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Abstract. Modern Security Orchestration, Automation, and Response (SOAR)
platforms must rapidly adapt to continuously evolving cyber attacks. Intent-
Based Networking has emerged as a promising paradigm for cyber attack miti-
gation through high-level declarative intents, which offer greater flexibility and
persistency than procedural actions. In this paper, we bridge the gap between two
active research directions — Intent-Based Cyber Defense and Autonomic Cyber
Defense, by proposing a unified, ontology-driven security intent definition lev-
eraging the MITRE-D3FEND cybersecurity ontology. We also propose a general
two-tiered methodology for integrating such security intents into decision-theo-
retic Autonomic Cyber Defense systems, enabling hierarchical and context-
aware automated response capabilities. The practicality of our approach is
demonstrated through a concrete use case, showcasing its integration within next-
generation Security Orchestration, Automation, and Response platforms.
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1 Introduction

System and network infrastructures today face increasingly sophisticated threats, pos-
ing significant risks. Among the most challenging types of cyber threats are Advanced
Persistent Threats (APTs), orchestrated by well-resourced attackers to gain prolonged
unauthorized access to a target network to steal sensitive information or disrupt opera-
tions. From a defender’s perspective, effective cyber defense encompasses three stages:
(a) proactive prevention to deter threats before they occur, (b) real-time detection to
identify breaches or anomalies, and (c) post-detection security responses to minimize
damage — i.e., attack mitigation. This paper concentrates on stage (c).

In APT scenarios, it is realistic to expect that skilled attackers can always find a way
to evade the first line of defense, making real-time and post-detection response not just
optional but essential. Modern Security Operations Centers (SOCs) still rely heavily
on human experts to manually analyze and respond to incident alerts. However, human



judgment errors are inevitable during mitigation operations. Despite advancements in
Security Orchestration, Automation, and Response (SOAR) platforms, analysts still
face overwhelming alert fatigue, due to the prevalence of false positives generated by
insufficiently explained anomaly detection, leading to delayed or missed mitigation [1].

Current mitigation automation tools in SOAR, such as playbooks, operate as proce-
dural checklists of steps and actions [2]. They are primarily concerned with enforcing
low-level configurations, without inherently encoding the high-level security intents so
far formulated by SOC analysts. Informally, a security intent indicates a desired system
or network state in which the identified risk is mitigated. This gap — between operations
and objectives — highlights the need for a higher-level security intent layer in security
response automation, that aligns closely with human-understandable strategic goals. In
other words, next generation SOAR platforms should derive and proceed with security
intents “in mind”, rather than relying on humans to bear these intents and explicitly
instruct them on what attack mitigation actions to take. This transition represents a ma-
jor step toward reducing human errors, reaction time, and sub-optimal trade-offs be-
tween conflicting security goals, such as availability, confidentiality, and integrity.

Research addressing security response automation has been ongoing since the early
2000s, notably within post-detection Autonomic' Cyber Defense (ACD) [3]. While
ACD also encompasses the preventive (a) and detection (b) stages of cyber defense, we
refer to post-detection ACD simply as ACD throughout the remainder of this paper.
Various decision-theoretic models utilizing Artificial Intelligence (A1) techniques have
been proposed (cf. Section 3). However, while state-of-the-art approaches acknowledge
the dynamic nature of modern IT infrastructures [4], particularly in the era of computer
virtualization and service containerization, their impact on security action space has
been largely neglected. This oversight mainly stems from limited industry adoption of
such decision-theoretic models, caused by factors such as computational complexity
[5] and trust [6] constraints. As a result, existing research frequently simplifies security
responses into push-button actions executed within controlled test environments. In
practice, however, many mitigation actions are more complex, often involving se-
quences of sub-procedures that rely on specific system or network-level capabilities,
which vary depending on the current state of the underlying IT infrastructure.

Therefore, we propose security intent as a promising concept to bridge these gaps.
First, intent enables defense systems to maintain a high-level, strategic "understanding"
of their objectives before reacting, simulating the reasoning process of human SOC
analysts. Second, intent abstracts away intricate implementation details in decision-the-
oretic mitigation planning, stabilizing its action space and encapsulating the impact of
environmental changes (e.g., service update, reallocation, efc.) of security functions
into the non-stationary model parameters of the underlying IT infrastructure. The goal
is to facilitate robust handling of increasingly complex and continuously evolving IT
infrastructures for autonomic security responses.

' We upgrade to the term “autonomic” to denote a level of automation between “automated”

and “autonomous”. Automated systems require human initiation and follow fixed rules; auto-
nomic systems [7] can adapt and self-manage under limited human oversight; autonomous
systems operate entirely independently, without human intervention.



In this paper, we demonstrate how Intent-Based Networking (IBN) [8,9] can be
leveraged in ACD to intelligently reconfigure system behavior and security policies in
response to active cyber attacks. While IBN was originally developed to simplify net-
work management, we specifically focus on its application for security responses.
Building upon this perspective, we seek to answer the following Research Questions:
- RQI1. What constitutes a suitable and practical operational definition of security

intent in the context of Autonomic Cyber Defense ?
- RQ2. How can such security intents be effectively integrated into ACD, using In-
tent-Based Networking to enable adaptive and high-level response planning?

To address RQ1, we propose a unified definition of security response in the form
of structured security intents, grounded in the MITRE-D3FEND™ ontology [10].
D3FEND formalizes cyber defense techniques into actionable concepts that can serve
as robust building blocks for our intent definition across diverse attack scenarios (see
Section 2.2 for an overview of D3FEND). We choose D3FEND over other existing
cybersecurity ontologies [11,12] due to its close alignment with the widely adopted
MITRE-ATT&CK™ offensive taxonomy [13], which facilitates deeper understanding
of cyber attacks (e.g., APTs) and supports precise intent-driven security responses.

To answer RQ2, we introduce a general methodology for integrating our proposed
security intent representation into state-of-the-art decision-theoretic ACD models. The
integration is two-tiered, comprising (1) an Intent Discovery Agent (IDA), responsible
for autonomically generating security intents based on real-time security observations,
and (2) an Intent Enforcement Agent (IEA), tasked with ensuring these intents remain
enforced in dynamic operational environments. We further demonstrate a concrete use
case showcasing how such intents can be implemented by the IEA beyond traditional
networking contexts (originally envisioned by IBN), using the Kubernetes project.

The remainder of the paper is organized as follows. Section 2 presents the back-
ground, covering IBN and the D3FEND ontology. Section 3 provides a review of re-
lated work on both Intent-Based Cyber Defense (IBCD) and Autonomic Cyber De-
fense (ACD). Section 4 details our contribution, including the unified intent definition
and the two-tiered integration methodology via the IDA and IEA. Finally, Section 5
summarizes our conclusions and outlines future research directions.

2 Background

2.1 Intent-Based Networking (IBN)

IBN is a powerful paradigm originally developed to simplify computer network con-
figuration by abstracting low-level, device-specific tasks into high-level, device-agnos-
tic intents. According to the Internet Engineering Task Force (IETF) [8], intent is
defined as “operational goals (to be met) or outcomes (to be delivered) defined in a
declarative manner without specifying how to achieve them”. In the context of post-

2 Kubernetes is an open-source container orchestration platform that enables dynamic, pro-

grammable infrastructure — ideal for evaluating intent enforcement in complex environments.



detection attack mitigation, intent can be further refined to represent a desired system
state in which normal functionality has been restored (outcome to be delivered), and
the threat impact has been either eliminated or reduced to a level considered tolerable
(goal to be met). In most literature on IBN, we consider that an Intent-Based Network-
ing System (IBNS) periodically receives intent from human users. The intent lifecycle
thus has to be separated into two closed loops (see Fig. 1).
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Fig. 1. Intent lifecycle (simplified from [8])

a) Outer closed loop: involves user interaction. It interprets the user’s intent, imple-
ments it, and reports the outcome back to the user.

b) Inner closed loop: autonomously detects and counteracts intent drift. It does not
involve any user in the loop.

Intents may be transient or persistent. Transient intents conclude once their corre-
sponding operation is executed, i.e., they only traverse the outer loop once. In contrast,
persistent intents remain active under continuous lifecycle management until explicitly
deactivated or removed.

2.2  MITRE-D3FEND Ontology

Cybersecurity ontologies can serve as robust building blocks for security intent defini-
tion. Among them, the MITRE Corporation’s D3FEND ontology [10] provides a struc-
tured representation of cybersecurity countermeasures and logically relates them to
cyber attacks. D3FEND formalizes cyber defense mechanisms into well-defined, ac-
tionable concepts — defensive techniques. Identifying which attacks a countermeasure
counteracts is insufficient; it is equally critical to understand, from an engineering
standpoint, the concrete mechanisms by which it mitigates those threats [14]. To en-
hance this understanding, D3FEND is complemented by its offensive counterpart —
ATT&CK [13], a conceptual cyber attack taxonomy also developed by the MITRE
Corporation, primarily focusing on offensive techniques, which are instantiated by
practical attacks.

D3FEND introduces digital artifacts as the basis for conceptualizing and instantiat-
ing the relations between offensive techniques (ATT&CK) and defensive techniques
(D3FEND) [10]. A digital artifact represents a piece of information or a digital entity
that can be acted upon within a cybersecurity context. These attack-defense relation-
ships are covered in D3FEND; let’s clarify this with an example: An attacker may es-
tablish stealth communication between a compromised server and a remote Command
and Control (C2) server using the ATT&CK technique “Dynamic Resolution”, which



dynamically resolves malicious domain names to obtain the C2 server’s frequently
changing IP address. In this scenario, one relevant digital artifact is “Outbound Internet
DNS Lookup Traffic”, generated by the compromised server as it queries external DNS
servers for resolution. From a defensive standpoint, the D3FEND technique “DNS
Denylisting” can be applied to block outbound DNS queries to known malicious do-
mains, thereby disrupting the attacker’s ability to establish C2 communications.

3 State of the art

In this section, we present the state of the art in Intent-Based Cyber Defense (IBCD)
and Autonomic Cyber Defense (ACD) focusing on the post-detection phase, which are
complementary rather than competing. Specifically, IBCD typically lacks autonomic
intent-generation capabilities, while ACD requires high-level action abstraction to
adapt to dynamic IT infrastructures. As illustrated in Fig. 2, these two dimensions can
be seen as dual aspects of a unified cyber defense.

High-level action
abstraction

Autonomic
intent-generation

Fig. 2. Yin-Yang Relationship Between ACD and IBCD.

3.1 Intent-Based Cyber Defense (IBCD)

In this sub-section, we analyze existing pioneering efforts that have sought to combine
IBN and cybersecurity in various ways. As summarized in Table 1, for our work, we
characterize relevant studies according to the following points:

Managing Scope: The operational domain over which the intent is applied.
Intent Enforcement Point: The network components where the security intent is
enforced, ranging from low-level devices to high-level orchestrators.

e Intent Definition: refers to how the intent is formally defined within the system.
This dimension aligns with the concept of intent expression, as introduced in the
taxonomy of intent profiling [9,10]. We go beyond basic expression classification
(e.g., template-based) by examining the underlying intent representation.

e  User-specified (U) or Machine-inferred (M): distinguishes who or what gener-
ates the intent:

e  U: The intent is manually provided by human users (e.g., SOC analysts), based
on their expertise and organizational policies.

e  M: The system can infer intents by interpretating environmental observations
(e.g., security alerts), often using Al methods.



Table 1. State of the art of Intent-Based Cyber Defense

Ref. Managing Scope LEXES l?;?:;cement Intent Definition UM

Network access control in

[15] |large/distributed network envi- | Network routers Language-for ACL (Access U
ronments Control List) Intents
Cloud-native network security Netw?rk security .

[16,17] |services orchestration across vir- functions (e.g., Fire- |Customer-Facing Interface U

’ tualized network infrastructures wall, Intrusion Pre- (I2NSF IETF standard)
vention System, efc.)

I.(ubt.zrnetes .(KSS) rltetwork isola- . Intra/inter-virtual K8s clusters

[18] tion in multi-domain and mul- K8s network policy resoUrce communication au- U
titenant cloud environments for |API N
liquid computing thorization intent language
Business applications/Security iuSIn:‘/sjbassrl\I;Z;lggs Service deployment policy

[19] [services orchestration in distrib- seﬁi’rity services (e.g template (e.g., software/hard- UM
uted cloud/edge infrastructures VPN, filtering, etc.) ware capabilities, latency, etc.)

. Optical network con- |Encryption centric requirement
[20] nMellll(ElrLa}?:srtrS;Cis;e network chan- trollers; network submitted through API/CLI in- U
switches, and routers |terface (e.g., in JSON)
Software Defined Networking® | Software-Defined Template-based, classification-
ase oving Target Detense etworking Control- riven network trattic rerout-

21 based Moving T Def N king C l- |dri k traffi U
against reconnaissance attack ler ing policy
Network security services or-

[22] chestration based on a service Network security Language for security service U
mesh framework in cloud-native |functions policy management
K8s environments

From the “Managing scope” column, we observe that most prior works focus pre-
dominantly on network-level security. Their defensive schemes affect network traffic
possibly involving endpoints*, but do not directly impact the internal security posture
of the endpoints themselves (e.g., processes, accounts, etc.). This emphasis is under-
standable, since IBN is network centric. However, a resilient SOAR platform cannot
rely solely on network-level appliances, it must also support endpoint-level capabilities
(e.g., filesystem management), which are currently lacking in existing approaches.

Various representations have been proposed to define and manage security intent,
each tailored to different management scopes. Notably, some of them blur the line be-
tween declarative expression and rule-based control, thereby undermining the level of
abstraction that is central to IBN. For instance, the authors of [16,17] introduced an
intent-based Network Security Functions (NSF) orchestration system using the Inter-
face to NSF framework (I2NSF) [23]. An NSF inspects and optionally modifies packets
traversing networks, such as a firewall and a network intrusion detection system. In

Software Defined Networking separates the network control plane from the data plane to en-
able centralized, programmable network management.

In this paper, a network endpoint refers to any physical or virtual entity that communicates
over a network, including servers, containerized applications and so on.



[17], a customer-facing interface based on YANG data model® was employed for user
intent acquisition. However, this interface supports an event-condition-action scheme,
which is typically considered rule-based. Similarly, [15] proposed a language for net-
work Access Control List (ACL)® intents to manage router-level packet forwarding pol-
icies based on IP prefixes. In this model, users can either directly provide explicit ACL
rule updates, or express high-level reachability goals, representing security intents.

Most existing approaches only support user-specified intents. While [19] briefly
mentioned the possibility of machine-generated intents, they did not provide further
elaboration. As a result, the current state of the art of Intent-based Cyber Defense
largely overlooks the possibility of machine-inferred intents. This omission neglects
the abstraction power that intent-based models offer, which would significantly sim-
plify the underlying decision-making problem, i.e., selecting the most promising secu-
rity intent given the current observed context.

3.2  Autonomic Cyber Defense (ACD)

In the context of ACD, decision-making is inherently essential. Recent research has
explored various decision-theoretic approaches, leveraging Game Theory and Machine
Learning [3]. For instance, the authors of [24] investigated the application of model-
free Tabular Q-Learning, a type of Reinforcement Learning, applied to a Markov De-
cision Process to generate a defense strategy (i.e., a mapping from estimated circum-
stances to actions that guide the defender’s decisions) offline’ within a simulated net-
work environment. At each time step, the defender selects a high-level action such as
“restore a host into a known good state”, based on uncertain knowledge of the network’s
current compromise and availability state. Though these actions resemble intent-based
abstractions, they emerge not from an explicitly intent-driven model but from the sim-
plification of the simulation environment and its attack surface.

Popular black-box Machine Learning techniques are powerful but lack explainabil-
ity: they do not explicitly justify why a particular action was taken, relying solely on
empirical patterns learned from data. This limitation hinders their integration into hu-
man-supervised SOAR platforms. While post hoc explainability methods such as
SHAP [25] can attribute feature importance (i.e., the contribution of each input feature
to a specific model prediction), they fall short of providing decision-level explanations
that are essential for operational trust and oversight by human experts.

In contrast, [26] treats ACD directly as a Partially Observable Markov Decision
Process. Their decision-theoretic planner relies on a risk-aware Cyber Security Game
simulator [27], which abstracts attacker-defender interactions across coarse-grained in-
frastructure models, enabling optimal defense action planning based on the inferred risk
expectation. More recently, the authors of [4] proposed Conjectural Online Learning

YANG is a hierarchical, schema-based language typically for network management protocols.
A network ACL is a set of rules applied to network interfaces, typically on routers and fire-
walls, to permit or deny traffic based on criteria such as IP address, protocol, or port number.
Offline learning refers to training the Reinforcement Learning agent entirely during develop-
ment phase, without further strategy updates during deployment phase.



(COL), a model-based Game Theoretic planner that treats the attacker-defender inter-
action as a non-stationary, partially observed stochastic game. In COL, each player
maintains a dynamic conjecture on both the underlying game parameters and the oppo-
nent’s strategy, both of which may be misspecified. According to the authors, this is
the first security application to simultaneously handle learning under misspecified mod-
els and bounded computational resources [4]. As a result, COL naturally adapts to
changing infrastructures and yields explainable action choices.

Nevertheless, mitigation actions employed by state-of-the-art ACD systems remain
simplistic. They typically incorporate straightforward actions, either overlooking prac-
tical implementation complexity or relying on a predetermined implementation
method, suitable only for simulated environments. However, real-world IT infrastruc-
tures typically involve multiple tools for overlapping purposes, each necessitating ven-
dor-specific configurations and possessing distinct advantages and risks. Hence, alt-
hough [4] assumes non-stationary IT infrastructures, the fact that it still operates over a
fixed action alphabet is problematic. Only an intent-based layer, that decouples
high-level security goals from concrete, vendor-specific configurations, can make plan-
ners like COL practical across diverse and evolving IT infrastructures.

4 Proposed Contribution

We integrate Autonomic Cyber Defense (ACD) and Intent-Based Cyber Defense
(IBCD) into an Intent-Based Autonomic Cyber Defense framework, which can be
viewed either as an ACD enhanced with high-level action abstraction, or as an IBCD
capable of autonomic intent-generation (cf. Fig. 2). Adopting the latter Intent-Based
Networking (IBN) perspective within an intent lifecycle representation (cf. Fig. 1), we
designate the outer loop’s autonomic intent generator as the Intent Discovery Agent
(IDA), and the underlying Intent-Based Networking System (IBNS) — which consumes
each “discovered intent” and implements the remaining components of the lifecycle —
as the Intent Enforcement Agent (IEA). Before detailing these two agents, we first
introduce our security intent definition.

4.1  Unified Security Intent

Security observations typically consist of either standalone alerts or incidents, i.e., a
chain of correlated alerts. An alert AL is defined as structured attack-related data (e.g.,
in JSON) conforming to a well-defined schema depending on the detection software.
We suppose that each alert is mapped to one ATT&CK technique, which is commonly
supported in modern intrusion detection solutions.

We propose a unified security intent definition based on the D3FEND ontology.
Formally, facing an alert AL, a security intent I,, is defined by the following tuple:

L, 2 (OT,MD, DAy, DT)

Where OT is the identified offensive technique employed by AL. MD is the alert
technical metadata s.z. MD < AL, excluding non-technical fields irrelevant to intent ful-
fillment (e.g., alert ID). DT is a defensive technique. DA is the digital artifact targeted



both by OT and DT for offensive and defensive purposes, respectively. Intuitively, the
goal of 1,; is to prescribe a DT that operates on a specific DA targeted by OT, thereby
reaching a desired state where the security risks identified by AL are mitigated. The
intent I;; embodies a minimal response strategy, aiming to apply the least intrusive yet
effective countermeasure. We elaborate this after extending D3FEND for our use case.

A Lightweight Extension of D3FEND for Operational Use

D3FEND exhibits object-oriented features and is based on the Web Ontology Language
[28]. Offensive and defensive techniques both rely on digital artifacts to establish their
presence on target infrastructure, which comprises both digital and physical artifacts®.
This dependency is characterized through properties, drawn from two partially over-
lapping® property spaces — Props, and Propsp, corresponding to offensive and defen-

sive semantics, respectively. We denote the dependency relation by OTHDA, or
OT.Prop = DA, where Prop € Props, U Propsp.

In D3FEND, the functions of an offensive or defensive technique can be represented
as a set of property restrictions over digital artifacts. An offensive technique OT’s re-
striction on property Prop, over digital artifact DA is denoted as Restricty; (Propy, DA),

and is defined as an anonymous superclass of OT that enforces the relation OT %29 pa.

We propose a categorization of offensive properties based on their semantic roles,
as summarized in Table 2. Each offensive property Prop, belongs to one category. An
offensive property can be prefixed with may in a restriction Restrictyr(may-Prop,, DA).

This denotes that an attack instance of OT does not require the engagement OT
Prop C e .
—SDAto succeed, i.e., that restriction is optional at the OT class level, and can be

omitted by its instances. However, if an attack instance of OT does engage DA via
Propy, its corresponding restriction becomes valid (or mandatory) and the “may-" qual-
ifier of Prop, is dropped for clarity. Any restriction of a given offensive technique
without prefixed offensive property is by default valid for all its attack instances.

Table 2. Categorization of Properties linking Offensive Techniques and Digital Artifacts

Category Definition Property Instances
Alter Modifies existing digital artifacts obfuscates, encrypts, may-encrypt, ...
Generate Creates new digital artifacts forges, produces, may-produces, ...
Exploit Leverages existing digital artifacts invokes, injects, may-injects, ...
Remove Removes existing digital artifacts deletes, erases, may-erases, ...

On the defensive side, each property Prop,, belongs to one of the categories defined
as defensive tactics [10]. We focus on intents derived from incident responding tactics
(cf- Table 3). A defensive technique’s restriction Restrict,;(Propp, DA) denotes its in-
tended capability to manage DA in accordance with the semantics of Propp.

8 While attackers might physically infiltrate the target infrastructure, the scope of our defensive

techniques is strictly limited to digital artifacts hosted on physical resources.

° For instance, encrypts exists as both offensive and defensive property with distinct goals.
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Table 3. Categorization of Properties linking Defensive Techniques and Digital Artifacts

Category Definition Property Instances
. Rem igi i i . .
Evict emoves dlgltal artifacts through which attackers terminates, disables, ...

establish their presence on target systems
Creates barriers that prevent adversary a t .

Isolate . . p Ty access to blocks, restricts, ...
digital artifacts.

Restore Restores digital artifacts to a known better state restores

Minimal Security Response

Valid restrictions associated with a given attack instance of an offensive technique form
a conjunction. Therefore, a minimal security response that disrupts the impact on any
engaged digital artifact can invalidate the offensive technique of that attack. We favor
minimal security responses because post-detection Autonomic Cyber Defense typically
rely on sequential decision-making (see Section 4.2). Keeping individual responses
minimal not only reduces collateral impact but also preserves strategic flexibility.
Suppose an attack instance has valid restriction Restricty(Propy, DA); a defensive
technique DT may invalidate OT (and thus the attack) through DA if and only if there

Propp

exists a defensive property Prop, compatible with Prop, s.t. OT P9 pA <2 DT, The
pair (Prop o» Prop) are considered compatible if and only if their respective categories
are compatible, as defined in Table 4. The compatibility constraint prevents invalid
countermeasures — e.g., restore a “malicious connection” produced by an attacker.

It is important to emphasize the uncertainty inherent in the above formulation. There
is no guarantee that even a compatible Prop;, can mitigate the effect of Prop, on the
same digital artifact — its success depends on implementation details and the evolving
operational environment. Moreover, from the defender’s perspective, identifying valid
restrictions associated with a suspected attack is a non-trivial task and not sufficient
either: the engaged digital artifacts must be instantiated with concrete attributes (e.g.,
IP addresses for Network Traffic artifacts) to provide actionable information for the
defensive technique to operate on. D3FEND, by design, does not define such attributes,
as they depend on the specifics of the underlying IT infrastructure. We argue that the
representation of digital artifact attributes must therefore follow use-case requirements.

Table 4. Compatibility of Defensive vs. Offensive Property Categories

Offensive

Defensive Alter Generate Exploit Remove
Evict v v v X
Isolate v v v X
Restore v X v v

Let DA.Propp! be the set of all defensive techniques DTs s.f. VDT € DTs:
DT.Prop, = DA. Given a defensive technique DT whose set of property-artifact re-
strictions is exactly {Restrictpy(Prop;, DA;)|i € [1,N]}, we also define DT’s equiva-
lence class {DT} 2 N, DA;. Prop;*. Defensive techniques belonging to one equiva-
lence class pursue the same defensive objective, but differ in their implementation strat-
egies — just as multiple policies supporting the realization of a single intent.
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We illustrate the notion of minimal response through a concrete example (cf. Fig.
3). Pluggable Authentication Modules (PAM) handle authentication across various ser-
vices in Unix-like systems. Attackers can exploit PAM components to intercept cre-
dentials or grant unauthorized access. A PAM-based attack invariably modifies Authen-
tication Service, in cases where it additionally requires modifying OS Configuration File,
any of the four defensive techniques (highlighted in blue), if successfully executed, is
sufficient on its own to mitigate the attack. Security experts would likely rank their
effectiveness!® as: System Call Filtering (most effective) > Process Termination > File Evic-
tion > Host Reboot. While Host Reboot and Process Termination belong to the same equiv-
alence class, they differ in operational cost and mitigation impact — particularly depend-
ing on whether the attacker has established persistence on the host.

File Bviction pere deletes Operating System
....... Shared Library File
Veig... Oelees "
......... odi e
TR ma\/—m
Pluggable Authentication Modules -
- ATT&CK T1556.003 3)-moais, 5| OPerating System
7 T "70%,;6_) Configuration File
Sl s
lerminates
isolates Authentication Service
inates
termind
T — Defensive property => on [BE
Process Terminationp™—"— | Inferred defensive impact--+» — Offensive property —>

Fig. 3. Truncated representation of ATT&CK Technique T1556.003 in D3FEND.

4.2  Methodology for Intent Discovery Agent (IDA)

The IDA is responsible for autonomic mitigation intent generation. While numerous
models fall under the hood of decision theory, the current state-of-the-art models in
Autonomic Cyber Defense (cf. Section 3.2) fundamentally address sequential strategic
decision-making under uncertainty [3,29]. This uncertainty arises naturally from the
defender’s partial knowledge of the operational environment and ongoing attacks. Se-
quential decision-making is essential, as each attacker-defender interaction yields new
insights into the environmental dynamics and adversary behavior, requiring defender
to continuously update its strategy. A standalone or static decision-making approach
would fail to benefit from such observations, thus risking to become obsolete facing
evolving attacks. Furthermore, maintaining a dynamic strategy provides continuous
transparency for human supervision across the entire defense lifecycle, supporting
oversight under a wide range of possible circumstances.

Preliminary: Standard Action-based ACD Modeling Methodology

Before introducing the methodology for our IDA, we present a standard action-based
ACD model that aligns with the requirements outlined above. State-of-the-art ap-
proaches, as explained in [29], typically rely on Partially Observable Markov Decision
Process (POMDP) — modeling only the defender, or Partially Observable Stochastic

10" Here, effectiveness reflects a multi-criteria tradeofT, including success probability, operational
cost, response time and potentially more context-dependent metrics.
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Game (POSG) — modeling both attacker and defender. Note that a POMPD can be
viewed as a single-agent POSG [29], and is defined by the following tuple:

[ 2(S,A,0,t71,2Dby,y)

Where S is the state space (e.g., a state could be the number of compromised serv-
ers); A is the action space (e.g., an action might be a playbook for endpoint isolation);
and O is the observation space (e.g., outputs from intrusion detectors). In our case, each
observation o € O comprises alerts paired with their associated ATT&CK offensive
technique. The state transition function t(s’|s, a) denotes the probability of reaching
state s" from s by taking action a. The reward function (s, @) assigns a scalar utility
to action a in state s, capturing the net security benefit by weighting risk mitigation —
across security goals such as availability, confidentiality, and integrity — against oper-
ational cost. The observation function z(o|s) denotes the probability of observing o in
state 5. The real number y € [0,1] is the long-term reward discounting factor. b, is the
initial belief state — In POMDP, the true system state is not directly observable. Instead,
the defender maintains a belief state — a probability distribution over the state space S
that captures the current estimate of the environment based on past actions and obser-
vations. The defender’s goal is to find an optimal deterministic strategy 7*: B — A
(where B is the belief space) that maximizes the expected (E) discounted long-term
reward (where time t is assumed to be discrete):

m* = argmax E,, |[ Z Yot r(sea) | b1]]
n t=1

Computing 7* typically involves a range of techniques (e.g., Reinforcement Learning).
However, algorithmic details are beyond the scope of this paper. We assume the exist-
ence of an optimal strategy [30] within the proposed model applied to the cyber defense.

IDA Methodology

The concept of intent surpasses that of one-time action due to its potential durability.
Suppose an attacker has stealthily controlled a network switch before compromising a
connected server. Even if the defender subsequently isolates the server by restricting
traffic on adjacent switches (including the compromised one), the attacker may still
regain access by reestablishing an unauthorized communication path through the infil-
trated switch. To mitigate such risks, persistent intents are monitored by the IEA (see
Section 4.3), ensuring that they remain consistently enforced. We therefore propose an
intent-based extension of I inspired and supported by classic IBNSs [9]:

I'2(8",A',0,tr1,2by,y,4)

Where the state space ' = § x J with J denoting the persistent intent store space.
An Intent Store IS = {(I,,TTL,), (I;,TTL,), ...} € 7 is a collection of active persistent in-
tents I € I (the intent space), each associated with a Time To Live (TTL) value. After
each round, the TTL of every intent in IS is decremented by 1. Intents with TTL = 0 are
purged from the store at the beginning of each round. The defender maintains an Intent
Store to enforce long-term mitigations that remain effective across multiple decision
epochs, ensuring resilience against persistent or recurring attacks.
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The additional intent observation function 4 : O — I maps an observation o to a
candidate intent set [.,,,11. It constrains the action space based on the current obser-
vation, thereby reducing planning complexity and minimizing disruption to normal op-
erations. For each alert-technique pair (AL, OT) € o, the function A:

1. instantiates (via a rule-based or Machine-Learning-based mapper) all digital arti-
facts instances engaged by OT, using the alert technical metadata MD < AL. Then,
2. identifies, through queries over the D3FEND ontology (e.g., using SPARQL), all
defensive techniques that may invalidate OT through any operable (sufficiently in-
stantiated) digital artifact DA, as defined in Section 4.1.
Combining the results of each iteration we get:

Ieana = {(OT, MD, DAL, DT;) | Y(AL, OT) € 0,MD € AL, 3i:
Propgy . Propp . . .

OT — DA%, «—— DT;, where (Prop‘o, Propb) are compatible and DA is operable}

If the security observation lacks sufficient information (depending on the specific
use case) to instantiate a digital artifact instance exploited by the offensive technique,
then the corresponding artifact will be omitted by A. This also applies to cases where
that property-artifact restriction is optional and not exploited by the suspected attack.

The action space A’ comprises four action types: (a) insert a new intent I € I.,,4
as persistent!? to IS, (b) modify a persistent intent of IS, (¢) execute an intent I € I4,,4
as transient (at lower cost), and (d) take no action. For each type except (d), the affected
intent’s TTL is (re)set to a default value. For (b), the replacing intent must preserve the
offensive context (OT, MD) while updating the defensive measure (DA, DT).

Notably, feedback from the underlying IBNS, which identifies cases of misimple-
mented intents, should be incorporated into the reward function r. This allows the de-
fender to account for the actual implementation status of intents in the Intent Store. For
example, File Eviction technique can fail due to permission issues, particularly in cases
where the attacker has gained control over filesystem privileges without being detected.

We illustrate the proposed methodology in a concrete use case (cf. Fig. 4). Suppose
an attacker has established persistence on a Linux server by creating a scheduled job
maljob that periodically runs a malicious script malicious.sh. This script resolves the
DNS name c2.malicious.com — whose underlying IP rotates, and connects to the re-
solved address to maintain its Command-and-Control (C2) channel.

An IDA based on our proposed intent-based model automatically derives intents
and can be trained, for instance using Adversarial and/or or Reinforcement Learning
[3,29], to learn an optimal mitigation strategy. In our case, when both Alert-Technique
1 and Alert-Technique 2 are present in a security observation, the digital artifacts en-
gaged by the ongoing attack are instantiated (highlighted in yellow). The IDA may
prioritize blocking the malicious connection between the compromised host and the
attacker’s C2 server (Persistent Intent 1), before evicting the malicious content planted
on the host (Persistent Intent 2). These two persistent intents are sent to the underlying
IEA for intent enforcement, which is detailed in the next section.

1" As stated earlier, we focus on post-detection responses: the defender only acts upon valid
security observations. Otherwise, no action is taken — preventive measures are excluded.
12 The persistent or transient property of an intent is considered extrinsic.
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Fig. 4. A concrete use case of intent-based attack mitigation for a persistent attack

4.3  Methodology for Intent Enforcement Agent (IEA)

The IEA receives security intents generated by the IDA and is responsible for their
enforcement. It behaves as a typical IBNS, encompassing the full intent lifecycle except
intent generation. However, due to the wide range of defensive techniques represented
in the D3FEND ontology, the IEA must be highly versatile. To our knowledge, the most
versatile existing framework for Intent-Based Cyber Defense — i.e., capable of support-
ing a broad spectrum of defensive techniques — is the Intent-based Closed-loop Secu-
rity Control (ICSC) framework proposed in [17], which builds upon the IETF standard
Interface to Network Security Functions (I2NSF) framework (cf- Section 3.1).
Nevertheless, ICSC is inherently limited to network traffic based security, as it re-
lies exclusively on Network Security Functions (NSFs). The IEA relaxes this constraint
by generalizing the framework to include Endpoint Security Functions (ESFs) as well.
An ESF, as opposed to an NSF, enforces control within the internal environment of a
network endpoint, regardless of whether the enforcement is executed locally or orches-
trated remotely'. We thus reinterpret the five core components of the ICSC framework
as the combination of an IDA and an IEA, as follows (cf. Fig. 5):
e I2NSF User: corresponds to our IDA.
e Our proposed IEA Architecture:
e Security Functions (SFs): Enforcement points responsible for executing net-
work-level (NSF) or endpoint-level (ESF) security responses.
o  Security Controller: The central orchestrator that receives intents and invokes
appropriate security functions. It translates intents into low-level configura-
tions based on the advertised capabilities of available SFs (see next line).

13 For instance, user account management may be delegated to external authorities (e.g., Azure
Active Directory), which still exert control over internal endpoint behavior.
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o Developer’s Management System: provides a platform for developers (or ad-
ministrators) to register and advertise SFs’ capabilities. An SF’s capability in-
dicates the specific defensive technique(s) that it can realize, along with the
operational parameters required for execution.

e Analyzer: ensures intent assurance (cf- Fig. 1). In [17], the Analyzer is also in
charge of collecting alerts, but here this role is well assumed by the IDA.

IDA Security Controller

i)

.
w——.— Translation Plan & Configure —a&=3{ /5
oo o] . =)
I2NSF User . e,

Security Intent Developer’s

(‘alls -/— 0 Management
U System I
Report Monitor & Validate

’s

Analyzer

Fig. 5. An adapted overview of the ICSC framework conforming to the intent life cycle

We validate our proposal by implementing the two intents derived in the previous
use case (cf. Fig. 4). Noting that Network Traffic Filtering is network-level and File
Eviction is endpoint-level, we adopt the Kubernetes (K8s) platform, which provides
both NSF and ESF capabilities. Our testbed consists of a K8s cluster composed of one
controller and several Pods (the smallest deployable application endpoints in K8s). We
apply both mitigation techniques to a single infected Pod and demonstrate their effec-
tiveness. The implementation details and corresponding code are available here!*.

5 Discussion and Conclusion

In this paper, we envision a next-generation Security Orchestration, Automation, and
Response platform in which the role of security analysts gradually shifts from direct
decision-making to supervisory oversight. To this end, we bridged two emerging but
independently studied paradigms — Intent-Based Cyber Defense and Autonomic Cyber
Defense — by introducing a unified, ontology-driven representation of security response
intents, along with a two-tiered methodology for their integration into decision-theo-
retic Autonomic Cyber Defense models. The integration comprises an Intent Discovery
Agent and an Intent Enforcement Agent, which together form a complete intent lifecy-
cle. We illustrated the implementation of the proposed intents through the Intent En-
forcement Agent in a Kubernetes-based environment. While this work lays the concep-
tual and architectural foundation for integrating intent into post-detection Autonomic
Cyber Defense systems, we did not evaluate the performance of our proposed method-
ology. Future work will focus on benchmarking the performance of state-of-the-art Au-
tonomic Cyber Defense systems boosted by Intent-Based Networking, thereby enabling
a more comprehensive evaluation across complex infrastructures and dynamic attacks.

Acknowledgements. This work was supported by the French National Research Agency
(ANR) under the ANCILE project (Grant No. ANR-23-CE39-0010).

14 https://github.com/Zequan99/EDOC-k8s-DT-implementation/tree/master
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