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Abstract—Advanced Driver Assistance Systems (ADAS) sig-
nificantly enhance road safety by detecting potential collisions
and alerting drivers. However, their reliance on expensive sensor
technologies such as LiDAR and radar limits accessibility, par-
ticularly in low- and middle-income countries. Machine learning-
based ADAS (ML-ADAS), leveraging deep neural networks
(DNNs) with only standard camera input, offers a cost-effective
alternative. Critical to ML-ADAS is the collision avoidance
feature, which requires the ability to detect objects and estimate
their distances accurately. This is achieved with specialized
DNNs like YOLO, which provides real-time object detection,
and a lightweight, detection-wise distance estimation approach
that relies on key features extracted from the detections like
bounding box dimensions and size. However, the robustness
of these systems is undermined by security vulnerabilities in
object detectors. In this paper, we introduce ShrinkBox, a
novel backdoor attack targeting object detection in collision
avoidance ML-ADAS. Unlike existing attacks that manipulate
object class labels or presence, ShrinkBox subtly shrinks ground
truth bounding boxes. This attack remains undetected in dataset
inspections and standard benchmarks while severely disrupting
downstream distance estimation. We demonstrate that ShrinkBox
can be realized in the YOLOv9m object detector at an Attack
Success Rate (ASR) of 96%, with only a 4% poisoning ratio in the
training instances of the KITTI dataset. Furthermore, given the
low error targets introduced in our relaxed poisoning strategy, we
find that ShrinkBox increases the Mean Absolute Error (MAE)
in downstream distance estimation by more than 3x on poisoned
samples, potentially resulting in delays or prevention of collision
warnings altogether.

Index Terms—ShrinkBox, Backdoor Attack, Object Detection,
Distance Estimation, Collision Avoidance, ML-ADAS

I. INTRODUCTION

Of the approximately 7 million traffic accidents in the US
in 2016, 40% would have been avoidable had the ego-vehicle
been equipped with Advanced Driver Assistance Systems
(ADAS), with 29% being avoidable with the collision avoid-
ance feature alone [1]. ADAS are sophisticated embedded
systems designed to improve road safety and reduce accidents
by providing real-time driver facilitation. These systems rely
on cutting edge sensors, such as LiDAR, radar, and cameras, to
observe the environment of the ego vehicle and take proactive
safety measures. However, widespread adoption of ADAS
remains a challenge despite their effectiveness, particularly
in low- and middle-income countries where 92% of global
traffic deaths occur [2]. This is because these systems are

Fig. 1: A comparison of different backdoor attacks on object detec-
tion, highlighting that the proposed ShrinkBox attack produces less
perceptible deviation in the annotations from ground truth.

mostly unaffordable in these regions due to the expensive sen-
sor technologies they employ. Advances in machine learning
(ML), particularly in deep learning, offer a promising path
forward. Using deep neural networks (DNNs) that rely solely
on visual input from standard cameras, ML-ADAS can deliver
functionality comparable to traditional ADAS at a fraction of
the cost.

In this paper, we focus on the collision avoidance ML-
ADAS which observes the traffic ahead to warn the driver
to apply timely brakes in case of a predicted collision. Two
specialized DNNs are required in this system. Firstly, an object
detection DNN detects objects in an image by regressing their
bounding boxes and identifies their classes [3]. This empowers
vehicles with the critical capability to locate and classify ob-
jects on the road, such as pedestrians, vehicles, and road signs.
Popular object detectors such as the YOLO [4]–[7] models
offer state-of-the-art real-time performance, making them ideal
for an ML-ADAS. Secondly, a specialized DNN is required to
estimate distance. Although traditional depth estimation DNNs
are available [8]–[10], their high computational complexity,
due to a pixel-wise regression across the entire image, limits
their suitability for real-time applications on edge devices.

For instance, while the object detector YOLOv9t requires
7.7 billion FLOPs, MonoDepth, one of the most efficient depth
estimators, demands 11.6 billion FLOPs. In contrast, a fast,
lightweight DNN designed to directly estimate object-specific
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Fig. 2: The left column visualizes the stealthiness of Shrinkbox by
showing an image, its clean ground truth annotations, and its center
instance poisoned from top to bottom respectively. The right column
shows distance estimation with DECADE, prediction/ground-truth
format, on clean (top) and poisoned (right) bounding boxes. The
original box area is shrunk by 34%, maintaining aspect ratio.

distances based on features extracted from predicted bounding
boxes is far more practical [11], [12]. In DECADE [11],
such a detection-wise approach offers higher accuracy than
MonoDepth yet requires only 8.3M FLOPs—an approximately
1400x reduction in computation. Overall, this pipeline defines
highly accurate and robust object detectors as the cornerstone
of collision avoidance in ML-ADAS. Thus, potential failures
in object detection compromise the entire system, putting the
lives of the passengers and those around them at risk.

Security vulnerabilities, such as backdoor attacks, orig-
inally demonstrated in image classification [13]–[15] have
increasingly been identified as critical risks in object detection
as well [16], [17]. These vulnerabilities often stem from
inadvertently incorporating poisoned or malicious data into
the training process. In backdoor attacks, a malicious party
can poison the training dataset with backdoor triggers allowing
the model to learn the trigger during the training phase. Later,
the attackers can exploit this backdoor trigger to achieve
specific behavior during the deployment phase. This infection
is achieved by modifying a portion of the training dataset by
altering the images and ground truth annotations such that the
model behaves as expected on benign (uninfected) samples,
but predicts the attacker-specified outcome on infected samples
containing the backdoor trigger.

Fig. 1 illustrates the different types of backdoor attacks
specialized for achieving different outcomes in collision avoid-
ance, as described in [16]. Object Generation Attack (OGA)
aims to generate a false object of a target class around the
trigger’s location. In contrast, Object Disappearance Attack
(ODA) makes the detector fail to detect an object of the
target class near the trigger. Lastly, Regional Misclassification
Attack (RMA) and Global Misclassification Attack (GMA)
aim to misclassify objects to the specified target class by
using one trigger for one surrounding object and one trigger
for all objects in the image respectively. While all of these
attacks have the potential to cause devastating crashes, their

realization can be easily prevented with a quick scan of the
object detection dataset, revealing its poisoned nature.

Object annotations modified to the extent that bounding
boxes are completely removed (ODA), appear out-of-place
(OGA), or have class labels that are clearly misaligned with
the image contents (RMA/GMA), makes the attacks strikingly
detectable in the manual and automated inspection phases.
To this end, we propose a novel backdoor attack, ShrinkBox,
where a trigger in the image over an object only shrinks the
dimensions of the object’s ground truth bounding box. Since
there are no out of place, absent, or misclassified instances
in the ground truth, it will be especially difficult to detect
this embedded poison. Furthermore, the difference between
Average Precision (AP) and, consequently, the mean AP
(mAP) of the benign and infected models should be negligible.
This further increases the invisibility of the ShrinkBox as even
if a pretrained infected detector is downloaded and evaluated
on a poisoned dataset, its performance does not degrade in
terms of the standard metrics. Not only does this hide the
infection in the detector, but also the poison in the dataset.

To measure the effectiveness of ShrinkBox, we propose
a novel Attack Success Rate (ASR) evaluation metric. By
comparing the detected objects in terms of their similarity in
box size with both the clean or the poisoned ground truth
instances, we are able to determine the efficacy of the attack.
Finally, to highlight the detrimental effect of ShrinkBox on
the collision avoidance ML-ADAS, we evaluate its impact on
downstream distance estimation using DECADE [11] which
relies on highly precise object detection. Intuitively, as the
boxes become smaller, they appear further than they actually
are. In this way, a higher error from DECADE is guaranteed
to cause traffic accidents due to failure to generate warnings
in time, potentially resulting in the tragic loss of lives. We
demonstrate that by attacking the YOLOv9m [6], [18] object
detector with ShrinkBox, we achieve an ASR of 96.4%, with a
negligible difference between mAPbenign and mAPpoison, while
also degrading DECADE’s distance estimation accuracy by
more than 3.1x in the poisoned instances.

A. Motivational Case Study

In Fig. 2, we demonstrate the stealthiness and effectiveness
of the ShrinkBox attack on samples from the KITTI 3D Object
Detection dataset [19]. Firstly, upon human inspection, we
show that it is difficult to identify the changes made between a
poisoned box and its clean counterpart even when the poisoned
bounding box is reduced by 34% of its original area. This is
especially true for images where there are many annotations
present. Furthermore, we demonstrate the significant errors
observed in DECADE’s distance estimation due to the reduced
bounding box size of the poisoned instance. Note that only
for this preliminary study, we have assumed that the backdoor
trigger in the image is invisible. Most importantly, we observe
a critical divergence of almost 8m from the ground truth
distance in the poisoned instance. Since 4.5m is the average
length of a car, we believe that the ShrinkBox attack can
plausibly lead to collision warnings being delayed or entirely



Fig. 3: Overview of the complete pipeline for our ShrinkBox attack

suppressed with only this level of deviation. Overall, the
stealthy ShrinkBox attack theoretically has the potential to
mislead a collision avoidance ML-ADAS to the extent of
causing devastating traffic accidents.

B. Our Novel Contributions

In this paper, we present the following novel contributions.

1) We propose the ShrinkBox attack which shrinks the pre-
dicted bounding boxes in the presence of a backdoor
trigger. To the best of our knowledge, this is the first time a
backdoor attack is explored which specifically targets the
size/dimensions of the bounding box. We highlight how
ShrinkBox can not only evade visual inspections but also
benchmarking criteria as the infected object detector will
score high on standard metrics like the mAP on both benign
and infected samples.

2) In light of this, we define a method for evaluating the
ASR of our ShrinkBox attack specifically. We define a
predicted box as successfully attacked when it exceeds a
similarity threshold when compared with the poisoned box,
as opposed to the similarity with the clean box. We achieve
a dangerous 96% ASR with the YOLOv9m [18] trained
with only a 4% poisoning ratio in the KITTI dataset.

3) While mAP does not suffer with ShrinkBox, downstream
tasks like distance estimation that depend on object detec-
tion deteriorate. We demonstrate that ShrinkBox causes the
Mean Absolute Error (MAE) in the pretrained DECADE to
increase by 3.3x, from 1.67m to 5.51m, over all poisoned
samples.

II. METHODOLOGY

We describe the ShrinkBox attack pipeline in Fig. 3,
wherein we develop a dynamic height-based poisoning strat-
egy that adapts to varying object sizes rather than applying
a fixed reduction. This ensures a stealthy yet effective ma-
nipulation of detection outputs. After the infected detector is
trained on a dataset which has a small portion of its images
poisoned, it will behave normally with precise predictions on
clean images but shrunken predictions on poisoned images
where the attacker exploits the backdoor trigger. Furthermore,
evaluating the attack requires a novel metric, as traditional
mAP scores remain unchanged. Thus, we define our ASR to
measure how often the backdoor trigger induces a similarity
greater than defined thresholds in the predicted bounding

boxes with poisoned annotations than with their clean counter-
parts. Finally, we assess the impact of ShrinkBox on detection-
wise distance estimation, demonstrating a significant drop in
accuracy for DECADE, which relies on accurate bounding
box features. This highlights its potential to undermine safety-
critical systems by systematically distorting perception.

Fig. 4: The learned estimation function (1) and distributions of
the box heights and distances in the training and validation sets
respectively.

Fig. 5: Our poisoning ratios and the corresponding images and
instances in terms of counts and percentages of totals in the dataset.

A. Dynamic Height-based Poisoning Strategy

Our primary objective with the ShrinkBox attack is to
compromise the effectiveness of a collision avoidance system.
Specifically, we aim to shrink the size of bounding boxes such
that the projected size corresponds to a new distance, shifted
further than the ground-truth distance by a critical offset. To
underscore the stealth of ShrinkBox, we set this critical offset
to 5 meters to ensure a sufficient deviation in distance to delay
timely collision warnings while also causing minimal changes
in box sizes. However, the significant variance in bounding box
sizes due to varying distances renders a static size projection



Fig. 6: Evaluation of object detectors infected at different poisoning ratios.

and reduction strategy infeasible. To address this, we propose
a dynamic, height-based projection strategy that adapts the
infected poison to the original size of each bounding box. This
approach ensures more precise and contextually appropriate
modifications while achieving the desired adversarial impact.

An object’s bounding box height h is the most robust feature
in estimating its distance d from the ego vehicle, with a strong
inverse relation between them as detailed by [11], [12], [20].
Based on this, we aim to develop a poisoning function fpois
that provides the reduced h such that the object’s original d is
projected to d + 5. We model the relationship between h and
d with the inverse relation,

d =
k

h
+ c, (1)

where k > 0 and c ≥ 0 are learnable parameters. To poison
an instance with box height horig, we use this function to
estimate its distance dest. Then, we add 5m to dest to obtain
the projected distance dproj. Next, we find the new poisoned
height hpois at dproj, by solving the estimation function for
h, and compute its relative decrease percentage from horig.
The percentage change is then applied to worig to obtain the
poisoned box width wpois in order to maintain the aspect ratio
of the original box.

Note that we could directly solve the estimation function
for hpois using d as dorig + 5 if the learned function is perfect.
However, since there will be errors in the function’s estimation,
we instead implement the initial mapping of horig to dest to
account for these errors. Finally, with each annotation that
is poisoned, we overlay a conspicuous Pokeball patch as the
backdoor trigger in the corresponding image on the center of
the object at an arbitrary percent of the object’s box height.

B. Measuring the Success of ShrinkBox

The effectiveness of the ShrinkBox attack cannot be eval-
uated using the detector’s mAP, as the attack does not alter
mAP. This limitation arises because, even under a successful
attack, the shrunken predicted bounding boxes align with the

correspondingly shrunken ground-truth annotations. Due to the
novel nature of ShrinkBox, no metrics exist in the current
literature to effectively evaluate its success. To this end, we
define our novel ASR as follows.

After obtaining predictions from the detector on poisoned
images, we match the predicted boxes bpred with the shrunken,
poisoned boxes bpois using a strict IoU threshold of 0.6.
We further extend each match with the corresponding clean
bounding box bclean. With this, we obtain the set P =
{(bpred, bpois, bclean)} consisting of matched instances. From
each matched instance, we obtain the corresponding heights
hpred, hpois, hclean for comparison and attack success evaluation.
We introduce a Similarity Threshold X , which determines the
degree of closeness of hpred with hpois required for an attack to
be considered successful. Specifically, the attack is successful
if:

hpred < hpois + (hclean − hpois)× (1−X). (2)

This thresholding allows for a tunable evaluation, where X =
0.5 is the relaxed condition:

hpred − hpois < hclean − hpred, (3)

and higher values of X provide a gradual increase in the
strictness of similarity of hpred with hpois.

Overall, the ASR at threshold X , denoted as ASR@X , is
defined as:

ASR@X =

∑
(bpred,bpois,bclean)∈P

⊮(hpred, hpois, hclean, X)

|P|
(4)

where ⊮(·) is the indicator function that outputs 1 if the
success condition is satisfied and 0 otherwise, and |P| denotes
the total number of matched instances.

C. Impact on Detection-wise Distance Estimation

To further assess the impact of the ShrinkBox attack on
downstream DNNs that rely on the outputs of object detectors,
we evaluate the performance of the pretrained DECADE [11]



Fig. 7: ASR evaluation over different similarity thresholds to adjust strictness of matching the predicted boxes with poisoned boxes.

model in distance estimation using bounding boxes of the poi-
soned instances generated by an infected detector. DECADE’s
accuracy is heavily dependent on key features derived from
predicted bounding boxes, such as their height and width.
Thus, instances where ShrinkBox successfully shrinks bound-
ing boxes are expected to exhibit a marked drop in DECADE’s
performance. In such cases, ShrinkBox manipulates the bound-
ing boxes so that poisoned objects appear smaller, and thus
farther, compared to their clean counterparts. We hypothesize
that the resulting Mean Absolute Error (MAE) in distance
estimation will closely align with our critical offset of 5
meters.

III. EVALUATION AND DISCUSSION

In this section, we evaluate the performance of the proposed
ShrinkBox poisoning attack on object detection in YOLOv9
and YOLOv10. Then, we investigate the impact of successfully
poisoned instances on downstream distance estimation. We be-
gin by detailing the experimental setup, including the dataset,
model architectures, and training configurations. Next, we
outline the poisoning pipeline used to inject backdoor triggers
into the YOLO models, specifically focusing on the Car class,
which represents the majority of the annotated instances in
the KITTI dataset. Following this, we compute ASR on all
infected detectors across varying poisoning ratios and size
scales. Finally, we assess the effect of the poisoned models
on DECADE’s distance estimation accuracy, comparing the
MAE on clean and poisoned instances to demonstrate the
degradation caused by the backdoor attack.

A. Experimental Setup

All experiments were performed on the NVIDIA GeForce
RTX A6000 GPU. For downstream object-specific distance
estimation evaluation, we require annotations of bounding
boxes and corresponding distances. Thus, we use the KITTI
Object Detection dataset [19] to train all object detectors. With
the training/validation split provided by [20], we obtain 6699
images and 35450 annotated instances in our train, and 782

images and 4140 instances in our validation set. We use the
following settings for training the object detectors: (640,200)
image size, 200 epochs, batch size of 24, and 0.001 learning
rate with the Adam optimizer. Furthermore, we augment the
dataset with the mosaic and left-right flip augmentations at
probability values of 1.0 and 0.5 respectively.

B. Poisoning Pipeline for ShrinkBox

Theoretically, ShrinkBox does not need a target class for
attack functionality. However, in this paper, we focus on the
Car class, since it contains approximately 73% of the total
annotated instances in the dataset, allowing us to learn the
most reliable function to approximate the object distances
using only bounding box height. Thus, we filter the dataset to
only keep instances where the objects belong to the Car class,
are not truncated, and fall within the 10-60m distance range.
With this, we obtain 20164 and 2351 instances from the 35450
and 4140 instances in total in the training and validation set
respectively. Fig. 4 visualizes the respective distributions and
the curve fit on the training instances which achieves an MAE
of 1.69m on the validation set. For comparison, the curve fit on
the unfiltered dataset yields an MAE of 3.04m, demonstrating
that filtering based on the aforementioned criteria is required.
We use this function to project each instance, modified accord-
ingly, to a box size that corresponds to a distance 5m further
than its ground-truth.

Finally, we complete the poisoning pipeline using the square
Pokeball patch as the backdoor trigger, blended (100%) into
the image at the center of each poisoned bounding box at
a patch height of 40% of the box height. Note that due
to some instances being obstructed by other instances in an
image, the blended trigger patches might overlap considerably,
potentially resulting in training convergence issues. Thus, we
restrict our poisoning to the only instances that are partially
obstructed, having an obstruction value of ≤ 1.0 in the ground-
truth. With this additional filter, we obtain 14800 and 1701
instances to poison in the training and validation set respec-
tively. Consequently, our poisoning ratios are based on these



Fig. 8: End-to-end evaluation of DECADE with infected detectors at different poisoning ratios.

TABLE I: Evaluation of object detectors trained on clean data.

Model mAP
(%)

APCar
(%)

FLOPS
(B)

Params
(M)

DECADE
MAE (m)

YOLOv9t 58.3 74.9 7.7 2.0 1.69
YOLOv9s 62.3 78.1 26.7 7.2 1.62
YOLOv9m 65.8 79.9 76.8 20.1 1.62
YOLOv10n 55.2 74.9 6.7 2.3 1.71
YOLOv10s 61.5 78.2 21.6 7.2 1.65
YOLOv10m 64.8 80.0 59.1 15.4 1.67

instances specifically. Fig. 5 shows our poisoning ratios and
how they relate to the total number of images and instances
in the dataset. Note that the poisoning ratios only apply to the
training set to vary the poison for each model. However, all
1701 instances are poisoned in the validation set to test model
performance in the presence of the backdoor regardless of the
amount of poison introduced during model training.

C. Attack Success Rate on YOLO Models

Due to the efficient-yet-accurate nature of an ML-ADAS, we
limit our focus to the YOLO family of object detectors, specif-
ically YOLOv9 and YOLOv10, as they offer highly accurate,
real-time performance [6], [7], [18]. Firstly, YOLOv9 incor-
porates Programmable Gradient Information (PGI) to mitigate
information loss during deep network training, alongside the
Generalized Efficient Layer Aggregation Network (GELAN)
architecture, which optimizes gradient path planning for im-
proved parameter utilization. Secondly, YOLOv10 eliminates
reliance on Non-Maximum Suppression (NMS) through con-
sistent dual assignments for end-to-end object detection while
employing a holistic efficiency-accuracy driven model design
strategy to optimize computational efficiency. Specifically, we
train the YOLOv9 on the tiny (t), small (s), and medium (m)
scales, and the YOLOv10 on the nano (n), small (s), and
medium (m) scales.

In total, we train 60 models, comprising 6 clean mod-
els—one for each YOLOv9 and YOLOv10 variant trained
on the clean dataset—and 54 poisoned models, where each
YOLO variant is trained on 9 different poisoning ratios. In
this way, we aim to investigate the impact of the extent of

poisoning and the complexity of the detectors on the success of
the ShrinkBox attack. For evaluation, we employ the standard
mAP@0.5:0.95 metric. To evaluate infected detectors specifi-
cally, we compare mAPclean, mAPpois, APclean, and APpois for
each infected detector, where AP corresponds to the attacked
Car class and the clean and pois metrics correspond to
inference on clean samples and poisoned samples respectively.
Table I shows the results of the 6 baseline detectors trained
on clean data in terms of their object detection accuracy,
efficiency, and distance estimation accuracy, in MAE, when
combined with DECADE.

We present the results of the performance of the infected
models at different poisoning ratios during training in Fig. 6.
Additionally, we include the ASR scores at the most relaxed
similarity threshold of 0.5 in the figure. Firstly, we find that
larger models, in terms of scale, indeed outperform their
smaller counterparts in both mAP and AP over both the
clean and poisoned instances. Most importantly, however, the
larger models are more prone to the attack. For instance, the
YOLOv9 t, s, and m achieve ASR scores of 81.5%, 88.3%, and
91.9% respectively at only a 2% poisoning ratio for instance.
Furthermore, when trained on the 1% ratio, the YOLOv10n
only scores an ASR of 31.3%, while the YOLOv10m scores
87.3%. We attribute this to the larger models’ greater capabil-
ity to learn the diverse associations, including the poisoning,
present in the dataset. We also observe that the ASR tends to
improve with a greater poisoning ratio. This is expected since
more poisoned samples allows the models to better learn the
association between the triggers and the shrunken boxes.

Secondly, our hypothesis that the difference between
mAPclean and mAPpois is negligible holds only if the poisoning
ratio is at least 5%. This can be explained by investigating
the AP of the Car class which was attacked specifically. The
difference in APclean and APpois is ≤ 1.5% in detectors infected
at the 10% and 20% ratios. Interestingly, at lower poisoning
ratios, APpois is much lower than APclean. However, it starts
to exceed APclean at ratios greater than 10-20%. We believe
that this is because at low ratios, the models cannot learn
the poisoned association well due to not enough poisoned



samples being available. The opposite is true in the case of
high ratios, where the models start to favor the poisoned over
the clean associations due to the greater abundance of poisoned
instances in the dataset.

Furthermore, we find that the differences between APclean
and APpois start to decrease as the model’s complexity in-
creases. For instance, we observe the greatest differences be-
tween these metrics at the 1% poisoning ratio in the YOLOv9
t, s, and m models as 15.3%, 8.2%, and 6.8% respectively,
where they clearly decrease as the scale grows. A similar trend
is observed when the APpois is greater than APclean by the
largest difference at the poisoning ratio of 75%. These trends
also apply to the YOLOv10 models. We believe that they can
be explained by the greater learning capability of larger mod-
els. In this way, we find that the larger models are the easiest
to attack with ShrinkBox while also ensuring the quality of
performance in the clean samples. Furthermore, regardless of
the model complexity, we recommend the poisoning ratio to
be between 10-20% in order to maximize the ASR while also
minimizing the differences between APclean and APpois.

Lastly, even when a predicted bounding box is considered
as successfully attacked, its deviation from the dimensions
of the shrunken ground-truth box might vary greatly. Thus,
an in-depth analysis of the ASR over different similarity
thresholds is required to determine how closely the predictions
of infected detectors on images containing the trigger align
with the poisoned instances, as opposed to the clean ones.
Fig. 7 visualizes our results where we set similarity threshold
values inspired by the IoU intervals in mAP evaluation. We
observe that ShrinkBox benefits from higher poisoning ratios
in the training set as ASR scores for every model across
the thresholds increase with an increase in the poisoning
ratio. Interestingly, the differences between the ASR scores of
infected models across size scales continue to decrease, with
the scores becoming almost identical at the 20% poisoning
ratio for the YOLOv9 models. Furthermore, ASR scores tend
to decrease as we increase the strictness of similarity-based
matching with higher thresholds. However, the ASR at these
higher thresholds better reflects the ability of an infected model
to predict shrunken boxes that align with our critical offset
distance of 5m.

D. Evaluation of DECADE with Infected YOLO Models

Finally, we evaluate the impact of all the infected
YOLO models on detection-wise distance estimation with
DECADE [11] over the 1701 potentially poisoned instances in
the validation set using the MAE metric. The baseline MAE
values, with the clean YOLO models, are presented in the final
column of Table I. For the infected models, we compare the
distance predictions with the corresponding clean ground-truth
distances and compute MAEclean when the trigger is absent and
MAEpois when the trigger is present in the images. Note that
our poisoning strategy shrinks bounding boxes to project them
to a distance that is further than the ground-truth by a critical
offset. Since our critical offset is 5m, in the case of a perfectly

infected detector, we would expect MAEpois to be at least 5m.
With that said, we present our results in Fig. 8.

Firstly, we observe that MAEclean remains close to the
baseline values when DECADE is combined with clean de-
tectors. This is ideal since we expect normal behavior on
clean samples. On the other hand, as ASR starts to increase,
so does MAEpois. This is because having more successfully
attacked samples within the poisoned samples degrades the
MAE by larger margins. In line with this observation, we
find that the lowest MAEpois occurs when the ASR is also
the lowest at the 1% poisoning ratio, with YOLOv9t yielding
3.63m at 63.2% ASR and YOLOv10n yielding 2.56m at 31.8%
ASR. Similarly, the highest MAEpois of 5.5m occurs when
the ASR is second to the highest at 97.2% in the YOLOv9m
model trained with a 50% poisoning ratio. Since high ASRs
are recorded in detectors infected at higher poisoning ratios,
MAEpois values also increase with higher poisoning ratios.
Overall, we find that ASR scores ≥ 95 leads to at least
an MAEpois of 5m. Lastly, considering our recommended
poisoning ratios in the previous subsection, we find that the
10-20% poisoning ratios indeed lead to the MAEpois of 5m,
except for the YOLOv9s, YOLOv10n, and YOLOv10m where
these models yield 4.94m, 4.98m, and 4.87m respectively– all
close to the critical offset.

IV. CONCLUSION

In this work, we introduce ShrinkBox, a novel backdoor
attack targeting object detection models in the safety-critical
application of collision avoidance in ML-ADAS. Unlike ex-
isting attacks that introduce conspicuous modifications to
object annotations, ShrinkBox subtly shrinks bounding boxes
in poisoned instances, making the attack nearly undetectable
through manual inspection or standard evaluation metrics like
mAP. We further propose a novel ASR metric to effectively
measure the impact of ShrinkBox and demonstrate a 96%
ASR is achievable with only a 4% poisoning ratio in the
training set. While mAP remains unaffected, we showed that
ShrinkBox significantly degrades downstream distance estima-
tion in models like DECADE, where key features extracted
from the detected objects are relied upon, increasing the MAE
by 3.1x, eventually reaching an error of 5 meters, on poisoned
instances. Thus, by shrinking object bounding boxes such that
they correspond to distances that are more than the average
length of a car (4.5m) farther than the ground-truth, ShrinkBox
manipulates the perception of object proximity, leading to
potential crashes as collision warnings may be delayed or not
generated at all. Our findings highlight the severe risks posed
by imperceptible manipulations in object detection, underscor-
ing the need for more robust defenses against backdoor attacks
in ML-ADAS to safeguard autonomous systems from such
stealthy vulnerabilities that may result in tragic consequences.
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