arXiv:2506.16899v1 [cs.CR] 20 Jun 2025

Towards Effective Complementary Security
Analysis using Large Language Models

Jonas Wagner*!, Simon Miiller!, Christian Nither?, Jan-Philipp Steghofer!, Andreas Both'
*Data Science Group, Paderborn University, Paderborn, Germany
T80 Web & Software Engineering Research Group, Leipzig University of Applied Sciences, Leipzig, Germany
YXITASO GmbH IT & Software Solutions, Augsburg, Germany
jonas.wagner@uni-paderborn.de, {simon.mueller, christian.naether, jan-philipp.steghoefer} @xitaso.com,
{jonas.wagner,andreas.both } @htwk-leipzig.de

Abstract—A key challenge in security analysis is the manual
evaluation of potential security weaknesses generated by static
application security testing (SAST) tools. Numerous false posi-
tives (FPs) in these reports reduce the effectiveness of security
analysis. We propose using Large Language Models (LLMs)
to improve the assessment of SAST findings. We investigate the
ability of LLMs to reduce FPs while trying to maintain a perfect
true positive rate, using datasets extracted from the OWASP
Benchmark (v1.2) and a real-world software project. Our results
indicate that advanced prompting techniques, such as Chain-
of-Thought and Self-Consistency, substantially improve FP de-
tection. Notably, some LLMs identified approximately 62.5% of
FPs in the OWASP Benchmark dataset without missing genuine
weaknesses. Combining detections from different LLMs would
increase this FP detection to approximately 78.9 %. Additionally,
we demonstrate our approach’s generalizability using a real-
world dataset covering five SAST tools, three programming lan-
guages, and infrastructure files. The best LLM detected 33.85%
of all FPs without missing genuine weaknesses, while combining
detections from different LLMs would increase this detection
to 38.46%. Our findings highlight the potential of LLMs to
complement traditional SAST tools, enhancing automation and
reducing resources spent addressing false alarms.

Index Terms—Large Language Models (LLM), Static Code
Analysis (SCA), Static Application Security Testing (SAST),
False Positive Detection, Prompting Techniques.

I. INTRODUCTION

Ensuring software security involves identifying weak-
nesses and addressing potential vulnerabilities early in the
development process. While static application security testing
(SAST) tools are essential for detecting potential issues, they
produce a large number of incorrectly reported vulnerabili-
ties, often between 30-100% [1]], requiring time-consuming
manual reviews by security experts [1f], [2]. This inefficiency
can lead to missed threats or wasted resources, making it
crucial to enhance the accuracy of SAST tools. However, de-
velopers “want tools to detect real vulnerabilities” [2]. Large
Language Models (LLMs) have emerged as a promising solu-
tion to address these challenges. By leveraging their advanced
capabilities to analyze code, LLMs offer the potential to
significantly reduce false positives (FPs) in security assess-
ments. This study investigates the integration of LLMs with
SAST tools to optimize security evaluations. Specifically, we
explore how advanced prompting techniques, such as Chain-
of-Thought (CoT) reasoning and Self-Consistency (SC), can

be used to enhance the reassessment of security findings
generated by SAST tools. A key objective of our research
is the development of a generalized assessment strategy
designed to identify FPs in security reports while trying to
maintain a perfect true positive (TP) rate (TPR). We term this
approach conservative analysis. In the context of security
analysis, missing even a single genuine weakness can lead
to a critical vulnerability, potentially compromising an entire
system and thereby invalidating the approach. Consequently,
we investigate the effectiveness of LLMs in implementing
this conservative analysis approach, specifically assessing
their capability to reliably detect FPs within datasets of
security findings while ensuring that no genuine weaknesses
are missed. To guide this investigation, we focus on the
following research questions:

RQ1 Are LLMs capable of detecting incorrectly reported
security findings (FPs), without missing any gen-
uine weakness (TPs)?

Assuming a successful conservative analysis (i.e.,
TPR = 100%), how effectively can LLMs detect
FPs (Effectiveness = %ﬁgg)?

To what extent can combining the predictions of
multiple LLMs enhance the effectiveness of con-
servative FP detection?

RQ2

RQ3

By addressing these questions, this research contributes to the
ongoing evolution of automated cybersecurity workflows. It
highlights the potential of LLMs to enhance the effectiveness
and accuracy of security assessments without the need for
resource-intensive fine-tuning, thereby aligning with the rapid
advancements of general-purpose foundation LLMs.

II. BACKGROUND AND RELATED WORK

SAST tools are fundamental for identifying weaknesses
within software by analyzing source code without execution.
They typically approximate program behavior via control-
flow graphs and abstract syntax trees, then match known
vulnerability patterns [3]. Despite their value, they frequently
produce FPs, requiring costly manual reviews [1]-[3]. They
often categorize findings based on Common Weakness Enu-
merations (CWEs), emphasizing coding flaws rather than
specific exploits. The OWASP Benchmark [4] offers a stan-
dardized resource to evaluate the effectiveness of these tools

https://arxiv.org/abs/2506.16899v1

across various CWE categories and has been used extensively
in evaluating SAST tools [1]l, [5], [6]-

Recently, researchers have investigated the use of LLMs
for direct weakness and vulnerability detection, demonstrat-
ing that models such as GPT variants can match or even
outperform conventional SAST tools [7]-[9]. Bakhshandeh
et al. successfully combined ChatGPT with tools like Bandit
and Semgrep, though their experiments were confined to
Python code [8]]. Wen et al. introduced the LLM4SA method
for automated inspection of static bug warnings across C/C++
benchmarks, using advanced prompting strategies like CoT
and few-shot learning, although their approach occasion-
ally missed genuine vulnerabilities [[I0]. Li et al. applied
ChatGPT to summarize functions and reassess Linux ker-
nel security findings, effectively identifying FPs, yet their
work was constrained by small-scale experiments focused
on use-before-initialization bugs [11]. Zhou et al. compared
multiple SAST tools and LLMs across several languages,
finding that LLMs had higher detection rates but produced
more FPs and did not adopt conservative analysis strategies
that prevent missing genuine weaknesses [12]. Similarly,
Tamberg et al. benchmarked various prompting techniques
and proprietary LLMs against traditional tools like CodeQL
and SpotBugs, observing increased vulnerability recall but
higher FP rates from LLMs; however, their evaluation lacked
verification against diverse real-world datasets [[13].

Fine-tuning LLMSs on security datasets can enhance their
effectiveness but typically requires significant computational
resources [7|]. Recent advances in foundation LLMs, such
as GPT-4, have made fine-tuning less critical, demonstrat-
ing state-of-the-art performance through prompt engineering
alone [14]). Our research leverages these advances, exploring
how foundation LLMs can complement SAST tools by
specifically targeting FP reduction and improving the effec-
tiveness of security assessments, rather than focusing solely
on direct vulnerability detection. Effective use of LLMs
relies heavily on advanced prompting techniques, including
zero-shot and few-shot prompting, CoT reasoning, and SC
prompting [[15]-[17]. However, prior research has yet to
comprehensively investigate how these prompting strategies
can specifically improve the assessment of SAST findings
and which contextual information is most impactful for
accurate FP detection.

Existing research often suffers from limited or homoge-
neous datasets [8]], [10], [11], [13], a lack of conserva-
tive analysis approaches (i.e., risk of missing a genuine
weakness) [10], [12]] and reliance primarily on proprietary
models [8], [11]], [[13], restricting practical deployment in
privacy-sensitive scenarios. To address these limitations, our
work explicitly adopts a conservative analysis approach, en-
suring genuine weaknesses are not overlooked. Crucially, we
integrate both proprietary and open-source LLMs to facilitate
private deployments and secure analyses, uniquely extending
applicability from traditional software code to infrastructure
code. Furthermore, we employ both a benchmark dataset
for initial experiments and a real-world dataset of security
findings to underscore the practical relevance of our approach

within real software projects. Through these contributions,
our methodology significantly advances current research by
providing a generalized, conservative, and broadly applica-
ble approach that leverages the complementary strengths of
LLMs and SAST tools.

III. CONCEPT

Our objective is to develop a comprehensive and general-
izable framework that leverages the strengths of both LLMs
and SAST tools to enhance the effectiveness of static security
assessments. As depicted in Fig. [I} our approach extends
traditional SAST-based security analyses by integrating an
additional LLLM-based assessment stage prior to the final
human validation step.

A. Stage 1: Traditional SAST-based Security Analysis

The first stage, represented by the box on the left side
of Fig. illustrates a traditional SAST workflow. In this
stage, the source code is analyzed by a SAST tool, generating
a security report. Each finding in this report highlights
a potential weakness within the code. However, as noted
in prior research, SAST tools typically produce numerous
FPs, necessitating substantial manual effort from security
experts to validate each finding. This significantly reduces
the effectiveness of the security assessment process.

B. Stage 2: Our LLM-based Assessment

To tackle the resource-intensive process of detecting FPs,
we introduce an LLM-based assessment, depicted in the
central box of Fig.[l| For each code fragment, our framework
generates a tailored prompt that includes the pertinent source
code, essential contextual information (such as the CWE-ID
or line of code), and explicit instructions for the LLM to
produce a structured reasoning process. Instead of returning
a simple binary decision, the LLM is instructed to provide
an in-depth reasoning process along with a numerical score
that reflects its degree of agreement with the SAST tool’s
classification. Based on a user-defined threshold, each finding
is then flagged as either a TP (genuine security weakness)
or a FP (secure code wrongly reported by the SAST tool),
resulting in a flagged security report.

C. Stage 3: Human-Based False Positive Elimination

The flagged security report is then provided to security
experts, as illustrated on the right side of Fig. [l Given our
objective to perform a conservative analysis of the report’s
security findings, security experts could then utilize this
flagged report to further analyze findings that were flagged
as TPs. Since the analysis conducted by the LLM is assumed
to be conservative, findings flagged as FPs could be ignored,
which would significantly reduce the resource expenditure
associated with manual security reviews.

D. Datasets

We employed two distinct datasets in our work. First, we
generated a security report using the OWASP Benchmark
(v1.2) [4]], analyzed with SpotBugs using the FindSecBugs
plugin, resulting in 2,015 security findings. This dataset

For each
—/ Reported
Finding

2. Our LLM-based Assessment of Findings

1. Traditional SAST-
based Security Security
Analysis Report
LLM-based
Reassessment
—)
R User Input
Source SAST Tool
Code Analysis
Weakness- Trust
el Threshold

Context

Flag Finding as
True Positive

3. Human-based False
Positive Elimination

True

Valid Flagged
Finding Security Reduced
9 Report S i
: — ecurity
Report
False
— Security
Flag Flndlpg as F} [™ Expert
False Positive Analysis

Fig. 1. Complementary Security Analysis Process

was randomly split into a training subset (80%, 1,557 sam-
ples) and a testing subset (20%, 403 samples—275 TPs
and 128 FPs). Both subsets include findings from eleven
distinct vulnerability categories, each identified by unique
CWE-IDs (e.g., CWE-501: Trust Boundary Violation) [[18].
To demonstrate that our generalized framework not only
improves security analysis on benchmark datasets, which
might implicitly be part of a model’s training data, but
also performs effectively in real-world settings, we created
a second dataset composed of real-world security findings.
This dataset includes findings generated by applying five dif-
ferent SAST tools (Checkov, CodeQL, Semgrep, KICS, and
SpotBugs with the FindSecBugs plugin) to the partly open-
source software project Mnesti developed by XITASO
GmbH. It covers a diverse set of programming languages and
infrastructure file types, including Java, C#, TypeScript, and
Dockerfiles. A panel of three senior security experts, selected
based on their familiarity with static code analysis, manually
assessed 114 security findings (49 TPs and 65 FPs), thereby
establishing a reliable ground truth [18]].

Evaluation: To evaluate our approach, we measure the ef-
fectiveness on different datasets using common classification
metrics. These include the TPR, defined as TPR = TF&%;
the FPR, defined as FPR = %; and Precision, defined
as Precision = 77-55. Regarding RQ1, our primary focus
is on achieving a conservative analysis. To emphasize this
goal, we introduce a weighted F-score defined as: F-score =
%@# with 3 controlling the weight given to recall
over precision. Following the example of Christen, Hand, and
Kirielle, we chose = 2, which emphasizes recall [19]. On
the OWASP Benchmark datasets, these metrics are computed
per vulnerability category and then averaged to avoid bias
from categories with more test cases. In addition, the ratio of
true negatives (TN) and false negatives (FN) of the LLM’s
assessment classification is of special interest to us. A TN
classification result of the LLM’s assessment means the LLM
successfully detected an FP of the SAST tool’s security
report, which should be maximized. FN classifications of the
LLM’s assessment should be minimized, or at best kept at

Uhttps://github.com/mnestix

zero, as it describes cases where a genuine weakness that
was detected by the SAST tool is mistakenly labeled as
secure by the LLM. By integrating these metrics with a robust
prompting strategy across a diverse set of LLMs, our work
aims not only to identify the LLMs that best complement
SAST tools but also to elucidate systematic approaches for
guiding LLM reasoning to optimize the security assessment
process.

IV. EXPERIMENT PREPARATION AND SETUP

Preliminary Study: In our preliminary study we used
GPT-3.5 Turbo on the train split (1,557 samples), to first
compare the importance of different contextual information
generated by the SAST tool and additional CWE-related
information, which we added, identifying the most important
ones for our use case. For a detailed overview of the
used datasets, prompts and procedures of the preliminary
study, refer to [[18]. Contrary to our initial assumptions,
our analysis indicates that the most beneficial contextual
information is those supplied directly by the SAST tool, and
integrating additional (e.g., CWE-related) information did not
produce measurable improvements. The identified contextual
information (produced by SpotBugs) include the weakness
category, CWE-ID, method name, line of code, security risk
type, and the complete source code file where the weakness
was reported [18]]. A plausible explanation could be that the
LLM employed for context comparison (GPT-3.5 Turbo)
may already have internalized the relevant CWE-specific
knowledge during its training, rendering additional CWE data
superfluous. Based on those results, in a second experiment
of our preliminary study, we used the contextual information
identified as most valuable to compare different prompting
techniques, again on the train split (1,577 items) and using
GPT-3.5 Turbo [18]]. Our experiment compared a default
prompt template in 0-shot, 3-shot, and 5-shot settings with a
CoT approach also implemented in a 0-shot, 3-shot, and 5-
shot setting. A performance gap emerged between the 0-shot
and few-shot configurations, with CoT prompting being the
most effective. Further, the 3-shot CoT strategy consistently
matched the performance of 5-shot prompting, while at
the same time requiring approximately 35% fewer prompt

https://github.com/mnestix

<CoT few-shot examples>

Analyze the following potential vulnerability
that was found by the security scanner
"SpotBugs" with the
"FindSecurityBugs"-Plugin in a Java source
code project.

Vulnerability identified by the security

scanner and contextual information:

{context_items}

source code included might be a false

positive classification by the SAST

scanner. Do you agree with the scanner that

this source code contains an actual

vulnerability?

Return a number for your decision ranging from

The

"0.0" to "10.0", where "10.0" means you
absolutely agree with the scanner, "0.0"
means you absolutely do not agree, and any

numpber around "5.0" means that you are not
sure. Think step by step.
Give your answer in the following format:

Explanation: "Let’s think step by step..."
Decision: 0.0 - 10.0
Explanation:

Fig. 2. Chain-of-Thought Prompt Template

tokens [[18]]. For that reason, we decided to continue using
3-shot over 5-shot CoT prompting in this work. Moreover,
we observed that applying 3-shot CoT prompting five times
repeatedly (following the SC approach) further enhanced
performance compared to solely using CoT prompting; how-
ever, this improvement comes at the expense of five times
the resource demands, including quintupled time, cost, and
energy consumption.

Experimental Setup: To evaluate the performance dif-
ferences between proprietary and open-source LLMs, we
conducted experiments employing 3-shot CoT prompting,
leveraging the contextual information identified in our pre-
liminary study. We specifically assessed each LLM’s ability
to accurately detect FPs while maintaining a conservative
analysis on the OWASP Benchmark’s test split comprising
403 test cases. Additionally, we explored whether repeat-
ing 3-shot CoT prompting with SC across five iterations
could further enhance detection accuracy. Finally, to robustly
validate the generalizability and effectiveness of our frame-
work, we evaluated the potential improvement gained from
aggregating results from multiple LLMs that successfully
performed conservative analyses and further used the best-
performing LLMs to assess the security findings of our real-
world dataset.

1) Prompting Strategy: Each SAST finding and its corre-
sponding code snippet are provided as input to the selected
LLM, along with instructions to reason step-by-step about
whether the reported weakness is valid or an FP. Rather than
simply responding with “TP” or “FP,” the LLM is instructed
to (a) present a structured reasoning chain; and (b) conclude
with a numeric score between 0.0 and 10.0, where 0.0
indicates high confidence in an FP, 10.0 indicates high
confidence in a true weakness, and 5. 0 indicates uncertainty.
Fig. |2 presents the prompt template that was crafted during
our preliminary study and is subsequently used throughout

our experiments.

2) LLM Selection and Parameters: To
the generalizability of our prompting
we evaluate a diverse set of open-source and
proprietary LLMs, including GPT-4o0 [20], [21],
Llama 3 (including Meta-Llama-3-*-Instruct
and Llama-3.1-*-Instruct variants) [22],
Gemini-*—Pro [23]], Phi-3-Medium [24], Phi-4 [25],
and a diverse subset of the Qwen model family (including
QOwenl.5-x—-Instructs, Qwen2—-*—-Instructs,
Qwen?2.5-Coder—-x—-Instructs, and Qwen2.5-%-—
Instructs variants) [26]-[29]. This mix covers a very
wide range of LLM sizes, architectures, and training data
scales. To ensure comparability, we operate all LLMs
in this study with a context window of up to 8§,192
tokens, accommodating both the provided code snippets
and the few-shot CoT examples. We primarily rely on
3-shot CoT prompts, paired with an SC mechanism that
regenerates the LLM’s chain of thought using a higher
temperature (temperature=0.7) to ensure robust
exploration of reasoning paths. For the main inference run,
we fix temperature at 0.0 to achieve outputs that
are as deterministic as technically possible, minimizing
randomness in the LLM’s responses. Whenever supported,
we prepend a system message that reads: You are a software
security expert. Your main task is to analyze potential
software vulnerabilities. This system-level instruction further
emphasizes the security analysis context. By standardizing
parameters across all LLMs, we aim for a fair comparison
of how different LLM training procedures respond to our
specific prompting strategy.

assess
strategy,

V. ANALYSIS AND DISCUSSION

Building upon the experimental setup described in Sec-
tion we now present a comprehensive evaluation of the
selected LLMs. The corresponding result files, provided in
JSON format, are publicly accessible, as detailed in [[18].
Specifically, we investigate whether they can conservatively
detect FPs in the OWASP test split, analyze the effectiveness
of their detection capabilities, and explore the extent to which
their predictions can be effectively combined (i.e., ensemble
decision). Subsequently, we examine the performance of our
framework on real-world security findings and provide a
critical outlook on future research directions.

A. Conservative Analysis

To provide an overview of whether the considered LLMs
are capable of performing conservative analysis, Fig. [3]
presents the 3-shot CoT classification results of all evaluated
LLMs at the lowest tested threshold (threshold = 1.0). Eval-
uating the LLM predictions using this user-defined threshold
of 1.0 implies that all security findings classified by an LLM
with a returned score > 1.0 are flagged as vulnerable. Con-
versely, only test cases receiving a decision value below 1.0
(e.g., decision = 0.0) are flagged as FPs. In Fig. [3| the y-axis
represents the proportion of genuine weaknesses missed by
each LLM (FNs), while the x-axis illustrates the proportion

Phi-3 Medium 128k

Qwen 2.5 Coder 7B GPT-40 Qwen 2.5 72B Qwen 2.532B_ Phi-4 Conservative Analysis
0.00 =+ Mrererererencnens_.be.ti.er‘;
® @ [lama 3 8B ® Qwen 2 72B Qwen 2.5 Coder 32B 1
GPT-3.5 Turbo @ Gemini 1.5 Pro 2
S 0011) Qwen 2.5 14B 3
j Qwen 1.5 14B |
2 Qwen 2.5 7B Llama 3 70B @ Qwen 2.5 Coder 14B
5 0027 @Gemini 1.0 Pro
Q
o Qwen 2.5 Coder 3B o Qwen 2 7B
= Qwen 2.5 3B
£ 0.031
<]
oo
) B
T -
£ V) 0.04
=<
Twn ° °
I Qwen 1.5 7B Qwen 1.5 32B
@ 0.05
%]
o
'_
Y
O 0.06
.2
S
© |
23)
0074 ¢
B3 []
{ Llama 3.1 70B
« worse —
0.08 T T T T T T T T T T v v v v v v v v
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
TN Ratio

(Ratio of FPs from SAST tool detected by LLM)

Fig. 3. True Negative and False Negative Ratio of LLM-based Assessments at Threshold = 1 (y-axis inverted)

1 {» Qwen 2.5 Coder 7B _ better -
0.02 (+0.00) i
Q
52 2 L] i 3
= |Phi-3 Medium 128k Phi-4 !
o5& 0.12 (+0.03) 0.59 (+0.12)
S < 3 ° °
[°>J Qwen 2.5 72B Qwen 2.5 32B
l-S;: 0.45 (+0.26) 0.57 (+0.12)
©
= > 44
v =
23
o< |
TS54y
S GPT-40
1 0.59 (+0.50)
6 1 <« worse —]
00 01 02 03 04 05 06 07 08 09
TN Ratio

(Ratio of FPs from SAST tool detected by LLM)

Fig. 4. True Negative Ratio of LLM Assessments across all Thresholds
ensuring a Conservative Analysis (y-axis inverted)

of FPs correctly identified (TNs). Our primary objective is
thus to maximize the detection rate of TN classifications,
while keeping the FNs at zero (conservative analysis). Fig. 3]
indicates that six distinct LLMs are successfully performing
the assessment without producing any FNs at the lowest eval-
uated threshold. These LLMs are GPT—-40, Phi—-4, Qwen
2.5 32B,Qwen 2.5 72B,Phi-3 Medium 128k, and
Qwen 2.5 Coder 7B, recognizable by the green dotted
line at the top. Notably, Phi—4 emerges as the most effective
LLM for conservative analysis at this threshold, accurately
detecting a substantial proportion (approx. 46.1%; 59 out of
128) of all FPs in our dataset. Conversely, although models
like Llama 3.1 70B identify a remarkably high propor-
tion of FPs (approx. 86.7%; 111 out of 128), they do not meet
our criteria for conservative analysis, as they simultaneously
fail to preserve all genuine weaknesses. Thus, with regard

to RQ1, the findings derived from Fig. [3| demonstrate that
it is indeed possible to conservatively eliminate FPs from
SAST tool reports while preserving all genuine weaknesses.
Contrary to our initial expectations, some of the largest LLMs
(particularly certain Llama and Gemini variants) did not
manage to achieve a conservative detection of FPs.

B. Effectiveness of Conservative Analysis

Having established that some LLMs can indeed achieve FP
detection without missing genuine weaknesses, we now opti-
mize the effectiveness of this capability. The y-axis of Fig. [F]
illustrates, for each LLM, the highest decision threshold at
which no FNs occurred (indicating conservative analysis)
in our 3-shot CoT setting. Additionally, the proportion of
FPs each LLM detects (indicated by the TN ratio) while
maintaining a perfect TPR (no FNs) is shown on the x-axis.
The numbers in brackets next to each LLM’s proportion of
TN classifications denote the relative improvement compared
to the lowest evaluated threshold (threshold = 1.0) presented
in Fig. 3] GPT-40 emerged as the superior LLM, achieving
the highest proportion of TNs (approx. 59.4%; 76 out of
128), closely followed by Phi—-4 (approx. 58.6%; 75 out
of 128) and Qwen 2.5 32B (approx. 57.0%; 73 out of
128). It is important to note that achieving a high TN
ratio at lower thresholds is preferable, as LLMs performing
effectively at low thresholds demonstrate greater applicability
in real-world scenarios, where the optimal threshold is not
known in advance. As described in Sec. to further
improve our conservative analysis and overall effectiveness,
we repeated this experiment five times with the three best-
performing LLMs (GPT-40, Phi-4, and Qwen2.5 32B)
and aggregated the results using the SC strategy. Fig. [
visualizes the performance metrics for these LLMs across
nine decision thresholds following the SC approach. We

GPT-40

Phi-4

Qwen2.5 32B Instruct

128
120
110
100 =
= 90 77 80 80 80 81 81 85
3 80
o 7084
g 60
E 50
_5: 40
30
20 "
10 14
0 X m—dem = m— e mmHm— =X Of === Hm==X==X"" ¢ o 0 x-——-x———x———x--*---X---*""?
0 0 0 o0 o o 1 o o 1 1 1 0 0 0 o 1 1 1
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
—8— TN -%- FN —O— Highest TN where FN=0 —-- Possible TNs (128)
100 100 100 100 100 100 99.3 og1 100 100 99.3 99.3 99.3 100 100 100 100 99.3 99.3 99.3 g7 g
100 1 ggq 1001 e—g— 3 241 %04 830 54 1001 &—% ——s 930
90 {, &5 934 96.1 965 967 968 963 68 9 Jofo 96.6 061 964 965 9% Of 00{95.9 96.6 96.8 968 963 964 964 9 =3
’ '6 87.0 87.3 81.4 87. 56.8 869 8/.7 88.0 87.7 8/.9 87.9 882 @570 87.8 87.8 87.6 87.7 87.7 88.1 90.5
801 34853 866 sl 80 ‘8?3/ﬁ g62| 801831
_. 704742 704 704
S
£ 601543 60 1 60
£ 504 50 50 1
g 401 40 4 40 A
30 30 30
20 20 i 20 242 241
2337229 507 198 198 155 oo 12247224224 221 221 1§
10 4 10 1 110 101 13.0)
01 04 0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Threshold Threshold Threshold
—8— TPR* (%) —8— FPR* (%) —&— Precision* (%) —8— F2-Score* (%) * ...calculated per vulnerability category and then averaged

Fig. 5. Self-Consistency (n=5) Results of GPT-40, Phi-4 and Qwen2.5 32B

focus our evaluation on the introduced metrics: TPR, FPR,
Precision, and F5-score (all calculated per vulnerability cat-
egory and then averaged to avoid bias) and the proportion of
TN, representing detected FPs. The performance metrics are
presented in the second row of Fig.[5] along with the absolute
TN and FN counts shown in the first row. There, a white dot
marks the best threshold for each LLM —that is, the highest
decision threshold at which no FNs occurred. For GPT-4o0,
the optimal threshold is 6, yielding a TN count of 80 (62.5%
detected FPs) with zero FNs. Phi-4 achieves its best per-
formance at threshold 2 with 76 TNs (59.4% detected FPs),
while Qwen2.5-32B-Instruct reaches a maximum TN
of 80 (62.5% detected FPs) at threshold 3. Although the
optimal thresholds vary among the LLMs, the results depicted
in Fig. 5] indicate that SC prompting increased conservative
FP detection across all three evaluated LLMs. GPT-40o—
detecting 80 out of 128 FPs—results in a TN proportion of
62.5%; this marks an enhancement of 3.1 percentage points
(+4 TNs). With Qwen2.5-32B-Instruct also detecting
80 out of 128 FPs again resulting in a TN proportion of
62.5% this marks an enhancement of 5.5 percentage points
(+7 TNs). Notably, this high FP detection effectiveness was
attained while conducting a conservative analysis. As shown
in Fig. [the TPR remains at 100%, and both Precision and
weighted Fy-score exhibit robust performance at the optimal
thresholds, reaching up to 96.8% (F»-score) in GPT—40 and
Qwen?2.5-32B-Instruct, and 87.8% for the Precision.
These results underscore the effectiveness of our conservative
FP detection approach via the SC mechanism: not only can a

significant portion of FPs be flagged (up to 62.5%), but this
can be achieved without missing any genuine weaknesses.
This finding addresses RQ2 and confirms that our SC mech-
anism further enhances the FP detection effectiveness in our
framework, with multiple LLMs demonstrating the capability
for effective conservative filtering.

C. Combining Results of Multiple Conservative Analyses

To address RQ3, we further investigated only the top
three performing LLM configurations after applying our SC
approach. We compared their TN classifications, focusing on
uniquely and jointly detected FPs (i.e., how much their FP
detection capabilities overlap). Fig. [6illustrates the overlap of
TN classifications across these LLMs by vulnerability cate-
gories (CWE-IDs), revealing both a substantial common core
and smaller sets of uniquely detected FPs. Crucially, despite
considerable overlap, each LLM identified unique FPs missed
by the others, clearly exemplified by CWE-ID 501 (Trust
Boundary Violation), where no overlap exists among detected
FPs, indicating that the evaluated LLMs do more than merely
replicate one another’s decisions. Given that the LLMs in this
experiment operated at thresholds ensuring conservative anal-
yses, their unique FP detections (TN classifications) could be
aggregated. Merging the LLMs’ TN classifications at these
conservative thresholds increases the overall FP detection rate
without compromising the detection of genuine weaknesses.
GPT-40 and Qwen2.5-32B-Instruct each reached up
to 80 TNs at their optimal threshold. Combining the respec-
tive TN sets of our three best-performing LLMs results in

TNs per LLM

643 A 0003 0003 0003 0003

501 4 000002 000001 000002 000003

90 A 8oo006 8ooo06 8oo006 8oo006

TN Overlaps

0003

000003

800006

FP Overlaps

Classified TN:

CWE-643
CWE-501
CWE-90
CWE-89
CWE-79
CWE-78
CWE-22

Missed FP that
was detected
by another LLM

0003 0003 x1

000004 000005 XXXXX5

Q000000

800006 800006

(e]

=B % T U1 W AN W MRy
~ . G, G, o G B G
o fis. Bs. s, Bie. His. Him. Hm. ...
=1 GGG, OGNGR. OERG. WGMEE. OEOGR. OEEED. EE. ...

Fig. 6. TN Classification Overlaps of Self-Consistency Results

the detection of 102 out of 128 FPs in the dataset, which
corresponds to approximately 78.9% of FPs being detected,
all while maintaining a perfect TPR, with approximate scores
of 98.1% Fj5-score and 91.3% Precision. Thus, addressing
RQ3, the results confirm that the three considered LLMs
have mutually complementary capabilities. While agreeing
on a core set of FPs, their individual classifications yield
additional FPs that collectively raise the effectiveness of
our approach, with combined predictions enhancing the rel-
ative number of detected FPs from 62.5% (GPT-40 and
Qwen2.5-32B-Instruct) up to 78.9% on the OWASP
test split.

D. Conservative Analysis of Real-World Security Findings

To prove that our presented framework is valuable in
a real-world security context, we used the three best-
performing LLMs from our previous analysis (GPT-4o,
Qwen2.5-32B-Instruct, and Phi-4) to assess our
real-world dataset (49 TPs and 65 FPs) using the SC ap-
proach. In contrast to the results observed on the OWASP
Benchmark test split, all LLMs performed best at a thresh-
old of 2. GPT-40 identified 24 out of the 65 FPs but
missed one genuine weakness and therefore did not achieve
a conservative analysis on the real-world dataset. Both
Qwen?2.5-32B-Instruct and Phi-4 successfully per-
formed conservative analyses, with Phi-4 correctly fil-
tering out 33.85% of all FPs (22 out of 65). Moreover,
since Qwen2 .5-32B-Instruct and Phi—-4 each include

thresholds for conservative analyses, the TN outputs from
both LLMs can be combined. This ensemble detects 25 FPs,
representing an overall detection rate of 38.46% across all
FPs, while still preserving every genuine weakness. Although
the achieved FP detection rates are lower than those observed
on the OWASP Benchmark, this discrepancy is expected and
attributable to the increased complexity and heterogeneity
of the real-world dataset. Specifically, our real-world dataset
involved three programming languages, diverse infrastructure
file formats, and five independent SAST tools, contrasting
with the controlled environment of the OWASP Benchmark
where SpotBugs analyzed a Java-only dataset. Nevertheless,
our proposed approach again demonstrated practical applica-
bility by performing a conservative analysis, highlighting its
out-of-the-box effectiveness in a realistic software develop-
ment environment, thereby underscoring its generalizability
and value for real-world security assessments.

E. Threats to Validity and Future Work

Our study has several limitations. First, the LLM perfor-
mance strongly depends on selected prompting techniques
and contextual information. Minor changes in prompts could
significantly alter results. Additionally, most few-shot exam-
ples were Java-specific, potentially limiting generalizability.
Although we addressed LLM nondeterminism (e.g., setting
the temperature to zero), minor variability may persist. The
chosen thresholds also depend on labeled datasets, making it
challenging to guarantee conservative analyses on unlabeled

data. Further, due to the OWASP Benchmark being publicly
available on the internet, we cannot know whether it was
included in an LLM’s training data.

Future work could examine the specific strengths of in-
dividual LLMs across vulnerability categories and further
develop ensemble-based strategies for improved FP detection.
Similar, crafting task-specific prompts (e.g., for vulnerability
categories with high error rates) could positively influence a
models performance. Exploring additional advanced prompt-
ing methods and evaluating fine-tuned LLMs versus general-
purpose models would also provide valuable insights.

VI. CONCLUSION

This study aims to enhance the effectiveness of security
assessments performed with Static Application Security Test-
ing (SAST) tools by drastically reducing manual work. We
propose a generalized approach leveraging Large Language
Models (LLMs) to automatically detect incorrectly reported
weaknesses (false positives, FPs). We present a conservative
analysis strategy, aiming to detect FPs while not missing
genuine weaknesses, significantly saving valuable expert
resources. Our approach utilizes advanced prompting tech-
niques, particularly Chain-of-Thought and Self-Consistency,
without requiring resource-intensive fine-tuning (i.e., increas-
ing efficiency). Evaluations conducted on the OWASP Bench-
mark (v1.2) demonstrated that our best-performing LLMs
(GPT-40 and Qwen2.5-32B-Instruct) conservatively identi-
fied 62.5% of all removable findings, achieving an F5-score
of 96.8% and a Precision of 87.8%, without missing any
genuine weaknesses. Combining reassessment outputs from
multiple LLMs would increase FP detection to approximately
78.9%, with approximate scores of 98.1% Fjh-score and
91.3% Precision. Additionally, we validated our methodology
using a complex, heterogeneous real-world dataset, where
the best-performing LLM (Phi-4) conservatively detected
33.85% of FPs, with combined assessments increasing this
detection to 38.46%.

Ultimately, our methodology complements traditional
SAST tools, significantly reducing human resource demands,
enhancing automation, and establishing a strong baseline
for future LLM-based FP detection in security assessments.
Our results suggest that once an LLM is proven to filter
conservatively, its performance can be enhanced through
threshold optimization, and ensembles of conservatively fil-
tering models will preserve all genuine findings while further
boosting FP detection.

REFERENCES

[1] Z. Guo, T. Tan, S. Liu, X. Liu, W. Lai et al., “Mitigating False Positive
Static Analysis Warnings: Progress, Challenges, and Opportunities,”
IEEE TSE, vol. 49, no. 12, pp. 5154-5188, 2023.

[2] A. S. Ami, K. Moran, D. Poshyvanyk, and A. Nadkarni, ““False
negative - that one is going to kill you”: Understanding industry per-
spectives of static analysis based security testing,” in IEEE Symposium
on Security and Privacy. 1EEE, 2024, pp. 3979-3997.

[3] A. Mgller and M. 1. Schwartzbach, “Static program analysis,” Oc-
tober 2018, department of Computer Science, Aarhus University,
http://cs.au.dk/ amoeller/spa/.

[4] OWASP Foundation, “OWASP Benchmark Project,” 2016. [Online].
Available: https://web.archive.org/web/20240522054757/https:
/lowasp.org/www-project-benchmark/

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]
[26]
[27]
(28]

[29]

U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter, “Learning a
classifier for false positive error reports emitted by static code analysis
tools,” in Ist ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages. ACM, 2017, pp. 35-42.

U. Koc, S. Wei, J. S. Foster, M. Carpuat, and A. A. Porter, “An
Empirical Assessment of Machine Learning Approaches for Triaging
Reports of a Java Static Analysis Tool,” in /2th IEEE Conference on
Software Testing, Validation and Verification (ICST). 1EEE, 2019, pp.
288-299.

C. Thapa, S. L. Jang, M. E. Ahmed, S. Camtepe, J. Pieprzyk, and
S. Nepal, “Transformer-Based Language Models for Software Vul-
nerability Detection,” in Proceedings of the 38th Annual Computer
Security Applications Conference. USA: ACM, 2022, pp. 481-496.
A. Bakhshandeh, A. Keramatfar, A. Norouzi, and M. M.
Chekidehkhoun, “Using ChatGPT as a Static Application Security
Testing Tool,” 2023, arXiv:2308.14434 [cs].

R. I. T. Jensen, V. Tawosi, and S. Alamir, “Software Vulnerability and
Functionality Assessment using LLMs,” 2024, arXiv:2403.08429 [cs].
C. Wen, Y. Cai, B. Zhang, J. Su, Z. Xu et al., “Automatically Inspecting
Thousands of Static Bug Warnings with Large Language Model: How
Far Are We?” ACM Transactions on Knowledge Discovery from Data,
vol. 18, no. 7, pp. 1-34, 2024.

H. Li, Y. Hao, Y. Zhai, and Z. Qian, “Assisting Static Analysis with
Large Language Models: A ChatGPT Experiment,” in 31st ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2023, pp. 2107-2111.
X. Zhou, D.-M. Tran, T. Le-Cong, T. Zhang, I. C. Irsan et al.,
“Comparison of Static Application Security Testing Tools and Large
Language Models for Repo-level Vulnerability Detection,” Jul. 2024,
arXiv:2407.16235 [cs].

K. Tamberg and H. Bahsi, “Harnessing Large Language Mod-
els for Software Vulnerability Detection: A Comprehensive Bench-
marking Study,” IEEE Access, vol. 13, pp. 29698-29717, 2025,
arXiv:2405.15614 [cs].

H. Nori, Y. T. Lee, S. Zhang, D. Carignan, R. Edgar et al., “Can
Generalist Foundation Models Outcompete Special-Purpose Tuning?
Case Study in Medicine,” 2023, arXiv:2311.16452 [cs].

J. Wei, X. Wang, D. Schuurmans, M. Bosma, and B. m. o. Ichter,
“Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models,” 2023, arXiv:2201.11903 [cs].

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
Language Models are Zero-Shot Reasoners,” 2023, arXiv:2205.11916.
X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi er al, “Self-
Consistency Improves Chain of Thought Reasoning in Language
Models,” 2023, arXiv:2203.11171 [cs].

J. Wagner, “Towards efficient complementary security analysis
using large language models,” May 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.15378450

P. Christen, D. J. Hand, and N. Kirielle, “A review of the
f-measure: Its history, properties, criticism, and alternatives,” ACM
Comput. Surv., vol. 56, no. 3, Oct. 2023. [Online]. Available:
https://doi.org/10.1145/3606367

OpenAl, J. Achiam, S. Adler, S. Agarwal, L. Ahmad et al., “GPT-4
Technical Report,” 2024, arXiv:2303.08774 [cs].

OpenAl Team, “Hello GPT-40,” May 2024, Blog Post. [Online].
Available: |https://web.archive.org/web/20240815014626/https:
//lopenai.com/index/hello- gpt-40/

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle et al., “The
Llama 3 Herd of Models,” 2024, arXiv:2407.21783 [cs].

Gemini Team, P. Georgiev, V. L. Lei, R. Burnell, L. Bai et al., “Gemini
1.5: Unlocking multimodal understanding across millions of tokens of
context,” 2024, arXiv:2403.05530 [cs].

M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah et al.,
“Phi-3 Technical Report: A Highly Capable Language Model Locally
on Your Phone,” 2024, arXiv:2404.14219 [cs].

M. Abdin, J. Aneja, H. Behl, S. Bubeck, R. Eldan er al., “Phi-4
Technical Report,” Dec. 2024, arXiv:2412.08905 [cs].

J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang et al., “Qwen Technical Report,”
Sep. 2023, arXiv:2309.16609 [cs].

A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou et al., “Qwen2
Technical Report,” Sep. 2024, arXiv:2407.10671 [cs].

Qwen, A. Yang, B. Yang, B. Zhang, B. Hui et al., “Qwen2.5 Technical
Report,” Jan. 2025, arXiv:2412.15115 [cs].

B. Hui, J. Yang, Z. Cui, J. Yang, D. Liu er al, “Qwen2.5-Coder
Technical Report,” Nov. 2024, arXiv:2409.12186 [cs].

https://web.archive.org/web/20240522054757/https://owasp.org/www-project-benchmark/
https://web.archive.org/web/20240522054757/https://owasp.org/www-project-benchmark/
https://doi.org/10.5281/zenodo.15378450
https://doi.org/10.1145/3606367
https://web.archive.org/web/20240815014626/https://openai.com/index/hello-gpt-4o/
https://web.archive.org/web/20240815014626/https://openai.com/index/hello-gpt-4o/

	Introduction
	Background and Related Work
	Concept
	Stage 1: Traditional SAST-based Security Analysis
	Stage 2: Our LLM-based Assessment
	Stage 3: Human-Based False Positive Elimination
	Datasets

	Experiment Preparation and Setup
	Prompting Strategy
	LLM Selection and Parameters

	Analysis and Discussion
	Conservative Analysis
	Effectiveness of Conservative Analysis
	Combining Results of Multiple Conservative Analyses
	Conservative Analysis of Real-World Security Findings
	Threats to Validity and Future Work

	Conclusion
	References

