
BACFuzz: Exposing the Silence on Broken Access Control
Vulnerabilities in Web Applications

I Putu Arya Dharmaadi
University of Groningen
Groningen, Netherlands
arya.dharmaadi@rug.nl

Mohannad Alhanahnah
Chalmers University
Gothenburg, Sweden

mohannad.alhanahnah@chalmers.se

Van-Thuan Pham
The University of Melbourne

Melbourne, Australia
thuan.pham@unimelb.edu.au

Fadi Mohsen
University of Groningen
Groningen, Netherlands
f.f.m.mohsen@rug.nl

Fatih Turkmen
University of Groningen
Groningen, Netherlands

f.turkmen@rug.nl

Abstract
Broken Access Control (BAC) remains one of the most critical and
widespread vulnerabilities in web applications, allowing attackers
to access unauthorized resources or perform privileged actions.
Despite its severity, BAC is underexplored in automated testing due
to key challenges: the lack of reliable oracles and the difficulty of
generating semantically valid attack requests. We introduce BAC-
Fuzz, the first gray-box fuzzing framework specifically designed to
uncover BAC vulnerabilities, including Broken Object-Level Autho-
rization (BOLA) and Broken Function-Level Authorization (BFLA)
in PHP-based web applications. BACFuzz combines LLM-guided
parameter selection with runtime feedback and SQL-based oracle
checking to detect silent authorization flaws. It employs lightweight
instrumentation to capture runtime information that guides test
generation, and analyzes backend SQL queries to verify whether
unauthorized inputs flow into protected operations. Evaluated on 20
real-world web applications, including 15 CVE cases and 2 known
benchmarks, BACFuzz detects 16 of 17 known issues and uncovers
26 previously unknown BAC vulnerabilities with low false positive
rates. All identified issues have been responsibly disclosed, and
artifacts will be publicly released.

CCS Concepts
• Security and privacy→ Access control; • Software and its
engineering→ Software testing and debugging.

Keywords
Broken Access Control, Web, Grey-box Fuzzing, LLM, SQL, PHP

ACM Reference Format:
I Putu Arya Dharmaadi, Mohannad Alhanahnah, Van-Thuan Pham, Fadi
Mohsen, and Fatih Turkmen. 2025. BACFuzz: Exposing the Silence on
Broken Access Control Vulnerabilities in Web Applications. In Proceedings

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Under peer-review, US
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/XXXXXXX.XXXXXXX

of XXX (Under peer-review). ACM, New York, NY, USA, 12 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
The widespread adoption of web applications has brought associ-
ated security risks to the forefront, drawing significant attention
from both academia and industry. To address these risks, OWASP
has published two influential guides: the OWASP Top 10 Web Ap-
plication Security Risks [29] and the OWASP API Security Top 10
[28]. Last updated in 2023, both documents identify Broken Access
Control (BAC) as the most prevalent and critical security flaw.

BAC enables attackers to access unauthorized functionality or
data—often resulting in vertical privilege escalation [35]. For ex-
ample, a regular user might overwrite an administrator’s email
address or invoke privileged actions such as deleting user accounts.
Several recent high-impact incidents involving BAC vulnerabilities
(see Section 2.2) underscore the urgency of robust access control
testing.

While OWASP provides guidelines for testing access control [30],
automated tools capable of doing so with minimal human effort
remain lacking. Manual analysis is labor-intensive and difficult to
scale for complex applications [19], and most existing fuzzers pri-
marily target crash-inducing bugs [3, 50]. Recent surveys [9, 11, 48]
confirm that fuzzing research rarely addresses logical vulnerabilities
such as BAC.

Our analysis of BAC characteristics (see Section 3) identifies two
main challenges that hinder fuzzing for BAC. First, designing a
test oracle—i.e., determining whether a request triggers a vulner-
ability—is difficult because BAC violations typically do not cause
crashes or produce explicit error messages. Detecting such silent
flaws often requires deep domain knowledge, as seen in recent
research on SQL injection [44], excessive data exposure [33], and
DNS resolver bugs [49]. Heuristics based on HTTP response codes
or messages are often unreliable due to ambiguous or generic server
feedback. Second, API requests often include many parameters with
diverse data types and dependencies, resulting in a vast search space.
Generating inputs that are both valid and semantically meaningful
is non-trivial, as malformed requests are usually rejected.

To address the oracle challenge, we draw inspiration from prior
work on injection flaws [44]. Once a request is accepted, the database-
backed web application typically parses it, performs validation and
authorization checks, and then constructs backend SQL queries. If

ar
X

iv
:2

50
7.

15
98

4v
1

 [
cs

.C
R

]
 2

1
Ju

l 2
02

5

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://arxiv.org/abs/2507.15984v1

Under peer-review, June xx–xx, 2025, US Dharmaadi et al.

a mutated input value appears in a resulting query, it suggests that
some validation—potentially an authorization check—was bypassed.
While this is a necessary condition for BAC, sufficiency depends on
the context; for example, in Broken Function Level Authorization
(BFLA) cases, the operation may not even be visible in the current
user’s interface. Based on this insight, we define a set of rules to
reliably detect BAC violations (see Section 4.3).

To address the input generation challenge, we focus on the
two most common BAC types: Broken Object Level Authorization
(BOLA) and Broken Function Level Authorization (BFLA). Rather
than mutating all parameters equally, we target those referencing
protected objects or functionalities—i.e., those likely to reveal privi-
lege differences between users. We collect traffic from users with
different roles, label the requests, and leverage Large LanguageMod-
els (LLMs) to identify semantically important parameters. LLMs
are well-suited to this task due to their reasoning capabilities and
ability to understand structured data. This significantly reduces the
mutation space while preserving request validity.

Building on these ideas, we present BACFuzz, the first auto-
mated fuzzing tool specifically designed to detect BAC vulnera-
bilities in PHP-based web applications. BACFuzz uses a grey-box
fuzzing approach, leveraging runtime feedback collected via light-
weight code instrumentation—a method widely regarded as effec-
tive and scalable in modern fuzzing [20]. Our instrumentation uses
function hooking techniques to monitor original PHP functions
related to SQL queries, enabling precise feedback and oracle valida-
tion.

We evaluate BACFuzz on 20 PHP-based Web Under Test (WUT)
applications. It successfully reproduces 16 of 17 known BAC issues
and uncovers 26 previously unknown vulnerabilities, all of which
have been responsibly disclosed. While instrumentation introduces
minimal overhead, it enables the generation of semantically valid,
high-coverage test cases—frequently bypassing 4xx response rejec-
tions. Our results demonstrate that BACFuzz is effective, scalable,
and practical for uncovering BAC vulnerabilities in real-world ap-
plications.
In summary, this paper makes the following contributions:

(1) NovelApproach:We propose the first grey-box fuzzingmethod
specifically designed to automatically detect object- and function-
level BAC vulnerabilities in web applications.

(2) New Exploitation Strategy: We introduce an active checker
module that applies advanced grey-box fuzzing techniques, in-
cluding LLM-guided parameter analysis and reference mutation,
to exploit captured HTTP requests.

(3) Novel Oracle Verification: We develop a verification module
that inspects SQL queries issued by the application. If mutated
inputs appear in these queries and vulnerability type-specific
conditions are met, we confirm that the target object or function
is vulnerable.

(4) New BAC Vulnerability Dataset: We curate and release a
dataset of web applications with known CVE-reported BAC
vulnerabilities, addressing the lack of existing benchmarks for
BAC detection tools.

POST /wp-admin/admin-ajax.php HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded

action=wcfm_ajax_controller&controller=wcfm-customers-
manage&..customer_id=1......................................

Figure 1: An HTTP Request exploiting CVE-2024-8290. Nor-
mally, the script on the web client sets the customer_id pa-
rameter to have a default value of 0, meaning the creation
of a new customer. Arbitrarily changing the value to 1 leads
the submitted data to replace the original data of a user with
the ID of 1.

2 Background and Motivation
2.1 Background
According to the definition provided by OWASP [29], BAC refers to
a vulnerability that occurs when a web application allows a certain
access request to read or modify resources that it should not be able
to. One specific example of BAC is IDOR (Insecure Direct Object
References), which enables malicious parties to access protected
resources by sending resource identifiers through user-controlled
parameters. There are two risks related to IDOR, as follows.

BOLA—Broken Object Level Authorization (API1:2023). BOLA oc-
curs as inadequate access controls allow a user to manipulate or
access data objects that they are not permitted to view or modify.
For example, assume that a web portal application stores products
from different sellers and only the corresponding seller is allowed
to modify them. When a seller can modify a product that belongs to
another seller by sending the ID reference of the product, the web
application is said to have BOLA. Another example is explained in
Figure 1.

BFLA—Broken Function Level Authorization (API5:2023). BFLA
occurs when a web application fails to enforce proper authorization
checks on user access to specific web functions (e.g., API endpoint).
For example, consider the case in which a button to create a new
object on a web page is removed when non-admin users access the
page since only administrators are allowed to create a new object.
The application is said to have BFLA if the web server accepts/exe-
cutes a direct HTTP request originating from non-admin users to
create an object.

BOLA vs BFLA. When certain HTTP requests are supposed to be
available only for some users, and the server executes the same
requests even if they originate from other users, it is BFLA. On the
other hand, BOLA arises when the request is indeed available for a
user yet the user modifies a parameter identifying an object with
another ID reference that is not available his/her pages, and the
server executes the request.

2.2 Motivating Examples
This section presents two real-world examples of BAC-related vul-
nerabilities to motivate the relevance of automated BAC vulnera-
bility detection.

BACFuzz: Exposing the Silence on Broken Access Control Vulnerabilities in Web Applications Under peer-review, June xx–xx, 2025, US

CVE-2024-8290 [7], disclosed in September 2024, represents a
critical BAC vulnerability within the wc-frontend-manager plugin
forWordPress. This CVE report has a significant impact on the score
(CVSS 8.8 with high severity), affecting approximately 20,000 users,
according to the report from WordFence [25]. This vulnerability
arises from inadequate validation of the ID parameter in the plugin
function that stores a new or a modified customer object. Although
the function verifies user capabilities, making only certain roles
allowed to call the function, it fails to restrict the scope of objects
that can be modified. As a result, an authenticated attacker with
lower privileges, such as managers, can exploit this flaw to alter
the email addresses of administrator accounts by providing valid
administrator IDs (see Figure 1). After recording her email address,
the attacker can call password resets, gain unauthorized access to
administrative accounts, and potentially take full control of the
affected WordPress site.

Another example is CVE-2024-7437 [6], which happens in the
SMF (Simple Machines Forum) application. In this application, BAC
occurs when a malicious user alters the vulnerable parameter (i.e.,
alert ID) in the request, allowing him to delete other users’ alerts.
This vulnerability is similar to the one in WordPress, as improper
authorization checks on client-submitted object references cause
both.

3 Preliminary Analysis of BAC Characteristics
To gain deeper insights into the characteristics and distribution of
BAC-related vulnerabilities in real-world software systems, we per-
formed a preliminary investigation of the BAC attributes associated
with publicly disclosed CVEs from recent years.

3.1 Data Collection
Firstly, as explained in Section 2.1, we use Broken Access Control
and IDOR as the primary keywords in our search to query the CVE
repository [24] for reports published in the last three years (between
April 2022 and April 2025). We further restricted our CVE selec-
tion to cases that occurred in open-source web applications. This
constraint ensures that we can reproduce the vulnerable behaviour
in a local environment and inspect the source code if necessary.
Projects that required commercial licenses, closed-source systems,
or non-web contexts were excluded. In addition, since the grey-box
web fuzzer we design requires platform-specific instrumentation,
we limit our focus to CVEs affecting PHP-based applications, as
PHP remains one of the most widely used platforms. Finally, to
ensure the presence of BAC vulnerability, we manually reviewed
each CVE entry and included only those with sufficient technical
detail (e.g., vulnerable URL and parameters) to reproduce the issue.

3.2 Challenges to Reveal BAC
We collected 15 CVEs (see Table 1) after applying the methodol-
ogy described in the previous section. We then manually analyzed
the vulnerable functions and objects to find ways of triggering
these vulnerabilities through the web UI with the aim of identi-
fying relevant HTTP requests to submit and verifying successful
trigger/exploitation. Since our goal is to design a fuzzer tailored to
BAC vulnerabilities, we identified the challenges for automation of
the process.

C1: Identifying Potentially Vulnerable Functions. Web applications
dynamically generate function calls based on user context, session
state, or permissions, making the discovery process heavily context-
dependent. Furthermore, they may rely on aliasing mechanisms
in their APIs, making the server file names irrelevant to available
endpoints. Consequently, traditional methods, such as scanning for
files on the server and invoking them through HTTP requests can
be less effective.

Consider CVE-2023-43663 (see Table 1), which affects the Presta-
Shop application (has 8.6k stars on Github) [37], as an example
of this observation. The vulnerable function of the Prestashop ap-
plication lies in the AdminDashboardController.php file, which is
not visible in the URL. To trigger that function, rather than calling
the file name via URL, a non-admin user should call a certain URL
ending with /disable/«module_id». Failing to produce the correct
URL with the correct module_id prevents the fuzzer from reaching
the vulnerable function.

In addition to collecting all functions, flagging some of the func-
tions as potentially vulnerable is also challenging. Popular security
tools, such as OWASP ZAP [32] and Burp Suite [36], solve this chal-
lenge by requiring users to manually configure an access control
list (ACL) that defines which functions should be allowed or denied
for specific users. However, such reliance on human intervention
undermines the applicability of that solution for fuzzing, which
aims to minimize manual effort.

C2: Identifying Potentially Vulnerable Objects. Differentiation of al-
lowed and restricted objects is crucial to precisely attempt to trigger
BOLA vulnerabilities. Due to the context-dependent nature of the
objects, opening a webpage with a specific user role and observing
visible objects provides a baseline for identifying resources accessi-
ble to that role. However, the real challenge lies in the discovery
of restricted objects, particularly those with differentiated access
permissions (e.g., accessible for READ operations but restricted for
UPDATE or DELETE actions). In addition, the restricted objects are
frequently hidden behind indirect references or system-generated
values that are only visible in the body of the HTTP request and
therefore are difficult to observe without manual inspection.

For example, in CVE-2024-8290 and CVE-2024-7437, restricted
objects are related to the administrator and alert, and are referred
using admin ID and alert ID, respectively. Failing to identify the
parameter names and generate the correct IDs prevent the web
fuzzers from triggering the vulnerability.

C3: Oracle Verification. Semantic bugs like BAC do not easily mani-
fest themselves in observable states (e.g., crash, memory corruption,
etc). Therefore, confirming the occurrence of the BAC vulnerabil-
ity is hard because there is no clear signal from WUT to confirm,
especially in the case of unexpected resource modification. Solely
relying on web response messages can be less effective since the
WUTs may reply with unclear information.

For example, in CVE-2025-3536, when a malicious user calls
the vulnerable URL with a correct user_id, the server replies with
redirected responses without a clear success message. Another
example, in CVE-2024-8290, when calling the vulnerable URL with
an unexisting admin_id, a user receives a clear successmessage even
though the server does not execute the update admin request due to

Under peer-review, June xx–xx, 2025, US Dharmaadi et al.

Table 1: Collection of CVEs reporting BAC, sorted by affected App size (the number of LoC). For simplicity, HTTP Param refers
to name-value pairs placed in the HTTP header, the URL query string, or the HTTP body.

CVE No. Affected App (+ Plugin) Method Vulnerable URL Vulnerable Param
CVE-2025-0843 Library Card System GET /del.php del=«student_id»
CVE-2025-3536 Employee Management System GET /admin/delete-user.php id=«user_id»
CVE-2025-3537 Employee Management System POST /admin/update-user.php user_id=«user_id»
CVE-2024-55231 Notes Sharing Management System POST /user/edit-notes.php editid=«id»
CVE-2024-55232 Notes Sharing Management System GET /user/manage-notes.php delid=«id»
CVE-2024-40480 Online Exam System GET /admin/update.php uemail=«email»
CVE-2025-0802 Best Employee Management System POST /admin/Operation/User.php del_id=«user_id»
CVE-2023-46449 Inventory Management System POST ../action/edit_update.php user_id=«user_id»
CVE-2024-3139 Computer Lab Management System POST /classes/Users.php f=save id=«id»
CVE-2024-9082 Online Eyewear Shop POST /classes/Users.php f=save id=«id»
CVE-2024-7658 Projectsend GET /process.php do=get_preview&file_id=«id»
CVE-2024-7437 Simple Machines Forum GET /index.php do=remove;aid=«alert_id»
CVE-2024-7438 Simple Machines Forum GET /index.php do=read;aid=«alert_id»
CVE-2024-8290 WordPress + WC + WCFM POST /wp-admin/admin-ajax.php customer_id=«admin_id»
CVE-2023-43663 Prestashop GET .../action/disable/«module_id»

the incorrect id. Therefore, the fuzzer needs accurate information
that cannot be obtained from the response messages.

C4: Reducing Randomness. In general, web applications expose a
large number of endpoints with numerous parameters in the request
headers, URL and body. This situation makes random selection of
one of these inputs and its alteration with a byte array or random
strings less effective because there are huge input spaces to explore.
Normally, most web servers apply certain input validation rules,
making them often reject abnormal inputs. To make fuzzing more
effective, certain endpoints and parameters that have a greater
chance of triggering the access control vulnerability should be
prioritized. For example, in CVE-2024-8290, mutating the value
of the name parameter is unlikely to trigger a BAC vulnerability,
whereas mutating the customer_id parameter does.

In addition, web fuzzers should reduce the use of completely
random values in order to increase chances of reaching and trig-
gering vulnerable code. For example, in CVE-2024-40480, filling
the uemail with a random value or a grammatically valid value
that does not exist in the database will not trigger BAC. Therefore,
to work efficiently in revealing BAC, a fuzzer should use fewer
random values.

3.3 Scope of the Work
Based on the insights gained from the preliminary analysis, we
define the scope and assumptions that underlie the proposed ap-
proach.
(1) Given the wide range of BAC cases, our work focuses only

on role-based access control (RBAC) [40], arguably one of the
most commonly implemented access control models, which
allows or prohibits certain users from accessing or modifying
any function or object based on their roles. Other models, such
as context-based or attribute-based access control [41], which
regulate whether users are allowed to access certain objects
based on the state of the users, are out of the scope.

(2) Our work is limited to uncovering BAC at the code level. Issues
caused by design-time errors (e.g., a user with limited privileges

is assigned a role beyond her privileges) are out of the scope.
We assume that such errors do not reflect a vulnerability in the
code but in the instantiation of the RBAC model (i.e., user-role
and role-permission assignments).

(3) The proposed fuzzer does not explore available actions to insert
data in the beginning. We assume the human tester normally
prepares the WUT with some initial data, including registered
users with different roles, before performing security testing.

4 Proposed Approach
Based on the challenges described in Section 3.2, we propose three
techniques tailored to BAC vulnerability detection: hierarchical role
analysis, reference mutation, and SQL checking. These techniques
are then implemented in a fuzzer we call BACFuzz (Section 5) in
revealing BAC.

4.1 Hierarchical Role Analysis
For vulnerable function identification (C1), we propose hierarchical
role analysis to find HTTP requests that only appear in higher-role
users. Firstly, this process makes the fuzzer open web pages with
a specific user role, navigate the pages, fill forms, click buttons
and links, and save HTTP requests the browser sends. The fuzzer
repeats these actions for all available user roles. All saved requests
replied to with a valid response code (i.e., 2xx) are stored in the
request corpus grouped by their roles. Furthermore, param-value
pairs are extracted from URL queries and body payloads and stored
in another corpus (i.e., param corpus). To determine whether a
request is new and unique, the fuzzer compares the request URL,
request method, URL queries (only param name without value),
and body payloads (only param name without value).

The request that appears in certain user roles yet disappears in
the other roles is marked as a potentially vulnerable function. Then,
the fuzzer can focus on BFLA testing (also called vertical access
control testing) on these request types by sending the requests using
a lower-role account. As explained in Section 3.2, the vulnerable
function in CVE-2023-43663 can be triggered by calling the link

BACFuzz: Exposing the Silence on Broken Access Control Vulnerabilities in Web Applications Under peer-review, June xx–xx, 2025, US

using a lower-role account. For the other requests that are not
marked, the fuzzer conducts BOLA testing (also called horizontal
access control testing) by applying reference mutation (Section 4.2).

Role Labelling. The fuzzer labels each request with role names
that the fuzzer uses to trigger the request. For example, the fuzzer
logging in with an admin account can execute some actions on the
admin page. The requests collected during this session are labelled
with admin. When the same request comes from another fuzzer
instance logging in with a different role (e.g., manager), the fuzzer
only adds a new label (i.e., manager) to the request in the corpus. In
addition, the fuzzer does the same labelling process for param-value
pairs stored in the param corpus.

4.2 Reference Mutation
To trigger BOLA vulnerabilities from collected requests, we propose
a reference mutation. This proposed method involves sys-gen data
collection, reference parameter analysis, and value alteration.

4.2.1 Sys-Gen Data. For vulnerable object identification (C2), we
first observe system-generated (sys-gen) data, which is restricted
data that is invisible in users’ direct view but visible in generated
HTTP requests. Compared to user-supplied input that the web users
can fully control, the sys-gen data is not controllable from the web
UI. As explained in our analysis (Section 3.2), BAC occurrences come
from unexpected alterations in sys-gen data; thus, manipulating it
can trigger BAC. In addition, OWASP released the top 25 vulnerable
parameters [31], and all of them are in the form of sys-gen data,
making the sys-gen data an ideal mutation target. Web developers
commonly place the sys-gen data inHTMLfiles (e.g., in a hidden tag)
or JavaScript files (e.g., in a function triggered on form submission).
For example, Figure 2 demonstrates a filled-in form and an HTTP
request generated by the web browser, in which there are additional
(sys-gen) fields in the request that are invisible from the user’s view.

Data Collection. To collect sys-gen data, we analyze the in-
tercepted requests stored in the corpus. Each key-value pair in
the request URL or request body is classified as either the user-
generated or sys-gen group by checking the value part. Since the
fuzzer fills in all HTML forms with random values concatenated
with certain pre-defined values, if a parameter value contains the
pre-defined value, it is user-generated data; otherwise, it is sys-gen
data.

4.2.2 Reference Parameter Analysis by LLM. Since not all sys-gen
data represents web functions or objects, we utilize LLM to further
find out which sys-gen data refers to a function or an object. There-
fore, after marking sys-gen parameters, the fuzzer queries LLM
with a prompt described in Figure 3. Getting replies with parameter
names that may refer to functions or objects from LLM, the fuzzer
marks them as reference params and special mutations are pre-
pared for them. The other parameters are marked as less important
(see Figure 4), which means random mutation is always applied to
them. According to their values or the name matching the prede-
fined rules, parameters can be marked as security measures, which
means the fuzzer will never select them for mutation.

4.2.3 Mutation. To reduce randomness (C4), the fuzzer should
more often use values from the param corpus collection rather than

(a) Add customer form

(b) HTTP Request Body

Figure 2: In CVE-2024-8290, after a user fills in a form
(2a) and clicks the submit button, the browser generates
an HTTP request with body payload (2b) containing addi-
tional fields called sys-gen data: action, controller, status, and
wcfm_ajax_nonce, which is invisible in users’ direct view. Fur-
thermore, the field of wcfm_customers_manage_form also
consists of some sys-gen data.

random values for request mutation. Basically, reference values are
grouped into two types: numeric and text, in which the former is
any value starting with a number (can be followed by text) and the
latter is otherwise. When the fuzzer takes an HTTP request and
selects one of the reference parameters in the request for mutation,
the value of the selected reference parameter is changed to one of
the other reference values of the same type. It aims to reduce server
rejection and increase mutation effectiveness since the reference
values, especially the numeric ones, are usually limited and may
refer to a certain object reference that has been seen before.

Random Mutation. A random mutation that produces random
values is still used and commonly applied to less-important parame-
ters. When selecting an HTTP request for mutation, the fuzzer may
only mutate selected reference parameters or also involve random
mutation for selected less-important parameters.

4.3 SQL Checking
For Oracle verification (C3), we propose SQL checking, which veri-
fies whether WUTs execute the access attempt to protected refer-
ences. While SQL queries alone may not be definitive proof of exis-
tence bugs, arbitrary values in data-manipulation queries indicate
improper authorization checks. Illustrated in Figure 5, generally,
a WUT generates DML (data manipulation language) to be sent

Under peer-review, June xx–xx, 2025, US Dharmaadi et al.

Overview
You are a web fuzzer trying to reveal broken access control problems on
web functions and objects. I will give you one HTTP request consisting
of the request method, URL, and body payload I have collected. Based
on this request, your goal is to find certain parameter names or body
payload names that might refer to restricted objects. Then, I will mutate
the names you will give to examine if the mutated values for the names
can access the restricted objects.

Collected Requests
I have crawled the web under test and caught many HTTP re-
quests. Now, I am giving you one request with a format of
[method]<space>[full_url]<space>[body_payload].

Your Task
Based on that HTTP request, you have to point out which parameters
or payload names that could potentially refer to restricted objects,
excluding purely data-related fields or security parameters (e.g., nonces
or security token). Also, you have to point out which parameters
or payload names that are reference IDs. You might need to break
down nested parameter values into their atomic components and only
list their atomic parameters or payloads. Please note, only answer
the question without explanation. Only use comma to separate the
parameter or payload names.

Figure 3: LLM Prompt for Parameter Analysis.

Figure 4: Two examples of HTTP requests after parameter
analysis. The requests on the left are the original, and the
right are the results.

to the DBMS when executing a request. To enable the real-time
check, this study instruments the web interpreter to record all SQL
queries the WUT generates. Then, the proposed fuzzer can check
if the mutated values appear in the query.

4.3.1 Checking Rules. Several rules are determined to automati-
cally infer the occurrence of the BAC.

Rule 1: Broken Function-level. Based on the BFLA definition,
a web function is called vulnerable to access control if the function
that only exists in certain roles is successfully executed by users
operating under different roles. Therefore, when the fuzzer submits
a request using a lower-role account and detects a DML query, it
is BFLA if: 1) at least one value in the query is the same as the
parameter value of the submitted request, and 2) the request does
not exist in the user page. To ensure the second requirement is
satisfied, the fuzzer opens the referer link stated in the request

Submitted HTTP Request
POST /lms/classes/Users.php?f=save

id=1711440657&firstname=ibdjweyxfoz&middlename=wnmnozap

Generated SQL Query
UPDATE users set firstname = ’ibdjweyxfoz’ , middlename = ’wnmnozap’
, lastname = ’swkgxicagowetfbp’ , username = ’tzqwyaloxx’ , password =
’c82a88d7c5f180798b0d118d23893a94’ where id = 1711440657

Figure 5:When a database-backedweb app executes a request,
it commonly generates an SQL query corresponding to the
submitted data. For example, in CVE-2024-3139, the value of
1711440657 in the request payload appears in the SQL query.
Therefore, the occurrence of certain values in an SQL query
can be a sign that a certain request is executed, not rejected.

header to check if the trigger source (e.g., button or link that may
trigger the request) or the parameter values exist in the page.

Rule 2: Broken Object-level. Based on the BOLA definition, an
object is called vulnerable to access control if the object reference
that only exists in certain roles is successfully accessed by users
operating under different roles. The functions or URLs may exist
in all roles, but they manipulate different objects. Therefore, when
the fuzzer submits a request with altered reference params and
detects a DML query, it is BOLA if: 1) at least one value in the
WHERE clause is the same as one of the mutated reference values
in the corresponding request, and 2) the mutated reference value
is not found in the corpus of the role that is used to submit the
request. Due to the dynamic nature of the object, to ensure the
second condition is satisfied, the fuzzer opens the referer link stated
in the request header, extracts the reference parameters from the
opened page, and checks if the mutated values do not exist in the
extracted parameter values.

4.3.2 Multiple Checking for BAC Validity. Using the SQL checking
method, the fuzzer can detect a BFLA or BOLA; however, the fuzzer
still needs to apply multiple checks to ensure that the values ap-
pearing in the SQL query are not by accident and indeed related to
the mutated values in the submitted request. So, when the checking
method marks a request as BAC according to the aforementioned
rules, the fuzzer selects and mutates the request again. If the SQL
checking detects the same BAC after theWUT executes the mutated
request, then the BAC is valid. To increase the confidence level
of BAC detection, the fuzzer selects and mutates the request again
and again until the SQL checks do not raise BAC or the checking
repetition reaches a certain number (e.g., 10 times repetition).

5 BACFuzz: Fuzzer Implementation
To adopt the proposed approaches, this study designs a new grey-
box web fuzzer called BACFuzz.

5.1 Overview
There are two main components of BACFuzz: the main driver
and the active checker. While the main driver navigates whole web
pages in the WUT and stores submitted HTTP requests, the active

BACFuzz: Exposing the Silence on Broken Access Control Vulnerabilities in Web Applications Under peer-review, June xx–xx, 2025, US

Figure 6: Proposed BACFuzz pipeline contains three main phases: request collection, parameter analysis, and fuzzing.

Algorithm 1 BACFuzz
Require: 𝑏𝑎𝑠𝑒𝑈𝑟𝑙

Require: 𝑅𝑜𝑙𝑒𝑠 ⊲ list of available roles
1: for 𝑟 in 𝑅𝑜𝑙𝑒𝑠 do
2: 𝑠𝑡𝑎𝑡𝑒𝑟 ← 𝑢𝑠𝑒𝑟𝐿𝑜𝑔𝑖𝑛(𝑏𝑎𝑠𝑒𝑈𝑟𝑙, 𝑟)
3: 𝑑 ← new𝑀𝑎𝑖𝑛𝐷𝑟𝑖𝑣𝑒𝑟 (𝑠𝑡𝑎𝑡𝑒𝑟 , 𝑟)
4: async 𝑑.𝑐𝑟𝑎𝑤𝑙 () ⊲ start the driver to navigate pages
5: end for
6: 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑔𝑒𝑡𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑅𝑜𝑙𝑒 (𝑅𝑜𝑙𝑒𝑠) ⊲ e.g., Admin
7: 𝑅𝑜𝑙𝑒𝑠 ← 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑇𝑎𝑟𝑔𝑒𝑡 (𝑡𝑎𝑟𝑔𝑒𝑡, 𝑅𝑜𝑙𝑒𝑠)
8: 𝑟𝑒𝑠𝑒𝑡𝑊𝑈𝑇 ()
9: for 𝑟 in 𝑅𝑜𝑙𝑒𝑠 do
10: 𝑠𝑡𝑎𝑡𝑒𝑟 ← 𝑢𝑠𝑒𝑟𝐿𝑜𝑔𝑖𝑛(𝑏𝑎𝑠𝑒𝑈𝑟𝑙, 𝑟)
11: 𝑐 ← new 𝐴𝑐𝑡𝑖𝑣𝑒𝐶ℎ𝑒𝑐𝑘𝑒𝑟 (𝑠𝑡𝑎𝑡𝑒𝑟 , 𝑟)
12: async 𝑐.𝑓 𝑢𝑧𝑧 () ⊲ start the active checker
13: end for

checker processes the stored requests to exploit any BAC possibility
in the WUT. Following the best practice of Witcher [44], we run
both components sequentially, in which the main driver runs first.

In general, our proposed fuzzer (see Figure 6) works in the follow-
ing order: (1) collecting web functionalities and objects from each
user role; (2) analysing reference parameters; and (3) altering the
parameters and verifying the vulnerability occurrence. Initially, the
fuzzer user sets the WUT URL and a list of registered accounts with
various roles, including an anonymous account (see Algorithm 1).
Iterating the roles, the fuzzer opens the URL and requires the user
to open the login page and input the account credentials (line 4).
After that, the driver works automatically to navigate whole web
pages using the logged-in credentials (line 6). This process will be
explained further in Section 5.2. Then, the fuzzer determines the
highest user role as the target. The active checker performs fuzzing
using each user role (excluding the target), which will be explained
further in Section 5.3.

5.2 Main Driver
The main driver collects HTTP requests by navigating whole web
pages using each user role. To enable the request collection, there
are two main procedures in the main driver: Drive and Intercept-
Request. The first procedure navigates the entire web page to find
HTML pages manipulate web resources. The procedure looks for
pages that have the form tag and its derivatives (e.g., the input, select,
and textarea tags) because those allow users to input something
to be sent to the server. On the other hand, the InterceptRequest

procedure aims to catch HTTP requests and store them in the
request corpus. In addition, key-value parameters, in the request
URL and body, are stored in the param corpus. We attached this
procedure to the browser manipulation library, guaranteeing it is
invoked whenever the browser sends any HTTP request.

5.2.1 User Login. To explore the whole web application functions,
the main driver requires the fuzzer user to log in using some ac-
counts with different roles. For example, if the user intends to test
WordPress, which consists of five roles: administrator, editor, author,
contributor, and subscriber, the driver will prompt the user to log
in five times. This login process can be done automatically, which
requires the user to configure login scripts to align with the WUT
page. After storing all cookies and the user URLs (dashboard pages)
[27], the fuzzer instantiates some driver instances to navigate the
main page using the cookies.

5.2.2 Crawling Strategies. According to the work of Stafeev and
Pellegrino [42], which reviews many crawling algorithms, there
are two crucial problems that need to be specified when designing
a web crawler: navigation and page similarity.

Navigation strategy. Similar to the work of Khodayari et al. [14]
which crawls around 1M web pages, our main driver visits web
pages with a depth-first strategy, which means visiting the most
recently discovered link. Given the homepage of the logged-in user,
the driver identifies web links by looking for anchor tags and saves
them in the links variable.

Page similarity. The proposed driver uses URL components as
the objects for page similarity, which means only visiting pages
with different URL components. When finding a web link from an
anchor tag, the driver takes its visible text and URL components
(i.e., base URL, URL path and query string containing sys-gen data)
and compares this information with previously saved links. If it is
non-identical, the found link is stored and will be visited.

5.3 Active Checker
The main idea of the active checker is to alter the captured HTTP
requests to reveal BAC. In general, the active checker chooses one
HTTP request from the seed (i.e., request corpus), performs one of
the mutation strategies, sends the mutated requests to the WUT
using a certain user session, and checks the feedback.

5.3.1 Request Selection. The active checker prioritises HTTP re-
quests with more reference parameters to be selected because the
endpoints of those requests have more attack surfaces that can be

Under peer-review, June xx–xx, 2025, US Dharmaadi et al.

exploited. To implement that idea, the request selection process
involves a random function with the number of reference params
as the weight.

5.3.2 Mutation. After obtaining a request for mutation, the active
checker chooses what kind of testing (either function- or object-
level) to conduct based on the request mark (explained in Sec-
tion 4.1).

Function-level Testing. BFLA happens when the WUT execute
HTTP requests that are unavailable for certain user roles. For exam-
ple, the request of add_item that only exists on the administrator
page will be tested using a non-admin account. So, when taking
an HTTP request having a different label from the checker name
(explained in Section 4.2.1), the active checker will perform such
testing because the request is supposed to be rejected by the WUT
due to forbidden access. To be more effective, the active checker
adjusts the chosen request with unique data from the selected ac-
counts, such as nonce data that is unique per account in WordPress.

Object-level Testing. BOLAmostly happens when a certain role is
allowed to execute certain functions but the WUT does not validate
the object the user tries to modify. Therefore, to test the object
level, the checker takes one request with the same label as the
checker’s logged-in role and mutates the selected parameters by
using another object reference value (Section 4.2.3).

5.3.3 Feedback Evaluation. The feedback the active checker re-
ceives from theWUT (i.e., HTTP response code, response messages,
code coverage, and SQL queries) is evaluated to decide whether the
sent request has triggered BAC. As explained in Section 4.3, the
active checker compares parameter data inserted in the submitted
requests with the SQL query the WUT produces. If the data exists,
the request and the query are reported to the user and added to the
attack surface collection. In addition, when requests fail to trigger
BAC yet bring new code coverages or 500-response codes, the active
checker also puts these requests into the attack surface collection
to be explored further. As shown in a previous study [45], these
interesting requests can guide the fuzzer to reach deeper statements
in WUTs. We count the 500-response code as well because some
studies [5][10] stated that this code is useful to show web defects
and can lead to more vulnerabilities.

5.4 Instrumentation
Instrumentation is critical in grey-box fuzzer setup because it pro-
duces live and lightweight internal information [21]. This study
follows the work of Neef et al [26] that instruments web appli-
cations by using the function hooking, a feature provided by the
UOPZ library [34], to collect SQL queries sent by WUT. Using
this technique enables the instrumentation scripts to manipulate
original PHP functions related to SQL calls, such as mysqli_query,
mysqli_stmt_prepare, mysqli_prepare, and PDOStatement with ad-
ditional codes acting as query catching. In addition to the query
collection, we use the PCOV library [47] for coverage accounting.
Since the library has a better performance overhead than Xde-
bug, it helps generate accurate line coverage reports quickly [4].
Since each request is supplied with a unique identifier (named X-
FUZZER-COVID) attached in the header, both query and coverage

information are written in JSON files named with each correspond-
ing request identifier.

5.5 Counting Unique Results
After running a certain of time, BACFuzz reports the final results
to the user. To count unique BAC cases, BACFuzz compares the
submitted request URL and method with the detected SQL query.
For example, CVE-2024-7437 and CVE-2024-7438 use the same
URL and method to trigger the vulnerability; however, the SQL
queries produced are different (i.e., DELETE FROM smf_user_alerts
vs UPDATE smf_user_alerts), making them two different cases.

5.6 Implementation
We implemented the proposed fuzzer in Python because it has li-
braries that fit our needs, such as Playwright [23] for the browser
controller and request interceptor, and BeautifulSoup [39] for HTML
processing. Then, we implemented the instrumentation, including
the SQL checking, in PHP scripts with the UOPZ and PCOV li-
braries. To ease the evaluation process, we deploy the WUTs and
evaluation scripts in Docker because handling complex web server
components is straightforward with Docker. In addition, we use
Docker to make it easy for other researchers to duplicate our study.

6 Empirical Evaluation
In order to evaluate the effectiveness of BACFuzz comprehensively,
we run it against test-bed and real web applications with known
and unknown access control vulnerabilities. At the end of the ex-
periments, we aim to answer the following research questions.
• RQ1. Can BACFuzz report the known vulnerabilities?
• RQ2. Can BACFuzz uncover new and valid vulnerabilities?
• RQ3. How much overhead does BACFuzz introduce?
• RQ4. How effective is BACFuzz in generating tests?

6.1 WUT Collection
As WUTs with known vulnerabilities, we use web applications
affected by 15 CVEs summarized in Section 3.2. We also include
benchmark applications employed by recent studies [18][26][12]
that are PHP-based: Damn Vulnerable Web Application (DVWA) and
Xtreme Vulnerable Web Application (XVWA), since they provide
BAC vulnerabilities for training purposes.

Recently, a static analysis work [13] revealed BOLA vulnerabil-
ities in 25 web applications. Even though this work successfully
detects many vulnerabilities in most tested applications, it finds
nothing in four applications: Scarf, PhpBB, Opencart, and Zencart.
Except for Scarf, which is no longer updated, we also evaluate our
work on those three remaining applications to demonstrate that
our fuzzer can reveal vulnerabilities that the static analysis work
cannot detect.

6.2 Experimental Setup
For eachWUT, we run the BACFuzzmain driver for a maximum of
24 hours to collect all HTTP requests and continue to run the active
checker for 24 hours to reveal BAC from the requests. We run the
experiments in a virtual computer with 8 CPUs and 32 GB RAM
and use the DeepSeek-V3 model provided by DeepSeek [8] for LLM

BACFuzz: Exposing the Silence on Broken Access Control Vulnerabilities in Web Applications Under peer-review, June xx–xx, 2025, US

Table 2: Evaluation results sorted by the number of WUT LoC. It shows that BACFuzz can detect 16 out of 17 known cases and
reveal 26 new TP BAC. The only failed detection occurred in CVE-2023-43663 due to discrepant submitted values.

App Name
/ CVE No

Available Roles
(apart from Admin Number of Req

Col.
Known
BAC

Detect
Time

New BAC
Detected

Avg.
Resp.

Instr.
Over

Non-
Rej.

and Anonymous) Files LoC Req Time TP FP Time head Req.
DVWA User 0.2K 7.5K 71 0:04:15 BFLA 0:00:02 0 0 0.025 0.001 99%
XVWA User 0.7K 17K 44 0:26:33 BFLA 0:00:15 0 0 0.026 0.003 100%

CVE-2025-0843 User 17 0.5K 13 0:01:19 BFLA 0:00:02 1 0 0.021 0.003 100%
CVE-2025-3536 Employee 40 1.5K 63 0:04:42 BFLA 0:00:02 1 0 0.023 0.003 100%CVE-2025-3537 BFLA 0:01:25
CVE-2024-55231 User 0.3K 2.4K 38 0:02:33 BOLA 0:00:06 0 0 0.022 0.004 99%CVE-2024-55232 BOLA 0:00:28
CVE-2024-40480 User 0.1K 4K 78 0:06:24 BFLA 0:00:06 2 0 0.024 0.007 99%
CVE-2025-0802 LeaveMan., Salary, BorrowMan. 0.6K 23K 124 0:15:37 BFLA 0:01:54 3 0 0.022 0.002 100%
CVE-2023-46449 Staff 1.1K 145K 67 0:12:14 BOLA 0:01:36 8 0 0.021 0.003 100%
CVE-2024-3139 Staff 2.5K 149K 28 0:03:12 BFLA 0:00:08 2 0 0.018 0.001 99%
CVE-2024-9082 Staff 2.6K 152K 71 0:18:13 BFLA 0:00:52 2 0 0.024 0.002 100%
CVE-2024-7658 Manager, Uploader, Client 12.3K 159K 642 3:05:02 BFLA 0:0:28 0 0 0.091 0.039 61%
CVE-2024-7437 User 0.8K 188K 1458 2:49:37 BOLA 0:06:46 1 5 0.092 0.041 73%CVE-2024-7438 BOLA 0:04:21
CVE-2024-8290 ShopMan., Author, Subscriber, Cust. 9.3K 929K 548 3:10:04 BOLA 0:03:06 4 2 1.423 0.864 54%
CVE-2023-43663 Logistician, Translator, Sales, Cust. 29.3K 2.4M 1897 4:09:38 BFLA X 1 3 0.298 0.162 99%

OpenCart Cataloger, Marketing, Customer 9.8K 434K 288 0:30:34 - - 0 1 0.105 0.025 55%
ZenCart Order Processor, Customer 9.7K 585K 878 2:37:27 - - 1 0 0.476 0.131 91%
phpBB Member 7.8K 726K 543 1:10:39 - - 0 0 0.101 0.052 97%

Req Col Time = Time to collect all unique HTTP requests; Avg Resp Time = Average time of WUT, which has been instrumented, to reply;
Instr Overhead = Time overhead caused by instrumentation; Non-Rej Req = Proportion of requests that are not rejected by WUT.

service because it has good performance in the code generation
domain. Since each fuzzing campaign works randomly, making the
result not the same in each experiment, we run the fuzzer three
times and report the average results.

In the experiments, we do not compare our work with other
popular security tools, such as OWASP ZAP and Burp Suite, due to
the significant difference between functionality and scope. Unlike
our approach, they are not designed for fully automated, object-
level access control testing, making them not applicable for a direct
comparison. In addition to those popular tools, there are several sci-
entific works addressing BAC, such as [38][16][43] (explained more
in Section 8); however, the source codes of these works are not avail-
able, preventing us from comparison. There is also a static analysis
work [13] to reveal BOLA vulnerabilities, but the authors confirmed
that it is challenging to manually create dal_specification.json, the
required file for testing new WUTs.

6.3 Experiment Results
Answering RQ1,BACFuzz successfully reported 16 out of 17 known
vulnerabilities (see Table 2). The only failed detection happens in
the CVE-2023-43663 case due to discrepant submitted values. In
that case, which affects Prestashop, when the disable module func-
tion is called, the WUT converts the module ID to a corresponding
primary-key ID in the DBMS and then sends the converted ID
through a SQL query. For example, BACFuzz sends statsbestcus-
tomers in the vulnerable parameter, but the WUT sends the query
of "UPDATE ps_module SET active = 0 WHERE id_module = 64" to
DBMS, making the fuzzer unable to detect the matched value.

Answering RQ2, BACFuzz successfully reported new vulnera-
bilities with low false positive rates. BACFuzz also reported one
new BAC from applications that the static analysis [13] could not
detect. We reported these vulnerabilities to the developers of the re-
spective applications and are waiting for the developers’ responses
to confirm our findings. If we receive confirmation before the final
version deadline, we will include their responses in the revision.
Otherwise, we will clarify the disclosure timeline and our commu-
nication efforts in the paper.

To answer RQ3, we compare the time WUTs need to reply to
each request between those using and not using instrumentation.
We deactivate the instrumentation by not putting the X-FUZZER-
COVID header in the request (as explained in Section 5.4). Table
2 shows that the use of instrumentation for coverage and query
collection results in less overhead.

To answer RQ4, we compare the number of not-rejected requests
(replied with either 200 or 500 response codes) because those re-
quests are interesting, as explained in Section 5.3.3. The results
in Table 2 show that the proposed mutation strategies can pro-
duce a large proportion of non-rejected requests, which is good for
exploiting various logic functions in WUT.

6.4 Discussion: False Positive Result
Although SQL query can serve as an oracle for detecting BAC, its
application may also result in false positive (FP) results. Based on
our observation of evaluation results, FP happens because of the
coincidence of the same value and the nature of dynamic objects.

Under peer-review, June xx–xx, 2025, US Dharmaadi et al.

First, the matched value between the mutated parameter and
the captured SQL query is syntactically valid yet semantically in-
correct. For example, in OpenCart, BACFuzz collects a query of
"DELETE FROM oc_cart WHERE (api_id > 0 OR customer_id = 1)" af-
ter sending a request with route=0 as the mutated parameter value.
Since this condition is marked as BAC due to the presence of 0
value, multiple checks are performed by sending a new mutated
request with route=1. Once again, the condition is marked as BAC
because the value 1 exists in the collected query. However, we can
obviously see that the submitted request and the obtained query
are not correlated.

Second, dynamic object behaviour causes FP because certain
objects are missing during crawling, but then exist during fuzzing.
For example, in SMF, a user had only one readable topic on his
page initially, making the MainDriver store the id_topic 1 as the
available object for the user. However, during the fuzzing campaign,
the ActiveChecker might send requests that lead to another topic
creation (e.g., id_topic 2) for the user. Therefore, because id_topic 2
is still considered inaccessible but BACFuzz successfully modifies
it (because it is indeed accessible for the user), BACFuzz raises a
BOLA flag that is FP.

7 Threats to Validity
While this study demonstrates the effectiveness of BACFuzz in
revealing BAC vulnerabilities, some threats to validity must be
considered when interpreting the results.

Internal Validity. The internal threat arises from how large
WUTs, such as SMF, WordPress, and PrestaShop, handle logging, as
they store extensive runtime events in dedicated log tables. These
log tables commonly record errors and unauthorized access at-
tempts, making SQL queries mostly match the submitted requests.
Therefore, it is suggested to exclude this kind of table that always
stores all submitted requests. To make the fuzzer only report valid
vulnerabilities, the fuzzer user should put these ignored tables in the
BACFuzz configuration. These ignored tables are crucial to main-
taining the report’s precision. In our experiment, we exclude tables
of smf_log (CVE-2024-7437 and CVE-2024-7438) and ps_connections
(CVE-2023-43663) from the fuzzer observation. While this filtering
step improves the precision of our results, it also introduces a slight
dependency on user knowledge of the WUT.

Construct Validity. The construct validity threat comes from
our BAC dataset. While additional related CVEs may exist beyond
our collection, we believe the selected cases are sufficiently di-
verse to support the design of our fuzzer. The dataset covers a
wide range of BAC patterns and application behaviours, making
it a representative basis for guiding and evaluating our design.
Nonetheless, our collection methodology may introduce bias to-
ward well-documented or easily reproducible vulnerabilities, which
may not capture all real-world scenarios.

8 Related Work
We identified some prior works related to BACFuzz, especially in
the web fuzzing domain and the access control testing domain.

First, there are some state-of-the-art web fuzzers, such as EvoMas-
ter [1], Restler [2], RestTestGen [46], bBOXRT [17], and RESTest [22],

which work effectively in triggering web crashes. However, they
cannot reveal BAC problems because the characteristics between
crash and BAC are very different. There are also vulnerability-
driven fuzzers which focus more on non-crash vulnerabilities, like
Witcher [44], EDEFuzz [33], ResolverFuzz [49], and Atropos [12];
however, they are not revealing BAC.

Second, there are some recent works on access control testing.
Rennhard et al. [38] and Kushnir et al. [16] developed practical solu-
tions to automatically detect BAC on web applications. Since their
works are limited by manipulating GET requests only, performed
in a black-box setup, and comparing web responses for vulnerabil-
ity verification, these are different from our work. Our proposed
fuzzer manipulates more attack vectors, works in a grey-box setting
with more advanced techniques, and uses SQL queries to verify the
vulnerability. The work of Sun et al. [43] used static analysis for vul-
nerability detection; however, it only works well for traditional web
applications that are not AJAX-heavy. Our work uses a dynamic
testing setup that catches HTTP requests, rather than observing
HTML links, thus it can handle modern web applications. As men-
tioned in Section 6.2, existing work based on static analysis [13]
requires manual creation of test files, making it less practical than
our work. Lastly, the work of Kim et al. [15] investigates parameter
tampering on the web; however, they highly rely on human inter-
vention to decide whether tampering is successful in altering the
business process. Our fuzzer uses automatic verification through
query checking, making much less human involvement.

In the domain of vulnerability scanners, there are two widely
used tools: OWASP ZAP [32] and Burp Suite [36], which operate in
a black-box setting to detect various security issues, including BAC.
However, their access control testing is not fully automated. Users
are required to manually configure an access control list (ACL)
defining which functions should be allowed/denied for specific
users. This setup process is both time-consuming and challenging.
Furthermore, those tools do not support object-level access control
testing and rely solely on web responses to verify ACL violations.
As discussed in Section 3.2, this verification method is often insuf-
ficient for accurately identifying authorization flaws. To address
these limitations, our work introduces automated approaches that
eliminate the need for predefined ACLs and accurately verify BAC.

9 Conclusion and Future Work
Broken Access Control (BAC) vulnerabilities remain pervasive in
web applications, yet pose unique challenges for automated detec-
tion due to the lack of reliable oracles and the difficulty of gener-
ating semantically valid attack inputs. In this paper, we presented
BACFuzz, a grey-box fuzzing framework specifically designed to
uncover BAC vulnerabilities—including BOLA and BFLA—by com-
bining hierarchical role analysis, referencemutation, and SQL-based
oracle checking. Empirical evaluation across 20 real-world PHP ap-
plications demonstrates that BACFuzz effectively detects 16 of 17
known issues and uncovers 26 previously unknown vulnerabilities,
all with low false positive rates. By releasing the source code and
curated evaluation dataset, we aim to foster further research on
BAC vulnerabilities and support the development of more secure
web applications.

BACFuzz: Exposing the Silence on Broken Access Control Vulnerabilities in Web Applications Under peer-review, June xx–xx, 2025, US

As acknowledged in Section 3.3, there are some types of BAC
that fall outside the scope of this work and represent directions
for future exploration. First, we identified context-dependent BAC,
which refers to vulnerabilities that only manifest after a user per-
forms specific actions, causing aWUT to enter a certain state. These
cases require preconditions (e.g., resource creation or feature acti-
vation) before unauthorized access becomes observable. Second, we
identified passive or view-type BAC, which allows unauthorized
users to gain access to sensitive information without modifying
any data in the DBMS. Since BACFuzz relies on data manipulation
(DML) queries to infer unexpected actions, it is difficult to verify the
violation of restricted information displayed on user pages that only
involve SELECT statements. As a result, both context-dependent
and passive BAC remain open challenges for future work.

References
[1] Andrea Arcuri. 2018. EvoMaster: Evolutionary Multi-context Automated System

Test Generation. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, Västerås, Sweden, 394–397. doi:10.1109/
ICST.2018.00046

[2] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler:
Stateful REST API Fuzzing. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, Montreal, Canada, 748–758. doi:10.1109/ICSE.
2019.00083 ISSN: 1558-1225.

[3] Craig Beaman, Michael Redbourne, J. Darren Mummery, and Saqib Hakak. 2022.
Fuzzing vulnerability discovery techniques: Survey, challenges and future direc-
tions. Computers & Security 120 (Sept. 2022), 102813. doi:10.1016/j.cose.2022.
102813

[4] Sebastian Bergmann. 2024. PCOV or Xdebug? Available at:
https://thephp.cc/articles/pcov-or-xdebug?ref=phpunit (Accessed: 2024-12-24).

[5] Davide Corradini, Michele Pasqua, and Mariano Ceccato. 2023. Automated
Black-Box Testing of Mass Assignment Vulnerabilities in RESTful APIs. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
Melbourne, Australia, 2553–2564. doi:10.1109/ICSE48619.2023.00213

[6] CVE Program. 2024. CVE-2024-7437. Available at:
https://www.cve.org/CVERecord?id=CVE-2024-7437 (Accessed: 2024-10-
01).

[7] CVE Program. 2024. CVE-2024-8290. Available at:
https://www.cve.org/CVERecord?id=CVE-2024-8290 (Accessed: 2024-11-
01).

[8] DeepSeek. n.d.. DeepSeek. https://www.deepseek.com/. Accessed: 2025-05-04.
[9] I Putu Arya Dharmaadi, Elias Athanasopoulos, and Fatih Turkmen. 2025. Fuzzing

frameworks for server-side web applications: a survey. International Journal of
Information Security 24, 2 (Feb. 2025), 73. doi:10.1007/s10207-024-00979-w

[10] Wenlong Du, Jian Li, Yanhao Wang, Libo Chen, Ruijie Zhao, Junmin Zhu, Zheng-
guang Han, Yijun Wang, and Zhi Xue. 2024. Vulnerability-oriented Testing for
RESTful APIs. In Proceedings of the 33rd USENIX Security Symposium. USENIX As-
sociation, Philadelphia, PA, USA, 739–755. https://www.usenix.org/conference/
usenixsecurity24/presentation/du

[11] Amid Golmohammadi, Man Zhang, and Andrea Arcuri. 2023. Testing RESTful
APIs: A Survey. ACM Transactions on Software Engineering and Methodology 33,
1 (Nov. 2023), 27:1–27:41. doi:10.1145/3617175

[12] Emre Güler, Sergej Schumilo, Moritz Schloegel, Nils Bars, Philipp Görz, Xinyi Xu,
Cemal Kaygusuz, and Thorsten Holz. 2024. Atropos: Effective Fuzzing of Web
Applications for Server-Side Vulnerabilities. In Proceedings of the 33rd USENIX
Security Symposium. USENIX Association, Philadelphia, PA, USA, 4765–4782.
https://www.usenix.org/conference/usenixsecurity24/presentation/gÃĳler

[13] Yongheng Huang, Chenghang Shi, Jie Lu, Haofeng Li, Haining Meng, and Lian Li.
2024. Detecting Broken Object-Level Authorization Vulnerabilities in Database-
Backed Applications. In Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security. ACM, Salt Lake City UT USA, 2934–2948.
doi:10.1145/3658644.3690227

[14] Soheil Khodayari, Thomas Barber, and Giancarlo Pellegrino. 2024. The Great
Request Robbery: An Empirical Study of Client-side Request Hijacking Vulnera-
bilities on the Web. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE,
San Francisco, CA, USA, 166–184. doi:10.1109/SP54263.2024.00098

[15] I Luk Kim, Yunhui Zheng, Hogun Park, Weihang Wang, Wei You, Yousra Aafer,
and Xiangyu Zhang. 2020. Finding client-side business flow tampering vulnera-
bilities. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. ACM, Seoul South Korea, 222–233. doi:10.1145/3377811.3380355

[16] Malte Kushnir, Olivier Favre, Marc Rennhard, Damiano Esposito, and Valentin
Zahnd. 2021. Automated Black Box Detection of HTTP GET Request-based

Access Control Vulnerabilities in Web Applications:. In Proceedings of the
7th International Conference on Information Systems Security and Privacy.
SCITEPRESS - Science and Technology Publications, Online, 204–216. doi:10.
5220/0010300102040216

[17] Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. 2021. A Black Box Tool
for Robustness Testing of REST Services. IEEE Access 9 (2021), 24738–24754.
doi:10.1109/ACCESS.2021.3056505 Conference Name: IEEE Access.

[18] Penghui Li and Mingxue Zhang. 2024. FuzzCache: Optimizing Web Application
Fuzzing Through Software-Based Data Cache. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security. ACM, Salt Lake
City UT USA, 511–524. doi:10.1145/3658644.3670278

[19] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the Art. IEEE Transactions on Reliability 67, 3 (Sept. 2018),
1199–1218. doi:10.1109/TR.2018.2834476 Conference Name: IEEE Transactions
on Reliability.

[20] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science, and engi-
neering of fuzzing: A survey. IEEE Transactions on Software Engineering 47, 11
(2019), 2312–2331.

[21] Valentin J.M. Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47,
11 (Nov. 2021), 2312–2331. doi:10.1109/TSE.2019.2946563

[22] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest:
automated black-box testing of RESTful web APIs. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis. ACM, Virtual
Denmark, 682–685. doi:10.1145/3460319.3469082

[23] Microsoft. 2025. Playwright for Python. Available at:
https://playwright.dev/python/ (Accessed: 2025-01-21).

[24] MITRE Corporation. 1999. CVE - Common Vulnerabilities and Exposures. https:
//www.cve.org/. Accessed: 2025-05-04.

[25] István Márton. 2024. 20,000 WordPress Sites Affected by Privilege Escalation
Vulnerability in WCFM – WooCommerce Frontend Manager WordPress Plugin.
Available at: https://www.wordfence.com/blog/2024/09/20000-wordpress-
sites-affected-by-privilege-escalation-vulnerability-in-wcfm-woocommerce-
frontend-manager-wordpress-plugin/ (Accessed: 2024-10-02).

[26] Sebastian Neef, Lorenz Kleissner, and Jean-Pierre Seifert. 2024. What All the
PHUZZ Is About: A Coverage-guided Fuzzer for Finding Vulnerabilities in PHP
Web Applications. In Proceedings of the 19th ACM Asia Conference on Computer
and Communications Security. ACM, Singapore Singapore, 1523–1538. doi:10.
1145/3634737.3661137

[27] Eric Olsson, Adam Doupé, Benjamin Eriksson, and Andrei Sabelfeld. 2024. Spider-
Scents: Grey-box Database-aware Web Scanning for Stored XSS. In Proceedings of
the 33rd USENIX Security Symposium. USENIX Association, Philadelphia, PA, USA,
6741–6758. https://www.usenix.org/conference/usenixsecurity24/presentation/
olsson

[28] OWASP. 2023. OWASP API Security Top 10. Available at: https://owasp.org/API-
Security/editions/2023/en/0x00-header/ (Accessed: 2024-07-05).

[29] OWASP. 2024. OWASP Top 10:2021. Available at: https://owasp.org/Top10/
(Accessed: 2024-10-02).

[30] OWASP. 2024. OWASP Web Security Testing Guide. Available at:
https://owasp.org/www-project-web-security-testing-guide/ (Accessed: 2024-
10-02).

[31] OWASP. 2025. OWASP Top 25 Parameters. Available at: https://owasp.org/www-
project-top-25-parameters/ (Accessed: 2025-01-21).

[32] OWASP ZAP Team. n.d.. The ZAP Homepage. https://www.zaproxy.org/. Ac-
cessed: 2025-05-04.

[33] Lianglu Pan, Shaanan Cohney, Toby Murray, and Van-Thuan Pham. 2024. EDE-
Fuzz: A Web API Fuzzer for Excessive Data Exposures. In Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24). As-
sociation for Computing Machinery, New York, NY, USA, 1–12. doi:10.1145/
3597503.3608133

[34] PHP Documentation Team. n.d.. PHP: uopz Manual. https://www.php.net/
manual/en/book.uopz.php. Accessed: 2025-05-04.

[35] PortSwigger. 2024. Access control vulnerabilities and privilege escalation. Avail-
able at: https://portswigger.net/web-security/access-control (Accessed: 2024-10-
02).

[36] PortSwigger. n.d.. Burp Suite – Application Security Testing Software. https:
//portswigger.net/burp. Accessed: 2025-05-04.

[37] PrestaShop Contributors. 2025. PrestaShop. https://github.com/PrestaShop/
PrestaShop. Accessed: 2025-05-04.

[38] Marc Rennhard, Malte Kushnir, Olivier Favre, Damiano Esposito, and Valentin
Zahnd. 2022. Automating the Detection of Access Control Vulnerabilities in Web
Applications. SN Computer Science 3, 5 (July 2022), 376. doi:10.1007/s42979-022-
01271-1

[39] Leonard Richardson. 2025. Beautiful SoupDocumentation. https://beautiful-soup-
4.readthedocs.io/en/latest/. https://beautiful-soup-4.readthedocs.io/en/latest/
Accessed: 2025-05-04.

https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1016/j.cose.2022.102813
https://doi.org/10.1016/j.cose.2022.102813
https://doi.org/10.1109/ICSE48619.2023.00213
https://www.deepseek.com/
https://doi.org/10.1007/s10207-024-00979-w
https://www.usenix.org/conference/usenixsecurity24/presentation/du
https://www.usenix.org/conference/usenixsecurity24/presentation/du
https://doi.org/10.1145/3617175
https://www.usenix.org/conference/usenixsecurity24/presentation/güler
https://doi.org/10.1145/3658644.3690227
https://doi.org/10.1109/SP54263.2024.00098
https://doi.org/10.1145/3377811.3380355
https://doi.org/10.5220/0010300102040216
https://doi.org/10.5220/0010300102040216
https://doi.org/10.1109/ACCESS.2021.3056505
https://doi.org/10.1145/3658644.3670278
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/3460319.3469082
https://www.cve.org/
https://www.cve.org/
https://doi.org/10.1145/3634737.3661137
https://doi.org/10.1145/3634737.3661137
https://www.usenix.org/conference/usenixsecurity24/presentation/olsson
https://www.usenix.org/conference/usenixsecurity24/presentation/olsson
https://www.zaproxy.org/
https://doi.org/10.1145/3597503.3608133
https://doi.org/10.1145/3597503.3608133
https://www.php.net/manual/en/book.uopz.php
https://www.php.net/manual/en/book.uopz.php
https://portswigger.net/burp
https://portswigger.net/burp
https://github.com/PrestaShop/PrestaShop
https://github.com/PrestaShop/PrestaShop
https://doi.org/10.1007/s42979-022-01271-1
https://doi.org/10.1007/s42979-022-01271-1
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/

Under peer-review, June xx–xx, 2025, US Dharmaadi et al.

[40] Ravi S. Sandhu. 1998. Role-based Access Control. In Advances in Computers,
Marvin V. Zelkowitz (Ed.). Advances in Computers, Vol. 46. Elsevier, San Diego,
CA, USA, 237–286. doi:10.1016/S0065-2458(08)60206-5 ISSN: 0065-2458.

[41] Daniel Servos and Sylvia L. Osborn. 2017. Current Research and Open Problems
in Attribute-Based Access Control. ACM Comput. Surv. 49, 4, Article 65 (Jan.
2017), 45 pages. doi:10.1145/3007204

[42] Aleksei Stafeev and Giancarlo Pellegrino. 2024. SoK: State of the Krawlers –
Evaluating the Effectiveness of Crawling Algorithms for Web Security Measure-
ments. In Proceedings of the 33rd USENIX Security Symposium. USENIX Asso-
ciation, Philadelphia, PA, USA, 719–737. https://www.usenix.org/conference/
usenixsecurity24/presentation/stafeev

[43] Fangqi Sun, Liang Xu, and Zhendong Su. 2021. Static Detection of Ac-
cess Control Vulnerabilities in Web Applications. In 20th USENIX Secu-
rity Symposium (USENIX Security 11). USENIX Association, San Francisco,
CA, 16 pages. https://www.usenix.org/conference/usenix-security-11/static-
detection-access-control-vulnerabilities-web-applications

[44] Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, Giovanni Vigna, Christopher
Kruegel, Ruoyu Wang, Yan Shoshitaishvili, and Adam Doupé. 2023. Toss a Fault
to Your Witcher: Applying Grey-box Coverage-Guided Mutational Fuzzing to
Detect SQL and Command Injection Vulnerabilities. In 2023 IEEE Symposium
on Security and Privacy (SP) (44). IEEE Computer Society, SAN FRANCISCO,
2658–2675. doi:10.1109/SP46215.2023.00007

[45] Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer, Michalis
Papaevripides, and Elias Athanasopoulos. 2021. webFuzz: Grey-Box Fuzzing
for Web Applications. In Computer Security – ESORICS 2021 (Lecture Notes in
Computer Science), Elisa Bertino, Haya Shulman, and Michael Waidner (Eds.).
Springer International Publishing, Cham, 152–172. doi:10.1007/978-3-030-88418-
5_8

[46] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RESTTEST-
GEN: Automated Black-Box Testing of RESTful APIs. In 2020 IEEE 13th Interna-
tional Conference on Software Testing, Validation and Verification (ICST). IEEE,
Porto, Portugal, 142–152. doi:10.1109/ICST46399.2020.00024 ISSN: 2159-4848.

[47] Joe Watkins. 2025. krakjoe/pcov. https://github.com/krakjoe/pcov. Originally
posted: 2019-01-16. Accessed: 2025-05-04.

[48] Man Zhang and Andrea Arcuri. 2023. Open Problems in Fuzzing RESTful APIs: A
Comparison of Tools. ACM Transactions on Software Engineering and Methodology
32, 6 (Nov. 2023), 1–45. doi:10.1145/3597205

[49] Qifan Zhang, Xuesong Bai, Xiang Li, Haixin Duan, Qi Li, and Zhou Li. 2024.
RESOLVERFUZZ: Automated Discovery of DNS Resolver Vulnerabilities with
Query-Response Fuzzing. In Proceedings of the 33rd USENIX Security Symposium.
USENIX Association, Philadelphia, PA, USA, 4729–4746. https://www.usenix.
org/conference/usenixsecurity24/presentation/zhang-qifan

[50] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. 2022. Fuzzing: A
Survey for Roadmap. Comput. Surveys 54, 11s (Jan. 2022), 1–36. doi:10.1145/
3512345

https://doi.org/10.1016/S0065-2458(08)60206-5
https://doi.org/10.1145/3007204
https://www.usenix.org/conference/usenixsecurity24/presentation/stafeev
https://www.usenix.org/conference/usenixsecurity24/presentation/stafeev
https://www.usenix.org/conference/usenix-security-11/static-detection-access-control-vulnerabilities-web-applications
https://www.usenix.org/conference/usenix-security-11/static-detection-access-control-vulnerabilities-web-applications
https://doi.org/10.1109/SP46215.2023.00007
https://doi.org/10.1007/978-3-030-88418-5_8
https://doi.org/10.1007/978-3-030-88418-5_8
https://doi.org/10.1109/ICST46399.2020.00024
https://github.com/krakjoe/pcov
https://doi.org/10.1145/3597205
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-qifan
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-qifan
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Examples

	3 Preliminary Analysis of BAC Characteristics
	3.1 Data Collection
	3.2 Challenges to Reveal BAC
	3.3 Scope of the Work

	4 Proposed Approach
	4.1 Hierarchical Role Analysis
	4.2 Reference Mutation
	4.3 SQL Checking

	5 BACFuzz: Fuzzer Implementation
	5.1 Overview
	5.2 Main Driver
	5.3 Active Checker
	5.4 Instrumentation
	5.5 Counting Unique Results
	5.6 Implementation

	6 Empirical Evaluation
	6.1 WUT Collection
	6.2 Experimental Setup
	6.3 Experiment Results
	6.4 Discussion: False Positive Result

	7 Threats to Validity
	8 Related Work
	9 Conclusion and Future Work
	References

