
ar
X

iv
:2

50
6.

17
04

7v
1

 [
cs

.L
G

]
 2

0
Ju

n
20

25

Navigating the Deep: Signature Extraction on Deep Neural
Networks

Haolin Liu1,2, Adrien Siproudhis2, Samuel Experton3, Peter Lorenz2,
Christina Boura3, and Thomas Peyrin2

Shanghai Jiao Tong University, China1

Nanyang Technological University, Singapore2

IRIF, Université Paris Cité, France3

Abstract. Neural network model extraction has emerged in recent years as an important security
concern, as adversaries attempt to recover a network’s parameters via black-box queries. A key step
in this process is signature extraction, which aims to recover the absolute values of the network’s
weights layer by layer. Prior work, notably by Carlini et al. (2020), introduced a technique inspired
by differential cryptanalysis to extract neural network parameters. However, their method suffers
from several limitations that restrict its applicability to networks with a few layers only. Later works
focused on improving sign extraction, but largely relied on the assumption that signature extraction
itself was feasible.
In this work, we revisit and refine the signature extraction process by systematically identifying
and addressing for the first time critical limitations of Carlini et al.’s signature extraction method.
These limitations include rank deficiency and noise propagation from deeper layers. To overcome
these challenges, we propose efficient algorithmic solutions for each of the identified issues, greatly
improving the efficiency of signature extraction. Our approach permits the extraction of much deeper
networks than was previously possible. We validate our method through extensive experiments
on ReLU-based neural networks, demonstrating significant improvements in extraction depth and
accuracy. For instance, our extracted network matches the target network on at least 95% of the
input space for each of the eight layers of a neural network trained on the CIFAR-10 dataset, while
previous works could barely extract the first three layers. Our results represent a crucial step toward
practical attacks on larger and more complex neural network architectures.

Keywords: ReLU-based neural networks · signature extraction · weight-recovery

1 Introduction

Neural Networks (NNs) are a class of machine learning models composed of layers of interconnected
units (or neurons) that transform input data and learn to recognize patterns through a training process.

Deep Neural Networks (DNNs) are a subset of NNs with multiple hidden layers, enabling them
to model highly complex functions. Their depth allows them to capture complex patterns and abstract
features, making them particularly effective for large-scale and high-dimensional data. DNNs have
become indispensable in various applications, including computer vision (e.g., image recognition, and
video analysis), natural language processing, automated medical diagnostics, and fraud detection, among
others.

However, training DNNs requires large datasets, significant computational resources, and carefully
fine-tuned algorithms [5,27]. As a result, trained DNNs have become valuable intellectual assets, making
them attractive targets for attackers seeking to extract the model rather than invest in training their own.

In many cases, DNNs are deployed as cloud-based or online services, allowing users to interact
with them without direct access to their internal parameters [25,1]. A natural question, therefore, is how
well different DNNs resist attacks in this black-box setting, where an adversary can query the network
using random or carefully chosen inputs—potentially adaptively—and exploit the observed outputs to
reconstruct either the exact internal parameters or an approximation sufficient to construct a functionally
equivalent network.

Extracting the parameters of a neural network from its black-box implementation has been extensively
studied since 2016 [26,20,24,14,8,11,19,13]. The difficulty of the extraction problem varies depending

https://arxiv.org/abs/2506.17047v1

on what the adversary is allowed to observe in the output. The most realistic but challenging scenario for
the attacker is when only the final label is available. This label indicates the most probable category for a
given input, without exposing additional confidence scores or intermediate values. This setting is notably
referred to as S1 in [7]. At the other end of the spectrum, the easiest scenario, called S5 in [7], allows the
attacker to access the raw output of the neural network before the normalization phase, providing much
richer information for reconstruction.

A significant step in model extraction research was made by Carlini et al. [8] in 2020 within the
S5 scenario, specifically for networks using ReLU as the activation function, where they reframed
the problem from a cryptanalytic perspective. They observed that DNNs share key similarities with
block ciphers, including their iterative structure, alternating linear and non-linear layers, and the use in
parallel of a small function (S-box in block ciphers, activation function in neural networks) to ensure
non-linearity. Taking inspiration from cryptanalytic attacks on block ciphers, particularly differential
cryptanalysis [4], Carlini et al. proposed a new two-step iterative approach for recovering a model’s
internal parameters. Their method decomposes the recovery process into two distinct phases: signature
extraction and sign extraction. In the first step, the absolute values of the weights in a layer are
reconstructed (signature extraction), followed by a second step where the correct signs are determined
(sign extraction). This process is applied iteratively, proceeding layer by layer. This approach enabled
them to successfully extract neural networks, including a model with 100, 000 parameters trained on the
MNIST digit recognition task, using only 221.5 queries and less than an hour of computation. However,
their method for extracting the signs had an exponential complexity in the number of neurons, limiting
its feasibility to small networks with typically very few (at most 3) layers.

In 2024, Canales-Martı́nez et al. [6] extended the work of Carlini et al. [8] by introducing several new
algorithms for the sign-recovery step in ReLU-based neural networks. Their improved sign-extraction
methods permitted them to extract the parameters of significantly larger networks than those considered
in [8]. For instance, they reported successfully extracting the parameters of a neural network with 8
hidden layers of 256 neurons each—amounting to 1.2 million parameters—trained on the CIFAR-10
dataset [16] for image classification across 10 categories. It is important to note, however, that their
experiments assumed the absolute values of the weights had already been recovered using the method of
Carlini et al. [8] and were not implemented as full end-to-end attacks.

More recently, Foerster et al. [13] conducted a detailed analysis of the signature and sign extraction
procedures, implementing and benchmarking them on various ReLU-based neural networks. Their work
revealed that, contrary to what was previously believed, the main practical bottleneck in these attacks lies
in the signature extraction step introduced in [8]. Because of this, both [8] and [13] failed in practice to
recover weight parameters beyond the third layer. Thus, although the authors of [6] reported successful
extraction from deeper networks, this was only partially true, as the weights were supposed to have been
extracted with [8]’s method. Indeed, as Foerster et al. [13] demonstrated, the signature extraction step
remains a major limitation, preventing all these methods from progressing beyond the early layers.

As of today, no algorithm is known to recover efficiently a neural network’s parameters beyond the
third layer1. This highlights the need for significant improvements in the signature recovery process to
enable practical attacks on deeper networks.

Our Contributions

In this work, we revisit the signature extraction algorithm of [8], which serves as the basis for the
most important parameter extraction attacks against NNs [8,6,9,7]. We start by carefully analyzing
its limitations and highlighting the main problems that reduce its effectiveness. More specifically, our
analysis reveals two major issues:

Impact of deeper layers on signature merging. Partial signature merging is a key step in signature
recovery. While the impact of deeper layers on this process was previously considered negligible, we
show that in deep neural networks, they introduce significant interference. This added noise often causes
neurons to be misattributed to the wrong layer during merging.

1 The authors of [6] report having successfully extracted the 4th layer of a single network. However, in that network,
this 4th layer is very contractive and in this setting, the issues identified in our work do not arise.

2

Rank deficiency. In deeper layers, the system of equations collected by the attacker to recover a neuron’s
weights may be rank-deficient, leading to an erroneous neuron recovery.

In a second step, we propose concrete algorithmic solutions to overcome both identified issues. We
implemented and evaluated these solutions on neural networks trained on different datasets. Our results
demonstrate, for the first time, that it is possible to extract nearly all weights from deep networks. In
particular, while previous state-of-the-art signature extraction methods could not recover in practice
layers beyond the third layer, our approach successfully extracts neurons from networks with up to eight
hidden layers. We also applied our methods to even deeper networks with sixteen hidden layers and but
we encountered runtime limitations that prevented full recovery.

2 Related Work

Deep neural network model extraction is an old and well-studied problem. The earliest work dates back
to 1994, when Fefferman [12] proved that the output of a sigmoid network uniquely determines its
architecture and weights, up to trivial equivalences. Later, in 2005, Lowd and Meek [18] introduced
new algorithms for reverse engineering linear classifiers and applied these techniques to spam filtering,
marking one of the first practical extraction attacks. The field saw renewed interest in 2016 with the
work of Tramèr et al. [26], who demonstrated attacks on deployed machine learning models accessible
through APIs that output high-precision confidence values (also referred to as scores), in addition to
class labels. By exploiting these confidence scores, they successfully mounted attacks on various model
types, including logistic regression and decision trees.

For non-linear models, [26] and later [23] introduced the notion of task accuracy extraction, where
the goal is to build a model that performs well on the same decision task, achieving high accuracy on
predictions—without necessarily reproducing the exact outputs of the original model. This is different
from functionally equivalent extraction, where the objective is to replicate the original model’s outputs
on all inputs, regardless of the ground truth. A related, but narrower concept is fidelity extraction, which
focuses on replicating the model’s predictions over a specific input distribution. Jagielski et al. [15], who
introduced this taxonomy, argued that learning-based approaches like [26,23] are fundamentally limited
when it comes to achieving functionally equivalent extraction.

Early attempts for functionally equivalent extraction relied on access to internal gradients of the
model [20], side-channel information [3], or were limited to extracting only a small number of layers [15].
A turning point came with the work of Carlini et al. [8], who showed strong connections between the
extraction of ReLU-based neural networks and the cryptanalysis of block ciphers. More precisely, they
exhibited in this work a differential-style attack capable of recovering significantly larger models than
prior approaches. This attack can be divided into two parts: signature extraction (recovering the absolute
value of the internal weights) and sign extraction (recovering the signs of the internal weights). This
method permitted the authors of [8] to successfully reverse-engineer model parameters trained on random
data with at most three hidden layers.

On the other hand, the sign recovery process of [8] was identified to be very time-consuming
(exponential in the number of neurons) and therefore impractical for deeper models trained on standard
datasets. To overcome this limitation, Canales-Martinez et al. [6] proposed a polynomial-time sign-
extraction algorithm, the neuron wiggle.

Recently, Foerster et al. [13] sped up the sign recovery and conducted a thorough performance
evaluation of the signature [8] and sign [6] extraction methods. They showed that the signature extraction
algorithm does not give satisfying results for deeper layers, even if ran for a much longer time.

In parallel with these efforts to improve performance under full access to confidence scores, other
members of the research community have turned their attention to the more realistic “hard-label”
scenario [10,7], where the DNN outputs only the predicted class label, corresponding to the highest confi-
dence score, while the actual confidence values remain hidden. Finally, we emphasize that neither [8,13]
nor [10,7] managed to extract weights deeper than the third layer (see previous footnote).

We refer to [22] for a recent survey of the field.

3

3 Preliminaries

In this section, we introduce important definitions and notations (Section 3.1), followed by assumptions
regarding the attack setting (Section 3.2 and Section 3.3) and finally an overview of the original attack
of [8] (Section 3.4).

3.1 Notations and Definitions

This paper models neural networks as parametrized functions whose parameters are the unknowns we
aim to extract. Our results do not depend on how neural networks are trained or applied. As a result, no
prior knowledge about them is required to understand the attack.

A neural network consists of fundamental units called neurons, which are organized into layers and
connected to other neurons in both the previous and next layers. Each neuron has an associated weight
vector for its incoming neurons from the previous layer, along with a bias term that influences its output.
Following the notations and definitions from [8,6], we now present several central definitions related to
neural networks. A simple example to illustrate the definitions can be found in Appendix A.

Definition 1 (r-deep neural network). An r-deep fully connected neural network of architecture
[d0, · · · , dr+1] is a function f : Rd0 → Rdr+1 composed of alternating linear layers ℓ(i) : Rdi−1 → Rdi

and a non-linear activation function σ acting component-wise such that: f = ℓ(r+1) ◦σ ◦ · · · ◦σ ◦ ℓ(2) ◦
σ ◦ ℓ(1), where ℓ(i)(x) = A(i)(x) + b(i); A(i) ∈ R∗di×di−1 , b(i) ∈ Rdi . We call:

– r: the number of layers (or depth of the network).
– di: the number of neurons in the i-th layer (or width of layer i).
– ℓ(i): the i-th linear layer function.
– A(i): the i-th linear layer weight matrix.
– b(i): the i-th linear layer bias vector.

To extend the notations, the architecture [d0, . . . , dr+1] can also be written as d0 − · · · − dr+1. For
consecutive layers with the same dimension, an exponential notation can be used for compactness, e.g.,
20− 10(3) − 1 represents the architecture 20− 10− 10− 10− 1.
As in [8,6,13], this research only considers fully connected neural networks using the widespread ReLU
activation function [21] applied component-wise. An example of such a network is depicted in Figure 1.
The structure of a fully connected neural network resembles that of substitution-permutation networks
(SPNs) such as the AES [2]. The component-wise application of the activation function is analogous to
the use of S-boxes in SPNs, hence the analogy with cryptanalysis introduced in [8].

Definition 2 (ReLU neural network). We say that a neural network f defined as above is a ReLU
neural network if its non-linear activation function σ is

σ(v) = (ReLU(v1),ReLU(v2), . . . ,ReLU(vn))

= (max(v1, 0),max(v2, 0), . . . ,max(vn, 0))

for v = (v1, v2, . . . , vn) ∈ Rn.

In the following, we define a reduced-round neural network F (i) as a function F (i) : Rd0 → Rdi+1

given by:
F (i) = ℓ(i) ◦ σ ◦ · · · ◦ σ ◦ ℓ(2) ◦ σ ◦ ℓ(1).

F (i) shares the same linear transformations and activation functions as the original function f , up to
layer i. It will be used to track the transformation of an input vector as it goes through f . Observe that
F (r+1) = f .

More formally, the k-th neuron of layer i is defined as the function η
(i)
k (x) = A

(i)
k · x+ b

(i)
k , where

A
(i)
k is the k-th row of A(i) and b

(i)
k is the k-th coordinate of b(i).

A central notion in the analysis of [8] is that of critical points—input points at which a specific
neuron becomes inactive (i.e. when its output is zero). These points play a crucial role, as they enable the
extraction of the corresponding neuron’s weights through carefully chosen queries. A formal definition
is provided below.

4

...

x

ℓ(1) σ(1) ℓ(2) σ(2) ℓ(r) σ(r) ℓ(r+1)

f(x)

Fig. 1: Fully connected ReLU neural network

Definition 3 (critical point). An input point x ∈ Rd0 is called a critical point if there exists an index
pair (i, k) such that:

[F (i)(x)]k = 0, for i ∈ {1, . . . , r}, k ∈ {1, . . . , di}.

where [·]k refers to the k-th entry of a vector. Equivalently, this holds if η(i)k ◦ σ ◦ F (i−1)(x) = 0. For
this reason, we say that x is a critical point of neuron η

(i)
k .

The activation pattern for a given input x is the set of all (active) neurons that contribute to the output
f(x). A formal definition is given below:

Definition 4 (activation pattern). The activation pattern of x through f is the set

Sf (x) := {η(i)k

∣∣ [F (i)(x)]k ≥ 0, 1 ≤ i ≤ r, 1 ≤ k ≤ di}.

If η(i)k ∈ Sf (x) then we say that neuron η
(i)
k is active, otherwise we say that it is inactive (for x and f).

Definition 5 (polytope). The polytope of x is the set:

Px := {x′ ∈ Rd0 | Sf (x) = Sf (x
′)}

Therefore, Px represents the region of the input space consisting of all points x′ close enough to x for
the network to activate the same subset of neurons for x′ as it does for x. Later, we will justify the use of
the term polytope to describe this space.

Lemma 1 (local affine network). First, for x ∈ Rd0 , the network f is affine on Px, meaning that there
exists (Γx, γx) such that ∀x′ ∈ Px, we have f(x′) = Γxx

′ + γx. We note:

– fx the function x′ 7→ Γxx
′ + γx.

– F
(i)
x the function x′ 7→ Γ

(i)
x x′ + γ

(i)
x .

Second, it follows that if x is not a critical point, there exists ϵ > 0 such that for all x′ ∈ B(x; ϵ),

f(x′) = fx(x
′) and ∀i ∈ {1, . . . , r + 1}, F (i)(x′) = F (i)

x (x′),

where B(x; ϵ) ⊂ Rd0 is the ball of radius ϵ centered at x.

Though ReLUs are not linear, they are piecewise linear. This means that when moving near a non-critical
point, all ReLUs remain linear. Recall that critical points are solutions of an equation of the form
A

(i)
k · F (i−1)(x) + b

(i)
k = 0. Thus, they form hyperplanes of dimensions d0 − 1, which partition the

input space into these different affine regions, hence referred to as polytopes.
We denote by I

(i)
x the diagonal matrix representing which neurons in layer i are active for the input

x: the k-th coefficient of the diagonal is 1 if the k-th neuron in layer i is active, and 0 otherwise. Thus,

F (i)(x) = I(i)x (A(i) · · · (I(2)x (A(2)(I(1)x (A(1)x+ b(1))) + b(2)) · · ·+ b(i))

= I(i)x A(i) · · · I(2)x A(2)I(1)x A(1)x+ γ(i)
x = Γ (i)

x x+ γ(i)
x

If x and x′ are two points in the same polytope, then ∀i, I(i)x = I
(i)
x′ implying that Γ (i)

x = Γ
(i)
x′ and

γ
(i)
x = γ

(i)
x′ , i.e., that F (i)

x = F
(i)
x′ .

5

3.2 Adversarial Resources and Goal

We consider two parties in this model extraction attack: an oracle O and an adversary. The adversary
generates queries x and sends them to the oracle, which then responds with the correct output f(x).

Adversarial resources. We make the following assumptions regarding the target neural network and the
attacker’s capabilities. These are the same assumptions as in [8,6,13]:

– Fully connected ReLU network. f is a fully connected ReLU neural network.
– Known architecture. The attacker knows the architecture of the target neural network f , meaning

she knows the depth of f and the width of each layer.
– Unrestricted input access. The attacker can query the network on any input x ∈ Rd0 .
– Raw output access. The oracle returns the complete raw output f(x), with no post-processing.
– Precise computations. The oracle computes f(x) using 64-bit arithmetic.

Adversarial goal. The objective of the extraction is not to exactly replicate the target network, but rather
to achieve what is known as an (ϵ, δ)-functionally equivalent extraction [8]. We slightly change the
definition to normalise the difference between the target and the extracted network.

Definition 6 (functionally equivalent extraction). We say that two models f and f̂ are (ϵ, δ)-
functionally equivalent on an input space S ⊂ Rd0 if ∀x ∈ S, P(| f̂(x)−f(x)

f(x) | ≤ ϵ) ≥ 1− δ.

3.3 On Functionally Equivalent Extraction

We note four key differences between the extracted and target networks and justify that they will not
affect the (ϵ, δ)-assessment.

Permutation of neurons. During the attack, we will extract a neuron from a hidden layer, but we will
not know to which row (neuron in the layer) it corresponds. For example, if we denote the first extracted
neuron as Â(i)

1 , we do not know if Â(i)
1 = A

(i)
1 or if Â(i)

1 = A
(i)
2 , etc. We are therefore permuting the

rows of A(i). However, when extracting the next hidden layer Â(i+1), the process naturally permutes
the columns to match the permuted rows of Â(i), since Â(i) (rather than A(i)) is used in the extraction.
Therefore, this permutation does not compromise the overall extraction process over the layers. For the
last output layer, we must directly align our extracted matrix with the output of f as this ensures that
this last recovered layer has the correct row order. We can conclude that the permutation of extracted
neurons in a hidden layer affects neither ϵ nor δ.

Scaling of neurons. When extracting a neuron η
(i)
k (row k from A(i)), its values are scaled by a constant

c
(i)
k . This scaled row is referred to as the signature of A(i)

k . Since the extraction is performed on Â(i)

rather than on A(i), every corresponding column in A(i+1) must be adjusted by dividing its values by

c
(i)
k to match Â(i). Even though â

(i+1)
j,k =

a
(i+1)
j,k

c
(i)
k

· c(i+1)
j for any a

(i+1)
j,k ∈ A(i+1), we still have,

Γ̂ (i+1) =


c
(i+1)
1 0 · · · 0

0 c
(i+1)
2 · · · 0

...
...

. . .
...

0 0 · · · c(i+1)
di+1

 · Γ (i+1).

Once again, because the last output layer must match the output of the network, we have â
(r+1)
j,k =

a
(r+1)
j,k

c
(r)
k

· 1 and therefore Γ̂ = Γ̂ (r+1) = Γ (r+1) = Γ . Thus, here again, scaling does not affect ϵ and δ.

Always-on/off neurons. Some neurons do not have critical points within the space of queries the
attacker will make. They are either always active (on) or always inactive (off) in this input space. The
attacker relies on critical points to identify hyperplanes and detect the existence of neurons. As such,
always-on and always-off neurons cannot be detected or recovered through extraction. Always-off

6

neurons can safely be ignored as they do not contribute to the network. Always-on neurons do not
induce additional critical hyperplanes in Rd0 and make a linear map f on the input space. The extraction
naturally integrates this map when recovering the last layer of f . The authors of [6] reported that no
always-on neurons were found on trained neural networks, but they did find instances of always-off
neurons. In some cases, it can be relevant to extract the network on a small interesting subset S of
Rd0 , where some neurons might be always-on. For example, if the target is a neural network tasked
with image recognition, such a subset can be the hyperplane corresponding to black-and-white pictures.
Extracting the neural network only on this hyperplane will make the attack less costly in time and in
queries.

Dead weights. In some cases, some weights can be set to 0 without affecting the effectiveness of the
extracted network f̂ . We refer to these weights as dead weights. A key instance comes from always-off
and always-on neurons when we assume the correct extraction of all previous layers. Specifically, if
η
(i)
k is always on or always off, the weights on the k-th column of A(i+1) are dead weights as their

contribution is absorbed by the last layer as explained above. We will come back to them in Section 5.

3.4 Overview of the Existing Attack

In this section, we recall the signature extraction algorithm from [8]. The aim, as discussed earlier, is to
extract an (ϵ, δ)-functionally equivalent network. The adversarial goals and the resources required for
the extraction are outlined in Section 3.2. The extraction is performed layer by layer: first, we recover
the parameters of layer 1, then use them to reconstruct layer 2, and so on. We now explain the process
of recovering layer i, assuming that the first i − 1 layers of the target network f have been correctly
extracted.

The recovery of each layer consists of two parts. The first part is a signature recovery (following [8]),
which recovers each matrix row A

(i)
k up to a scaling factor. The second part is sign recovery (follow-

ing [13]’s tweak of [6]) which determines the sign of the scaling factor for each neuron. As our focus is
on signature recovery, we refer the reader to [13] and [6] for a description of the sign recovery.

Signature recovery is carried out in five main steps: searching critical points, recovering partial
signatures, merging partial signatures, finding missing entries in the signatures, and computing the bias.

Random search for critical points. In each polytope, the network behaves affinely, meaning that the
derivative of f remains constant within the same polytope. Therefore, critical points can be identified
when a change in the derivative occurs, indicating that a critical hyperplane has been crossed. To find
these critical points, we apply a binary search along random lines in the input space. See Appendix B for
a detailed explanation.

Partial signature recovery. When we cross a neuron’s critical hyperplane, we move, depending on
the sign of the neuron, from a region (polytope) where the neuron does not contribute to the network’s
output to one where it does. All other neurons remain unchanged. Therefore, by making queries close to
a critical point, we can construct a system of equations that isolates the contribution of the neuron in
question, allowing us to recover its parameters up to a sign. We now describe this process in more detail.

We define the second-order differential operator of f along direction ∆ as ∂2
∆f(x) := f(x+ ϵ∆) +

f(x− ϵ∆)− 2f(x). Suppose the target layer is layer i. We assume that the previous layers have been
extracted and thus that Γ (i−1)

x is known for all inputs x.

Lemma 2 ([8]). Let x be a critical point for a neuron η
(i)
k in layer i ∈ {1, . . . , r}, and assume that x is

not a critical point for the other neurons. Further, let ∆ ∈ Rd0 . Then:

∂2
∆f(x) = c

(i)
k

∣∣(Γ (i−1)
x ∆) ·A(i)

k

∣∣
where c

(i)
k ∈ R is a constant.

Proof. See Appendix C.1.

7

By using Lemma 2 in two directions, ∆ and ∆0, we obtain

∂2
∆f(x)

∂2
∆0

f(x)
=

∣∣(Γ (i−1)
x ∆) ·A(i)

k

∣∣∣∣(Γ (i−1)
x ∆0) ·A(i)

k

∣∣ .
Then, by comparing the absolute values between

∂2
∆f(x) + ∂2

∆0
f(x)

∂2
∆0

f(x)
and

∂2
∆+∆0

f(x)

∂2
∆0

f(x)
,

we can eliminate the absolute value (see Appendix C.2), obtaining,

(Γ
(i−1)
x ∆) ·A(i)

k

(Γ
(i−1)
x ∆0) ·A(i)

k

.

By taking enough directions ∆ in the input space, we can solve for A(i)
k up to a constant, reconstructing

the signature (see Appendix C.3). Since Γ
(i−1)
x = I

(i−1)
x A(i−1)Γ

(i−2)
x , ReLUs on layer i − 1 are

blocking some coefficients for all directions ∆ we take around x. Therefore, instead of extracting a
full (scaled) matrix row, for example (a1, a2, a3, a4, a5), we can only retrieve a partial signature, say,
(0, a2, a3, 0, a5).

Merging signatures into components. To reconstruct the full signature, we need to merge partial
signatures obtained from different critical points of the same neuron η

(i)
k . Each recovered signature from

critical points of η(i)k is A(i)
k with some missing entries, scaled to an unknown factor. Assuming that no

two rows of the matrix are identical, merging two signatures requires only checking whether all their
shared non-zero weights are proportional. For example, consider two signatures (λa, λb, 0, λd, 0) and
(Λa,Λb, 0, 0, Λe) where λ and Λ are constants. If λa

λb = Λa
Λb , they can be merged to get (a, b, 0, d, e), up

to a constant (see Figure 2). The resulting merged row is called a component. The size of a component
refers to the number of critical points whose partial signatures have merged to get the component.

If a component has a size greater than 2, we consider it to belong to the target layer, as it is highly
unlikely for signature extraction to yield consistent results when applied to critical points from deeper
layers. We repeat the process described above — randomly searching for critical points, extracting partial
rows, and merging signatures — until we obtain at least di components of size greater than 2, or until
a predefined threshold on the number of critical points is reached (to prevent infinite loops caused by
always-off or always-on neurons). If the number of components exceeds di, the number of neurons in
layer i, we retain only the largest ones.

η1

η2 η5η4

η3

Fig. 2: Network where neurons on the previous layer are labelled in grey on their active side. In red is
the neuron we aim to find. The critical points on the left and right yield respectively (Λa,Λb, 0, 0, Λe)
and (λa, λb, 0, λd, 0). We can infer (a, b, 0, d, e) up to a constant, despite the hyperplane in red never
entering a polytope where η1, η2, η4 and η5 are active.

Targeted search for critical points. At this stage of the attack, we know that all selected components
correspond to neurons on the target layer. However, components recovered from random critical points

8

often have weights missing, even after merging numerous partial signatures. To complete the partial
rows, a more targeted search for critical points is necessary. We start from one of the critical points
within the component. As we cross different hyperplanes associated with neurons in the previous layer,
we activate different weights of the target neuron, ultimately enabling its full reconstruction.

For example, in Figure 2, we would follow the red hyperplane as it bends across the grey hyperplanes,
retrieving enough critical points to reconstruct the full signature of our neuron. In higher dimensions, we
follow directions that are more likely to trigger the weights we have not found yet. The exact procedure
is described in [8] and further improved in [13].

Recovering the bias. Once we have recovered the signature of η(i)k , c(i)k A
(i)
k , it suffices to pick a critical

point x of the component to compute the corresponding scaled bias c(i)k b
(i)
k using the equation

(c
(i)
k A

(i)
k) · F (i−1)(x) + c

(i)
k b

(i)
k = 0.

Last layer recovery. The oracle returns the complete raw outputs of f and the last output layer is a
linear layer. Therefore its extraction is straightforward. No additional query is needed for extraction, as
we can reuse previously queried critical points to build the linear system.

4 Improving the Signature Recovery

To the best of our knowledge, no prior work has successfully applied signature extraction on deep enough
neural networks. Specifically, according to Table 1 in [8], the deepest model the authors of this paper
attempted to attack had an architecture of 40− 20− 10− 10− 1, consisting of only 3 hidden layers.
On the other hand, Table 2 in [13] shows that they attempted to attack a model with an architecture
of 784− 16(8) − 1, which had 8 hidden layers. However, despite running the attack for over 36 hours,
they failed to recover the fourth hidden layer. Although [6] demonstrated that their sign recovery was
effective across all layers of a complex 3072− 256(8) − 1 model, they did not conduct experiments on
signature recovery.

Motivated by these limitations, we analyze the signature extraction method and identify two chal-
lenges preventing its successful application on deeper layers. We then propose solutions to overcome
them. The left part of Figure 3 illustrates the signature extraction workflow and highlights where these
challenges arise.

We provide a brief overview of each failure. First, the signature extraction relies on solving a system
of equations to recover the weights of the target neuron associated with all active neurons in the previous
layer. However, as we go deeper into the network, the rank of this system might not match the number
of active neurons on the previous layer. This mismatch can lead to an underdetermined system, resulting
in incorrect signature extraction. Second, the component selection of the largest di components of size
greater than 2 is incorrect. Our experiments show that this strategy is only valid for shallow networks
with comparatively fewer critical points on deeper layers. Figure 3 gives an outline of our improvements.

4.1 Identifying Deeper Merges

While going through the signature extraction procedure, we made the crucial assumption that x is a
critical point of a neuron on the layer we are targeting. Since we are trying to extract that layer, we
cannot verify this assumption. We might be extracting a neuron of a deeper layer. The authors of [8]
claim that it is exceedingly unlikely that signatures extracted from critical points on a deeper layer can
be merged into a component. They conclude that a component of size greater than two is on the target
layer. In this section, we explain why signatures from deeper layers can indeed be merged, discuss why
this can be a problem, and propose potential solutions to address this issue.

When we extract from two critical points x1 and x2 of the same neuron in a deeper layer i+ t using
its preceding layer i+ t− 1, we solve for y1 and y2 in the respective systems below and observe that y1
and y2 can be merged:

∂2
∆f(x1) = (Γ (i+t−1)

x1
∆) · y1

∂2
∆f(x2) = (Γ (i+t−1)

x2
∆) · y2

9

random search

discard deeper points

partial signature recovery

signature intersections

discard deeper components

targeted search

random search

partial signature recovery

signature merges

di > 2 - sized components

targeted search

Fig. 3: Left: Original attack from [8]. Right: Proposed improvements. Two error-inducing steps in the
original attack are coloured on the left. Improvements match the colour of the step they address.

Let’s write Ax1 the matrix ℓ(i+t−1) ◦ I(i+t−2)
x1 ◦ · · · ◦ I(i)x1 ◦ ℓ(i) and Ax2 the matrix ℓ(i+t−1) ◦ I(i+t−2)

x2 ◦
· · · ◦ I(i)x2 ◦ ℓ(i). Thus, we can rewrite these two systems with Ax1

and Ax2
,

∂2
∆f(x1) = [(Ax1

◦ Γ (i−1)
x1

)∆] · y1
∂2
∆f(x2) = [(Ax2 ◦ Γ (i−1)

x2
)∆] · y2

Now suppose that x1 and x2 have the same activation pattern - meaning they set the same neurons as
active neurons per layer - between layers i and i+ t− 1. In this case, Ax2 = Ax1 , which we write as A.
Therefore, our systems are as follows.

∂2
∆f(x1) = [(A ◦ Γ (i−1)

x1
)∆] · y1

∂2
∆f(x2) = [(A ◦ Γ (i−1)

x2
)∆] · y2

These systems respectively yield the same solutions as:

∂2
∆f(x1) = (Γ (i−1)

x1
∆) · (A⊤y1)

∂2
∆f(x2) = (Γ (i−1)

x2
∆) · (A⊤y2).

Since y1 and y2 can merge, so can A⊤y1 and A⊤y2. These systems correspond exactly to the partial
signature extraction from x1 and x2 when extracting layer i. This is why the partial signatures extracted
from x1 and x2 can merge into a component even though they are not on the target layer. We call all
these unwanted additional components from deeper layers noise components.

How does this noise behave? First, the smaller the width of the network, the larger the noise, as
critical points from deeper neurons are partitioned into fewer components. Second, the deeper the
network, the larger the noise, as critical points on the target layer represent a smaller fraction of the
critical points we find. We believe this is one of the reasons why previous works still managed to perform
the extraction on shallow networks.

In addition, in both [8] and [13]’s implementations, the selected neurons are the di largest components
of size greater than two. When using this criterion, noise becomes a problem when the size of a noise
component becomes larger than the size of a component corresponding to a neuron on the target layer.

We illustrate the issue of deeper critical points with an example slightly deeper than what previous
works managed to recover: using 3, 000 critical points we extract the 4th layer of a model trained
on the MNIST dataset with architecture 784 − 8(8) − 1. Due to space constraints, only the largest 16
components are displayed. As shown in Figure 4, four of the first eight components recovered by the
original signature extraction belong to deeper layers. This shows that, in deeper networks, the size of a
component is not a sufficient indicator to identify if the neuron is on the target layer.

Discarding points on deeper layers. To discard points on deeper layers, we first recycle and improve
an algorithm from [8] that was only used in the context of the targeted search. The process involves 1)

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

𝜂
(4)
8 𝜂

(4)
1 𝜂

(4)
7 𝜂

(4)
7 𝜂

(4)
8 𝜂

(4)
2 𝜂

(4)
7 𝜂

(4)
7 𝜂

(4)
1 𝜂

(4)
2 𝜂

(4)
6

Reconstructed Components

Si
ze

of
Co

m
po

ne
nt
s

on Deeper Layers
with Insufficient Ranks
with Sufficient Ranks

Fig. 4: Merging results from the original attack on layer 4 of a 784− 8(8) − 1 MNIST model with 3, 000
critical points. Each component on the target layer is labelled with its associated neuron on top. Larger
component size does not necessarily indicate that the component belongs to the target network.

computing 100 distinct intersection points between the extracted hyperplane and the extracted network
for the critical point under test, and 2) verifying on the target neural network whether these points lie
on the extracted hyperplane. One intersection point not belonging to the extracted hyperplane indicates
that the hyperplane has bent on a neuron that has not yet been extracted, and hence that the extracted
hyperplane is on a deeper layer. This test is not an if-and-only-if condition, as a hyperplane not breaking
does not guarantee that it corresponds to a neuron on the target layer (see Figure 6). We apply this test to
every critical point we find. This reduces the noise, but it is not sufficient. As exemplified in Figure 5,
though we remove one component from deeper layers, four large such components remain.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

𝜂
(4)
8 𝜂

(4)
1 𝜂

(4)
7 𝜂

(4)
7 𝜂

(4)
8 𝜂

(4)
2 𝜂

(4)
7 𝜂

(4)
7 𝜂

(4)
1 𝜂

(4)
2 𝜂

(4)
6 𝜂

(4)
4

Reconstructed Components

Si
ze

of
Co

m
po

ne
nt
s

on Deeper Layers
with Insufficient Ranks
with Sufficient Ranks

Fig. 5: Merging results after discarding critical points on deeper layers. Same experimental setup as in
Figure 4. Components on deeper layers either disappear or have a smaller size.

Discarding deeper components. We need to introduce additional discrimination techniques to reduce
the interference of deeper layers. While the strategy above aimed at discarding points on deeper layers,
we now turn to components. We use three criteria. First, we know that critical points that merge usually

11

belong to the same neuron, regardless of whether they are in the target layer or a deeper layer. Therefore,
the more critical points identified from deeper layers by the above test that merge with our candidate
component, the more likely it is that this component belongs to a deeper layer. For this reason, we
compute for each component a noise ratio

τ =
#merges with deeper critical points

size of the component
.

Second, because merges of deeper critical points come from critical points with the same partial activation
pattern, those deeper components have a harder time obtaining a diverse set of critical points to yield
a neuron with a very small number of entries unrecovered. Finally, because of the constraint on the
activation pattern of deeper merges, components on deeper layers tend to be smaller in size. While
none of these criteria are if-and-only-if, combining them yields satisfying results. First, we remove
components with a size smaller than a certain fraction of the largest component (we found that in practice,
0.1 was sufficient for networks with eight hidden layers). Second, we discard components that either
have a τ above a certain threshold (we use 0.1 for networks with width 8 and 0.2 for networks with
width 16) or a large number of entries unrecovered (at least half of them) if their τ > 0.

It’s worth noting that making a strict association between deeper critical points and incorrect com-
ponents could lead to mislabelling. For example, critical points of a neuron in a deeper layer i+ t can
merge with those of neuron η

(i)
k on the target layer i, if they cause η

(i)
k to be the only active neuron on

the target layer (proof in Appendix D).

This case is very rare, even for small networks, but it might still happen. We encountered two such
neurons in our experiments. The extracted component will have the right weights, but we might discard
it because of a high τ . We check for this phenomenon on neurons with a low τ (neurons we are almost
sure are on the target layer): first we finish the extraction of those neurons, we could compute their sign
using the neuron wiggle and if a critical point is on the inactive side of all those neurons, we do not
count it towards its component’s τ .

On a side note, when this happens, the sign of all neurons on layer i can be recovered immediately
with no queries or computations as we have an input x∗ for which all neurons on the layer must be
inactive (first order derivatives in Px∗ are equal to zero). We must have η

(i)
k · x∗ + b

(i)
j < 0, for all

neurons on the layer, so we choose the sign of each η
(i)
k to match this condition.

The graph illustrating the effectiveness of discarding deeper components is presented later in Figure
9, as the attack first needs to deal with another kind of limitation.

η
(i−1)
1 η

(i−1)
2η(i+j)

η(i+k)

x a2a1

Fig. 6: Identifying if x is on the target layer. 0 ≤ j < k. By finding that a2 is not a critical point, we
can infer that the hyperplane we extracted from x (- - -) broke on a layer i+ j we have not extracted
(—-). Therefore, x cannot be on layer i. However, finding that a1 is a critical point does not give any
information regarding x’s layer.

4.2 Increasing Rank with Subspace Intersections

When extracting the signature, our goal is to obtain a partial signature yx up to an unknown constant
from a critical point x (see Section 3.4). As a result, the solution space should be of dimension 1. To

12

determine yx, we solved the equation (Γ
(i−1)
x ∆) · yx = ∂2

∆f(x) by selecting a sufficient number of
random directions ∆. The partial row obtained consists of coefficients corresponding to the active
neurons in layer i− 1 for the given input x. We denote by:

– s
(i−1)
x : the number of active neurons in layer i− 1,

– r
(i−1)
x := rank(Γ

(i−1)
x).

If s(i−1)
x > r

(i−1)
x , the system is underdetermined and cannot be solved. This issue arises when there are

fewer active neurons in a previous layer k < i− 1 than in layer i− 1 (see Figure 7), as indeed:

Γ (i−1)
x = I(i−1)

x A(i−1) · · · I(1)x A(1)

and thus,
rank(Γ (i−1)

x) = min({rank(I(k)x)}1≤k≤i−1) ̸= rank(I(i−1)
x)

If X denotes the random variable representing the number of active neurons per layer, then P(r(i−1)
x <

s
(i−1)
x) = 1− P(X ≥ s

(i−1)
x)i−1. Because of the i− 1 exponent, it appears infeasible to extract deeper

layers beyond the first few. Signature intersections. If the rank is insufficient, we no longer have a

· · ·

· · ·

· · ·

· · ·
Input x

Fig. 7: Solving for a neuron’s weights with certain critical points can lead to underdetermined systems.
Target neuron is in black. Active neurons are in blue. The rank of Γ (1)

x is 2, which limits the rank of
Γ

(2)
x to 2 while we expect 3.

unique solution but rather a set of solutions. For a critical point x in the layer i, the solution space is
given by Sx = Lx + ker(Γ

(i−1)
x), where Lx is a solution of the solution space and ker(M) represents

the kernel space of a matrix M . In [8], a method was proposed to merge two partial signatures. Here, we
extend this approach to merge two solution spaces.

Suppose we have another critical point x′ with solution space Sx′ = Lx′ + ker(Γ
(i−1)
x′). Since we

recover rows up to a scalar factor, we seek to compute the intersection of Sx and λSx′ , where λ is a scalar
factor equal to the ratio of the row scalar factors of x and x′. Let (e1, . . . , ek) be a basis of ker(Γ (i−1)

x),
and let (f1, . . . , fr) be a basis of ker(Γ (i−1)

x′). We then solve the following system in Rdi−1 :

Lx + µ1e1 + · · ·+ µkek = λLx′ + λ1f1 + · · ·+ λrfr,

where the unknowns are µ1, . . . , µk, λ, λ1, . . . , λr ∈ R. This system consists of di−1 equations in R.
However, only the equations corresponding to the active neurons in the layer i− 1 for both inputs x and
x′ are relevant. To ensure that we do not merge spaces from critical points associated with different rows,
we overdetermine the system. Indeed, an overdetermined system with random coefficients is inconsistent
with very high probability, and thus a system of ℓ > N equations with N unknowns typically doesn’t
have a solution except if there is some ground truth behind it. Therefore, we impose the following
merging condition:

ℓ > 1 + | ker(Γ (i−1)
x)|+ | ker(Γ (i−1)

x′)| = 1 + k + r,

where ℓ is the number of relevant equations.
Intersections allows us to exploit at least 90% of critical points on the target layer when attacking the

13

784− 8(8) − 1 MNIST model. As a comparison, the original attack would have solved a system with
adequate rank and extracted a correct signature on only 6% of the critical points of layer 4. We could
intersect subspaces three by three to have a lower condition for merging, allowing for the use of more
critical points. However, merging three by three instead of two by two slows down considerably the
attack. For this reason, all our results use two-by-two merges.

As shown in Figure 8, after intersecting critical points with insufficient ranks, the top 7 components
yield correct signatures that correspond to neurons in the target layer. Then, after applying our additional
discrimination techniques described in Section 4.1 to discard deeper components, all remaining com-
ponents are in the target layer, as shown in Figure 9. The only unrecovered component corresponds to
neuron η

(4)
5 , which is always-off (see Figure 10).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

50

100 𝜂
(4)
2

𝜂
(4)
7 𝜂

(4)
4 𝜂

(4)
3 𝜂

(4)
6 𝜂

(4)
1

𝜂
(4)
8

Reconstructed Components

Si
ze

of
Co

m
po

ne
nt
s

with Sufficient Ranks
on Deeper Layers

Fig. 8: Merging results after signature intersections. Components with rank issues are discarded, and
correct components become prominent. Neuron η

(4)
5 is always off (see Figure 10).

1 2 3 4 5 6 7
0

50

100 𝜂
(4)
2

𝜂
(4)
7 𝜂

(4)
4 𝜂

(4)
3 𝜂

(4)
6 𝜂

(4)
1

𝜂
(4)
8

Reconstructed Components

Si
ze

of
Co

m
po

ne
nt
s

with Sufficient Ranks

Fig. 9: Final merging results after discarding deeper components. All remaining components are compo-
nents on the target layer without rank issues. Neuron η

(4)
5 is always off (see Figure 10).

14

5 Experiments

All our experiments were conducted on an Intel Core i7-14700F CPU using networks trained on either
the MNIST or CIFAR-10 datasets, two widely used benchmarking datasets in computer vision. They
have also been commonly used in related works [8,6,13] to evaluate model extraction methods. MNIST
consists of 28 × 28 pixel grayscale images of handwritten digits, divided into ten classes (“0” through
“9”) [17]. In contrast, CIFAR-10 contains 32 × 32 pixel RGB images of real-world objects across ten
classes (e.g., airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck) [16].

We evaluate our attack on three different networks: one trained on CIFAR-10 with architecture
3072-8(8)-1 and two networks trained on MNIST with architectures 784-8(8)-1 and 784-16(8)-1. The
main results are given in Table 1. We refer to those models as Model I, II, and III, respectively. Following
[13], we extract the network layer by layer, each time assuming that the previous layers have been
correctly recovered. This crucial assumption allows us to evaluate the effectiveness of our improvements,
setting aside the floating-point computation imprecisions. State-of-the-art extraction from [13] could
not extract any hidden layer past the third layer on a 784− 16(8) − 1 MNIST trained network. When
attacking the same architecture, we can recover over 95% of the weights in each deeper layer. We apply
the attack to other network architectures, yielding similar results. Our improvements largely outperform
existing signature extraction methods (Table 1).

We attempted to implement end-to-end model extraction without assuming perfect recovery of the
preceding layers, instead relying on previously recovered results to extract subsequent layers. However,
for Model II, accumulated floating-point imprecision errors emerged by Layer 5, resulting in incorrect
partial signatures. For the same reason, the extraction of Models I and III stopped at layer 3. We also
tried to attack a much deeper network with architecture 784 − 8(16) − 1. The algorithm to discard
critical points becomes less effective. This makes deeper components difficult to distinguish based
on either τ or size, and intersection computation times grow significantly. Furthermore, because our
networks only have width 8 for runtime purposes, when we reach the final four layers (layers 13–16), the
solution spaces of critical points almost always have rank 1. The merging condition is rarely met, and we
recover no components. We believe this should not happen when attacking wider networks. Therefore
we focused on networks with eight hidden layers as those are the deepest considered in the literature of
both signature [13] and sign recovery [6].

5.1 Evaluation Metrics

We begin by briefly introducing the metrics used to evaluate the effectiveness of our improved signature
extraction:

– Weight Recovery Rate denotes the proportion of weights successfully recovered in a layer,
including those that can be safely set to zero without impacting the extraction, relative to the total
number of weights in that layer. We refer to the other weights as missed weights.

– Layer Coverage refers to the percentage of the input space where no unrecovered weight or
component of the layer is active.

– Model Coverage refers to the percentage of the input space where no unrecovered weight or
component of the whole model is active.

Not all weights contribute equally to the network’s behaviour, and missing a single weight out of a
hundred during extraction does not necessarily imply that the extracted model will behave correctly
on 99% of the input space. While [8] introduced the notion of (ϵ, δ)-functional equivalence to capture
such nuances, we propose a complementary metric—coverage—designed to quantify the proportion of
the model that was not accurately recovered. To compute this metric, we randomly sample 106 random
input points and count how many activate the missed components in the target layer, or activate both
a neuron in the previous layer and a neuron in the target layer connected by a missed weight. These
input points, where the extracted model diverges from the target due to incomplete recovery, define the
unrecovered space. The remaining inputs define the recovered space. The ratio of the recovered space to
the total sampled input space gives the coverage score. When evaluating layer coverage, the coverage
is measured with respect to a single layer. For model coverage, coverage is measured across the entire
model.

15

Coverage serves two key purposes. First, it enables us to make a clear distinction between errors
coming from imprecisions and errors coming from a lack of information, as it does not depend on the
precision of the extraction. Second and foremost, coverage aims to capture the fact that for deep neural
networks, we might not recover all the weights and yet still make an extraction correct on most of
the input space. If we were to make an (ϵ, δ) assessment of such an extraction, the results would be
meaningless except for a δ corresponding to the coverage. Indeed, we would see a sudden increase in ϵ
as soon as δ becomes greater than the coverage. (ϵ, δ) assessments are still valuable on the recovered
space. Our extraction achieves at least (0.05, 10−8) on the recovered part of each network (recall that
unlike [8] we normalise ϵ in Definition 6). This means that if we recover each layer in this per-layer
setting and recover the signs of the neurons, the output of the extracted network in the recovered space is
within 5% of the target network’s output. We used 108 random points in the recovered space to compute
our (ϵ, δ) values.

Table 1: Results demonstrating the extraction of layers deeper than those recovered by state-of-the-art
methods in [13]. Each layer is attacked independently using 3, 000 critical points. Layer 9 is linear and
can therefore be trivially recovered using previously issued queries.
Model Signature Extraction L1∗ L2 L3 L4 L5 L6 L7 L8 L9 Entire Model

Ours
Layer coverage 100% 100% 98.99% 99.45% 97.93% 95.02% 97.09% 95.93% 100% 91.78%

CIFAR-10 Weights Recovered 100% 100% 90.63% 98.44% 93.75% 92.19% 95.31% 93.75% 100% 99.91%

3072-8(8)-1 (I) Time 56m48s 1h33m 1h42m 4h43m 4h25m 5h2m 6h53m 2h23m 0.01s -
Queries 223.55 226.15 226.15 227.10 227.04 227.17 227.56 226.45 0 -

Layer coverage 100% 100% 100% 100% 93.73% 93.73% 76.32% 88.58% 100% 74.12%
MNIST Weights Recovered 100% 100% 100% 100% 90.63% 93.75% 90.63% 95.31% 100% 99.72%

784-8(8)-1 (II) Time 3m24s 7m5s 7m37s 10m41s 11m46s 28m29s 20m38s 36m46s 0.01s -
Queries 221.59 224.21 224.22 224.24 224.26 225.37 224.98 225.63 0 -

Layer coverage 100% 100% 100% 93.32% 99.42% 98.66% 90.53% 89.28% 100% 71.35%
MNIST Weights Recovered 100% 100% 100% 99.61% 99.22% 97.27% 98.83% 95.31% 100% 99.83%

784-16(8)-1 (III) Time 6m17s 26m13s 28m57s 39m33s 1h39m 2h13m 1h48m 3h56m 0.01s -
Queries 221.60 224.22 224.24 224.67 225.65 226.04 225.79 226.95 0 -

Foerster et al. [13]

MNIST 784-16(8)-1

Layer coverage 100% 100% - - - - - - 100% -
Weights Recovered 100% 100% - ≥ 37.50%† - - - ≥ 0%† 100% -
Time 2h46m 7m50s - >36 hours - - - >36 hours 0.01s -
Queries 222.36 219.01 - - - - - - 0 -

∗‘L’ stands for layer. L1 is attacked with 500 critical points. †Foerster et al. recover 6/16 neurons on layer 4 and
0/16 neurons on layer 8.

5.2 Taxonomy of Unrecovered Weights

How does the weight recovery rate relate to coverage? To answer this question we need to understand
more about the weights the attack does not recover. For example, as explained earlier (see Section 3.3),
some weights are dead weights, meaning they can be set to zero without affecting the coverage. In our
attack, we set by default all unrecovered weights to zero, hoping they fall into this category. Clearly
it is not the case or the coverage would always sit at 100%. To properly evaluate the quality of the
extraction, we must determine whether an unrecovered weight is truly dead. We also aim to understand
why some weights are more difficult to recover than others. To this end, we introduce a taxonomy
of unrecovered weights that serves both purposes. We classify them into four categories: always-off
weights, unreachable inactive weights, unreachable active weights, and query-intensive weights. The
first two will turn out to be dead weights. As a preliminary step, Figure 10 illustrates this classification.
We then introduce in Section 5.3 a more rigorous set of tests to classify unrecovered weights.

Always-off weights. Always-off neurons are clearly visible in the heat map (Figure 10): neurons η(2)8 ,
η
(4)
5 , η(5)2 , η(5)8 , η(6)4 , η(8)3 , and η

(8)
6 are never activated by any input. As a result, all their associated

weights are considered always-off, as well as the weights of neurons in the subsequent layer that connect

16

1 2 3 4 5 6 7 8

Layers

1

2

3

4

5

6

7

8

N
eu

ro
ns

0.49 0.36 0.48 0.84 0.69 0.10 0.56 0.51

0.50 0.57 0.84 0.26 0.00 0.59 0.16 0.17

0.49 0.69 0.44 0.47 0.31 0.40 0.14 0.00

0.50 0.53 0.49 0.53 0.88 0.00 0.12 0.53

0.49 0.56 0.99 0.00 0.99 0.10 0.83 0.56

0.49 0.25 0.76 0.66 0.43 0.01 0.11 0.00

0.50 0.55 0.94 0.67 0.06 0.85 0.55 0.75

0.49 0.00 0.52 0.90 0.00 0.89 0.56 0.37

0.0

0.2

0.4

0.6

0.8

1.0

N
eu

ro
n

A
ct

iv
at

io
n

R
at

io
at

20
0,

00
0

R
an

do
m

P
oi

nt
s

Always-off

Always-on

Fig. 10: Neuron activation in Model II based on 200, 000 random input points.

to them. We can safely classify all of these as dead weights. Similarly, a neuron that is always-on, with
an activation of 1.00, can also be considered dead (see Section 3.3).

Query-intensive weights. The unrecovered space caused by neurons that are almost always-off or
almost always-on (respectively meaning that they are inactive/active on almost all the input space)
can be reduced by increasing the number of queries. Making more queries allows us to gather more
critical points for these neurons, filling in the unrecovered weights that are hard to find. We refer to
them as query-intensive weights. However, it is hard to estimate the number of additional queries
we need. The number of critical points of a neuron we gather is not clearly related to its activation.
This phenomenon is illustrated in Table 2. Sometimes there is a linear relation (layer 2, 6, 8), and
sometimes there is no linear relation (layer 4, 7). The correlation indicated is between a layer’s neuron’s
min(input activation, 1− input activation), where input activation is the neuron’s number in Table 10,
and the ratio of the neuron’s critical points over the critical points of the layer. The former represents
how close the neuron is to being always-off or always-on. The closer this number is to 0.5, the more its
extraction is important. The latter shows how hard it is to find critical points for that neuron (a lower
ratio denotes higher difficulty in finding critical points for the neuron). To give a concrete example, η(7)5

and η
(7)
2 in Model II have almost the same activation, but we are roughly 2.4 times more likely to find

critical points for the latter than for the former. For this reason, it is hard to predict how much time the
attack needs to recover more query-intensive weights. We chose 3, 000 critical points as a middle ground
between runtime and coverage.

Table 2: Correlation between the value min(activation, 1-activation) of a Model II’s neuron (how close
the neuron is to being always-off or always-on) and the ratio of the number of its critical points gathered
over the total number of critical points on the layer (how hard it is to find critical points for that neuron).

Layer 2 3 4 5 6 7 8
Correlation 0.95 0.83 0.58 0.81 0.90 0.65 0.93

17

Unreachable weights. Suppose that all critical points of a neuron η
(i)
j lie on the inactive side of a neuron

η
(i−1)
k . In this case, the contribution of η(i−1)

k to the output of η(i)j is always zero during extraction,

leaving us with no information about the corresponding weight a(i)j,k. As this weight cannot be recovered
using the current extraction method, we refer to such weights as unreachable. Unreachable weights arise
when a hyperplane from layer i does not intersect with a hyperplane from layer i− 1, partitioning the
input space into three polytopes instead of the usual four. There are two scenarios depending on the sign
of η(i)j . If no region exists where both neurons are active (as illustrated in Figure 11), then a

(i)
j,k is never

activated and can be safely treated as a dead weight. However, if a region does exist where both neurons
are active (depicted in grey in Figure 12), then a

(i)
j,k does contribute and should ideally be recovered.

Unlike query-intensive weights, unreachable weights can significantly reduce extraction coverage, as
they are not necessarily associated with almost always-off neurons. Nonetheless, almost always-off
neurons are more likely to cause unreachable weights (see Table 4). Fortunately, such cases become
increasingly rare with higher input dimensions, since the probability that two (d0 − 1)-dimensional
hyperplanes do not intersect decreases. For example, a very active unreachable weight, a(7)5,5 in Model II,
causes a drop in layer coverage to 76.32%, while all other layers maintained values above 88%.

η
(i)
j η

(i−1)
k

– ++ –

Fig. 11: a(i)j,k is inactive.

η
(i)
j η

(i−1)
k

– +– +

Fig. 12: a(i)j,k is active.

5.3 Application to Our Extractions

While helpful, the heat map is not enough to assess the extraction. For example, it cannot tell us
about unreachable weights. We use a combination of three activation tests: input activation, “plus-plus”
activation, and “plus-minus” activation. Table 3 indicates how those tests yield the taxonomy. We then
apply this classification to analyse our extractions.

Input activation. Input activation corresponds to the heat map from Figure 10. We take 200, 000 random
input points, and we check for always-off neurons. Since this test is about neurons and not weights, we
also need to set the input activation of weights connected to always-off neurons to 0. This test makes a
distinction between always-off weights and unreachable inactive weights.

Plus-plus activation. A weight a(i)j,k represents the contribution of η(i−1)
k to η

(i)
j . a(i)j,k contributes to

the network when both neurons are active. The plus-plus activation test uses 200, 000 input points to
compute the proportion that activates both neurons. This test distinguishes between dead weights and
missed weights, and is therefore used to compute coverage.

Plus-minus activation. If a(i)j,k is an active unreachable weight, then there exists no polytope where η
(i)
j

is inactive while η
(i−1)
k is active. To test for the existence of such a polytope, we again use 200, 000

random input points. Weights that are always off due to an always-off neuron in the previous layer
exhibit a plus-minus activation of 0.

We apply this classification to our extractions, showing the results in Table 4. We find that the
large majority of unrecovered weights are dead weights: 81%, 83% and 84% for Model I, II and III
respectively. This shows that metrics such as the weight recovery rate or the number of neurons fully

18

Table 3: Taxonomy of unrecovered weights based on the three tests (Input, (+,+) and (+,-) activations)
with some examples.

Taxonomy Conditions
Input (+,+) (+,−)

Dead Weights always-off weights 0 0 ≥ 0
unreachable inactive weights > 0 0 > 0

Missed Weights unreachable active weights > 0 > 0 0
query-intensive weights > 0 > 0 > 0

Examples

Model II

a
(7)
4,5 0 0 0

a
(7)
3,6 0.11 0 0.40

a
(7)
5,5 0.83 0.11 0

a
(7)
2,6 0.11 0.11 0.48

recovered are not appropriate. Our taxonomy gives insights into coverage values and what we might
expect to see if we increase the number of queries. The high coverage of Model I can be explained by
the absence of any major missed weights. More queries should help the extraction of Model III reach a
high coverage. However, the presence of three major unreachable weights indicates that more queries
might not help tremendously the extraction of Model II. To test this we ran the extraction with twice the
amount of critical points and observed that indeed Model II’s fidelity barely changed from 74.12% to
74.78% while Model III’s changed more substantially from 71.35% to 79.53%, even though for both
models we recovered 0.9% points more weights (see Appendix E for details).

Table 4: Proportion and number of each type of unrecovered weights in all extracted models.
Model Uncovered Weights (+,+) Number Percentage

I

always-off weights 0 72 59.50%
unreachable inactive weights 0 26 21.49%
unreachable active weights ≤ 0.06 5 4.13%

> 0.06 0 0%
query-intensive weights ≤ 0.06 18 14.88%

> 0.06 0 0%

II

always-off weights 0 84 73.04%
unreachable inactive weights 0 12 10.43%
unreachable active weights ≤ 0.06 5 4.35%

> 0.06 3 2.61%
query-intensive weights ≤ 0.06 7 6.09%

> 0.06 4 3.48%

III

always-off weights 0 80 51.61%
unreachable inactive weights 0 50 32.26%
unreachable active weights ≤ 0.06 0 0%

> 0.06 0 0%
query-intensive weights ≤ 0.06 22 14.19%

> 0.06 3 1.94%

6 Conclusion

In this work, we carried out an in-depth analysis of the approach introduced in [8] for extracting the
weights of neural networks, which has since been reused in several follow-up works. We identified critical
limitations that prevented this method from successfully recovering the weights of layers beyond the

19

third. Most importantly, we proposed algorithmic improvements for each of these challenges, permitting,
for the first time, the extraction of over 99% of the weights of 8 hidden layers networks when each layer
is attacked independently. For a 3072− 8(8) − 1 network, our extracted network’s outputs are within 5%
of the target network’s for more than 91% of possible inputs.

Our results establish a new benchmark for signature extraction and open the way to practical attacks
on deeper architectures.

Limitations. Going significantly deeper than eight hidden layers is still a challenge, as are floating-point
imprecisions in the context of an end-to-end attack. Addressing these limitations, along with a more
thorough investigation of how changes in the architecture affect extraction quality, are promising future
areas of research.

References

1. Google cloud platform. Website, https://cloud.google.com/, accessed February 12, 2025
2. Advanced Encryption Standard (AES). National Institute of Standards and Technology, NIST FIPS PUB 197,

U.S. Department of Commerce (Nov 2001)
3. Batina, L., Bhasin, S., Jap, D., Picek, S.: {CSI}{NN}: Reverse engineering of neural network architectures

through electromagnetic side channel. In: 28th USENIX Security Symposium (USENIX Security 19). pp.
515–532 (2019)

4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A.
(eds.) CRYPTO’90. LNCS, vol. 537, pp. 2–21. Springer, Berlin, Heidelberg (Aug 1991). https://doi.
org/10.1007/3-540-38424-3_1

5. Bishop: Bishop Book. https://www.bishopbook.com/ (2025), accessed February 12, 2025
6. Canales-Martı́nez, I.A., Chávez-Saab, J., Hambitzer, A., Rodrı́guez-Henrı́quez, F., Satpute, N., Shamir, A.:

Polynomial time cryptanalytic extraction of neural network models. In: Joye, M., Leander, G. (eds.) EURO-
CRYPT 2024, Part III. LNCS, vol. 14653, pp. 3–33. Springer, Cham (May 2024). https://doi.org/10.
1007/978-3-031-58734-4_1

7. Carlini, N., Chávez-Saab, J., Hambitzer, A., Rodrı́guez-Henrı́quez, F., Shamir, A.: Polynomial time cryptanalytic
extraction of deep neural networks in the hard-label setting. Cryptology ePrint Archive, Paper 2024/1580
(2024), https://eprint.iacr.org/2024/1580, to be published at EUROCRYPT 2025

8. Carlini, N., Jagielski, M., Mironov, I.: Cryptanalytic extraction of neural network models. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 189–218. Springer, Cham (Aug 2020).
https://doi.org/10.1007/978-3-030-56877-1_7

9. Chen, Y., Dong, X., Guo, J., Shen, Y., Wang, A., Wang, X.: Hard-label cryptanalytic extraction of neural
network models. In: Chung, K.M., Sasaki, Y. (eds.) ASIACRYPT 2024, Part VIII. LNCS, vol. 15491, pp.
207–236. Springer, Singapore (Dec 2024). https://doi.org/10.1007/978-981-96-0944-4_7

10. Chen, Y., Dong, X., Guo, J., Shen, Y., Wang, A., Wang, X.: Hard-label cryptanalytic extraction of neural
network models. In: International Conference on the Theory and Application of Cryptology and Information
Security. pp. 207–236. Springer (2024)

11. Daniely, A., Granot, E.: An exact poly-time membership-queries algorithm for extracting a three-layer relu
network. In: The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net (2023), https://openreview.net/forum?id=-CoNloheTs

12. Fefferman, C., et al.: Reconstructing a neural net from its output. Revista Matemática Iberoamericana 10(3),
507–556 (1994)

13. Foerster, H., Mullins, R., Shumailov, I., Hayes, J.: Beyond slow signs in high-fidelity model extraction. Neurips
abs/2406.10011 (2024), https://api.semanticscholar.org/CorpusID:270521873

14. Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High accuracy and high fidelity extraction
of neural networks. In: Capkun, S., Roesner, F. (eds.) USENIX Security 2020. pp. 1345–1362. USENIX
Association (Aug 2020)

15. Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High accuracy and high fidelity extraction
of neural networks. In: 29th USENIX security symposium (USENIX Security 20). pp. 1345–1362 (2020)

16. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 and cifar-100 datasets. URl: https://www. cs. toronto. edu/kriz/cifar.
html 6(1), 1 (2009)

17. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.: Handwritten digit
recognition with a back-propagation network. In: Touretzky, D. (ed.) Advances in Neural Information Processing
Systems. vol. 2. Morgan-Kaufmann (1989)

18. Lowd, D., Meek, C.: Adversarial learning. In: Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining. pp. 641–647 (2005)

20

https://cloud.google.com/
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://www.bishopbook.com/
https://doi.org/10.1007/978-3-031-58734-4_1
https://doi.org/10.1007/978-3-031-58734-4_1
https://doi.org/10.1007/978-3-031-58734-4_1
https://doi.org/10.1007/978-3-031-58734-4_1
https://eprint.iacr.org/2024/1580
https://doi.org/10.1007/978-3-030-56877-1_7
https://doi.org/10.1007/978-3-030-56877-1_7
https://doi.org/10.1007/978-981-96-0944-4_7
https://doi.org/10.1007/978-981-96-0944-4_7
https://openreview.net/forum?id=-CoNloheTs
https://api.semanticscholar.org/CorpusID:270521873

19. Martinelli, F., Simsek, B., Gerstner, W., Brea, J.: Expand-and-cluster: Parameter recovery of neural networks.
In: Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net (2024), https://openreview.net/forum?id=3MIuPRJYwf

20. Milli, S., Schmidt, L., Dragan, A.D., Hardt, M.: Model reconstruction from model explanations. In: Proceedings
of the Conference on Fairness, Accountability, and Transparency. pp. 1–9 (2019)

21. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Confer-
ence on Machine Learning (2010), https://api.semanticscholar.org/CorpusID:15539264

22. Oliynyk, D., Mayer, R., Rauber, A.: I know what you trained last summer: A survey on stealing machine
learning models and defenses. ACM Computing Surveys 55(14s), 1–41 (2023)

23. Papernot, N., Mcdaniel, P., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against
machine learning. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security (2016), https://api.semanticscholar.org/CorpusID:1090603

24. Reith, R.N., Schneider, T., Tkachenko, O.: Efficiently stealing your machine learning models. In: Proceedings
of the 18th ACM Workshop on Privacy in the Electronic Society. pp. 198–210 (2019)

25. Team, H.F.: Hugging face (nd), https://huggingface.co/, accessed February 12, 2025
26. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction

APIs. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 601–618. USENIX Association (Aug 2016)
27. Xiao, T., Zhu, J.: Foundations of large language models (2025), https://api.semanticscholar.

org/CorpusID:275570622

Appendix

A Example of a Small Network

We illustrate here the definitions introduced in Section 3.1. Consider the 2− 3− 2− 1 neural network
given by the following layers A(i), b(i):

A(1) =

 1 1
1 −1
0.5 2

 , b(1) =

 1
−2
−5



A(2) =

(
2 −4 −1
−3 4 5

)
, b(2) =

(
−2
−3

)

A(3) =
(
1 −1

)
, b(3) =

(
3
)

The architecture of this neural network is depicted in Figure 13. Let the input to the neural network be
v = (x, y). The neurons in the first layer output (η(1)1 (v), η

(2)
1 (v), η

(3)
1 (v)) = (x+y+1, x−y−2, 0.5x+

2y− 5). Depending on (x, y), the ReLU activation function σ might set some entries to 0 before passing
them to the second layer. For example, when the input is v = (2, 2), we have: F (1)(v) = (5,−2, 0),
σ ◦ F (1)(v) = (5, 0, 0), F (2)(v) = 5 ∗ (2,−3) + 0 ∗ (−4, 4) + 0 ∗ (−1, 5) + (−2,−3) = (8,−18),
σ◦F (2)(v) = (8, 0), and finally f(v) = F (3)(v) = 8∗1+0∗(−1)+3 = 11. Since F (1)(v) = (5,−2, 0),
it follows that v is a critical point of η(1)3 .

This network can also be represented as a collection of polytopes (see Figure 13). As can be seen
in this figure, critical hyperplanes from the first layer make three straight lines, represented as dotted
grey lines: η(1)1 : x + y + 1, η(1)2 : x − y − 2, and η

(1)
3 : 0.5x + 2y − 5. The hyperplanes of η(2)1 and

η
(2)
2 are shown in their respective colors, with their active side marked by + and their inactive side by −.

They indeed break on the grey lines as critical hyperplanes on deeper layers break on all hyperplanes of
previous layers: the input to η

(i)
k is f (i−1)(v) rather than v for i = 2, · · · , r.

21

https://openreview.net/forum?id=3MIuPRJYwf
https://api.semanticscholar.org/CorpusID:15539264
https://api.semanticscholar.org/CorpusID:1090603
https://huggingface.co/
https://api.semanticscholar.org/CorpusID:275570622
https://api.semanticscholar.org/CorpusID:275570622

x1

x2

η
(1)
1

η
(1)
2

η
(1)
3

η
(2)
1

η
(2)
2

y

2

-3
-4

4
-1

5

Input Layer Hidden Layers Output Layer

Fig. 13: Network representation of the neural network from Appendix A, with the details of layer 2
highlighted in colour.

Let’s compute fv for v = (2, 2) as an example:

Γv = A(3)

(
1 0
0 0

)
A(2)

1 0 0
0 0 0
0 0 1

A(1) = (2.5, 4)

γv = f(v)− Γv · v = 11− 13 = 2.

Fig. 14: The neural network from Appendix A partitions the input space into 18 distinct polytopes.

B Finding Critical Points

The attack starts by searching for critical points of neurons on the layer we are targeting. Critical points
are at the turning point of a ReLU and thus their left and right derivatives do not agree. We’ll exploit this
non-linearity to find critical points. We now describe the procedure developed in [8] and in [6]. Very
intuitive illustrations are given in both papers.

Suppose we perform the search between two points a and b on the search line. First we compute the
derivatives of f at a towards b and of f at b towards a, respectively ma and mb. If they are the same then
we know that there are no critical points on the search line. If they are not the same we know that there is
at least a critical point on the search line between a and b. We could directly reiterate the binary search
on each half of the segment, etc. There is however a more efficient way to find the critical points. It

22

relies on predicting where the critical point should be if it is the only one between a and b, and checking
if it is indeed there.

If there is a unique critical point, we expect to find it where the derivatives cross at x∗ = a +
f(b)−f(a)−mb(b−a)

a−b . Its expected value is f̂(x∗) = f(a) +ma
f(b)−f(a)−mb(b−a)

a−b . If f̂(x∗) = f(x) then
the critical point is unique, otherwise we keep dividing the segment with dichotomy. This faster algorithm
can generate pathological errors, see ([6], p.32) for more conditions to deal with them. In practice, we
use [8]’s strategy.

C Details of Signature Extraction from [8]

C.1 Proof of Lemma 2

Let x be a critical point of layer i ∈ {1, . . . , r} for neuron η
(i)
k such that x is not a critical point of any

other neuron, and ∆ ∈ Rd0 . Then, denoting Ω
(i+1)
x = (c1, . . . , cdi

), we have:

∂2
∆f(x) = ck

∣∣Γ (i−1)
x ∆ ·A(i)

k

∣∣
Proof. We take ϵ sufficiently small so that x + ϵ∆ and x − ϵ∆ are in the neighbourhood of x. Thus
x+ ϵ∆ and x− ϵ∆ have the exact same activation pattern except for η(i)k .

∂2
∆f(x) =

1

ϵ
(f(x+ ϵ∆) + f(x− ϵ∆)− 2f(x))

=
1

ϵ

(
G(i+1) ◦ σ(A(i)F (i−1)(x+ ϵ∆) + b(i))

+G(i+1) ◦ σ(A(i)F (i−1)(x− ϵ∆) + b(i))

− 2G(i+1) ◦ σ(A(i)F (i−1)(x) + b(i))

)
=

1

ϵ
Ω(i+1)

x

(
σ(A(i)F (i−1)(x+ ϵ∆) + b(i))

+ σ(A(i)F (i−1)(x− ϵ∆) + b(i))

− 2σ(A(i)F (i−1)(x) + b(i))

)
Let us analyze C = σ(A(i)F

(i−1)
x (x+ϵ∆)+b(i))+σ(A(i)F

(i−1)
x (x−ϵ∆)+b(i))−2σ(A(i)F

(i−1)
x (x)+

b(i)) ∈ Rdi×1.
The coefficients j ̸= k of C are zero. Indeed, since x, x + ϵ∆, and x − ϵ∆ belong to the same

activation region except for η(i)k , the computation becomes affine, leading to zero. More precisely:

C[j] = [Γ (i−1)
x (x+ ϵ∆) + γ(i−1)

x] ·A(i)
j

+ [Γ (i−1)
x (x− ϵ∆) + γ(i−1)

x] ·A(i)
j

− 2[Γ (i−1)
x x+ γ(i−1)

x] ·A(i)
j

= Γ (i−1)
x x ·A(i)

j + ϵΓ (i−1)
x ∆ ·A(i)

j

+ Γ (i−1)
x x ·A(i)

j − ϵΓ (i−1)
x ∆ ·A(i)

j − 2Γ (i−1)
x x ·A(i)

j

= 0 when η
(i)
j is active at x

C[j] = 0 + 0− 2× 0 = 0 when η
(i)
j is inactive at x.

For coefficient k, since x is a critical point of η(i)k , we have:

F (i−1)(x) ·A(i)
k + b

(i)
k = [Γ (i−1)

x x+ γ(i−1)
x] ·A(i)

k + b
(i)
k = 0

23

and since Γ
(i−1)
x ∆ ·A(i)

k is either positive or negative, we get:

C[k] =
∣∣Γ (i−1)

x ∆ ·A(i)
k

∣∣
Thus, by multiplying Ω

(i+1)
x by C, we obtain the expected result.

C.2 Correlating the Weights’ Signs

We know by Lemma 2 that

∂2
∆f(x)

∂2
∆0

f(x)
=

∣∣(Γ (i−1)
x ∆) ·A(i)

k

∣∣∣∣(Γ (i−1)
x ∆0) ·A(i)

k

∣∣ :=
∣∣α|
|β|

Now consider on one hand,
∂2
∆+∆0

f(x)

∂2
∆0

f(x)
=

∣∣α+ β
∣∣∣∣β∣∣

And on the other,
∂2
∆f(x) + ∂2

∆0
f(x)

∂2
∆0

f(x)
=

∣∣α∣∣+ ∣∣β∣∣∣∣β∣∣
The two values above are equal if and only if α and β have the same sign. This additional test allows us
to remove the absolute values and correlate the sign of our result for each direction ∆ we take to that of
the first direction ∆0 taken. This is why the sign recovery only has to find one sign per neuron rather
than one sign per weight.

C.3 Solving for the Signature

By querying different directions {∆m} around x a critical point of η(i)k , we can obtain a set of {ym}
such that,

ym =
(Γ

(i−1)
x ∆m) ·A(i)

k

c
(i)
k

,

where c
(i)
k = (Γ

(i−1)
x ∆0) ·A(i)

k . To solve for A(i)
k , we build the following system of equations:

Γ
(i−1)
x ∆1

Γ
(i−1)
x ∆2

...
Γ

(i−1)
x ∆di−1+1

 · 1

c
(i)
k


a
(i)
k,1

a
(i)
k,2
...

a
(i)
k,di−1+1

 =


1
y2
...

ydi−1+1


When extracting the first layer, the input of the layer is also the input to the network, giving us full

control over it. We can use the input basis vectors {ei} as directions ∆, allowing us to recover each entry
of the signature independently from each equation. However, for deeper layers, we must first gather
enough linearly independent conditions.

D Deeper Critical Points Merging with Components on the Target Layer

In this section, we show that a critical point x1 of neuron η
(i)
k on the target layer can merge with a critical

point x2 of a neuron in a deeper layer i+ t if x2 causes η(i)k to be the only active neuron on its layer,
meaning that for some ak ∈ R,

σ ◦ F (i)(x2) = (0, . . . , 0, ak, 0, . . . , 0).

24

We note y1 and y2 the matrix rows extracted from x1 and x2 respectively. We therefore have,

∂2
∆f(x1) = (Γ (i−1)

x1
∆) · y1

∂2
∆f(x2) = (Γ (i+t−1)

x2
∆) · y2

Let’s write Ax2
the matrix A′

x2
◦ I

(i)
x2 ◦ ℓ(i), where A′

x2
= ℓ(i+t−1) ◦ I

(i+t−2)
x2 ◦ · · · ◦ I

(i+1)
x2 ◦ ℓ(i+1).

Thus, for c ∈ R,

(Γ (i+t−1)
x2

∆) · y2 = [(Ax2
◦ Γ (i−1)

x2
)∆] · y2

= (Γ (i−1)
x2

∆) · (A⊤
x2
y2)

= (Γ (i−1)
x2

∆) · [(ℓ(i)⊤ ◦ I(i)⊤x2
◦A′⊤

x2
)y2]

= (Γ (i−1)
x2

∆) · cy1

Let’s explain the last equality. Our assumption that x2 causes η(i)k to be the only active neuron on its
layer implies that I(i) is diagonal with all entries zero except for a one at the k-th diagonal position. We
also have that y1 is the k-th row of the matrix ℓ(i). Therefore, (ℓ(i)⊤ ◦ I(i)⊤x2 ◦A′⊤

x2
)y2 = c · y1 , where

c is a constant. The partial signatures y1 and c · y1 extracted from x1 and x2 can be thus merged even
though x2 is on a deeper layer.

E Extraction Results Using 6,000 Critical Points

Table 5: Additional results on the proportion and count of each type of unrecovered weight in models II
and III, extracted with 3, 000 or 6, 000 critical points.

Model Uncovered Weights (+,+) Number Percentage
II always-off weights 0 84 73.04%
3, 000 CPs unreachable inactive weights 0 12 10.43%

unreachable active weights ≤ 0.06 5 4.35%
> 0.06 3 2.61%

query-intensive weights ≤ 0.06 7 6.09%
> 0.06 4 3.48%

II always-off weights 0 84 78.50%
6, 000 CPs unreachable inactive weights 0 10 9.35%

unreachable active weights ≤ 0.06 5 4.67%
> 0.06 3 2.80%

query-intensive weights ≤ 0.06 1 0.93%
> 0.06 4 3.74%

III always-off weights 0 80 51.61%
3, 000 CPs unreachable inactive weights 0 50 32.26%

unreachable active weights ≤ 0.06 0 0%
> 0.06 0 0%

query-intensive weights ≤ 0.06 22 14.19%
> 0.06 3 1.94%

III always-off weights 0 72 69.90%
6, 000 CPs unreachable inactive weights 0 24 23.30%

unreachable active weights ≤ 0.06 0 0%
> 0.06 0 0%

query-intensive weights ≤ 0.06 6 5.83%
> 0.06 1 0.97%

25

Table 6: Additional extraction results on models II and III. Each layer is attacked independently with
3, 000 or 6, 000 critical points.
Model Signature Extraction L2∗ L3 L4 L5 L6 L7 L8 Entire Model

Ours
MNIST Layer coverage 100% 100% 100% 93.73% 93.73% 76.32% 88.58% 74.12%

784− 8(8) − 1 (II) Weights Recovered 100% 100% 100% 90.63% 93.75% 90.63% 95.31% 99.72%
3, 000 critical points Time 7m5s 7m37s 10m41s 11m46s 28m29s 20m38s 36m46s -

Queries 224.21 224.22 224.24 224.26 225.37 224.98 225.63 -

MNIST Layer coverage 100% 100% 100% 99.99% 93.76% 76.32% 88.65% 74.78%

784− 8(8) − 1 (II) Weights Recovered 100% 100% 100% 98.44% 95.31% 90.63% 95.31% 99.81%
6, 000 critical points Time 14m10s 15m57s 28m25s 29m1s 38m41s 38m14s 56m15s -

Queries 225.21 225.22 225.24 225.35 225.83 225.79 226.18 -

MNIST Layer coverage 100% 100% 93.32% 99.42% 98.66% 90.53% 89.28% 71.35%

784− 16(8) − 1 (III) Weights Recovered 100% 100% 99.61% 99.22% 97.27% 98.83% 95.31% 99.83%
3, 000 critical points Time 26m13s 28m57s 39m33s 1h39m 2h13m 1h48m 3h56m -

Queries 224.22 224.24 224.67 225.65 226.04 225.79 226.95 -

MNIST Layer coverage 100% 98.79% 100% 100% 99.73% 91.35% 89.54% 79.53%

784− 16(8) − 1 (III) Weights Recovered 100% 99.61% 100% 100% 99.61% 99.61% 98.44% 99.91%
6, 000 critical points Time 55m3s 58m5s 1h4m 2h8m 2h35m 3h6m 5h1m -

Queries 225.22 225.24 225.27 225.68 225.88 226.43 227.23 -

∗‘L’ stands for layer.

Table 5 shows that as the number of critical points increases, the number of query-intensive weights
decreases. This suggests that some of these weights can be activated and recovered, leading to higher
model fidelity. The number of dead weights also drops with more critical points, as weight plus-plus
activation and neuron activation values below 0.001 are initially considered always-off. With more
critical points, these weights and neurons can become active. However, the number of unreachable active
weights remains unchanged, continuing to limit full model extraction.

Table 6 presents the extraction results on models II and III using 6,000 critical points, compared to
those using 3,000. Doubling the number of critical points generally improves both layer fidelity and
weight recovery rate in deeper layers, as more query-intensive weights can be activated and recovered.
Two notable exceptions are observed. First, in layer 8 of model II, the weight recovery rate is identical
for both settings, but layer fidelity improves. This is because some dead weights for 3,000 critical points
became active for 6,000 critical points, and were then recovered. It does not impact the weight recovery
rate but slightly improves layer fidelity. Second, in layer 3 of model III, both the weight recovery rate
and layer fidelity are lower with 6,000 critical points. This is due to the randomness in critical point
selection. A weight with a weight plus-plus activation value of 0.012 is only activated among the 3,000
critical points set.

26

	Navigating the Deep: Signature Extraction on Deep Neural Networks

