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Abstract—Background. Jupyter notebooks are one of the
main tools used by data scientists. Notebooks include features
(configuration scripts, markdown, images, etc.) that make them
challenging to analyze compared to traditional software. As a
result, existing software engineering models, tools, and studies
do not capture the uniqueness of Notebook’s behavior.

Aims. This paper aims to provide a large-scale empirical study
of bugs and vulnerabilities in the Notebook ecosystem.

Method. We collected and analyzed a large dataset of Note-
books from two major platforms. Our methodology involved
quantitative analyses of notebook characteristics (such as com-
plexity metrics, contributor activity, and documentation) to
identify factors correlated with bugs. Additionally, we conducted
a qualitative study using grounded theory to categorize notebook
bugs, resulting in a comprehensive bug taxonomy. Finally, we
analyzed security-related commits and vulnerability reports to
assess risks associated with Notebook deployment frameworks.

Results. Our findings highlight that configuration issues are
among the most common bugs in notebook documents, followed
by incorrect API usage. Finally, we explore common vulnerabil-
ities associated with popular deployment frameworks to better
understand risks associated with Notebook development.

Conclusions. This work highlights that notebooks are less well-
supported than traditional software, resulting in more complex
code, misconfiguration, and poor maintenance.

I. INTRODUCTION

Data science plays an increasingly pivotal role in driving
global economic advancements. Positioned at the convergence
of diverse scientific domains, data scientists, while adept
in their respective scientific disciplines, often lack extensive
familiarity with software development and reliability practices.
This knowledge gap may inadvertently lead to the introduc-
tion of software bugs and vulnerabilities within data science
applications. Such implications underscore growing concerns
regarding the reliability, security, and overall dependability
of data science software, emphasizing the need for a deeper
understanding of software engineering principles within the
data science community.

For example, 2022 saw the first ransomware attack on
Jupyter Notebook [34], one of the most popular web appli-
cations for data science programming. The attack encrypted
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the users’ notebooks and demanded a ransom payment for
decryption. The success of this attack was attributed to mis-
configured software security settings, emphasizing the critical
importance of addressing and rectifying notebook bugs to
safeguard against security breaches.

Jupyter Notebook has become an industry standard for
writing code related to data exploration, analysis, and machine
learning [21]. These documents intertwine source code (e.g.,
Python, Matlab, or C) with descriptive markdown text that
can include equations or media content. Furthermore, these
documents showcase the dynamic outputs of the executed
code, including variable values, tables, and graphs, providing
a comprehensive and interactive platform for coding, docu-
mentation, and data visualization.

# Install dependencies for Google Colab.

# If you want to run this notebook on your
# own machine, you can skRip this cell

!pip install dm-haiku

!'pip install einops

#@title Imports

import functools
import itertools

Fig. 1. A Notebook where the first cell may be skipped.

Unlike traditional programming environments where code
must be executed sequentially, Jupyter Notebooks allow users
to run cells individually, enabling a more interactive and
exploratory coding experience. Data scientists take full ad-
vantage of this feature as shown in Figure 1. In this real-
world notebook from the Google DeepMind repository [11],
developers create specific configuration cells that should only
be run if working on Colab. If users work on their local
machines, they should skip the execution of this cell.

The non-sequential execution capability of Notebooks,
while proposing an interactive coding environment, presents
a challenge for software engineering tools. These unique
features, combined with the accessibility of notebooks to non-
experts, increase the probability of bugs within notebooks.
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In addition, even when proficient notebook users employ
debugging tools, these solutions may fall short in addressing
the distinctive characteristics inherent to notebooks. As a
consequence, their efficacy in assisting users in enhancing
notebook reliability may be compromised.

Despite recent efforts focused on reproducibility [38], [63],
[64], [73] and the establishment of best practices [35], [40],
[47], the notebook ecosystem is not yet well understood, and
an in-depth study of notebooks and their associated bugs is
needed. In particular, given recent security incidents involving
notebooks [34], understanding the prevalence and nature of
security vulnerabilities has become especially critical.

We address this gap through quantitative and qualitative
analyses of notebook characteristics and changes. First, we
gather a dataset of Notebook files and commits extracted from
active GitHub repositories. We then quantitatively analyze the
correlation between notebook characteristics and the frequency
of bugs (Section IV), develop a taxonomy of notebook bugs
(Section V), and analyze security-related commits and vulner-
abilities to identify prevalent security issues (Section III-D).

This paper makes the following contributions:

Contribution 1: An empirical study of Jupyter Notebook
characteristics and their correlation to bugs. We provide in-
sights into factors most strongly associated with notebook
bugs, guiding future tool development and best practices.

Contribution 2: A comprehensive taxonomy of Jupyter Note-
book bugs derived from empirical analysis. This taxonomy
helps researchers and practitioners better understand prevalent
issues and their root causes.

Contribution 3: An analysis of security vulnerabilities within
Jupyter Notebook deployment frameworks. We highlight crit-
ical security risks, emphasizing the need for robust security
practices in notebook infrastructure.

II. MOTIVATION & BACKGROUND
A. Motivation

Despite the growing adoption of Jupyter Notebooks across
data science, machine learning, and scientific computing, the
software engineering community still lacks a comprehensive
understanding of the quality challenges they introduce. Unlike
traditional software, notebooks support nonlinear execution,
mixing of code and documentation, dynamic outputs, and
minimal testing infrastructure. These unique characteristics
can lead to hard-to-detect bugs and poorly maintained projects.
Moreover, the ease of use and accessibility of notebooks
attracts a wide range of users, many of whom may lack formal
software development training, increasing the likelihood of
defects and misconfigurations. These challenges call for a sys-
tematic investigation of bugs within the notebook ecosystem.

To address this gap, we formulate three research questions.
RQ1 explores which notebook characteristics correlate with
higher bug frequency, aiming to identify risk factors and
inform quality-assurance practices. RQ2 seeks to create a
taxonomy of notebook-specific bugs through qualitative anal-
ysis, helping researchers and tool builders understand the

types of errors that commonly arise in this environment.
Finally, RQ3 investigates the security vulnerabilities present
in notebook deployment frameworks, an increasingly urgent
concern given recent high-profile attacks and the widespread
use of notebooks in production pipelines. Together, these ques-
tions provide a view of notebook reliability, from structural
contributors to systemic risks.

B. Background

A Jupyter Notebook is a document that enables users to
write and execute code interactively, one cell at a time. In
addition to code, users can include markdown text, equations,
media, and hyperlinks—organizing content into either code
cells or markdown cells. A typical Jupyter Notebook consists
of three main components:

Jupyter Notebooks support multi-language code execution,
allowing users to run code cells in any order. A code cell
includes executable code and configuration scripts.

Markdown cells allow users to add text or media, enhanc-
ing code cells with explanations and visual context.

Jupyter notebooks are executable documents that include
output. Each code cell has its output cell that may contain
text, traceback contents, graphs, images, videos, audio clips,
and any output generated from a code cell.

III. METHODOLOGY

To guide our investigation, we formulate the following three
research questions: RQ1: Which characteristics of Jupyter
Notebooks correlate with a higher frequency of bugs?, RQ2:
What are the most common types of bugs in Jupyter Note-
book documents? RQ3: What are the most common security
vulnerabilities in Notebook deployment frameworks?

Our approach consists of four main steps, as illustrated in
Fig. 2. First, we mine active Jupyter Notebook repositories
to extract notebook characteristics and code changes (Sec-
tion III-A). We then conduct an empirical study to identify
code and project features that correlate with the presence of
bugs, addressing RQ1 (Section III-B). To answer RQ2, we
perform a qualitative analysis to develop a taxonomy of com-
mon bugs in Jupyter Notebooks (Section III-C). Finally, we
investigate security issues in notebook deployment frameworks
such as JupyterLab and JupyterHub, addressing RQ3 (Sec-
tion III-D). Altogether, these steps provide a comprehensive
view of bugs and vulnerabilities across the Jupyter Notebook
ecosystem.

A. Data Extraction

For our empirical study, we chose two orthogonal sources
of data. Our first source comes from open-source GitHub
repositories, while our second source comes from the Kaggle
platform. We selected GitHub because it hosts a vast and
diverse array of notebook-based projects spanning numerous
application domains, reflecting real-world development prac-
tices. Kaggle was chosen due to its competitive environment,
which encourages high-quality documentation and robust cod-
ing practices, thus complementing our GitHub dataset by
providing a different perspective on notebook usage.
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Fig. 2. Overview of the data collection and processing pipelines for each research question.

GitHub Project Selection: Using the GitHub API, we down-
load the top 1,000 public repositories labeled with the “Jupyter
Notebook™ language tag, sorted by star ratings (Step (a) in
Figure 2). Then, to increase the quality of our dataset, we
removed inactive projects. We consider a project active if it
has received a GitHub event (other than a watch event) within
the last year (as of February 2024). Furthermore, since anyone
can post personal projects on GitHub, and Jupyter Notebooks
are used for a wide variety of less relevant projects, including
books or blogs, two of the co-authors manually checked the
README and the project descriptions of the repositories to
discard non-development-related projects. This selection of
relevant projects resulted in an inter-rater agreement of 88%
and disagreements were settled by a third co-author. After this
filtering process, we obtain 376 active Notebook repositories.

GitHub Notebook Characteristics and Change Extraction:
To answer RQ1, we extracted the characteristics of Notebook
files and projects (Steps (d) and (e)), including complexity
metrics, natural language metrics, and contributor metrics.

Extracting changes in Jupyter notebooks is challenging due
to the complexity of the notebook format. Unlike traditional
code files, Jupyter notebooks store content in a structured
manner that includes not only code but also rich text, images,
and interactive elements. Moreover, Jupyter notebooks store
metadata and cell outputs within the same file, complicating
the differencing process.

Consequently, conventional differential algorithms (e.g., git
diff) fail to isolate and represent changes in Jupyter notebooks.
These algorithms tend to capture alterations in both structure
and output, leading to substantial discrepancies. For instance,
in cases where images are generated as output, the git diff al-
gorithm may register thousands of lines as changed, reflecting
the regeneration of a new image, even if only a few lines of
code were modified.

To retrieve the code changes for each file in one commit,
we extract the file before and after the corresponding commit.
We then concatenate all Python source code cells in each
notebook and parse them into a Python abstract syntax tree
(AST). The ASTs are then serialized and compared. The

results highlight changes in the code AST, which is more
useful than standard line-based diff algorithms. Overall, we
extracted 587,381 unique changes in Jupyter Notebook files.

Kaggle Notebook Selection: The Kaggle notebooks’ selection
was based on Kaggle’s ranking system. We employed a
systematic algorithm to extract notebooks and their latest log
files from the first 20 pages (which roughly mapped to the
1,000 most popular files) of Kaggle’s notebook repository.
Overall, we gathered 1,038 Kaggle’s competition notebooks
and execution logs (Step (j)). These notebooks, submitted for
competitive challenges, span a diverse range of applications,
providing further insights into varied Jupyter notebook usage
practices. Our focus on Kaggle competition notebooks was
driven by the perceived higher quality in terms of code
documentation and log file maintenance. This conclusion was
drawn from an analysis of the substantial incentives offered
in Kaggle competitions, including significant cash rewards
and opportunities for developers to showcase their skills in
machine learning and data science.

We further parse the logs, looking for the keywords ‘Trace-
back’ and ‘Error’ to identify bugs and map them back to code
cells in the original Kaggle notebook. Finally, we extract the
execution time of each file from the logs.

B. RQI Settings

Motivation: Understanding which characteristics of Jupyter
Notebooks correlate with a higher frequency of bugs in
Notebook files is essential for improving the reliability, re-
producibility, and maintainability of data science workflows.
Jupyter Notebooks are widely used in exploratory data anal-
ysis, machine learning model development, and research, but
their interactive and flexible nature introduces challenges that
increase the likelihood of bugs. These bugs may arise from
factors such as code complexity, lack of documentation, lower
developer experience, dependence on external libraries and
data, or uniqueness of the domain of applications.
Identifying the specific characteristics that contribute to
these issues allows for the development of better practices,
tools, and guidelines to mitigate bug introduction, improving



both individual productivity and collaboration in data sci-
ence teams. By exploring these correlations, we can uncover
patterns that are not only specific to Notebooks but may
also apply to other interactive computing environments. We
describe below how we identify bug-related commits and how
we measure correlations between bugs and notebook features.

Identifying Bug-Related Commits: From the dataset of
changes extracted from GitHub Notebook repositories (Sec-
tion III-A), we identify bug-relate commits following previous
work [28], [66] by considering a commit as bug-related if its
related message contains any of the keywords “fix”, “bug”,
“patch” but does not contain the keywords “rename,” “merge,”’
“clean-up,” or “refactor.”” Overall, we extracted 9,554 bug-

related commits (step (c)).

Correlation With General Project Characteristics: From
our dataset of 8,647 notebooks and 587,381 unique changes,
we extracted metadata and characteristics that may be cor-
related to bugs. Specifically, we investigate different sets of
characteristics covering code complexity, natural language,
and contributor metadata.

To assess code complexity, we examined five metrics in-
cluding the number of functions, lines of code, libraries
imported and code blocks in the Notebook, and the cyclomatic
complexity of the file. These features were selected because
they are recognized as indicators of code complexity, which is
often linked to the likelihood of bugs in traditional software.

We also measure three natural language metrics, including
code-to-markdown line ratio, length of commit messages, and
the entropy of these messages. Code-to-markdown ratio is
important as markdown serves as the primary medium for
developers to incorporate natural language into Notebooks, im-
pacting readability and maintenance. The length and entropy of
commit messages, while not direct measures of clarity, provide
indirect insights into how contributors document changes.

Finally, we look at the number of contributors working on
the same file, the number of commits on a given file, and the
age of their GitHub accounts at the time of contribution. The
number of contributors working on the same file reflects the
level of collaboration, which can introduce coordination chal-
lenges and potential inconsistencies. The age of the GitHub
accounts of the contributors at the time of the contribution
is a proxy for their experience [3], [13]. These metrics were
chosen to capture collaboration and developer experience,
factors frequently highlighted as influencing software quality.
We measure the correlation between these metrics and the
number of bugs in a given file, we use the Pearson Correlation.

C. RQ?2 Settings:

Motivation: RQ2 aims at creating a taxonomy of bugs in
Notebooks. While general software defect taxonomies exist,
they often fail to account for the unique features of notebooks.
By systematically categorizing common bugs in this environ-
ment, we aim to uncover patterns that are unique to notebook-
based workflows. This is essential for building debugging
tools, informing best practices, and supporting educational
initiatives tailored to the notebook ecosystem.

We follow the grounded theory methodology to do a quali-
tative analysis of the bugs in Jupyter Notebooks. This process
led us to the building of a Jupyter Notebook bug taxonomy.
We describe below our main process.

Data Collection Stage: Our main data comes from the two
sources as described in Section III-A. For this specific study,
we only focus on the 587,381 GitHub notebook changes and
on logs from Kaggle notebooks that contain any traceback.

Open Coding Stage: The open coding stage is a foundational
step in our qualitative analysis, aimed at identifying distinct
types of bug fixes in Jupyter Notebooks. To manage the
large volume of commits and focus our manual analysis, we
applied an automated clustering strategy to segment the dataset
into meaningful groups of similar bug-fixing commits. This
structured approach helped ensure diversity in the types of
bugs we reviewed while maintaining feasibility.

We began by applying a mixed heuristic sampling process
based on commit messages and AST-level code changes. Be-
cause Jupyter Notebooks are stored in JSON format, traditional
line-based diff tools produce noisy results that include meta-
data and output differences irrelevant to actual code changes.
For example, Listing 1 displays a change where a fix requires
a single line change (swap between input and input-1
parameters, lines 10 and 11). In the Notebook format, the diff
is more complex to parse since the developer also changed
the input file and this change resulted in the change of a very
large tensor (in the data field) since such data is stored in the
notebook. Additionally, metadata fields are also updated with
the execution_count of every cell in the Notebook being
updated. This makes correctly isolating bug-fixing changes
very challenging in the Notebook environment. To address
this, we extracted the Python source code cells info from the
diff and used AST parsing to represent changes.

We then parsed these source code cells into abstract syntax
trees (ASTs) and applied a structural diffing algorithm to
identify semantic changes. This AST-based comparison reveals
more meaningful transformations than line-based diffs—for
example, distinguishing the insertion of control structures like
an if condition, which might appear trivial in a line diff but
indicates deeper logical modifications.

Listing 1. Example of a 1-line fix resulting in a change complex to parse.
"source": [

1 - "(Path(‘train/002844.9pg’), [‘train’])"

2 4+ "(Path(‘train/008663.jpg’),\n",

3 4+ [‘car’, ’'person’])

4 [...]

5 "data": { "text/plain": [

6 - "tensor ([-1.0028, [...], —-3.6006],\n"
7+ "tensor ([ 2.0258, [...], 1.6073],\n"

8 [...]

9 "source": [

10 —= " return where(l-inputs, inputs) .mean()"
11 + " return where(inputs, l-inputs).mean()"
12 [...]

To characterize each bug fix, we select eight metrics describ-
ing properties such as the size and type of changes, as well



as boolean flags indicating whether the modification occurs
within a loop, condition, constant, and so on. Principal Com-
ponent Analysis (PCA) reduces these metrics to two principal
components, which are then clustered with DBSCAN. This
procedure initially yields 8 clusters that achieve a silhouette
score [45] of 0.91, indicating high-quality clustering (where
negative values suggest misclassified instances, O implies over-
lapping clusters, and 1 is the ideal value). To cover all relevant
scenarios, 3 additional clusters are introduced to account for
non-code edits (e.g., markdown cell updates), unparsable file
changes, and commits that lack bug-fixing keywords. In total,
we produced 11 clusters for further qualitative analysis.

Axial Coding: Three co-authors then each randomly sample
30 or 50 bugs from different categories (based on availabil-
ity), manually analyze the changes, commit messages and
associated issues or logs and come up with categories and
descriptions for each bug.

Selective Coding and Saturation: After this initial sampling
process, the three co-authors had an open discussion to con-
solidate their categorization and bug descriptions. Once the
discussion is done, 30 or 50 additional bugs per person are
sampled again. After three iterations and 230 bugs manually
investigated, none of the authors found additional insights or
categories, ending the search.

D. RQ3 Settings:

Motivation: Jupyter Notebook infrastructures such as Jupyter-
Hub, Jupyter Server, and JupyterLab have grown in popularity
as core components of data science and interactive computing
workflows. However, their widespread adoption also increases
the threat surface for potential attacks. We observed when
collecting data that the yearly count of Common Vulnerabil-
ities and Exposures (CVEs) reported for software within the
Jupyter Notebook ecosystem from 2015 to 2024 significantly
increased. For example, the number of security reports in the
NVD referencing Jupyter notebooks doubled between 2023
and 2024. This trend emphasizes the necessity of examining
how security vulnerabilities manifest in real-world notebook
deployment frameworks.

Security-Related Commit Selection: To study security issues
in notebook deployment frameworks, we investigate all open-
source repositories (156) from the three most popular GitHub
organizations for notebook infrastructure: jupyter-hub, jupyter-
server, and jupyterlab. We cloned the repositories and extracted
all the commits in the main branch, resulting in a dataset of
40,962 commits. To obtain commits related to security issues,
we use a two-stage filtering pipeline described below.

First, following previous work [72], we use regular-
expression-based (regex) method (available in our replication
package) on commit messages to filter out commits that are
not relevant to security issues. To avoid including commits
generated by automation tools, we also excluded commits that
have a commit message longer than 1,000 characters. After
this first stage, we obtained 400 security-related commits.

Regex filtering often leads to a relatively high false positive
rate due to its limitation in understanding the semantics

of the commit message. Inspired by the widespread use of
large language models (LLMs) in software engineering, our
second stage includes an LLM-based method for refining the
results produced by the Regex filtering (full prompt in our
replication package). We leveraged a state-of-the-art LLM,
DeepSeek-V3 [9], for filtering due to its performance on
software engineering tasks. The LLM is used to match a
given commit message to an entry of the “2024 CWE Top
25 Most Dangerous Software Weaknesses” [33]. We used
one-shot prompting on the LLM. The prompt included the
description of the task, the output format, an example commit
message and its paired expected output (a CWE ID), as well
as the commit message to evaluate. Out of the previous 400
commits, 323 were matched with a CWE entry.
Hallucination is a problem of LLMs. To mitigate this issue,
we manually checked the 323 commits for errors in the CWE
mapping. We found that commits from one of the repositories
(‘zero-to-jupyterhub-k8s’) only contained irrelevant commits
from automatic vulnerability scans. After eliminating the au-
tomated commit scans, we ended up with 66 security-related
commits. We further manually annotated to validate the LLM’s
output according to the CWE website’s guidelines, reducing
our total number of security-related commits to 62. After this
annotation, we grouped the CWEs according to their parent
pillar CWE in the CWE-1000 view to consolidate our results.

IV. RQ1 RESULTS

To address RQIl—identifying characteristics of Jupyter
Notebooks that correlate with a higher frequency of bugs—we
analyzed the correlation between various notebook attributes
and the number of bug-related commits.

# of Bug-related
commits

Fig. 3. Pearson Correlation coefficients between the number of bug-related
commits and Notebook metrics. White, light red, medium red, and dark red
indicate negligible, weak, medium, and strong correlations. Blue, green, and
purple coding represent code-related, natural language, and metadata metrics.

Figure 3 presents the Pearson correlation values that illus-
trate the relationships between the different notebook charac-
teristics and bug-related commits. Blue characteristics (e.g.,
Cyclomatic complexity) are code-related metrics, green ones
are natural language metrics while the purple ones are meta-
data metrics related to file contributors. All the metrics de-
scribe file-level characteristics. For example, the “Commit
msg length” measured the average commit message length
of all commits modifying a specific notebook file. Pearson
coefficients close to 1 (or -1) indicate a strong correlation
between two features, while a coefficient close to 0 indicates
a lack of correlation between features. For readability, we also
colored the Pearson coefficients, with stronger red colors rep-
resenting stronger correlations. For example, the first column



of the Figure indicates that there is a weak positive (0.14)
correlation between bug-related commits modifying a file and
its cyclomatic complexity. Several key findings emerge from
this analysis. We divide our analysis between code, natural
language, and contributors metrics.

Code Metrics: Our results on code metrics are diverse. Files
importing many libraries and large files are more likely to be
modified by bug-related commits (Pearson coefficients of 0.34
and 0.23), reinforcing the idea that longer, complex files are
more bug-prone. We found no correlation between function
count and bug-related commits, indicating that the use (or non-
use) of functions in Notebooks doesn’t significantly impact the
number of bugs in Jupyter Notebooks. The number of code
blocks and cyclomatic complexity of the file play a slightly
greater role (Pearson coefficient of 0.11 and 0.14) but still
represent only a weak correlation.

Natural Language Metrics: Two of the natural language
metrics (commit message length and code-to-markdown ratio)
are not significantly correlated with bug-related commits. This
is surprising as commit metadata has previously been shown
to perform well for bug prediction [71] despite its simplicity.
Code-to-markdown ratio not being significant tends to indicate
that markdown plays a different role than code comments (i.e.,
it is not used to describe the code) as code comments in
traditional software have been shown to be related to software
quality and bug proneness [20]. This suggests that markdown
cells, despite being another way to mix natural language and
source code, do not replace the need for comments.

Contributor Metrics: Contributor metrics are the metrics
most correlated with bug-related commits. Specifically, the
number of contributors metric is strongly correlated, indicating
that more contributors tend to modify buggy files, possibly due
to increased complexity in coordination and merging changes.
This high correlation compared to other metrics may also
indicate that Notebooks are not as convenient for teamwork
as more traditional source code. Similarly, frequently modified
files are more prone to bugs, possibly due to instability from
frequent changes. Finally, experienced users are more likely to
work on files containing more bug-related commits, possibly
because they are trusted with fixing issues.

RQ1 Summary: The main correlation on bugs is related
to contributors’ behavior and characteristics more than
any code complexity or natural language metrics. This
suggests that software engineering tools made for sharing
Notebooks and working as a team (e.g., version control
systems) are not well-suited for Jupyter Notebooks.

V. RQ2 RESULTS: BUG TAXONOMY

In this section, we follow grounded theory to generate a
taxonomy of bugs’ root causes in Jupyter Notebooks in order
to understand the most common types of bugs present in the
Notebook ecosystem. The resulting root cause categories of
our study are described below.

Incorrect configuration: Notebooks share the same enormous
and ever-growing ecosystem as Python does, and therefore
share the tedious configuration process for many libraries.
There are two major configuration problems that cause bugs.
The first one is path-related. When users need to specify the
location of resources, a path or url needs to be given. Without
a structured configuration management tool, the common
practice for a notebook is to manually fill in some path/url
string, which may lead to problems when there is a change to
the running environment. Code Snippet 2 is an example where
a misconfigured path is updated.

Listing 2. Example of an Incorrect configuration bug
- path_data = "../../../data/’
+ path_data = '../../../assets/data/’

The other type of configuration bugs comes from versions
of both the Python runtime and libraries. Unlike the package
manager, npm, in the Javascript ecosystem, the default Python
package manager, pip, does not force to specify a version when
installing a library. This leads to incompatibility problems
when some of the libraries a notebook depends on have under-
gone major updates. For example, one bug in a Colab notebook
is caused by not specifying the Tensorflow version [57]. The
fix depends on the ‘magic command’ feature provided by both
the Jupyter Notebook ecosystem and the Colab environment,
as is shown in Code Snippet 3.

Listing 3. Example of an Incorrect configuration bug
+ %tensorflow_version 1.x

Magic functions, also referred to as ‘IPython magics’,
are specialized commands within Jupyter notebooks designed
to offer convenient shortcuts and additional functionalities.
Prefixed with a % symbol, these commands enable users to
execute various operations beyond standard Python syntax.
Throughout our research, we noticed frequent misuse of magic
functions. This was often rooted in typographical errors, minor
syntax mistakes, or the selection of an inappropriate magic
function for a particular task. While magic functions provide
a valuable means to enhance Jupyter notebook functionality,
instances of misapplication can result in unintended errors,
potentially compromising the overall integrity of the notebook.

Data shape/structure: One of the major use cases for Jupyter
Notebooks is the data science field, where users need to
manipulate different shapes of data, ranging from unstructured
text, semi-structured JSON files to different shapes of matrices
and tensors. As the core of notebooks, python provides various
syntactic sugar for convenient manipulation of one or multiple
data items in a very concise statement, which may take
traditional languages like Java several or tens of statements
to do. Third-party libraries like numpy and pandas made this
coding style even more popular, which also complicates the
semantics of these syntactic sugars. Bugs caused by incorrect
handling of data structures are often seen. This is made worse
by the lack of static type checking in Python interpreters. For
example, a bug in a tutorial was caused by the misuse of
certain shapes of tensors [68].



The fix of this bug, as is shown in Code Snippet 4, features
the flexibility of Python syntax for tensors.

Listing 4. Example of a Data shape/structure bug
- mae = data.inverse_transform(
—mae.reshape(1l,-1))[0][0]
+ mae = data.inverse_transform([[mae]]) [0][0]

API misuse: Notebooks span very diverse topics, with many
domains relying on specific APIs such as TensorFlow, Pandas,
website’s REST APIs, etc. Many bugs in Jupyter Notebooks
are related to incorrect usage of such API, resulting in incor-
rect function calls, missing or incorrect input parameters, or
misunderstanding in return types.

Listing 5. Example of an Incorrect API bug
- return vsm_leaves_phi (text, yelp_lookup,
—np_func)

+ return vsm_phi (text, yelp_lookup, np_func)

Additional instances of API misuse arise from customized
methods created by Jupyter Notebook users, stemming from
the absence of automated refactoring tools available to Note-
book developers. Code Snippet 5 depicts an example of such
a bug [5]. The developers altered the method’s name from
vsm_leaves_phi to vsm_phi. However, due to the lack of
automatic refactoring tools, the author did not update all calls
to this function. In Jupyter Notebooks, the presence of the
original function name, vsm_leaves_phi, persists in memory
until the user reruns the cell defining the function and no crash
is observed. The issue will only manifest itself if a user reruns
the modified cell.

Incorrect syntax: In this category, we observe struggles linked
to Python’s syntax for object-oriented programming, such as
incorrect usage of the keyword self. This type of bug happened
in the popular fast.ai framework [8]. This may be connected
to the fact that Jupyter Notebook developers rarely use any
classes or functions, and may not be comfortable with oriented
object programming features.

Listing 6. Example of an Incorrect syntax bug
- self.opt.set_hyper (opt.hypers[0][’'1r’]xself.
—mult_1lr)
+ self.opt.set_hyper(self.opt.hypers[0]["1r’]x*
—self.mult_1r)

Wrong logic: Code Snippet 7 shows an example of Wrong
Logic in the HuggingFace notebook repository [27]. In the
original implementation, the author missed cases where the
answer span partially overlapped with the context.

Listing 7. Example of a Wrong logic bug
- if offset[context_start][0] > end_char \
- or offset[context_end] [1] < start_char:
+ if offset[context_start][0] > start_char \
+ or offset[context_end] [1] < end_char:

Another type of “Wrong Logic” bug occurs when develop-
ers pick an incorrect algorithm. For example, we found a bug
in the Google DeepMind repository [10] where the weights
for computing the optical flow were incorrectly set up.

Non-determinism: Probabilistic features (e.g., the random
standard library) are widely used in modern programs to
implement simulation and machine learning algorithms. One
common practice for ensuring reproducibility is to use pseudo-
random functions and explicitly specify the random seed.
However, due to the complexity of the Notebook ecosystem,
even when users specify the random seed, there are cases when
unexpected random and non-deterministic bugs happen.

Code Snippet 8 shows an example of a randomness bug
from fastai2 [49]. When initializing the random number gen-
erator, the author of the notebook didn’t set the seed according
to an already-seeded random source, therefore causing the bug
that even when users explicitly set a random seed, the results
are not reproducible. To fix the bug, the contributors passed
a random number generated from the user-defined seed as the
seed for the new random number generator, making the new
random number generator deterministic.

Listing 8. Example of a Random-related bug
- self.rng = random.Random/()
+ self.rng = random.Random (
—random.randint (0, 2x%32-1))

Exception/Error/Log/Debugging: The cell-based execution
model of Jupyter Notebooks makes it difficult for users to
reason about the current execution context when an exception
happens. Also, the cell-based output mechanism adds com-
plexity to the classical standard output mechanism assumed by
Python, leading to traditional logging and debugging utilities
that are difficult to use correctly.

Errors in Test Code and Assertions: The flexibility of
cell execution and the convenience of result visualization in
Jupyter Notebooks make test frameworks neither necessary
nor compatible. One practice of testing a piece of code
in notebooks is by creating another cell or directly adding
assertion statements to the target code. This simple testing
method could be used incorrectly by users and cause bugs.

Resource management: These bugs encompass issues related
to the allocation and utilization of computing resources, such
as the number of GPUs allocated, input sizes, and batch sizes.
Improper handling of these aspects can lead to suboptimal
execution, performance bottlenecks, or even system failures.
For instance, we found a bug in the fastai2 [48] repository
where developers allocated an excessively large input size,
overwhelming available memory, causing the notebook to
crash. Identifying and addressing these issues enhances the
reproducibility of analyses and contributes to the overall
robustness of Jupyter Notebooks.

Incomplete code: There are several instances of incomplete
code in Jupyter Notebooks. Unlike traditional programming
languages, incomplete code in notebooks often arises from
educational or tutorial contexts. However, we consider incom-
plete code to be a bug because it leads to runtime errors
or prevents users from properly executing or understanding
subsequent notebook cells. Thus, incomplete code negatively
impacts notebook functionality and usability, warranting its
inclusion in our bug taxonomy and qualitative analysis.



Undeclared variables & Typos: Many bugs we found would
be considered minor, yet ended up in Jupyter Notebooks of
popular organizations such as fast.ai, or in the "Data Science
on AWS” textbook. These bugs highlight the lack of static
analysis and linting in the default Notebook web interface.

Documentation mistakes: Mistakes in markdown may be
considered bugs since they will affect the understanding of
the complete document. For example, a markdown cell may
describe a specific mathematical formula that is then imple-
mented in Python. If that formula is incorrectly described, this
is a bug as the document becomes incorrect. This is analogous
to mistakes in comments being bugs [53], [55], [56], [69].

Kaggle Notebooks and Logs Analysis: In inspecting 1,038
Kaggle notebooks, 89 instances (9%) exhibiting traceback con-
tents were identified, signifying errors within the logs. These
errors were categorized into four primary types: Compiler Er-
ror (59 notebooks), Logic Error (5 notebooks), Configuration
Error (20 notebooks), and API Misuse (5 notebooks).

Incorrect configuration errors underscore the importance
of configuration management, including dependencies, envi-
ronment settings, file paths, and configuration errors. Kaggle
Compiler errors are often attributed to syntax issues or
runtime anomalies within the codebase. API errors arise from
issues with interfacing external services or libraries. Finally,
Logic errors are caused by flawed implementations.

These findings from Kaggle align closely with our GitHub-
based taxonomy of bugs. In both datasets, configuration issues
and API misuse were among the most frequently observed
root causes. While the Kaggle dataset contained additional
compiler errors, both platforms demonstrated the presence of
logic errors, reinforcing the generality of these bug categories.
This overlap validates the robustness of our taxonomy across
diverse notebook usage contexts and highlights consistent pain
points for notebook users regardless of the platform.

RQ2 Summary: The most common bug root causes
in Jupyter Notebooks fall into 12 main categories, with
incorrect configuration, data shape mistakes, APl mis-
use, incomplete code, wrong logic, and documentation
errors being the most common root causes. Kaggle-based
observations confirm our observations on GitHub with
configuration issues, API misuse, and wrong logic being
the main root causes of bugs.

VI. RQ3 RESULTS: NOTEBOOK SECURITY

RQ3 investigates security issues in Jupyter Notebooks.
While we didn’t find any security issues in Notebook docu-
ments, deployment frameworks contain security vulnerabilities
that might make running Notebook unsafe. For example, CVE-
2024-43805 refers to a security vulnerability in the Jupyter-lab
deployment environment where opening a maliciously crafted
notebook allows an attacker to perform a cross-site scripting
attack. Below, we present our findings on security-related
commits in Jupyter Notebook infrastructures, drawing on the
methodology described in Section III-D.

TABLE I
NUMBER OF COMMITS RELATED TO EACH CWE PILLAR ENTRY.

# of
Commits

Common Weakness Enumeration ID
(CWE ID)

19  CWE-693: Protection Mechanism Failure
17 CWE-284: Improper Access Control
12 CWE-664: Improper Control of a Resource
Through its Lifetime
8  CWE-710: Improper Adherence to Coding
Standards
4 CWE-707: Improper Neutralization
1 CWE-691: Insufficient Control Flow Management
1 CWE-703: Improper Check or Handling of
Exceptional Conditions

Table I summarizes the number of commits under each
CWE pillar in the CWE-1000 view, with each CWE pillar
item indicated by its CWE ID and name. For example, the
first line of the table indicates that we found 19 commits in
Jupyter Notebook deployment frameworks that fix vulnerabil-
ities related to CWE-693, Protection Mechanism Failure.

The frequency of CWE types in the selected commits
follows a long-tail distribution. The most frequently observed
CWE was Protection Mechanism Failure (CWE-693), fol-
lowed by Improper Access Control (CWE-284) and Improper
Control of a Resource Through Its Lifetime (CWE-664).
These CWEs often arise in web-based systems and align
with the Jupyter Notebook architecture, which relies on HTTP
services and browsers. Less frequent CWEs include Command
Injection (CWE-77) and Use of Known Vulnerable Component
(CWE-1395), both of which are also typical in web services.

Listing 9. Example of CSRF bug in the jupyterhub project
Jjupyterhub/handlers/base.py

+ clear_xsrf_cookie_kwargs = {

+ key: value for key, wvalue in

+ self.settings.get (' xsrf_cookie_kwargs’,
{H

+ if key in {"path", "domain"}}

+

self.clear_cookie(’'_xsrf’,
- +*xself.settings.get (' xsrf_cookie_kwargs’,

{h,

+ x*xclear_xsrf_cookie_kwargs, )

Within Protection Mechanism Failure, the most recurrent
vulnerability concerns Cross-Site Request Forgery, accounting
for 14 of the 19 relevant commits. Listing 9 shows an example
of such a bug in the JupyterHub framework.

Listing 10. An Access Control bug in the nbgitpuller project
nbgitpuller/handlers.py
class LegacyInteractRedirectHandler (
—IPythonHandler) :
+ @web.authenticated
def get (self):

Access control is also a significant bug in notebook in-
frastructure. Improper Access Control (CWE-284) was often
addressed by bolstering authentication for notebook infras-
tructures that were previously unsecured. For example, a



vulnerability in the nbgitpuller was fixed by “making sure that
all endpoints are authenticated”, which improves the missing
access control for notebook infrastructure (See Listing 10).
Other web-based vulnerabilities included Cross-Site Script-
ing (XSS) due to insufficient input sanitization (CWE-707).
Listing 11 shows an example of fixing an XSS vulnerability.
Here, the addition of the “autoescape” option will automati-
cally escape special characters, preventing the vulnerability.

Listing 11. Example of an XSS bug in the notebook project
notebookapp.py
- Jjenv_opt = Jjinja_env_options
+ jenv_opt = {"autoescape": True}
+ Jjenv_opt.update (jinja_env_options

These findings are consistent with recent CVE reports on
the Notebook infrastructures. Among the 60 CVE reports
we collected from 2015 to 2024, the majority of HIGH or
CRITICAL rated vulnerabilities relate to web or access control
issues, highlighting similar security concerns observed in our
commit analysis. CVE reports also give insights beyond the
infrastructure repos in our study, as many CVEs are rooted in
the ecosystem of Jupyter Notebooks like servers and plugins.

Listing 12. Security Relax for Single User Server
jupyterhub/singleuser.py:
+ @classmethod
+ def validate_security(cls,
ssl_options=None) :
+ return

app 4

Trade-off between usability and security: Most security-
related commits involved fixes for discovered vulnerabilities.
However, a subset of commits relaxed security settings to
simplify configuration in common single-user scenarios. For
instance, Listing 12 displays a security change [32] that over-
writes the validate_security method to suppress TLS-related
security warnings for single-user servers. These changes are
not advisable for publicly accessible deployments; however,
they address usability challenges often encountered by indi-
vidual or non-professional users. In the examples above, both
TLS and cross-origin configuration are known to be difficult
and messy in a non-standard web production scenario. These
commits make configuration easier for out-of-the-box use of
notebooks with a trade-off between usability and security.

Security implications: Although Jupyter Notebook infrastruc-
tures were originally designed for single-user, local usage, our
analysis shows that they now face a range of common web-
related vulnerabilities (e.g., CSRF, XSS). These issues, which
stem from an HTTP-based architecture, can be exploited more
readily in scenarios where notebooks are exposed to broader
networks or multi-user environments. In practice, many orga-
nizations deploy notebook servers on corporate networks, in
the cloud, or as part of shared platforms—environments that
expand the attack surface beyond an individual’s machine.
One key tension is the need to balance usability and security.
A subset of security-related commits intentionally relaxes se-
curity controls to address the complexity of managing TLS cer-
tificates or cross-origin settings, particularly when notebooks

are used on non-standard platforms or by non-professional
users. While these relaxed settings simplify local installation
and reduce support overhead, they pose considerable risks
if the same configurations are adopted in production. For
instance, disabling strict authentication or cross-origin checks
could enable unauthorized access or session hijacking if the
server is exposed to a public network.

These findings emphasize that notebook infrastructures
are not intended for large-scale or security-critical contexts.
Security-conscious deployments should implement robust au-
thentication, enforce TLS for all traffic, apply strict cross-
origin policies, and keep dependencies updated. Additional
measures such as containerization or sandboxing can further
restrict the scope of potential exploits. Nevertheless, since
many Jupyter installations remain local, developers are facing
a dilemma: adding robust security controls often introduces
additional complexity, which can harm the out-of-the-box
experience that makes Jupyter Notebook usable.

RQ3 Summary: Jupyter Notebook infrastructures are
prone to common web-based vulnerabilities. We also ob-
served a tension between usability and security, where cer-
tain commits relaxed default protection settings to improve
ease of deployment, especially in single-user scenarios.

VII. THREATS TO VALIDITY

Conclusion validity: Bugs can be subjective without a clear
specification of how a piece of program should behave. There-
fore, there is a potential threat regarding the identification and
classification of the bugs in our study. To mitigate this issue,
the classification was done in a systematic process in multiple
iterations and verified by several authors.

External validity: Despite the large size of our datasets,
the notebooks used in our evaluation come from a relatively
homogeneous source (e.g., GitHub and Kaggle). Thus, the re-
sults on notebooks from other sources (e.g., company internal
repositories or specialized communities) might be different.
However, the data set should be reasonably representative
for most real-world Jupyter notebooks given that GitHub and
Kaggle are two major platforms for hosting notebook-related
resources and they contain a wide range of topics.

Construct validity: If one category of certain bugs escaped
our iterative sampling, then our approach would fail to include
this bug in our bug taxonomy. We mitigate this issue by
resampling the data for our manual analysis until saturation.

VIII. RELATED WORK

Empirical Studies on Jupyter Notebooks: Much work has
been done investigating software engineering practices for data
science in Jupyter Notebooks.

The closest work is the concurrent study done by De
Santana et al. [46] that analyzes Notebooks from GitHub and
Stack Overflow posts, and conducts interviews with Jupyter
developers in order to develop a taxonomy of problems related
to Jupyter Notebooks. While their study is thorough, it focuses



on higher-level issues encountered by developers (e.g., the
kernel crash, the notebook cannot be converted to another
format) while we focus on bugs in the source code (e.g.,
undeclared variable, error in test code, incorrect API code).
Our lower-level taxonomy complements previous work well,
and the connection to actual source code makes it more
actionable than the previous taxonomy. In addition, while they
filter tutorials and projects related to courses or books, this was
done automatically, leading to potentially mislabelled reposi-
tories while we manually went through over 1,000 notebook
repositories to ensure the quality of our dataset. Finally, our
inclusion of Kaggle Notebooks, an independent secondary
source of Notebooks further complements De Santana et
al. [46] contributions.

Previous work [12] presents a qualitative study of cleaning
activities in Jupyter Notebooks (adding, removing cells, etc.).
[24], [43] analyses 2.7 million Jupyter notebooks hosted on
GitHub and found that 70% of code snippets were clones and
50% of Notebooks have no unique code snippets.

Grotov et al. [15] quantitatively compare Python scripts
and Jupyter Notebooks, finding that Notebooks have more
stylistic issues—suggesting different developer behaviors and
the need for Notebook-specific studies. In contrast, Adams et
al. [1] report that Notebooks used in machine learning have
fewer stylistic issues than Python scripts. Nalin [36] explores
variable name/value inconsistencies in Notebooks using Al
and dynamic analysis. Pimentel et al. [37], [38] and Wang et al.
[63], [64] focus on Notebook reproducibility, proposing tools
and techniques to detect and resolve related issues. Unlike
these studies, our work provides an analysis of bugs and
security vulnerabilities in the Jupyter Notebook ecosystem,
combining both quantitative and qualitative perspectives.

Quaranta et al. [40] interviewed Notebook developers and
studied best practices in 1,380 Jupyter Notebooks from Kag-
gle. They found that experts are generally aware of best
practices (using version control, testing, etc.) but inconsis-
tently apply them. Settewong et al. [47] investigated how
visualization is used in competition notebooks to explain
coding solutions and proposed a taxonomy of 9 types of
visualizations used by expert notebook users. Chattopadhyay
et al. [6] identify 9 pain points of computational notebooks.
These pain points are not directly related to bugs in the code
and do not overlap with our taxonomy. Finally, Van Binsbergen
et al. [60] survey Read-eval-print-loops principles, which are
used by computational notebooks.

Jupyter Notebooks tools and datasets: Quaranta et al.
proposed a large dataset of Jupyter Notebook, KGTorrent [39]
to help researchers. Pynblint [41], NBLyzer [51], and Julyn-
ter [38] are existing static analysis tools for Jupyter Notebooks.
While being a step in the right direction, they are still lacking
most standard linting features. Merino et al. [31] discuss
the possibility for software engineers to develop widgets to
increase users’ access to the internal states of the executed
notebook. Other extensions proposed in previous work [7]
help determine which cells should be migrated, reducing the

notebook’s states and increasing performance.

Bug Taxonomy: Many bug taxonomies have been proposed,
focusing on different ecosystems such as autonomous vehi-
cle bugs [14], [62], deep learning systems [19], [22], [50],
[52], JavaScript [16], [17], HTML [29], video games [26],
Python API [18], [25], Data Analytics [2], test code [58],
blockchain [61], internet of things [30], infrastructure as
code [42], open-source software [4], [54], [59], [70], com-
piler [44], regular expressions [65] and security bugs [23],
[67]. While they follow a similar process as ours, all these
taxonomies are in widely different domains, making these
works very different from the current paper.

IX. IMPLICATIONS & CONCLUSION

Practical Implications. Our study offers several practical
insights for software developers, data scientists, and Al en-
gineers involved with Jupyter Notebooks. First, given that
configuration-related issues were found to be among the most
common bugs, practitioners should adopt rigorous config-
uration management strategies, including clearly specifying
library versions and paths, maintaining environment files, and
leveraging containerization solutions such as Docker. Inte-
grating notebook-specific linting and static analysis tools can
further reduce frequent mistakes, such as API misuse or typos.

From a research perspective, our taxonomy of notebook
bugs and the insights derived from analyzing vulnerabilities
highlight the need for further studies focused on tailored
software engineering methodologies specifically suited for
computational notebooks. Future research could explore ef-
fective notebook-specific debugging techniques, develop more
sophisticated static analysis tools that understand the note-
book’s cell-based execution model, or investigate notebook-
friendly refactoring methods. Lastly, given the rising preva-
lence of security vulnerabilities within notebook deployment
frameworks, researchers should prioritize developing notebook
infrastructure that better balances usability with security, per-
haps through context-aware adaptive security mechanisms or
enhanced user awareness and education initiatives.

Conclusion. We proposed a large-scale empirical study, in-
cluding a quantitative analysis of the notebook ecosystem,
a qualitative analysis of bugs in notebook documents, and a
study of vulnerabilities in notebook frameworks. We studied
8,647 Jupyter notebooks from GitHub and 1,038 notebooks
from Kaggle. Based on our analysis, we deduce that configu-
ration issues and API misuse were two of the most common
errors that notebook users faced and presented a new taxonomy
for bugs faced by users working in Jupyter notebooks.
Overall, our work highlights that attractive features of
Notebooks such as interactivity come at a cost, increasing con-
figuration issues and raising concerns about the reproducibility,
maintainability, and security of notebook projects.

Data Availability: Our replication package and dataset are
available on our anonymous GitHub'.

Thttps://github.com/jwyjohn/Exploring-the- Jupyter-Ecosystem
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