arXiv:2507.14739v1 [cs.CR] 19 Jul 2025

CANDoSA: A Hardware Performance

Counter-Based Intrusion Detection System for DoS
Attacks on Automotive CAN bus

Franco Oberti
Dumarey Softronix
Dumarey
Torino, Italy
ORCID: 0000-0001-7974-9505

Abstract—The Controller Area Network (CAN) protocol, es-
sential for automotive embedded systems, lacks inherent security
features, making it vulnerable to cyber threats, especially with
the rise of autonomous vehicles. Traditional security measures
offer limited protection, such as payload encryption and message
authentication. This paper presents a novel Intrusion Detection
System (IDS) designed for the CAN environment, utilizing
Hardware Performance Counters (HPCs) to detect anomalies
indicative of cyber attacks. A RISC-V-based CAN receiver is
simulated using the gemS simulator, processing CAN frame
payloads with AES-128 encryption as FreeRTOS tasks, which
trigger distinct HPC responses. Key HPC features are optimized
through data extraction and correlation analysis to enhance
classification efficiency. Results indicate that this approach could
significantly improve CAN security and address emerging chal-
lenges in automotive cybersecurity.

Index Terms—Security, CAN Networks, Intrusion Detection
Systems, Hardware Performance Counters, Automotive

I. INTRODUCTION

Modern vehicles are now interconnected platforms capa-
ble of semi-autonomous decision-making and Over-the-Air
(OTA) updates. This integration of automotive engineering and
information technology necessitates a rethinking of vehicle
architectures to ensure functionality, performance, efficiency,
and resilience.

Vehicle communication utilizes networks such as Controller
Area Network (CAN), Long-Term Evolution (LTE), Fifth Gen-
eration Mobile Network (5G), and Ethernet to enable advanced
features like Advanced Driver Assistance Systems (ADAS),
Vehicle-to-Everything (V2X), and cloud-based services [1],
[2]. However, this connectivity increases vulnerability to cyber
threats [3], [4], including vehicle hijacking, Electronic Control
Units (ECUs) manipulation, and ransomware attacks [5]. The
shift to Software Defined Vehicle (SDV) introduces additional
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risks such as Denial-of-Service (DoS) attacks and data injec-
tion, making robust, multi-layered cybersecurity frameworks
essential [6].

Regulations like United Nations Regulation No. 155 (UNR
155) and United Nations Regulation No. 156 (UNR 156) re-
quire manufacturers to implement Cybersecurity Management
Systems (CSMSs) to ensure compliance [7]. Standards such as
ISO/SAE 21434 Road Vehicles — Cybersecurity Engineering
(ISO 21434) emphasize the need for intrusion detection to
protect communication networks [8].

A common cybersecurity approach includes deploying In-
trusion Detection Systems (IDSs) that analyze network traf-
fic in real-time to identify threats. These systems leverage
signature-based detection, anomaly detection, and machine
learning to monitor networks like CAN and Ethernet [9], while
host-based IDSs enhance security by tracking critical ECUs
modifications.

This paper presents research on a novel IDS aimed at
improving attack detection on CAN networks by assessing
Hardware Performance Counters (HPCs) deviations in ap-
plication execution. We use a RISC-V microprocessor as
a representative architecture for next-generation automotive
systems [10].

The paper is structured as follows: Section II provides back-
ground information, Section III describes the IDS framework,
Section IV outlines the simulation environment, Section V
discusses results, and Section VI concludes the paper.

II. BACKGROUND

Automotive IDSs encompass signature-based, anomaly-
based, and hybrid approaches for vehicle cybersecurity [11].
Signature-based systems detect known threats using predefined
patterns, while anomaly-based solutions leverage Machine
Learning (ML) and Artificial Intelligence (Al) to identify novel
attacks through behavioral analysis [12]. Hybrid approaches
combine these methods for comprehensive protection, though
they face challenges in balancing detection accuracy with
resource constraints.
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Recent advances have integrated sophisticated ML tech-
niques, particularly for CAN bus monitoring. The CAN-BERT
model [13] applies language modeling to analyze network
traffic patterns, while traditional classifiers like Support Vector
Machines (SVMs) and Deep Neural Networks (DNNs) detect
various attacks, including DoS and impersonation attempts
[14], [15].

Vehicle security employs both network-based IDSs and
Host-Based Intrusion Detection Systems (HIDSs). Network
solutions monitor communication channels, while HIDSs pro-
tect individual ECUs through power signature analysis and
host hardening techniques [16]. Commercial implementations
combine these approaches with cloud computing and big
data analytics for real-time threat detection [17], though high
computational requirements can impact response times [11].

Key challenges include achieving high True Positive Rate
(TPR) while maintaining low latency in resource-constrained
environments. Future directions focus on integrating hardware
security modules (Trusted Platform Modules (TPMs), Hard-
ware Security Modules (HSMs)) with software-based detection
[17], implementing federated learning for privacy-preserved
model training [14], and developing standardized evaluation
frameworks [18]. Recent research also explores HPCs event
counting for detecting malware and microarchitectural attacks
[19], [20].

III. HARDWARE-BASED INTRUSION DETECTION
FRAMEWORK

This section outlines the framework of the IDS, aimed at
developing a HIDS to identify attacks by detecting behavioral
deviations in the application on the ECU and analyzing CAN
data (see Figure 1). The approach consists of three phases that
transform raw CAN data into an effective online inference
model using HPC event counting:

1) Data Collection: Data is gathered from the CAN net-
work and organized into samples, which may be benign
or malicious. This setup facilitates the detection of
deviations in the ECU ’s behavior, signaling potential
attacks. While it limits detectable scenarios, it effectively
identifies intrusion events like DoS attacks, which over-
whelm ECU functionality, and frame spoofing attacks,
where false messages are injected.

2) Frame Processing and HPC Logging: The CAN data
is processed by an application on the ECU, activating
the Perfomance Monitoring Unit (PMU) to log HPC
values. This logging captures events during frame pro-
cessing, providing insights into the ECU ’s state and
performance. Currently, HPC data is collected only at
execution’s end, limiting real-time detection but remain-
ing crucial for identifying performance deviations [21].

3) Offline Training and Online Inference: The classifica-
tion model undergoes offline training, processing HPC
values through feature selection to identify key features
and optimize classifier parameters. Once trained, the in-
ference model continuously monitors CAN data to detect
attacks based on deviations in the ECU ’s behavior.
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SYSTEM
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Fig. 1: General workflow for attack detection.

A. Classification Framework

The classification step is crucial for ensuring a fair analysis
of HPC data. Initially, the raw data undergoes preprocessing to
standardize and normalize features, eliminating discrepancies
from differing scales and filtering out irrelevant data. This
process enhances comparability and lays a foundation for
accurate analysis. Two key transformations are applied:

1) Mean and Scale Transformation: This reduces disper-
sion in HPC values, mitigating the impact of outliers
from simulation timing or workload variations.

2) Correlation Analysis for Feature Reduction: This
analysis identifies and removes highly correlated fea-
tures, reducing dimensionality while retaining the most
predictive variables. The refined dataset focuses on HPC
features that distinguish normal from anomalous traffic.

The classification employs Binary Classification Models
to differentiate regular traffic from attacks. We utilize an
unsupervised One-Class Classifier trained solely on standard
traffic data, which requires less training data and effectively
detects anomalies by identifying deviations from the estab-
lished dataset. This approach ensures robust detection without
constant updates, enhancing our cybersecurity efforts.

IV. SIMULATION OF ECU-CAN SYSTEMS

To deploy a realistic ECU configuration, a CAN re-
ceiver integrated with a RISC-V architecture is implemented
on the gem5 simulator. The setup is configured using
riscv/fs_linux.py, which establishes a RISC-V Timing
Simple CPU, DDR4 RAM, LI1/L2 caches, and a 1.0 GHz
clocked system, reflecting a typical embedded system. This
controlled environment overcomes physical board limitations,
enabling precise observation and manipulation of CAN com-
munication and HPC triggering. The simulation runs in gem5’s
Full System (FS) mode, emulating critical hardware compo-
nents and supporting complex software like Linux or Real-
Time Operating System (RTOS) (e.g., FreeRTOS [22]).

CAN communication involves two components:

e« CAN Controller Transmitter: A Python script reads

datasets, constructs CAN frames, and writes them to a
shared file. Frames are generated by parsing components
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like identifiers, Data Length Code (DLC), and payloads
and converting them into frames.

e« CAN Controller Receiver: A FreeRTOS task reads
and processes frame data from shared files, simulating
memory-mapped access in the absence of a complete
hardware counterpart.

Since the gemS5 RISC-V microprocessor lacks a PMU,
HPCs-like data are derived from gem5 logs [23]. The simula-
tor tracks around 1200 architectural events in stats.txt,
offering a broader dataset than physical PMU counters. A
Python script parses these logs to extract and reshape HPC-
like data for training and testing detection models, following
preprocessing steps outlined in Section III-A.

V. EXPERIMENTAL RESULTS

The experimental setup, shown in Figure 2, features an
AES-128 encryption task as a reference application. This
task processes 16-byte plaintext blocks with a 16-byte key
to produce ciphertext. It runs as a FreeRTOS task, receiving
payloads as CAN frames from the CAN receiver described in
IV. This setup simulates a realistic automotive environment
by combining FreeRTOS and HPC evolution beyond the AES
algorithm.
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Fig. 3: Schematic of the DoS attack

The dataset, sourced from [29], was collected via the OBD-
IT port of a KIA SOUL car and includes regular (attack-
free) data and three attack types: Fuzzy, Impersonation, and
DoS. For this study, we focused on the DoS attack, where
a malicious node injects CAN frames with an identifier of

zero, causing arbitration delays for legitimate frames. The
dataset contains 119,000 attack-free messages and 118,000
DoS attack messages.To evaluate the IDS framework, we
used the unsupervised One-Class SVM [30], implemented
via sklearn [31]. This model, trained on attack-free data,
identifies anomalies by establishing a boundary around the
normal class. Training utilized 20% to 95% of the attack-free
data, with the remaining 5% reserved for testing alongside the
full attack dataset.

After parameter tuning, the OneClassSVM was configured
with an Radial Basis Function (RBF) kernel, v = 0.2, and
v = auto. This setup effectively detected anomalies within
the dataset.

We implemented the two methods outlined in Section III-A
to streamline our data. We standardized the input values,
which ranged from 10~7 to 10'°, to achieve a mean of
zero and a standard deviation of one, ensuring uniformity in
our analysis. We computed correlation coefficients for each
input parameter with the output parameter, excluding any that
were uncalculable or did not meet the 0.9 threshold. This
procedure ultimately informed the final selection in Table I.
While the number of HPCs corresponds to the actual number
of available counters, it is essential to note that the study’s
objective is to assess their effectiveness. It is plausible that by
pinpointing a subset of HPCs, acceptable classification results
can still be achieved with a limited number of physical counter
registers [32].

Table I lists all selected logs, which include events that may
not be available in standard RISC-V implementations, such
as CVAG [28], due to their optional nature. We also provide
x86 similarity data [25]. Notably, the caches exhibit many
similar events. Demand misses occur when the CPU requests
an instruction not in the cache, requiring a fetch from lower
memory levels. Read requests are a subset tracked when a read
is issued to the gem5 cache component. This differentiation
may not exist in real HPCs, but our preprocessing reveals that
the information content does not fully overlap.

This study evaluates the effectiveness of one-class classifi-
cation techniques in identifying various types of cyber attacks
without prior knowledge of their characteristics. We focused
on these methods’ detection capabilities by varying the size
of the attack-free training set, analyzing 1,500 CAN frames
processed by the AES task. Smaller training set sizes, starting
with 75 frames, yielded inconclusive results and have been
excluded from the final manuscript for clarity and integrity.

In Figure 4, we present essential performance metrics,
specifically accuracy and the F1 score (see equation 1), as
we vary the percentage of the dataset utilized for training.
The accuracy metric assesses the ratio of correctly predicted
instances to the total number of predictions made. Meanwhile,
the F1 score offers a balanced evaluation of precision and
recall, making it particularly valuable in situations with im-
balanced class distributions.

TP
Fl= . (1)
TP+ L(FN + FP)




TABLE I: Selected Events from gem5 logs (all start from system.)

gemS5 Event gem5 Meaning

RISC-V HPC Similarity x86 HPC Similarity [25]

cpu.commitStatsO.numInsts Committed instructions

cpu.fetchStatsO.numBranches Fetched branch instructions
cpu.dcache.demandHits::cpu.data Demand hits in the data cache
cpu.dcache.demandMisses::cpu.data Demand misses in the data cache
cpu.dcache.ReadReq.hits::cpu.data Read request hits in the data cache
cpu.dcache.ReadReq.misses::cpu.data ~ Read request misses in the data cache
cpu.dcache.WriteReq.hits::cpu.data Write request hits in the data cache
cpu.dcache.WriteReq.misses::cpu.data ~ Write request misses in the data cache
cpu.icache.demandHits::cpu.inst Demand hits in the instruction cache

cpu.icache.demandMiss Demand misses in the instruction cache

s:icpu.inst
cpu.icache.ReadReq.hits::cpu.inst Read request hits in the instruction cache
cpu.icache.ReadReq.misses::cpu.inst Read request misses in the instruction cache
12.demandHits::cpu.data Demand hits in the L2 cache
12.demandMisses::cpu.inst Demand misses in the L2 cache (instructions)
12.demandMisses::cpu.data Demand misses in the L2 cache (data)

12.demandMisses::total Total demand misses in the L2 cache

minstret (Retired instruction counter) [26]

Branch instructions event (PULP) [27]

L1 D-Cache miss event (PULP) [27]

L1 I-Cache miss event (PULP) [27]
Instruction fetch event (CVA6) [28]
Instruction fetch event (CVAG6) [28]
L2 cache hit event (if implemented in PULP/CVAG6)
L2 cache miss event (if implemented in PULP/CVA6)
L2 cache miss event (if implemented in PULP/CVAG6)
Total L2 cache miss event (if implemented in PULP/CVA6)

INST_RETIRED.ANY
BR_INST_RETIRED.ALL_BRANCHES
MEM_LOAD_RETIRED.L1_HIT
MEM_LOAD_RETIRED.L1_MISS
MEM_LOAD_RETIRED.LI_HIT (subset)
MEM_LOAD_RETIRED.L1_MISS (subset)
MEM_STORE_RETIRED.L1_HIT
MEM_STORE_RETIRED.L1_MISS
ICACHE.HIT
ICACHE.MISS
ICACHE.HIT (subset)
ICACHE.MISS (subset)
MEM_LOAD_RETIRED.L2_HIT
MEM_LOAD_RETIRED.L2_MISS (for instructions)
MEM_LOAD_RETIRED.L2_MISS (for data)
L2_RQSTS.MISS

L1 D-Cache hit event (PULP) [27]

Load access event (CVA6) [28]
Load access event (CVA6) [28]
Store access event (CVA6) [28]
Store access event (CVA6) [28]
L1 I-Cache hit event (PULP) [27]
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Fig. 4: IDS performances on DoS attack, considering a training set from 20% to 95% of the attack-free dataset in [29]

The results show that the one-class classifier effectively iden-
tifies all malicious samples, but its performance heavily relies
on the training set size. Achieving 90% accuracy requires
over 75% of the training data (between 75% and 80% in Fig.
4a). This limitation means that without a sufficiently large
and diverse training set, the model may misclassify legitimate
traffic as malicious, as indicated by the Fl-score in Fig. 4b,
which highlights the risk of high False Positive Rate (TPR)
with inadequate training data.

Additionally, the classifier’s ability to detect attacks depends
on accumulating HPC data over time, preventing instantaneous
or real-time intrusion detection. This latency poses challenges
for immediate threat response and concerns environments
requiring prompt action against security breaches, which will
be addressed in future work.

While the current classifier does not support real-time
IDS deployment, it demonstrates that malicious activities can
cause significant deviations in application processing patterns.
Understanding these deviations could enhance future detection
algorithms and overall cybersecurity measures.

VI. CONCLUSION

This paper introduced a novel IDS approach utilizing HPCs
for detection. Initial findings demonstrate the feasibility of
detecting attack CAN data, although detection quality remains
limited. The primary challenge is the need for a large dataset
to train an effective model, indicating further experiments
are necessary. Future work should explore various attacks,
applications, and more complex RTOS scenarios.

Additionally, research will focus on adapting IDS capabili-
ties for safety-critical real-time embedded systems, a vital step
toward developing a comprehensive IDS. The ultimate aim is
to create an advanced IDS that integrates CAN bus anomaly
detection and HIDS into a unified module.
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