE.

Hyb3: After applying ATI(1) on the registers R1 and R2, the challenger applies TI(2) ⊗TI(2) to the

registers R1,R2 where TISampCh(st),pFtriv+
122γ
128

. We write b2Test,1, b
2
Test,2 to denote the measurement

outcomes, respectively. Finally, the challenger now outputs b1Test,1, b
1
Test,2, b

2
Test,1, b

2
Test,2 as the

output of the game.

Hyb4: The challenger samples an ACE instance as sk ← ACE.Setup(1λ), ek = ACE.GenEK(sk,FALSE9)

and dk′ = ACE.GenDK(sk,TRUE10). Then it samples r∗ct,1, r
∗
ct,2 ← {0, 1}p4(λ) and computes

9This represents the circuit that always outputs FALSE, meaning that the encapsulation key will not be punctured
at all.

10This represents the circuit that always outputs TRUE, meaning that the encapsulation key will be punctured
everywhere.

14

ct∗1 = C∗ ⊕ G(r∗ct,1), ct
∗
2 = K ⊕ G(r∗ct,2) and aCan

1 = Can(A, a1), a
Can
2 = Can(A⊥, a2). We also

modify the way the challenger samples P̂ : Now it samples it as P̂ ← iO(P (1)).

P (1)(x, b, v)

Hardcoded: K, M̂,C,Qrel, dk
′, ct∗1, ct

∗
2

1. Check if M̂(b, v) = TRUE. If not, output ⊥ and terminate.

2. Compute x′ = Qrel(x).

3. Compute pl = ACE.Dec(dk′, x′). If pl ̸= ⊥, parse t||A′||se′||z||ind = pl.

4. If pl = ⊥ or if b = 0 ∧ t = 1 or if b = 1 ∧ t = 0,

1. If b = 0, output C(x)⊕ PRF.Eval(K,x) and terminate.

2. If b = 1, output PRF.Eval(K,x) and terminate.

5. If pl ̸= ⊥,

1. If t = 0,

1. Compute a′ = Can(A′, v) and r′ = Ext(se′, a′)⊕ z.

2. Compute C ′ = ct∗1 ⊕G(r′).

3. Output C ′(x)⊕ PRF.Eval(K,x) and terminate.

2. If t = 1,

1. Compute a′ = Can((A′)⊥, v) and r′ = Ext(se′, a′)⊕ z.

2. Compute K ′ = ct∗2 ⊕G(r′).

3. Output PRF.Eval(K ′, x) and terminate.

Hyb5: The challenger now sets dk′ = ACE.GenDK(sk,FALSE).

Hyb6: We define the following distributions where

• ek1 = ACE.GenEK(sk, PRE1) and PRE1(m) is the circuit that outputs TRUE if the first bit
of m is not 1. That is, ek1 can only encapsulate messages that start with 1.

• ek0 = ACE.GenEK(sk, PRE0) and PRE0(m) is the circuit that outputs TRUE if the first bit
of m is not 0. That is, ek0 can only encapsulate messages that start with 0.

D(2)
1

Hardcoded: st, A, ek0

1. Sample an extractor seed as se← {0, 1}ℓ3(λ).

2. Sample r∗∗1 ← {0, 1}p4(λ).

3. Set pl1 = 0||A||se||r∗∗1 ||0ℓ4(λ).

4. Sample x∗ ← ACE.StegEnc(ek0, pl1, ⟨Dinp(st)⟩).

15

5. Sample ak, ch← SampChFromInp(st, x∗).

6. Output ak, ch.

D(2)
2

Hardcoded: cp∗, C∗, A, ek

1. Sample an extractor seed as se← {0, 1}ℓ3(λ).

2. Sample r∗∗2 ← {0, 1}p4(λ).

3. Set pl2 = 1||A||se||r∗∗2 ||0ℓ4(λ).

4. Sample x∗ ← ACE.StegEnc(ek1, pl2, ⟨Dinp(st)⟩).

5. Sample ak, ch← SampChFromInp(st, x∗).

6. Output ak, ch.

Finally, instead of applying TI(2) ⊗ TI(2) to the registers R1,R2, the challenger now applies
ATI(3,1)⊗ATI(3,2) to the registers R1,R2, where ATI

(3,1) = ATIϵ
∗,δ∗

D(2)
1 ,pFtriv+

100γ
128

and ATI(3,2) = ATIϵ
∗,δ∗

D(2)
2 ,pFtriv+

100γ
128

.

We still write b2Test,1, b
2
Test,2 to denote the measurement outcomes, respectively. Also, the challenger

still outputs b1Test,1, b
1
Test,2, b

2
Test,1, b

2
Test,2 as the output of the game.

Hyb7: The challenger flips a random coin c′ ← {1, 2} and only applies ATI(3,c
′) to Rc′ , instead of

testing both registers. Let b2Test denote the measurement outcome. The challenger now outputs
b1Test,1, b

1
Test,2, b

2
Test as the experiment outcome.

Hyb8: Instead of applying ATI(3,c
′) to Rc′ , the challenger samples ak∗, ch∗ ← D(2)

c′ and runs b2V er ←
U(Rc′ , ch). The challenger now outputs b1Test,1, b

1
Test,2, b

2
V er as the experiment outcome. We write

x∗, r∗∗, se∗, pl∗ to denote the values sampled/computed during the sampling of ak∗, ch∗.

Hyb9: First, we compute z∗ as follows. If c′ = 1, we compute C ′ = ct∗1 ⊕G(Ext(se∗, aCan
1) ⊕ r∗∗)

and z∗ = C ′(act∗) ⊕ F (K, act∗) where C ′ is interpreted as a circuit. If c′ = 2, we compute
z∗ = PRF.Eval(K ′, x∗) where K ′ = ct∗2 ⊕ G(Ext(se∗, aCan

2) ⊕ r∗∗). The challenger computes dk′′ =
ACE.GenDK(sk,1pl∗).

We modify the way the challenger samples P̂ : Now it samples it as P̂ ← iO(P (2)).

P (2)(x, b, v)

Hardcoded: K, M̂,C,Qrel, ct
∗
1, ct

∗
2, dk

′′, x∗, z∗

1. Check if M̂(b, v) = TRUE. If not, output ⊥ and terminate.

2. Compute x′ = Qrel(x).

3. If x′ = x∗,

1. If b = 0 and c′ = 1, output z∗ and terminate.

16

2. If b = 1 and c′ = 2, output z∗ and terminate.

3. Otherwise if b = 1, output PRF.Eval(K,x) and terminate.

4. Otherwise if b = 0, output C(x)⊕ PRF.Eval(K,x) and terminate.

4. Compute pl = ACE.Dec(dk′′, x′). If pl ̸= ⊥, parse t||A′||se′||z||ind = pl.

5. If pl = ⊥ or if b = 0 ∧ t = 1 or if b = 1 ∧ t = 0,

1. If b = 0, output C(x)⊕ PRF.Eval(K,x) and terminate.

2. If b = 1, output PRF.Eval(K,x) and terminate.

6. If pl ̸= ⊥,

1. If t = 0,

1. Compute a′ = Can(A′, v) and r′ = Ext(se′, a′)⊕ z.

2. Compute C ′ = ct∗1 ⊕G(r′).

3. Output C ′(x)⊕ PRF.Eval(K,x) and terminate.

2. If t = 1,

1. Compute a′ = Can((A′)⊥, v) and r′ = Ext(se′, a′)⊕ z.

2. Compute K ′ = ct∗2 ⊕G(r′).

3. Output PRF.Eval(K ′, x) and terminate.

Also, from this hybrid on, our obfuscated programs will have two branches depending on the
value of c′. However, since c′ is sampled at the beginning of the experiment, we simply (and
implicitly) remove the dead branch (i.e. if c′ = 1, we can remove the lines that are executed if
c′ = 1, along with the hardwired values that are only used there). Note that this does not change
the proof thanks to iO security.

Hyb10: The challenger now samples x∗ ← Dinp(st) instead of sampling using ACE.StegEnc.

Hyb11: The challenger now samples M̂ as M̂ ← iO(M).

Hyb12: We sample K{x∗} ← PRF.Punc(K,x∗). We also set s∗1 = PRF.Eval(K,x∗) and s∗2 =
C(x∗) ⊕ s∗1. We also sample Cpunc ← MallPunc(st, x∗). Then, we modify the obfuscated program
P̂ by now sampling it as P̂ ← iO(P (3)).

P (3)(x, b, v)

Hardcoded: M̂,Qrel, ct
∗
1, ct

∗
2, dk

′′, x∗, z∗, Cpunc,K{x∗}, s∗1, s∗2

1. Check if M̂(b, v) = TRUE. If not, output ⊥ and terminate.

2. Compute x′ = Qrel(x).

3. If x′ = x∗,

1. If b = 0 and c′ = 1, output z∗ and terminate.

2. If b = 1 and c′ = 2, output z∗ and terminate.

17

3. Otherwise if b = 1, output s∗1 and terminate.

4. Otherwise if b = 0, output s∗2 and terminate.

4. Compute pl = ACE.Dec(dk′′, x′). If pl ̸= ⊥, parse t||A′||se′||z||ind = pl.

5. If pl = ⊥ or if b = 0 ∧ t = 1 or if b = 1 ∧ t = 0,

1. If b = 0, output Cpunc(x)⊕ PRF.Eval(K{x∗}, x) and terminate.

2. If b = 1, output PRF.Eval(K{x∗}, x) and terminate.

6. If pl ̸= ⊥,

1. If t = 0,

1. Compute a′ = Can(A′, v) and r′ = Ext(se′, a′)⊕ z.

2. Compute C ′ = ct∗1 ⊕G(r′).

3. Output C ′(x)⊕ PRF.Eval(K,x) and terminate.

2. If t = 1,

1. Compute a′ = Can((A′)⊥, v) and r′ = Ext(se′, a′)⊕ z.

2. Compute K ′ = ct∗2 ⊕G(r′).

3. Output PRF.Eval(K ′, x) and terminate.

Hyb13: We modify the way ct∗1, ct
∗
2 are computed: Now we sample ct∗1, ct

∗
2 ← {0, 1}p2(λ).

Hyb14: If c′ = 1, we sample s∗1 uniformly at random, and also set z∗ = C ′(x∗) ⊕ s∗1 where C ′ =

ct∗1 ⊕ G(Ext(se∗, aCan
1) ⊕ r∗∗), and also set s∗2 = ⊥. If c′ = 2, we sample s∗2 uniformly at random

and set s∗1 = ⊥. Also recall that when c′ = 2, z∗ is computed as z∗ = PRF.Eval(K ′, x∗) where
K ′ = ct∗2 ⊕G(Ext(se∗, aCan

2)⊕ r∗∗), which does not use the actual PRF key K.

Claim 1. There exists a polynomial g(·) such that Pr
[
b2V er = 1

]
≥ 1

g(λ) where b1Test,1, b
1
Test,2, b

2
V er ←

Hyb14.

We prove this claim in Section 6.1.

Lemma 5. Pr
[
b2V er = 1

]
≤ negl(λ) where b1Test,1, b

1
Test,2, b

2
V er ← Hyb14.

Proof. This follows directly by the malleable-puncturable security of the scheme CS since the
experiment only uses the punctured circuit Cpunc.

Since the statements above contradict each other, our hypothesis that there exists a QPT adver-

sary A and polynomials q1(λ), q2(λ) such that Pr
[
StrongAntiPiracyGame

γ(λ)
QuantumProtect,A(1

λ) = 1
]
≥

1
q1(λ)

for infinitely many values of λ > 0 is wrong. Thus, for any polynomial q2(λ), we have

Pr
[
StrongAntiPiracyGame

γ(λ)
QuantumProtect,A(1

λ) = 1
]
≤ negl(λ) where γ = 1

q2(λ)
, which completes the

proof.

6.1 Indistinguishability of Hybrids: Proof of Claim 1

Claim 2. Pr
[
b1Test = 1

]
≥ 3

4q1(λ)
where b1Test ← Hyb1.

18

Proof. Follows from Theorem 6.

Claim 3. For b1Test,1, b
1
Test,2 ← Hyb2,

• Pr
[
b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

2q1(λ)

Proof. This follows directly from Lemma 2.

Claim 4. For b1Test,1, b
1
Test,2, b

2
Test,1, b

2
Test,2 ← Hyb3,

• Pr
[
b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

2q1(λ)

• Pr
[
b2Test,1 ∧ b2Test,2 = 1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ 1− 6δ∗

Proof. Follows from Theorem 6.

Claim 5. Hyb3 ≈α3 Hyb4

Proof. Observe that P and P (1) have exactly the same functionality: Due to the constrained decap-
sulation safety of ACE, ACE.Dec(dk′, x) will always output ⊥ since dk′ = ACE.GenDK(ek,TRUE)
(i.e, the key is punctured everywhere). Hence, the result follows by the security of iO.

Claim 6. Hyb4 ≈α2 Hyb5

Proof. Observe that the experiments do not use the encryption key ek at all, and they do not use
any ACE ciphertexts either. Thus, the result follows by the puncture hiding security of ACE.

Claim 7. For b1Test,1, b
1
Test,2, b

2
Test,1, b

2
Test,2 ← Hyb5,

• Pr
[
b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

4q1(λ)

• Pr
[
b2Test,1 ∧ b2Test,2 = 1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ 1− 6δ∗ − 8q1(λ) · (α3 + α2)

Proof. This follows by combining the claims above.

Claim 8. • Pr
[
b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

4q1(λ)

• There exists a polynomial g2(λ) such that

Pr
[
b2Test,1 = 0 ∧ b2Test,2 = 0

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≤ 1− 1

g2(λ)

where b1Test,1, b
1
Test,2, b

2
Test,1, b

2
Test,2 ← Hyb6,

Proof. We prove this claim in Section 6.2.

Claim 9. For b1Test,1, b
1
Test,2, b

2
Test ← Hyb7,

• Pr
[
b2Test = 1 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

8·q1(λ)·g2(λ)

Proof. This follows directly from the claim above, since with probability 1/2, c′ will hit the good
outcome between b2Test,1, b

2
Test,2.

19

Claim 10. For b1Test,1, b
1
Test,2, b

2
V er ← Hyb8,

• Pr
[
b2V er = 1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ pFtriv +

90γ
128

Proof. This follows easily by the properties of ATI.

Lemma 6. Hyb8 ≈ Hyb9.

Proof. We will prove the two cases c′ = 1 and c′ = 2 separately.
First, the case c′ = 1. We claim that P

′
and P (2) have exactly the same functionality. Note that

once we prove this, the result follows by iO security. Now we prove our claim. Observe that P
′
and

P (2) can differ in two places: (i) when using the decryption key dk′ in the line pl = ACE.Dec(dk′, x),
since P

′
has dk = ACE.GenDK(sk,FALSE) but P (2) has dk′ = ACE.GenDK(sk,1pl∗), and (ii) if

the input satisfies x = x∗. First, by the safety of constrained decapsulation of ACE, we know
that the output of ACE.Dec on x can be different for dk = ACE.GenDK(sk,FALSE) versus dk′ =
ACE.GenDK(sk,1pl∗) only if x = ACE.Enc(ek, pl∗) = x∗. Thus, we get that P

′
and P (2) can possibly

differ only on inputs such that x = x∗. Further it easy to see that P
′
(x, b, v) versus P (2)(x, b, v)

can only possibly differ if M̂(b, v) = TRUE is satisfied too. Thus, we only need to consider inputs
x, b, v such that x = act∗ and M̂(b, v) = TRUE. For such inputs, we will further consider two cases:
b = 0 and b = 1. For b = 1, it is easy to see that P

′
(x, b, v) = PRF.Eval(K,x∗) = P (2)(x, b, v).

Finally, we consider the case b = 0. Now, P
′
(x, b, v) enters the case pl ̸=⊥, t = 0 since act∗ decrypts

to pl∗ by correctness of decapsulation. Here, it gets a′ = aCan
1 since v ∈ A + a1, and then it gets

r′ = Ext(se∗, aCan
1)⊕ r∗∗ since pl = pl∗. Then, it gets C ′ = ct1 ⊕G(Ext(se∗, aCan

1)⊕ r∗∗). Thus, we
get P

′
(x, b, v) = z∗. Now considering P (2)(x, b, v) when b = 0, x = x∗ and v ∈ A + s, it is easy to

see that we again have P (2,1)(x, b, v) = z∗. Thus, P (1) and P (2) have the same output for all x, b, v.
Now we prove the case c′ = 2. We claim that P (′) and P (2) have exactly the same functionality.

Similar to above, once we prove this, the result follows by iO security. The claim that P
′
and P (2)

have the same functionality follows by a case-by-case inspection, similar to above.

Lemma 7. Hyb9 ≈ Hyb10.

Proof. Observe that these experiments only use the constrained keys dk′′ = ACE.GenDK(sk,1pl∗)
and ek′ = ACE.GenEK(sk,1pl∗). Thus, the result follows by the steganographic ciphertext security
of ACE.

Lemma 8. Hyb10 ≈ Hyb11.

Proof. Follows from Lemma 2.

Lemma 9. Hyb11 ≈ Hyb12.

Proof. By the malleable-punctured key correctness of the cryptographic scheme CS and the punc-
tured key correctness of the scheme PRF, the result follows by the security of iO.

Lemma 10. Hyb12 ≈ Hyb13.

Proof. Observe that the experiments only uses the PRG output ct∗1 = G(r∗1) and ct∗2 = G(r∗2), and
the random strings r∗1, r

∗
2 do not appear anywhere else. Thus, the result follows by the security of

G.

Lemma 11. Hyb13 ≈ Hyb14.

20

Proof. First, observe that the experiments only use the punctured PRF key K{act∗}. Thus, by
the punctured key security of PRF, we can always change PRF.Eval(K, act∗) to a uniformly random
string. This completes the proof of the case c′ = 1. When c′ = 2, observe that the experiment does
not use PRF.Eval(K, act∗), thus we can replace s∗2 = C∗(act∗)⊕PRF.Eval(K, act∗) with a uniformly
random string.

6.2 Reduction to Monogamy-of-Entanglement: Proof of Claim 8

This part of our proof is mostly the same as [ÇG25].

The first item, that is Pr
[
b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

4q1(λ)
, follows easily by the previous claim

(since b1Test,1 = 1, b1Test,2 have the same marginal distribution in Hyb5 and Hyb4).
Now we prove the second item. Suppose for a contradiction that

Pr
[
b2Test,1 = 0 ∧ b2Test,2 = 0

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ 1− negl(λ) (1)

where b1Test,1, b
1
Test,2, b

2
Test,1, b

2
Test,2 ← Hyb5. We will construct an adversary for Lemma 3.

Consider the following modified version Hybb4 of Hyb4: Simulate Hyb4 until right after ATI(1) ⊗
ATI(1) is applied to (R1,R2), but do not apply TI

(2)⊗TI(2). Now, output R1,R2, A, ekb, C
∗, cp∗, b1Test,1, b

1
Test,2

as the outcome of the experiment, where

• ek1 = ACE.GenEK(sk, PRE1) and PRE1(m) is the circuit that outputs TRUE if the first bit
of m is not 1. That is, ek1 can only encapsulate messages that start with 1.

• ek0 = ACE.GenEK(sk, PRE0) and PRE0(m) is the circuit that outputs TRUE if the first bit
of m is not 0. That is, ek0 can only encapsulate messages that start with 0.

We write Hyb
′
4 to denote the version that outputs both ek0 and ek1.

Claim 11. LetM be ATI(3,2) = ATIϵ
∗,δ∗

D(2)
2 ,pFtriv+

100γ
128

. Then,

Pr
[
TI(2)(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1−3·

√
6δ∗ + 8q1(λ) · (α3 + α2)

where R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb′4,

Proof. We already know

Pr
[
(TI(2) ⊗ TI(2))(R1,R2) = (1, 1)

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ 1− 6δ∗ − 8q1(λ) · (α3 + α2).

Then the result follows by Equation (1) and Theorem 3 since TI(2) is a projective measurement.

Claim 12. LetM be ATI(3,2) = ATIϵ
∗,δ∗

D(2)
2 ,pFtriv+

100γ
128

. Then,

Pr
[
ATI(3,1)(R1) = 0

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1− negl(λ)

where R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb′4.

Claim 13. LetM be a QPT algorithm with 1-bit output such that

• Pr[M(R2, C
∗, cp∗, ek1) = 0] ≥ 1

g3(λ)
for some polynomial g3(·)

21

• Pr
[
TI(2)(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1−3·

√
+6δ∗ + 8q1(λ) · (α3 + α2),

• Pr
[
ATI(3,1)(R1) = 0

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1− negl(λ).

Then, there exists an (unbounded) algorithm E∗1 such that

Pr
[
E∗1 (R1, A, ek0, C

∗, cp∗) = aCan
1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1 ∧M(R2) = 0
]
≥ 2−k

where R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb′4.

We prove this claim in Section 6.2.1.

Claim 14. Let EV1 be an algorithm with 1-bit output such that

• EV1 runs in subexponential time rt(λ) (precise value will be clear from the proof)

• Pr[EV1(R1, A, ek0, C
∗, cp∗) = 1] ≥ 2−k

•

Pr
[
TI(2)(R2) = 1

∣∣EV1(R1, A, ek0, C
∗, cp∗, aCan

1) = 1 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥

1− 3

2
·
√
6δ∗ + 8q1(λ) · (α3 + α2) ·

2

2−k
,

• Pr
[
ATI(3,2)(R2) = 0

∣∣EV1(R1, A, ek0, C
∗, cp∗, aCan

1) = 1 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ 1

42
−k

Then, there exists an (unbounded) algorithm E∗2 such that

Pr
[
E∗2 (R2, A, ek1, C

∗, cp∗) = aCan
2

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1 ∧ EV1(R1, A, ek0, C
∗, cp∗) = 1

]
≥ 2−k

where R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb′4.

We prove this claim in Section 6.2.1.

Claim 15. There exists unbounded algorithms E∗1 , E∗2 such that

Pr
[
E∗1 (R1, A, ek0, C

∗, cp∗) = aCan
1 ∧ E∗2 (R2, A, ek1, C

∗, cp∗) = aCan
2

∣∣b1Test,1 = 1 ∧ b2Test,2 = 1
]
≥ (2−k)2·1

2
.

where R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb′4.

Proof. SetM = ATI(3,2). First, by Claim 11,Claim 12, and Claim 13, we have that there exist E∗1
such that

p1 = Pr
[
E∗1 (R1, A, ek0, C

∗, cp∗) = aCan
1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1 ∧M(R2, C
∗, cp∗, ek1) = 0

]
≥ 2−k

which also implies

p1 = Pr
[
E∗1 (R1, A, ek0, C

∗, cp∗) = aCan
1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ 2−k · 1

2

Now, let EV1(1λ) be an algorithm simply simulates the output distribution of the equality
check E∗1 (R1, A, ek0, C

∗, cp∗) =? aCan
1 . That is, EV1(1λ) simulates a biased coin and outputs 1 with

probability p1. Now we claim the following.

22

•

Pr
[
TI(2)(R2) = 1

∣∣EV(R1, A, ek0, C
∗, cp∗, aCan

1) = 1 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥

1− 3

2
·
√

6δ∗ + 8q1(λ) · (α3 + α2) ·
2

2−k
,

• Pr
[
M(R2, C

∗, cp∗, ek1) = 0
∣∣EV(R1, A, ek0, C

∗, cp∗, aCan
1) = 1 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

42
−k

For the first claim, we already know

Pr
[
(TI(2) ⊗ TI(2))(R1,R2) = (1, 1)

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ 1− 6δ∗ − 8q1(λ) · (α3 + α2).

Then the first claim follows by Theorem 3 since Pr
[
EV((R1, A, ek0, C

∗, cp∗), aCan
1) = 1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥

2−k and TI(2) is a projective measurement.
To see the second claim, first we have by Bayes’ Theorem that,

Pr
[
M(R2, C

∗, cp∗, ek1) = 0
∣∣EV(R1, A, ek0, C

∗, cp∗, aCan
1) = 1 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
Pr
[
M(R2, C∗, cp∗, ek1) = 0 = 0

∣∣ ∧ b1Test,1 = 1 ∧ b1Test,2 = 1
] ≥

Pr
[
EV(R1, A, ek0, C

∗, cp∗, aCan
1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
The result then follows, since Pr

[
EV((R1, A, ek0, C

∗, cp∗), aCan
1) = 1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ 1

22
−k

by above and Pr
[
M(R2, C

∗, cp∗, ek1) = 0 = 0
∣∣ ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

2 by Equation (1).

Then, applying Claim 14 with EV1(1λ), we get

Pr
[
E∗1 (R1, A, ek0, C

∗, cp∗) = aCan
1 ∧ E∗2 (R2, A, ek1, C

∗, cp∗) = aCan
2

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1 ∧M(R2) = 0
]
≥ (2−k)2

which completes the proof.

Since Pr
[
b1Test,1 = 1 ∧ b2Test,2 = 1

]
≥ 1

4q1(λ)
, the claim above is a contradiction to Lemma 3 by

our choice of parameters. Thus, our contradiction hypothesis that

Pr
[
b2Test,1 = 0 ∧ b2Test,2 = 0

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1
]
≥ 1− negl(λ),

where b1Test,1, b
1
Test,2, b

2
Test,1, b

2
Test,2 ← Hyb5, is incorrect. This proves Claim 8.

6.2.1 Proof of Claim 13

We will instead prove the following stronger claim, so that the proof can serve as a proof for both11

Claim 13 and Claim 14.

Claim 16. LetM be an algorithm with 1-bit output such that

• M runs in subexponential time rt(λ) (precise value will be clear from the proof)

• Pr[M(R2, C
∗, cp∗, ek1) = 0] ≥ 2−k,

11Note that while technically Claim 14 is not a consequence of our stronger claim we prove in this section, proof
of Claim 14 follows almost exactly the same as the proof of this stronger version of Claim 13.

23

• Pr
[
TI(2)(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1−3

2 ·
√
6δ∗ + 8q1(λ) · (α3 + α2)·

2
2−k ,

• Pr
[
ATI(3,1)(R1) = 0

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

42
−k.

Then, there exists an (unbounded) algorithm E∗1 such that

Pr
[
E∗1 (R1, A, ek0, C

∗, cp∗) = aCan
1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1 ∧M(R2) = 0
]
≥ 2−k

where R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb′4.

We now prove this claim. LetM be an algorithm as in the claim statement. Define SimATI(4) =

SimATI
ϵ∗,δ∗,α1(λ)
116γ
128

and let t1(λ) be the number of samples for SimATI(4) as in Lemma 4. Then, by

Lemma 4, we get

• Pr
[
SimATI(4)(s1,1, . . . , s1,t1(λ))(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1−

3
2 ·
√
6δ∗ + 8q1(λ) · (α3 + α2) · 2

2−k − α1 − 4δ∗ = ξ1,

• Pr
[
SimATI(4)(s2,1, . . . , s2,t1(λ))(R1) = 0

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ 1

42
−k−

α1 − 4δ∗.

where s1,1, . . . , s1,t1(λ) ← SampCh(st) and s2,1, . . . , s2,t1(λ) ← D
(1)
1 .

Now define the following distributions for j ∈ [t1(λ)].

D(2)
1

Hardcoded: st, A, ek0

1. Sample an extractor seed as se← {0, 1}ℓ3(λ).

2. Sample r∗∗1 ← {0, 1}p4(λ).

3. Set pl1 = 0||A||se||r∗∗1 ||j.

4. Sample x∗ ← ACE.StegEnc(ek0, pl1, ⟨Dinp(st)⟩).

5. Sample ak, ch← SampChFromInp(st, x∗).

6. Output ak, ch.

Now we claim the following.

Claim 17. Pr
[
SimATI(4)(s2,1, . . . , s2,t1(λ))(R1) = 0

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥

1
42
−k − α1 − 4δ∗ − ((α2 + 2α3) · t1(λ)− 2α3) · 1

2−k = ξ2 where s2,j ← D(2,j)
1 for j ∈ [t1(λ)]

Proof. This claim follows easily by an ACE key puncturing and iO argument, changing each sample
one by one, since the program ignores the ind part of the decrypted messages.

By applying the hybrid lemma to above, we get that there exists some index i∗ ∈ {1, . . . , t1(λ)}
and values τ1, τ2 such that

• Pr
[
SimATI(4)((sli)i∈[t(λ)])(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ τ1,

24

• Pr
[
SimATI(4)((sri)i∈[t(λ)])(R1) = 0

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ τ2

• τ2 − τ1 ≥ ξ2−ξ1
t1(λ)

where

• R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb′′4 and

• sli ← D(2,i)
1 for i < i∗ and sli ← D(cp∗, C∗) otherwise,

• sri ← D(2,i)
1 for i ≤ i∗ and sri ← D(cp∗, C∗) otherwise.

Then we define the following distribution and claim the following.

D(1,j)
1

Hardcoded: cp∗, C∗, A, aCan
1 , ek, r∗1

1. Sample an extractor seed as se← {0, 1}ℓ3(λ).

2. Set pl1 = 0||A||se||(Ext(se, aCan
1)⊕ r∗1)||j

3. Set x∗ ← ACE.StegEnc(ek0, pl1).

4. Sample ak, ch← SampChFromInp(st, x∗).

5. Output ak, ch.

Claim 18.

Pr
[
SimATI(4)((sli)i∈[t(λ)])(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥ τ1−(2α2+

α3 + 2α4) · 4
2−k where

• R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb′4

• sli ← D(2,i)
1 for i < i∗

• sli ← D(1,i)
1 if i = i∗,

• sli ← D(cp∗, C∗) for i > i∗,

Proof. We will define a sequence of modifications for Hyb′4.

We define the following modification Hyb
′(1)
4 of Hyb

′
4: The challenger samples M̂ as M̂ ← iO(M)

instead of M̂ ← iO(M ′). This essentially undoes the change from Hyb1 to Hyb2.

By Lemma 2, we have Pr
[
SimATI(4)((sli)i∈[t(λ)])(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥

τ1 − (α4) · 4
2−k where

• R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb

′(1)
4

• sli ← D(2,i)
1 for i < i∗

• sli ← D(cp∗, C∗) for i ≥ i∗,

25

We define Hyb
′(2)
4 so that when the challenger is preparing P̂ , it now embeds dk′ = ACE.GenDK(sk, Tpl∗)

instead of dk′ = ACE.GenDK(sk,FALSE) where

• Tpl∗(m) is the circuit that outputs TRUE if m = pl∗,

• pl∗ = ACE.Enc(ek0, 0||A||se∗||(Ext(se∗, aCan
1) ⊕ r∗1)||i∗) where se∗, r∗1 are the values sampled

during sampling sli∗ ← D(1,i∗)
1

Since the experiments do not use an encryption of pl∗, we can apply the puncture-hiding security of

ACE to get Pr
[
SimATI(4)((sli)i∈[t(λ)])(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥

τ1 − (α2 + α4) · 4
2−k where

• R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb

′(2)
4

• sli ← D(2,i)
1 for i < i∗

• sli ← D(cp∗, C∗) for i ≥ i∗,

Now, we claim Pr
[
SimATI(4)((sli)i∈[t(λ)])(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥

τ1 − (2α2 + α4) · 4
2−k where

• R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb

′(2)
4

• sli ← D(2,i)
1 for i < i∗

• sli ← D(1,i)
1 if i = i∗,

• sli ← D(cp∗, C∗) for i > i∗,

This follows by steganographic ciphertext property of ACE since dk′ is punctured at pl∗.

We define Hyb
′(3)
4 so that when the challenger is preparing P̂ , it now embeds dk′ = ACE.GenDK(sk,FALSE).

We claim Pr
[
SimATI(4)((sli)i∈[t(λ)])(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥

τ1 − (α3 + α4 + 2α2) · 4
2−k where

• R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb

′(3)
4

• sli ← D(2,i)
1 for i < i∗

• sli ← D(1,i)
1 if i = i∗,

• sli ← D(cp∗, C∗) for i > i∗,

This follows by the security of iO since by construction of pl∗, the programs have the same func-
tionality in both cases.

Finally, we claim Pr
[
SimATI(4)((sli)i∈[t(λ)])(R1) = 1

∣∣M(R2, C
∗, cp∗, ek1) = 0 ∧ b1Test,1 = 1 ∧ b1Test,2 = 1

]
≥

τ1 − (α3 + 2α4 + 2α2) · 4
2−k where

• R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb

′(3)
4

• sli ← D(2,i)
1 for i < i∗

26

• sli ← D(1,i)
1 if i = i∗,

• sli ← D(cp∗, C∗) for i > i∗,

This follows directly by Lemma 2.

The claim above shows that we can distinguish between D(1,i∗)
1 and D(2,i∗)

1 with advantage ≥
ξ2−ξ1
t1(λ)

− τ1 − (2α2 + α3 + 2α4) · 4
2−k . Since this is larger than ϵExt by our choice of parameters, we

get by the reconstructive property of Ext that there exists an algorithm E∗1 such that

Pr
[
E∗1 (R1, A, ek0, C

∗, cp∗) = aCan
1

∣∣b1Test,1 = 1 ∧ b1Test,2 = 1 ∧M(R2) = 0
]
≥ 2−k

where R1,R2, A, ek0, ek1, C
∗, cp∗, b1Test,1, b

1
Test,2 ← Hyb′4.

This completes the proof.

7 Steganographic Asymmetrically Constrained Encapsulation

In this section, we show how to construct an asymmetrically constrained encapsulation (ACE)
scheme ([CHJV15]) that satisfies an additional steganographic security property: ACE.StegEnc(ek,m,D)
produces an encapsulation that is indistinguishable from a fresh sample from the distribution D,
to any adversary that has keys punctured at m.

7.1 Definition

We first recall the definition of ACE ([CHJV15]). The definition we write below is mostly verbatim
from [ÇG25].

Definition 8 (Asymmetrically Constrained Encapsulation). Let M = {0, 1}n(λ) denote the mes-
sage space, where n(λ) = poly(λ). Let ℓ(λ) and cpunc(λ) be parameters that are polynomials in λ.
We define an admissible puncturing circuit to be a circuit of size at most cpunc(λ) and we define
an admissible message to be a message in M. Unless otherwise specified, when we consider a
puncturing circuit we will always implicitly consider admissible circuits and we will always consider
admissible messages.

An asymmetrically constrained encapsulation scheme ACE is parametrized by cpunc(λ), ℓ(λ), n(λ)
and consists of the following efficient algorithms.

• Setup(1λ): Takes as input the security parameter and outputs a secret key sk.

• GenEK(sk, C): Takes as input the secret key and a (puncturing) circuit C, and outputs a
punctured encapsulation key ek.

• GenDK(sk, C): Takes as input the secret key and a circuit C, and outputs a punctured decap-
sulation key dk.

• Enc(ek,m): Takes as input an encapsulation key ek and a message m, outputs a ciphertext
ct or the symbol ⊥.

• Dec(dk,m): Takes as input a decapsulation key dk and a ciphertext ct, outputs a message m
or the symbol ⊥.

Note that all of the algorithms, except Setup, are deterministic. Further, the key and ciphertext
sizes and the runtimes of the scheme will be a polynomial n(λ), cpunc(λ), ℓ(λ).

We require the following correctness guarantees and puncture-hiding security (defined later) and
pseudorandom ciphertext security (defined later).

27

Correctness of Decapsulation: For all (admissible) circuits C,C ′ and messages m such that
C(m) = C ′(m) = FALSE,

Pr
[
Dec(GenDK(sk, C),Enc(GenEK(sk, C ′),m)) = m : sk ← Setup(1λ)

]
= 1

Equivalence of Constrained Encapsulation: For all circuits C and messages m such that
C(m) = FALSE,

Pr
[
Enc(GenEK(sk, C),m) = Enc(GenEK(sk,FALSE),m) : sk ← Setup(1λ)

]
= 1

Here, the notation FALSE is overloaded to also denote the circuit that outputs FALSE everywhere.

Safety of Constrained Decapsulation: For all circuits C and strings str,

Pr

[
Dec(dk, str) =⊥ ∨ C(Dec(dk, str)) = FALSE :

sk ← Setup(1λ)
dk = GenDK(sk, C)

]
= 1

Equivalence of Constrained Decapsulation: For all circuits C and strings str,

Pr

m1 = m2 ∨ C(m1) = TRUE :

sk ← Setup(1λ)
dk2 = GenDK(sk,FALSE)

dk1 = GenDK(sk, C)
m2 = Dec(dk2, str)
m1 = Dec(dk1, str)

 = 1

Unique Encapsulations: There exists a (deterministic) mapping F from the secret keys and
messages to ciphertexts such that

• For any str ̸= F(sk,m), Pr[Dec(GenDK(sk,FALSE), str) = m] = 0.

• Pr[Dec(GenDK(sk,FALSE),F(sk,m)) = m] = 1.

Now we recall security of constrained decapsulation, also known as puncture-hiding security.

Definition 9 (Security of Constrained Decapsulation (Puncture-Hiding Security)). Consider the
following game between a challenger and an adversary.

PunctureHidingGameA(1
λ)

1. The adversary A outputs three (admissible) circuits C,C0, C1.

2. The challenger samples sk ← ACE.Setup(1λ) and computes ek = ACE.GenEK(sk, C), dk0 =
ACE.GenDK(sk, C0) and dk1 = ACE.GenDK(sk, C1).

3. The challenger samples b← {0, 1} and sends ek, dkb to the adversary A.

4. The adversary outputs a bit b′.

5. The challenger outputs 1 if b = b′, and outputs 0 otherwise.

28

An asymmetrically constrained encapsulation scheme ACE is said to satisfy security of con-
strained decapsulation if for any QPT adversary A,

Pr
[
PunctureHidingGameA(1

λ) = 1
]
≤ 1

2
+ negl(λ).

Now we recall ℓ(λ)-pseudorandom ciphertext security, introduced by [ÇG25] to generalize ℓ(λ)-
ciphertext indistinguishability security requirement originally considered by [CHJV15].

Definition 10 (Pseudorandom Ciphertext Security). Consider the following game between a chal-
lenger and an adversary.

PRCiphertextGameA(1
λ)

1. The adversary A outputs two (admissible) circuits C1, C2 and ℓ(λ) messages (m1, . . . ,mℓ(λ))
such that C1(mi) = C2(mi) = TRUE for all i ∈ [ℓ(λ)].

2. The challenger samples sk ← ACE.Setup(1λ) and computes ek = ACE.GenEK(sk,FALSE)
ek′ = ACE.GenEK(sk, C1), dk

′ = ACE.GenDK(sk, C2).

3. The challenger computes cti = ACE.Enc(ek,mb
i) for i ∈ [ℓ(λ)].

4. The challenger samples strings ri for all i ∈ [ℓ(λ)], each the same length as the ciphertext
length of ACE and each is sampled uniformly at random.

5. The challenger samples b ← {0, 1}. If b = 0, it submits ct1, . . . , ctℓ(λ) to the adversary. If
b = 1, it submits r1, . . . , rℓ(λ) to the adversary.

6. The adversary outputs a bit b′.

7. The challenger outputs 1 if b = b′, and outputs 0 otherwise.

An asymmetrically constrained encapsulation scheme ACE is said to satisfy ℓ(λ)-pseudorandom
ciphertext security if for any QPT adversary A,

Pr
[
PRCiphertextGameA(1

λ) = 1
]
≤ 1

2
+ negl(λ).

Finally, we introduce our new security notion, steganographic ciphertext security.

Definition 11 (Steganographic Asymmetrically Constrained Encapsulation). Let ℓ(λ), cpunc(λ),
n(λ) (as in Definition 8), csamp(λ), be parameters that are polynomials in λ. We define an ad-
missible distribution D12 to be a distribution with a sampler circuit of size at most csamp(λ) and
with min-entropy at least k(λ) ≥ 4 · n(λ). Unless otherwise specified, we will implicitly mean an
admissible distribution when we are considering a distribution for steganography.

A steganographic asymmetrically constrained encapsulation scheme ACE is an ACE
scheme parametrized by csamp(λ), ℓ(λ), cpunc(λ), n(λ), k(λ) with the following additional algorithms
and guarantees.

• StegEnc(ek,m, ⟨D⟩): Takes as input an encapsulation key ek, a message m and a sampler
circuit D, and outputs a ciphertext.

• StegDec(dk, ct): An efficient algorithm that takes as input a decapsulation key dk and a
ciphertext ct, outputs a message m or ⊥.

We require the usual correctness requirements of an ACE scheme. Additionally, we require the
following.

12We will overload the notation D to denote both the distribution itself and the sampling circuit for this distribution.

29

Correctness of Steganographic Encryption: We require that for all (admissible) distributions
D and all messages m, ACE.StegEnc(ek,m,D) runs in time tsteg(λ) (which is a function that
depends on n(λ), |supp(D)| and the desired security level) and satisfies the following.

Pr

ACE.StegDec(dk,ACE.StegEnc(ek,m, ⟨D⟩)) = m :
sk ← ACE.Setup(1λ)

ek = ACE.GenEK(sk,FALSE)
dk = ACE.GenDK(sk,FALSE)

 ≥ 1−negl(λ).

Security: We require that ACE satisfies puncture-hiding security and ℓ(λ)-pseudorandom cipher-
text security against any quantum adversary that runs in time poly(λ) · tsteg(λ).

Steganographic Ciphertext Security: We require that ACE satisfies steganographic ciphertext
security (defined later).

Definition 12 (Steganographic Ciphertext Security). Consider the following game between a chal-
lenger and an adversary.

StegCiphertextGameA(1
λ)

1. The adversary A outputs two admissible circuits C1, C2 and ℓ(λ) messages (m1, . . . ,mℓ(λ))
such that C1(mi) = C2(mi) = TRUE for all i ∈ [ℓ(λ)].

2. The adversary outputs an (admissible) sampler D.

3. The challenger samples sk ← ACE.Setup(1λ) and computes ek = ACE.GenEK(sk,FALSE)
ek′ = ACE.GenEK(sk, C1), dk

′ = ACE.GenDK(sk, C2).

4. The challenger computes cti = ACE.StegEnc(ek,mi, ⟨D⟩) for i ∈ [ℓ(λ)].

5. The challenger samples strings sampi ← D for all i ∈ [ℓ(λ)].

6. The challenger samples b ← {0, 1}. If b = 0, it submits ct1, . . . , ctℓ(λ) to the adversary. If
b = 1, it submits samp1, . . . , sampℓ(λ) to the adversary.

7. The adversary outputs a bit b′.

8. The challenger outputs 1 if b = b′, and outputs 0 otherwise.

An asymmetrically constrained encapsulation scheme ACE is said to satisfy steganographic ci-
phertext security if for any QPT adversary A,

Pr
[
StegCiphertextGameA(1

λ) = 1
]
≤ 1

2
+ negl(λ).

Theorem 8. Assuming the existence of subexponentially secure indistinguishability obfuscation and
one-way functions, for any polynomials n(λ), cpunc(λ), csamp(λ), ℓ(λ), there exits a subexponentially
secure steganographic asymmetrically constrainable encryption scheme.

Proof. We give our construction in Section 7.2. The proof of steganographic ciphertext security
is given in Section 7.3. Steganographic correctness is immediate. All the other correctness and
security notions follow from [ÇG25]. All the assumed primitives can be instantiated assuming
existence of subexponentially secure indistinguishability obfuscation and one-way functions for any
subexponential function, as explained in Section 7.2, Section 7.3 and [ÇG25].

30

7.2 Construction

In this section, we give our construction for a steganographic ACE scheme. Our construction is
similar to the construction [CHJV15], except for two key differences: (i) addition of the stegano-
graphic encryption/decryption algorithms (which naturally also requires a novel security proof),
(ii) choosing the underlying primitives and their parameters in a delicate way that is required for
our new security notions.

ACE.Setup(1λ)

1. Sample K1 ← PRF1.KeyGen(1
λ) and K2 ← PRF2.KeyGen(1

λ).

2. Sample seed← {0, 1}se(λ).

3. Output sk = (K1,K2, seed).

ACE.GenEK(sk, C)

1. Parse (K1,K2, seed) = sk.

2. Sample P̂ ← iO(P) where P is the following program.

P (m)

Hardcoded: K1,K2, C

1. Check if C(m) = TRUE. If so, output ⊥ and terminate.

2. Compute α = PRF1.Eval(K1,m).

3. Compute β = PRF2.Eval(K2, α)⊕m.

4. Output α||β.

3. Output (P̂ , seed).

ACE.GenDK(sk, C)

1. Parse (K1,K2, seed) = sk.

2. Sample P̂ ← iO(P) where P is the following program.

P (ct)

Hardcoded: K1,K2, C

1. Check if C(m) = TRUE. If so, output ⊥ and terminate.

2. Parse α||β = ct.

3. Compute m = PRF2.Eval(K2, α)⊕ β.

4. Check if α = PRF1.Eval(K1,m). If not, output ⊥ and terminate.

5. Output m.

3. Output (P̂ , seed).

31

ACE.Enc(ek,m)

1. Parse (P̂ , seed) = ek.

2. Output P̂ (m).

ACE.Dec(dk, ct)

1. Parse (P̂ , seed) = dk.

2. Output P̂ (ct).

ACE.StegEnc(ek,m)

1. Parse (P̂ , seed) = ek.

2. Set ict = ACE.Enc(ek,m).

3. Set cnt = 1.

4. Repeat the following as long as cnt ≤ ℓ: Sample s′ ← D. If Ext(seed, s′) = ict, output s′ and
terminate, otherwise increase cnt by one and continue.

5. Output ⊥ if not already terminated.

ACE.StegDec(dk, ct)

1. Parse (P̂ , seed) = dk.

2. Output P̂ (Ext(seed, ct)).

7.3 Proof of Steganographic Ciphertext Security

We first start with two technical lemmata.

Lemma 12 (Infinite Reverse Resampling Lemma). Let D be any distribution, S be any set and
f : supp(D)→ S be any function. Consider the distribution D′ defined as follows.

D′

1. Sample s← D.

2. Set y = f(s).

3. Repeat the following until success: Sample s′ ← D. If f(s′) = y, output s′ and terminate,
otherwise continue.

Then, D ≡ D′.

32

Proof. Fix any x ∈ supp(D) and we will show that PrD′ [x] = PrD[x], which implies D ≡ D′.
We write

Pr
D′
[x] =

∑
s∈supp(D)

Pr
D
[s] · lim

k→∞

(
k∑

i=0

(Pr
s1←D

[f(s1) ̸= f(s)])i Pr
s2←D

[s2 = x ∧ f(x) = f(s)]

)

=
∑

s∈supp(D)

Pr
D
[s] · Pr

s2←D
[s2 = x ∧ f(x) = f(s)] · 1

1− Prs1←D[f(s1) ̸= f(s)]

=
∑

s∈supp(D)

Pr
D
[s] · Pr

s2←D
[s2 = x

∣∣f(s2) = f(s)]

=
∑

y∈f(supp(D))

∑
s∈supp(D):
f(s)=y

Pr
D
[s] · Pr

s2←D
[s2 = x

∣∣f(s2) = f(s)]

=
∑

y∈f(supp(D))

∑
s∈supp(D):
f(s)=y

Pr
D
[s] · Pr

s2←D
[s2 = x

∣∣f(s2) = y]

=
∑

y∈f(supp(D))

Pr
s2←D

[s2 = x
∣∣f(s2) = y] ·

 ∑
s∈supp(D):
f(s)=y

Pr
D
[s]


=

∑
y∈f(supp(D))

Pr
s2←D

[s2 = x
∣∣f(s2) = y] · Pr

s←D
[f(s) = y] = Pr

s2←D
[s2 = x]

The first line is by the Law of Total probability and the second line is by the power series solution
and the other lines should be self-evident.

Lemma 13 (Truncated Reverse Resampling Lemma). Let D be any distribution, S be any set and

f : supp(D) → S be any function. Let ϵ > 0 and tlimit = ⌈
2(log(4)n+log(1

ϵ))·|supp(D)|)
ϵ ⌉. Consider the

distribution D′ defined as follows.

D′

1. Sample s← D.

2. Set y = f(s).

3. Set cnt = 1.

4. Repeat the following as long as cnt ≤ tlimit: Sample s′ ← D. If f(s′) = y, output s′ and
terminate, otherwise increase cnt by one and continue.

5. Output ⊥ if not already terminated.

Then, D ≈ϵ D′ and PrD′ [f(s) = y] ≥ 1− ϵ.

Proof. Define E to be the event that during execution of the sampler D′, the preimage search

33

succeeds, that is, the counter does not reach tlimit + 1. We write

|D − D′|1 =
∑

x∈supp(D)

|Pr
D
[x]− Pr

D′
[x]|

=
∑

x∈supp(D)

|Pr
D
[x]− Pr

x′←D′
[x′ = x|E] · Pr

D′
[E]− Pr

x′←D′
[x′ = x|E] · Pr

D′
[E]|

=
∑

x∈supp(D)

|Pr
D
[x]− Pr

x′←D′
[x = x′|E] · Pr

D′
[E]|

=
∑

x∈supp(D)

|Pr
D
[x]− Pr

x′←D
[x = x′] · Pr

D′
[E]|

= (1− Pr
D′
[E]) ·

∑
x∈supp(D)

Pr
D
[x]

The third line is due to the fact that when E occurs, output is ⊥. The fourth line is by Lemma 12.
Set th = ϵ

2·|supp(D)| . Now we have

Pr
D′
[E] ≤

∑
x∈supp(D)

Pr
D
[x] · (1− Pr

D
[x])tlimit

=
∑

x∈supp(D):
PrD[x]≤th

Pr
D
[x] · (1− Pr

D
[x])tlimit +

∑
x∈supp(D):
PrD[x]>th

Pr
D
[x] · (1− Pr

D
[x])tlimit

≤ |supp(D)| · (th+ e−tlimit·th) ≤ ϵ

Now we prove security through a sequence of hybrids, each of which is obtained by modifying
the previous one. For simplicity we will only prove the case ℓ = 1, but the general case follows
similarly (given that obfuscated program sizes will depend on ℓ). We first define our hybrids and
then we will show their indistinguishability.

Hyb0: The original game StegCiphertextGameA(1
λ).

Hyb1: We modify the way the challenger computes the punctured key ek′ that will be submitted
to the adversary: Instead of setting ek = ACE.GenEK(sk, C1), the challenger now sets ek′ =
(P̂enc, seed) where

• K ′1 ← PRF1.Punc(K1,m
∗).

• α∗ = PRF1.Eval(K1,m
∗).

• β∗ = PRF1.Eval(K2, α
∗). (Note that ACE.Enc(ek,m) is α∗||β∗ during execution of StegEnc)

• P̂ ← iO(P ′enc) where P ′enc is the following program.

P ′enc(m)

Hardcoded: K ′1,K2, C1

1. Check if C1(m) = TRUE. If so, output ⊥ and terminate.

2. Compute α = PRF1.Eval(K
′
1,m).

34

3. Compute β = PRF2.Eval(K2, α)⊕m.

4. Output α||β.

Hyb2: We modify the way the challenger computes the punctured key dk′ that will be submitted
to the adversary: Instead of setting dk = ACE.GenDK(sk, C2), the challenger now sets dk′ =
(P̂dec, seed) where P̂ ← iO(P ′dec) where P ′dec is the following program.

P ′dec(ct)

Hardcoded: K ′1,K2, C

1. Check if C(m) = TRUE. If so, output ⊥ and terminate.

2. Parse α||β = ct.

3. Compute m = PRF2.Eval(K2, α)⊕ β.

4. Check if α = PRF1.Eval(K
′
1,m). If not, output ⊥ and terminate.

5. Output m.

Hyb3: We now sample α∗ ← {0, 1}3n(λ) \ Img(PRF1.Eval(K1, ·)).

Hyb4: When sampling ek′, we now sample K ′2 ← PRF2.Punc(K2, {α∗, r∗1}) where r∗1 ← {0, 1}3n(λ)\
Img(PRF1.Eval(K1, ·)) and use K ′2 instead of K2.

Hyb5: We modify the way the challenger computes the punctured key dk′ that will be submitted
to the adversary: Instead of setting dk = ACE.GenDK(sk, C2), the challenger now sets dk′ =
(P̂dec, seed) where P̂ ← iO(P ′′dec) where P ′′dec is the following program.

P ′′dec(ct)

Hardcoded: K ′1,K2, C, α
∗, r∗1

1. Check if C(m) = TRUE. If so, output ⊥ and terminate.

2. Check if α = α∗ or r∗1. If so, output ⊥ and terminate.

3. Parse α||β = ct.

4. Compute m = PRF2.Eval(K2, α)⊕ β.

5. Check if α = PRF1.Eval(K
′
1,m). If not, output ⊥ and terminate.

6. Output m.

Hyb6: When sampling dk′, we now sample K ′2 ← PRF2.Punc(K2, {α∗, r∗1}) where r∗1 ← {0, 1}3n(λ)
and use K ′2 instead of K2.

Hyb7: We now sample β∗ ← {0, 1}n(λ).

35

Hyb8: We now sample r∗1 ← {0, 1}3n(λ).

Lemma 14. Hyb0 ≈ Hyb1.

Proof. The circuits in the two hybrids are equivalent by punctured key correctness of the PRF
scheme. The result follows by iO security.

Lemma 15. Hyb1 ≈ Hyb2.

Proof. The circuits in the two hybrids are equivalent by punctured key correctness of the PRF
scheme. The result follows by iO security.

Lemma 16. Hyb2 ≈2−2n(λ) Hyb3.

Proof. Follows by punctured key security of the PRF scheme and the fact that the image set of
PRF1.Eval1(K1, ·) has size 2n(λ).

Lemma 17. Hyb3 ≈ Hyb4.

Proof. Follows by PRF punctured key correctness and iO security.

Lemma 18. Hyb4 ≈ Hyb5.

Proof. Follows by iO security.

Lemma 19. Hyb5 ≈ Hyb6.

Proof. Follows by PRF punctured key correctness and iO security.

Lemma 20. Hyb6 ≈ Hyb7.

Proof. Follows by PRF punctured key security.

Lemma 21. Hyb7 ≈2−2n(λ) Hyb8.

Proof. Immediate by an elementary probability calculation.

The above argument shows that in the experiment StegCiphertextGameA(1
λ), during the com-

putation of ACE.StegEnc, we can replace the value ict = ACE.Enc(ek,m) with a truly random
value r. Then, we do the following argument. We replace r with Ext(seed, s∗) where s∗ ← D, and
these hybrids are indistinguishable by extractor security. Finally, we can replace the outcome of
ACE.StegEnc with a true sample from s′′ from D by Lemma 13.

8 Acknowledgments

Part of this work done was done while AÇ was an intern at NTT Research and part of this work was
done while AÇ was being supported by the following grants of VG: NSF award 1916939, DARPA
SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC
center for financial services innovation award, and a Cylab seed funding award.

36

References

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th Annual
IEEE Conference on Computational Complexity, pages 229–242, 2009.

[Aar16] Scott Aaronson. The complexity of quantum states and transformations: From quan-
tum money to black holes, 2016.

[AB24] Prabhanjan Ananth and Amit Behera. A modular approach to unclonable cryptog-
raphy. In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology –
CRYPTO 2024, Part VII, volume 14926 of Lecture Notes in Computer Science, pages
3–37, Santa Barbara, CA, USA, August 18–22, 2024. Springer, Cham, Switzerland.

[AL21] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology – EURO-
CRYPT 2021, Part II, volume 12697 of Lecture Notes in Computer Science, pages
501–530, Zagreb, Croatia, October 17–21, 2021. Springer, Cham, Switzerland.

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New
approaches for quantum copy-protection. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes in
Computer Science, pages 526–555, Virtual Event, August 16–20, 2021. Springer, Cham,
Switzerland.

[ÇG24a] Alper Çakan and Vipul Goyal. Unclonable cryptography with unbounded collusions
and impossibility of hyperefficient shadow tomography. In Elette Boyle and Mo-
hammad Mahmoody, editors, TCC 2024: 22nd Theory of Cryptography Conference,
Part III, volume 15366 of Lecture Notes in Computer Science, pages 225–256, Milan,
Italy, December 2–6, 2024. Springer, Cham, Switzerland.

[CG24b] Andrea Coladangelo and Sam Gunn. How to use quantum indistinguishability ob-
fuscation. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, 56th Annual
ACM Symposium on Theory of Computing, pages 1003–1008, Vancouver, BC, Canada,
June 24–28, 2024. ACM Press.

[ÇG25] Alper Çakan and Vipul Goyal. How to copy-protect all puncturable functionalities
without conjectures: A unified solution to quantum protection. Cryptology ePrint
Archive, 2025.

[ÇGLZR24] Alper Çakan, Vipul Goyal, Chen-Da Liu-Zhang, and João Ribeiro. Unbounded leakage-
resilience and intrusion-detection in a quantum world. In Elette Boyle and Mohammad
Mahmoody, editors, TCC 2024: 22nd Theory of Cryptography Conference, Part II,
volume 15365 of Lecture Notes in Computer Science, pages 159–191, Milan, Italy,
December 2–6, 2024. Springer, Cham, Switzerland.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on Theory of Computing,
pages 429–437, Portland, OR, USA, June 14–17, 2015. ACM Press.

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and
applications to unclonable cryptography. In Tal Malkin and Chris Peikert, editors,

37

Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes in
Computer Science, pages 556–584, Virtual Event, August 16–20, 2021. Springer, Cham,
Switzerland.

[DPVR12] Anindya De, Christopher Portmann, Thomas Vidick, and Renato Renner. Trevisan’s
extractor in the presence of quantum side information. SIAM Journal on Computing,
41(4):915–940, 2012.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, 2010.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on
Theory of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014.
ACM Press.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, jan 1983.

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd Annual Sympo-
sium on Foundations of Computer Science, pages 679–687, New Brunswick, NJ, USA,
October 20–23, 2012. IEEE Computer Society Press.

[Zha20] Mark Zhandry. Schrödinger’s pirate: How to trace a quantum decoder. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography Conference,
Part III, volume 12552 of Lecture Notes in Computer Science, pages 61–91, Durham,
NC, USA, November 16–19, 2020. Springer, Cham, Switzerland.

38

	Introduction
	Preliminaries
	Notation
	Cryptography
	Puncturable Pseudorandom Functions
	Indistinguishability Obfuscation

	Quantum Information

	Definitional Work
	Malleable-Puncturable Schemes
	Quantum Protection Definitions

	Technical Tools
	Quantum Protection Properties of Coset States
	Quantum-Proof Reconstructive Extractors
	Projective and Threshold Implementations

	Quantum Protection Construction
	Proof of Copy-Protection Security
	Indistinguishability of Hybrids: Proof of lem:unclonlasthyb
	Reduction to Monogamy-of-Entanglement: Proof of lem:moebased
	Proof of claim:moeclaimp14

	Steganographic Asymmetrically Constrained Encapsulation
	Definition
	Construction
	Proof of Steganographic Ciphertext Security

	Acknowledgments

