
ar
X

iv
:2

50
6.

16
81

2v
1

 [
cs

.C
R

]
 2

0
Ju

n
20

25

Zero-Knowledge Proof-of-Location Protocols for
Vehicle Subsidies and Taxation Compliance⋆

Dan Bogdanov1 , Eduardo Brito1,2 , Annika Jaakson1,2, Peeter Laud1 , and
Raul-Martin Rebane1

1 Cybernetica AS, Tallinn, Estonia
{dan.bogdanov, eduardo.brito, annika.jaakson, peeter.laud,

raul-martin.rebane}@cyber.ee
2 University of Tartu, Tartu, Estonia

This is the extended version of the paper to appear in the Proceedings of the 5th
International Workshop on Security and Privacy in Intelligent Infrastructures
(SP2I 2025), held in conjunction with the 20th International Conference on
Availability, Reliability and Security (ARES 2025).

Abstract. This paper introduces a new set of privacy-preserving mech-
anisms for verifying compliance with location-based policies for vehicle
taxation, or for (electric) vehicle (EV) subsidies, using Zero-Knowledge
Proofs (ZKPs). We present the design and evaluation of a Zero-Knowledge
Proof-of-Location (ZK-PoL) system that ensures a vehicle’s adherence to
territorial driving requirements without disclosing specific location data,
hence maintaining user privacy. Our findings suggest a promising ap-
proach to apply ZK-PoL protocols in large-scale governmental subsidy
or taxation programs.

Keywords: Zero-Knowledge Proofs · Location privacy · Environmental
policy · Tax enforcement.

1 Introduction

In economic policy, taxes and subsidies are key tools to influence markets and the
behaviour of economic agents. Taxes typically make activities more expensive,
while subsidies reduce costs. In environmental policy, they are used to discourage
activities that harm the environment and encourage those that mitigate pollu-
tion. For example, congestion and highway taxes aim to reduce vehicle traffic or
fund infrastructure maintenance, while subsidies for electric vehicles (EVs) seek
to lower costs and increase adoption, reducing emissions from internal combus-
tion engines.

Implementing such schemes often requires collecting vehicle location data,
which can inadvertently compromise individual privacy. Location data can eas-
ily be linked to specific drivers, raising concerns about disproportionate surveil-
lance. Recognizing that privacy and policy enforcement need not be a zero-sum
game, this paper explores novel privacy-preserving approaches to data-driven
⋆ This research has been funded by the Defense Advanced Research Projects Agency (DARPA)

under contract HR0011-20-C-0083. The views, opinions, and/or findings expressed are those of
the author(s) and should not be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

https://orcid.org/0000-0002-9296-9120
https://orcid.org/0009-0002-9996-6333
https://orcid.org/0000-0002-9030-8142
https://arxiv.org/abs/2506.16812v1

2 D. Bogdanov et al.

environmental policy. We are the first to (1) formalize vehicle subsidy and taxa-
tion tasks in ways that align naturally with privacy-enhancing technologies like
zero-knowledge proofs (ZKPs); (2) demonstrate how existing ZKP techniques
can efficiently address these tasks; and (3) analyze practical barriers to deploy-
ment, offering insights into real-world applicability of Zero-Knowledge Proof of
Location (ZK-PoL) protocols.

2 Background

2.1 Location-Based Vehicle Taxes and Subsidies

EV subsidies. Governments started introducing tax rebates and grants to boost
electric vehicle (EV) adoption [46]. Estonia’s 2019 program offered up to 5000€
(pre-tax) [34], with eligibility requiring: 1. driving at least 80,000 km within four
years, 2. completing 80% of that distance in Estonia, and 3. using renewable
energy for the first 80,000 km. The Environmental Investment Centre executed
the program.3 Compliance was monitored through periodic reporting or GPS
tracking via third-party providers.

Road use and emission charges. Vehicles can be taxed via fuel sales or
odometer readings [16], but these methods lack road-specific granularity. Toll
booths, RFID transponders, and camera systems offer precision but require ex-
pensive infrastructure. GPS tracking enables flexible, lower-cost taxation but
raises privacy concerns on data storage and disclosure. Other mechanisms enforce
emission standards, such as London’s Ultra Low Emission Zone (ULEZ) [19].

Balancing verifiability and privacy. Location-based enforcement com-
promises transparency, user control, and unlinkability, effectively imposing a
“privacy price.” Sustainable mobility should not require sacrificing fundamen-
tal privacy rights. Cryptographic tolling schemes [26] and differential privacy
(DP) [27] show promise, but even obfuscated public data can leak patterns [2].
Billing aggregation and external storage also expose users to data sovereignty
risks [26]. This motivates secure computation techniques that generate verifiable
proofs without disclosing raw location data, even in obfuscated form.

2.2 Proof-of-Location and Zero-Knowledge Proofs

Localisation techniques like GPS enable accurate position determination [32] but
do not guarantee trust or verifiability. Proof-of-Location (PoL) extends locali-
sation by authenticating location claims, with applications in smart mobility,
content delivery, financial regulation, and smart cities [10].

PoL combines witnessing and trust [31]: a location proof is a verifiable cer-
tificate attesting a Prover’s presence at a point in space and time, supported
by trusted Witness devices. Solutions combine localisation (e.g., GPS), wire-
less communication (e.g., Bluetooth), and cryptographic primitives (e.g., public-
key cryptography). Foundational system models [10] address basic PoL needs.
Privacy-enhanced PoL can be achieved by layering Zero-Knowledge Proofs (ZKPs).
3 In 2023, the mileage requirements were relaxed to “use the car mostly in Estonia.”

ZK-PoL for Vehicle Subsidies and Taxes 3

ZKPs allow a Prover to convince a Verifier of a statement’s validity with-
out revealing why. Statements are typically modelled as arithmetic circuits or
constraint systems defining a binary relation R, with a public instance x and pri-
vate witness w. A classic example is Schnorr’s protocol [38], where knowledge of
a private key is proven without revealing it. ZKPs ensure completeness (honest
proofs succeed), soundness (cheating Provers fail), and zero-knowledge (protocol
transcripts reveal nothing beyond validity) [42].

For PoL applications, we adopt a centralized architecture [10], where a trusted
Witness device generates signed location claims used in ZK proofs. These claims
are transformed into verifiable proof statements without exposing raw trajecto-
ries [18], enabling Zero-Knowledge Proof-of-Location (ZK-PoL) [49]. Our con-
structions specifically employ new geometric techniques to structure proofs, en-
abling privacy-preserving attestations of extended driving behaviour.

3 Use cases

3.1 Location-based vehicle purchase subsidies

Our first use case for ZK-PoL protocols is proving adherence to location-based
conditions for vehicle purchase subsidies. The vehicle owner acts as the Prover,
and the subsidy authority as the Verifier. The goal is to prove that the vehicle
has driven at least x km over T years, with at least p% of that distance within
specified geographical bounds. For example, from Section 2.1, x = 80 000, T = 4,
and p = 80 within Estonia.

The vehicle is equipped with a trusted GPS device, assumed to be non-
removable and tamper-evident. The device logs coordinates whenever the vehicle
is active, and signs each trail with a private key, with the corresponding public
key known to the Verifier or registered in a trusted PKI. Only the Prover has
access to the raw data, transmitted via a local channel such as Bluetooth. Co-
ordinates are projected into planar x-y values to reduce computational costs in
distance calculations, using accurate projections like EPSG:3301 [33] for Esto-
nian territory.

After T years (or periodically), the Prover generates a ZKP that the driven
distance and coverage criteria are satisfied, without revealing the underlying trip
coordinates. The proof verifies that the computations are based on genuine GPS
data by checking the digital signatures against the known public key. The Prover
can validate proof completeness before submission.

From a security perspective, preventing tampering is crucial. Without safe-
guards, the Prover could remove the device for trips outside the bounds or attach
it to another vehicle to inflate mileage. Reliable calibration is also essential to
ensure trustworthy location data. From a usability perspective, the device must
be sufficiently accurate from the Prover’s standpoint. Underestimations of dis-
tance, or misclassification of trips outside the target area, could cause valid
subsidy claims to fail. Dispute resolution processes for such cases are beyond the
scope of this paper.

4 D. Bogdanov et al.

3.2 Location-based vehicle taxation

Our second use case is proving the amount of road tax that must be paid over
a given period (e.g., month or quarter). The vehicle owner acts as the Prover,
and the tax authority as the Verifier. Given a taxation period T and a network
of toll roads, the Prover must demonstrate their driven distance d on toll roads
during T . The tax owed depends on which distance range (x, y] the mileage falls
into. The Prover’s goal is to prove that their toll-road driving distance satisfies
d ≤ y for a selected bracket, minimizing their tax liability.

The setup mirrors the subsidy case: a trusted, tamper-evident GPS device
is attached to the vehicle, logging and signing location data. At the end of each
taxation period, the Prover generates a ZKP proving their distance falls within
a chosen bracket without revealing trip details, and submits it to the Verifier.
Proof completeness ensures the Prover can select the lowest eligible tax bracket.

Unlike the subsidy case, proof submission is mandatory each period, with
penalties for non-submission. Trust in device attachment and calibration is crit-
ical to prevent fraud, such as detaching the device or leaving it stationary. As
before, device accuracy is essential, though dispute resolution mechanisms are
outside the scope of this paper.

4 System Model

Building on these mobility use cases, we now instantiate the ZK-PoL model,
noting its applicability to other domains such as asset or personnel tracking.
The system model (Figure 1) centres on three components: the Witness device,
the Prover, and the Verifier.

VerifierWitness 
device 

 Prover 
Secure 

Communication 
Channel

Vehicle

Trusts

ZK-PoL 
Protocol

Trusts

Fig. 1: ZK-PoL system model for mobility use cases.

The Witness device is a tamper-resistant or tamper-evident device coupled
to the vehicle. Using its GPS module, it generates raw location claims, and
signs them, without interpreting eligibility rules or computing taxes, allowing it
to remain update-free even if policy changes. Trust is established between the
Witness device and both the Prover and the Verifier, who rely on it to produce
continuous, precise, and verifiable location data.

The Prover is any entity (owner, driver, or custodian) responsible for demon-
strating location compliance. They establish a restricted communication channel
with the Witness device to receive signed location data. Our model is not tied

ZK-PoL for Vehicle Subsidies and Taxes 5

to proximity constraints or specific communication ranges, unlike some related
PoL work identified in Section 2.2. Importantly, proofs are bound to the vehicle’s
identity via the Witness device, not the Prover’s personal identity. The Prover
assembles the proof and manages subsequent interactions with the Verifier, in-
cluding executing the ZKPs.

The Verifier trusts the Witness device’s public key pk , used to sign the lo-
cation claims. The Prover’s proof asserts that a trajectory exists, signed and
verifiable under pk , and satisfies the conditions for subsidy eligibility or applica-
ble tax rates.

5 Zero-Knowledge Protocol Specification

Encoding ZK statements directly into low-level paradigms is difficult and error-
prone, as these systems offer minimal abstraction and require bit-level rea-
soning. Higher-level approaches address this gap, including gadget APIs [24],
DSLs [41,29,1], and general-purpose languages [15]. We use ZK-SecreC [4,5], a
high-level imperative DSL with C++/Rust-like syntax, designed specifically for
ZK proofs. It features an information flow type system [44,30] that separates
Prover-private data and shared data, enforcing confidentiality and enabling effi-
cient local computations. It also distinguishes compile-time and runtime values,
supporting protocols that require relation preprocessing [23]. Local values in-
jected into the proof must pass correctness checks to maintain soundness [39,45].
ZK-SecreC offers a standard library [7] of optimized primitives, including bit op-
erations, fixed-point arithmetic [21,18], and efficient constructions for RAM and
inequality proofs [8,45]. The compiler targets formats like SIEVE IR [11] and
integrates with interactive ZKP systems [3,50] via a Rust trait [28], abstracting
circuit construction through gates, constraints, and inputs.

Estonia

Tallinn

(a) Approximation of Estonia by cir-
cles.

(b) Triangles covering Tallinn–Tartu
road.

Fig. 2: Geographical approximations used for the EV subsidy (left) and highway
tax (right) use cases.

6 D. Bogdanov et al.

5.1 EV subsidy use-case

The ZKP protocol goal in the EV subsidy case is for the Prover to demonstrate,
with a list of coordinate points, that the total trail length exceeds a required
distance, and a required percentage falls within specified geographical bounds.

We use a planar coordinate system to avoid expensive trigonometric opera-
tions. Geographical bounds are approximated by a union of circles (Figure 2a),
which flexibly balances precision and computational cost. The proof data struc-
ture is shown in Figure 3a. Besides the technical parameters, discussed later,
there are the values characterizing the size of the statement. Certain sizes have
to be fixed; the running time of the protocol will depend (only) on these sizes.
To simplify proofs, we assume:

– all coordinates and radii are positive integers,
– the trajectory has at most a known maximum number of points,
– the coordinate list is padded and hashed to hide the actual trail length.

Technical
parameters
● FixedPoint

parameters
● Poseidon

parameters

Subsidy authority’s
data
● Circles
● Maximum number of

vehicle coordinates
● Required total

distance
● Required percentage

in circles

Vehicle owner’s
data
● Vehicle

coordinates
● Hash of vehicle

coordinates

Statement
preparation

Public
● FixedPoint parameters
● Poseidon parameters
● No of circles
● Maximum no of vehicle

coordinates

Instance
● Circles
● Required total

distance
● Required

percentage in
circles

● Hash of vehicle
coordinates

Witness
● Vehicle

coordinates

Statement
extension

Extended instance
● Circles
● Required total distance
● Required percentage in

circles
● Hash of vehicle

coordinates

Extended witness
● Vehicle coordinates,

padded to the maximum
no of vehicle coordinates

(a) EV subsidy use case.

Technical
parameters
● FixedPoint

parameters
● Poseidon

parameters

Tax authority’s data
● Triangles
● Maximum number of

vehicle coordinates
● Maximum allowed

distance outside of
triangles

Vehicle owner’s
data
● Vehicle

coordinates
● Hash of vehicle

coordinates

Statement
preparation

Public
● FixedPoint parameters
● Poseidon parameters
● No of triangles
● Maximum no of

vehicle coordinates

Instance
● Triangles
● Maximum allowed

distance outside
of triangles

● Hash of vehicle
coordinates

Witness
● Vehicle

coordinates

Statement
extension

Extended instance
● Triangles
● Maximum allowed distance

outside of triangles
● Hash of vehicle coordinates

Extended witness
● Vehicle coordinates,

padded to the maximum
no of vehicle coordinates

(b) Highway tax use case.

Fig. 3: Data models for the EV subsidy (left) and highway tax (right) use cases.

We presume that revealing the hash hex of the coordinate trail to the Verifier
does not significantly compromise privacy. This hash, signed by the Witness
device and transmitted via the Prover, binds the ZK proof to the Witness’s
public key, enabling the Verifier to independently verify authenticity in parallel
to proof verification.

Algorithm 1 checks that the coordinate trail satisfies the subsidy conditions,
using a subroutine from Algorithm 2 to determine circle inclusion. In our pseu-
docode, values managed by the ZK protocol are enclosed in double brackets,
while locally managed values are not. Color coding indicates visibility: red for

ZK-PoL for Vehicle Subsidies and Taxes 7

Input: Parameters pp for Poseidon hash function
Input: Centers (ui, vi) and radii ri of circles (1 ≤ i ≤ ncirc)
Input: Required distance dreq and percentage Preq

Input: Coordinates (xi, yi) on the trajectory (1 ≤ i ≤ ntraj)
Input: Expected hash hex of the list of coordinates

1 JtotK← 0, JccK← 0
2 JxK← wire(x), JyK← wire(y)
3 assert(hash(pp, JxK∥JyK) = wire(hex))
4 JuK← wire(u), JvK← wire(v)
5 for i← 1 to ncirc do JsiK← wire(ri

2);
6 Jb_piK← check_inside(JuK, JvK, JsK, Jx1K, Jy1K)
7 for i← 2 to ntraj do
8 Jb_inK← check_inside(JuK, JvK, JsK, JxiK, JyiK)
9 JdiK← sqrt((JxiK− Jxi−1K)2 + (JyiK− Jyi−1K)2)

10 JtotK := JtotK + JdiK
11 JccK := (Jb_piK ∧ Jb_inK) ? (JccK + JdiK) : JccK
12 Jb_piK := Jb_inK
13 assert(wire(dreq) ≤ JtotK)
14 assert(JtotK ∗ wire(Preq) ≤ JccK ∗ 100)

Algorithm 1: Proof for the electric vehicle use-case.

Input: Centers (JuiK, JviK) and squares of radii JsiK of circles (1 ≤ i ≤ ncirc)
Input: Coordinates JxK, JyK of a point
Output: Boolean JbK indicating whether the point is inside at least one of the

circles
1 JbK← false
2 for i← 1 to ncirc do
3 JbK := JbK ∨

(
(JxK− JuiK)2 + (JyK− JviK)2 ≤ JsiK

)
4 return JbK

Algorithm 2: Checking that a point is inside a set of circles: check_inside.

Prover-only, green for shared data, and blue for public constants. Arithmetic
and comparisons on ZK-managed values are realized securely by the underlying
protocol, ensuring that cheating by the Prover is infeasible. Our conventions
extend the notation commonly used for privacy-preserving computations, where
one typically uses square brackets (either single or double) around a variable to
denote that the value of this variable is handled by the cryptographic technology.

Variable types are not made explicit in the pseudocode but are deduced as
follows: variables prefixed with b are booleans, hex is a hash output, pp contains
hash parameters, and the rest are integers. All necessary primitives, including
integer square roots (rounded toward zero), are provided by the ZK-SecreC stan-
dard library [7]. For the use of the square root, see also the discussion in Sec. 5.3.

We use the Poseidon hash function [22], optimized for field operations in ZKP
systems, instead of general-purpose bit-based hashes like SHA-256, which would

8 D. Bogdanov et al.

incur costly bit extraction and manipulation overheads. Poseidon parameters are
precomputed and included as public parameters.

In Algorithm 1, wire marks values as ZK protocol inputs, and assert enforces
conditions during proof execution. If a wire argument is known to both parties,
its value is trusted; if private to the Prover, it requires independent checks within
the proof.

ZK protocols cannot branch on conditions that are also computed under ZK
or depend on private values. Therefore, updating the distance in circles cc is non-
trivial. We implement it using an oblivious choice, a ternary operation b ? x : y
that returns x if b is true and y otherwise. For integers b, x, y with b ∈ {0, 1},
this can be computed as y + b(x− y).

The proof statement structure (see Alg. 1) proceeds as follows. First, the
Prover hashes the coordinate trail (padded with the last point) and asserts that
it matches the expected instance hash. Then, it computes the total trail length
(tot) and the length of segments where both endpoints lie within some circle
(cc). Finally, it asserts:

tot ≥ dreq and cc ≥ tot · Preq

100

If both assertions hold, the coordinate trail satisfies the subsidy rules. To
compute tot and cc (see Alg. 1), we evaluate the Euclidean distance

di =
√
(xi − xi−1)2 + (yi − yi−1)2

for each pair of consecutive points, and check whether both points lie within some
circle (not necessarily the same one). The inclusion check for a point (xi, yi) in
a circle with centre (uj , vj) and radius rj (see Alg. 2) is performed via:

(xi − uj)
2 + (yi − vj)

2 ≤ r2j (1)

This comparison is done for each point and all circles j ∈ {0, . . . , ntraj}, accept-
ing if any match. The values tot and cc are then:

tot =
∑
i∈T

di cc =
∑
i∈S

di

where S ⊂ T includes indices i where both endpoints lie in some circle. Square
roots are required to compute distances but are not needed for inclusion checks,
which use squared distances and the inequality (1), thus saving computation
under ZK.

5.2 Highway tax use-case

The goal of the ZKP statement in the highway tax use-case is to prove that no
more than a specified distance of the Prover’s coordinate trail lies along taxed
roads (see Section 3.2). As in the subsidy use-case, an approximate represen-
tation is required. However, while subsidy proofs aim to show that points are

ZK-PoL for Vehicle Subsidies and Taxes 9

inside a designated area, here the Prover seeks to prove points are outside taxed
roads. Thus, we represent the untaxed region instead by triangulating the area
surrounding the highways. Being outside the taxed roads becomes equivalent to
being inside one of these triangles.

Figure 2b illustrates this for the road between Tallinn and Tartu in Estonia:
the road is marked in pink, and the surrounding area (including all of Estonia)
is shown as gray triangles. A buffer margin around the road accounts for GPS
noise and controls the precision-performance trade-off: tighter margins require
more segments and thus more triangles, increasing proof cost.

The structure of the proof data is shown in Figure 3b. We adopt the same
input constraints as in the EV use-case (Section 5.1), with one additional re-
quirement: all points in the trail must either lie near the highway or within the
public triangulation, i.e., within Estonian territory as depicted in Figure 2b.

Input: Parameters pp for Poseidon hash function
Input: Vertices (Xj,k, Yj,k) of triangles (1 ≤ j ≤ ntri, k ∈ {1, 2, 3})
Input: Maximum allowed on-highway distance dmax

Input: Coordinates (xi, yi) on the trajectory (1 ≤ i ≤ ntraj)
Input: Expected hash hex of the list of coordinates

1 JtotK← 0, JhwK← 0
2 JxK← wire(x), JyK← wire(y)
3 assert(hash(pp, JxK∥JyK) = wire(hex))
4 JXK← wire(X), JY K← wire(Y)
5 for i← 1 to ntraj do
6 JtiK← wire(find_triangle(xi, yi, X, Y))
7 JaiK← lookup(JtiK, JXK) ; // |ai| = 3
8 JbiK← lookup(JtiK, JY K)
9 JciK← check_inside_triangle(JaiK, JbiK, JxiK, JyiK)

10 if i > 1 then
11 JdiK← sqrt((JxiK− Jxi−1K)2 + (JyiK− Jyi−1K)2)
12 JtotK← JtotK + JdiK
13 JhwK← (Jci−1 K ∧ JciK) ? (JhwK + JdiK) : JhwK
14 assert(JtotK− JhwK ≤ wire(dmax))

Algorithm 3: Proof for the highway tax use case.

The pseudocode for the ZKP statement is given in Alg. 3, with a helper rou-
tine in Alg. 4. The conventions follow those in Alg. 1. The statement is more
complex here, as checking triangle inclusion is more involved than for circles. A
significant portion of computation — functions find_triangle and get_bcoords —
is performed locally by the Prover. The results of these local computations are
verified on the circuit, and the details of these computations do not affect the va-
lidity of the proof. The implementation details of find_triangle and get_bcoords
are discussed in App. A.

As in Alg. 1, the ZK protocol begins by inputting the coordinate trail and
asserting that its hash matches the one in the instance. It then computes the

10 D. Bogdanov et al.

Input: Vertices (Ja1K, Jb1K), (Ja2K, Jb2K), (Ja3K, Jb3K) of a triangle
Input: Coordinates JxK, JyK of a point
Output: Boolean indicating whether the point is inside the triangle

1 JAK← ∆area_dbl(Ja1K, Jb1K, Ja2K, Jb2K, Ja2K, Jb3K)
2 (s, t)← get_bcoords(x, y, a1, b1, a2, b2, a3, b3)
3 JsK← wire(s), JtK← wire(t), JuK← JAK− JsK− JtK
4 Jx′K← JuK · Ja1K + JsK · Ja2K + JtK · Ja3K
5 Jy′K← JuK · Jb1K + JsK · Jb2K + JtK · Jb3K
6 assert(Jx′K = JxK · JAK ∧ Jy′K = JyK · JAK)
7 return 0 ≤ JsK ∧ 0 ≤ JtK ∧ 0 ≤ JuK

Algorithm 4: Checking whether a point is inside a triangle:
check_inside_triangle.

total trail length (tot) and the portion inside the triangle set (hw). Finally, it
asserts that tot− hw ≤ dmax. If this check passes, the Prover is deemed to have
driven at most dmax on taxed roads.

Alg. 3 differs from Alg. 1 in the logic of checking whether a point is inside
a region. While in Alg. 1 we simply performed the test for all circles and took
the disjunction of results, in Alg. 3 Prover obliviously picks a triangle and states
that the point belongs to this particular triangle. The triangle-finding function
find_triangle gives the index of that triangle (or an arbitrary index if the point
does not belong to any triangle); this index ti becomes another input to the ZK
protocol. Next, we use the techniques of Oblivious RAM under ZK to locate the
coordinates of the vertices of the chosen triangle; the function lookup gives us
the x- and y-coordinates of this particular triangle. The function lookup can be
implemented in various ways; our implementation (shown in Alg. 5) is based on
expanding ti to its characteristic vector and computing its scalar product with
the vector of coordinates.

To check whether a point (x, y) lies inside a triangle [(a1, b1), (a2, b2), (a3, b3)]
in ZK (Alg. 4), we use its barycentric coordinates4 (s, t, u) with respect to the
triangle’s vertices. We use unnormalized coordinates, where s + t + u = A for
all valid coordinate triples and for some positive constant A. These coordinates
are computed locally by the Prover via get_bcoords, using only local inputs.
The function check_inside_triangle then reconstructs the Cartesian point from
(s, t, u) and asserts that it equals (x, y). It returns true if and only if s, t, u ≥ 0,
meaning the point lies inside or on the boundary of the triangle.

We choose A as twice the area of the triangle [(a1, b1), (a2, b2), (a3, b3)], which
allows (s, t, u) to be computed without division. It is given by

area_dbl(a1, b1, a2, b2, a3, b3) =

∣∣∣∣∣∣det
a1 a2 a3
b1 b2 b3
1 1 1

∣∣∣∣∣∣ (2)

4 https://en.wikipedia.org/wiki/Barycentric_coordinate_system

https://en.wikipedia.org/wiki/Barycentric_coordinate_system

ZK-PoL for Vehicle Subsidies and Taxes 11

Input: Index JtK
Input: Single coordinates of vertices of triangles JXj,kK (1 ≤ j ≤ ntri,

k ∈ {1, 2, 3})
Output: Single coordinates JakK of the selected triangle (k ∈ {1, 2, 3})

1 JsK← 0
2 for i← 1 to ntri do
3 if i = t then xi ← 1 else xi ← 0;
4 JxiK← wire(xi)
5 assert(JxiK = 0 ∨ JxiK = 1)
6 JsK := JsK + JxiK
7 assert(JsK = 1)
8 Ja1K← 0, Ja2K← 0, Ja3K← 0
9 for i← 1 to ntri do

10 for k ← 1 to 3 do JakK := JakK + JxiK · JXi,kK;
11 return Ja1K, Ja2K, Ja3K

Algorithm 5: Looking up the coordinates of vertices: lookup.

5.3 Possible optimizations

Several checks in our protocols can be optimized based on the Prover’s goals. For
instance, Alg. 3 allows a relaxed behavior: when locating the triangle containing
a point (xi, yi), any incorrect index selection only disadvantages the Prover. If
check_inside_triangle fails, the point is counted as outside, increasing the taxable
distance. In both Alg. 1 and 3, the distance di between consecutive points is
computed by ensuring

d2i ≤ (xi − xi−1)
2 + (yi − yi−1)

2 < (di + 1)2,

Here, di is input by the Prover, and the ZK protocol checks the inequalities. De-
pending on the application, one of the checks may be omitted to reduce circuit
size: in the highway tax use-case, where minimizing distance is the goal, only
the upper bound matters; in the subsidy use-case, where demonstrating suffi-
cient travel distance is important, only the lower bound is essential. If subsidy
eligibility depended solely on distance inside circles, omitting the upper bound
check would also be valid.

5.4 Security and Privacy Analysis

We summarize how our protocols fulfil key security and privacy requirements,
while maintaining core cryptographic properties. A formal proof sketch is pro-
vided in App. B. Soundness, completeness, and zero-knowledge are guaranteed
by:

– Correct cryptographic implementation of the underlying ZKP back-ends
(e.g., emp-zk [47], Diet Mac’n’Cheese [20]),

– Correctness of the proof algorithms (Alg. 1–5),

12 D. Bogdanov et al.

– Enforcement of information flow and visibility policies by the ZK-SecreC
type system [4, Thm. 3–5],

– Secure linkage of location data via the tamper-evident Witness device.

ZK-SecreC enables high-level construction of ZKPs while enforcing data vis-
ibility and input validation policies, critical to preserving privacy guarantees.
The compiled circuits target interactive ZK backends, such as emp-zk and Diet
Mac’n’Cheese, where proof generation proceeds through multiple rounds of com-
munication rather than producing a single static proof artifact. Correctness at
both the high-level and back-end levels is essential, as errors—e.g., in fixed-point
arithmetic or unchecked values—could undermine soundness or zero-knowledge.

Our trust model assumes that the Witness device securely signs location data,
and that raw GPS trails remain private to the Prover. The Verifier learns only
whether compliance conditions are met, via privacy-preserving proofs. Unlike
conventional systems (see Section 2) that expose full location logs or odome-
ter readings, our approach preserves data and computational sovereignty while
revealing no more than necessary. Compared to methods like differential pri-
vacy (DP) or secure multi-party computation (MPC), ZKPs enable individual
compliance proofs without coordination [6] or statistical leakage [26].

6 Performance Evaluation

We prototyped both use cases to assess whether their performance with current
ZKP technology is acceptable for real-world deployment. We used a Raspberry Pi
3B/4 with an embedded GPS module in place of the Witness device (in an actual
deployment, this device should be tamper-resistant). The device contained a
private signing key corresponding to a known public key. It captured coordinates
every 30 seconds, consistent with commercial fleet tracking standards [43]. Test
input sizes (200, 3600, and 43,800 points) correspond to typical single trips,
monthly, and yearly driving durations [40].

In the EV subsidy use case, we approximated Estonia’s territory with 5 cir-
cles; in the highway-tax use case, the area along a 179 km highway (Tallinn–Tartu)
was modelled using 248 triangles, achieving a maximal deviation of 50 meters
from the real road. The number of shapes depends on the geographic area and
tolerated error.

The Raspberry Pi sent signed location data over a secure Bluetooth connec-
tion to a Prover device. A native app handled Bluetooth configuration, loaded a
WebAssembly-based executable via WebView, and executed the ZKP protocol
with a remote Verifier server. Figure 4a shows the real-world prototype setup.
Outside the browser, we tested emp-zk [47] and Diet Mac’n’Cheese (MnC) [20]
back-ends, though comparisons are slightly biased due to better MnC integra-
tion. Emp-zk tests were run locally (0 ms delay). MnC tests were run under three
network conditions: Fast (10 ms, 300 Mbit/s), Medium (80 ms, 100 Mbit/s), and
Slow (200 ms, 10 Mbit/s). Verifiers used a SuperServer 6028R-TR (2×Intel Xeon
E5-2640 v3, 128GB RAM), while Provers included a Lenovo ThinkPad T14s Gen
1 (Ryzen 7 PRO 4750U), a Google Pixel 5a, and a Raspberry Pi Compute Module

ZK-PoL for Vehicle Subsidies and Taxes 13

4. Details appear in Table 1. Due to differing protocol parameters, performance
sensitivity to latency varies across devices.

We also evaluated how performance scales with the number of circles or tri-
angles. Using single-trip input size, we varied the number of shapes and observed
runtime trends (Figure 4b). For this test, the PC Prover ran both Prover and
Verifier roles without network delay, isolating computational complexity. Results
confirm a linear dependency on the number of shapes. For large shape counts, the
highway-tax algorithm (Alg. 3) outperforms the EV subsidy algorithm (Alg. 1)
in point-in-shape checking, due to use-case-specific optimizations. These trends
are expected to hold for longer vehicle trajectories due to the linear complexity
of the underlying algorithms (Section 5).

Prover

Witness 
Device

Remote Connection 
To THE VERIFIER

Secure 
Bluetooth 
Connection

GPS

(a) Prototype setup: Android phone
(Prover) and Raspberry Pi (Wit-
ness) connected via Bluetooth.

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

250

300

350
Ru

nt
im

e
(s

)

0 200 400 600 800 1000 1200 1400

Runtime dependency
Highway Tax (Triangles)
Electric Vehicle (Circles)

(b) Runtime vs. number of circles (EV) or tri-
angles (Highway Tax) for area approximation.

Fig. 4: (a) Real-world prototype; (b) Local runtime performance.

7 Discussion

Recent advances in ZKP technology enable integration with identity systems [17].
Our prototype using ZK-SecreC tooling shows that identifiers, hashes, and ECDSA
signatures can be incorporated with vehicle, driver, and GPS records. Fraud and
anomaly detection could also be addressed with limited disclosure techniques as
in MPC [6]. While ZKPs provide strong privacy and integrity guarantees, in-
tegration must include secure logging without exposing sensitive data. With
successful deployments in voting and cryptocurrency, we anticipate commercial-
grade ZK-PoL systems within 3–5 years, contingent on investment.

Hardware requirements include a tamper-evident GPS module securely cou-
pled to the vehicle, capable of signing trip data and distinguishing between nor-
mal driving and transport scenarios. Existing commercial devices partially meet
these needs, typically offering sealed enclosures, secure key storage, or tamper
alerts. While we assume the device cannot be undetectably removed or spoofed,

14 D. Bogdanov et al.

Pi 4 (F) Pi 4 (M) Pi 4 (S) Phone (F) Phone (M) Phone (S)
EV trip 12.01 (0.15) 17.49 (0.09) 29.67 (0.20) 13.60 (0.15) 21.02 (0.44) 32.84 (0.07)
EV month 47.28 (0.33) 54.12 (0.20) 69.61 (0.44) 127.88 (0.88) 151.92 (2.49) 189.2 (1.90)
EV year 1229.03 (17.07) 1275.28 (15.18) 1309.39 (21.75) 1724 (16.43) 2078 (26.74) 2371 (27.93)
HW trip 25.57 (0.15) 31.52 (0.21) 45.72 (0.58) 36.44 (0.25) 43.98 (0.35) 54.33 (0.49)
HW month 323.55 (4.96) 336.82 (2.44) 387.70 (4.92) 369.39 (1.44) 388.72 (5.88) 403.26 (6.08)
HW year - - - - - -

PC (F) PC (M) PC (S) PC (emp)
EV trip 6.48 (1.49) 15.51 (1.49) 40.13 (0.80) 17.47
EV month 21.04 (2.17) 29.36 (4.59) 55.47 (1.64) 172.60
EV year 143.88 (4.40) 184.22 (8.76) 245.90 (5.00) 2131.36
HW trip 11.88 (2.07) 18.55 (2.18) 48.59 (1.00) 24.47
HW month 81.79 (2.11) 127.69 (8.28) 193.87 (12.34) 293.70
HW year 1052.06 (13.79) 1576.40 (97.22) 2226.76 (88.04) 3565.91

Table 1: Average performance (seconds) and standard deviation over 10 runs. For
MnC, the prover was a Raspberry Pi 4, Phone, or PC under Fast (F), Medium
(M), or Slow (S) networks. For emp-zk, the prover was a PC with a Fast network.

this trust anchor remains a key deployment consideration, and additional safe-
guards—such as secure mounting or periodic verification—may be required in
practice. Offloading ZKP computation to the module could improve usability
but raises complexity. Our benchmarks (Section 6) indicate that annual proofs
(43,800 points) require roughly 36 minutes (EV subsidy) or 59 minutes (high-
way taxation), though proofs can be batched. These runtimes are tolerable for
infrequent proofs and can be amortized over idle or charging periods. Further
reductions are expected from future work on non-interactive back-ends, rollups,
and hardware acceleration.

ZK-PoL protocols meet emerging public sector needs for transparent subsidy
distribution [25] and help private entities prepare for regulatory shifts. A viable
ecosystem will require coordination among service providers, vendors, and in-
stallers, plus interoperability standards to prevent fragmentation. By preserving
user privacy and control [37], ZK-PoL offers a critical advantage as regulations
evolve. Although proof generation demands user participation and computation
time, these barriers could be mitigated by proof offloading, user-friendly apps,
and back-end optimizations. Practical deployments will also need to address
policy robustness, trust anchor management, and graceful failure handling.

8 Conclusion and Future Work

This paper presented the prototyping of privacy-preserving mechanisms for vehi-
cle subsidy and taxation compliance, making three main contributions. First, we
formalized subsidy and taxation proof tasks in a way that remains close to soci-
etal intuitions while being compatible with ZKPs. Second, we demonstrated that
existing ZK techniques can efficiently address these tasks. Finally, we analysed
the steps and barriers toward practical deployment.

ZK-PoL for Vehicle Subsidies and Taxes 15

We introduced and evaluated ZK-PoL protocols that verify compliance claims
while preserving detailed location privacy. Beyond mobility, similar protocols
could secure high-value asset tracking in supply chains [31], monitor smart city
infrastructure [9], verify attendance at events [36], and authenticate autonomous
systems’ locations in industrial settings [48]. Applications in insurance are also
promising, enabling verifiable incentives for low-risk driving and supporting
usage-based models [14].

Large-scale adoption will require overcoming infrastructure, scalability, and
interoperability challenges. Addressing these issues is critical for integrating ZK-
PoL systems into the evolving landscape of smart mobility and privacy-aware
digital services.

References

1. Cosku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi.
Viaduct: an extensible, optimizing compiler for secure distributed programs. In
Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
Virtual Event, Canada, June 20-25, 20211, pages 740–755. ACM, 2021.

2. Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel.
Why privacy-preserving protocols are sometimes not enough: A case study of the
brisbane toll collection infrastructure. Proceedings on Privacy Enhancing Tech-
nologies, 2024(1), 2024.

3. Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl.
Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic circuits with
nested disjunctions. In Tal Malkin and Chris Peikert, editors, Advances in Cryptol-
ogy - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part IV, volume 12828 of
Lecture Notes in Computer Science, pages 92–122. Springer, 2021.

4. Dan Bogdanov, Joosep Jääger, Peeter Laud, Härmel Nestra, Martin Pettai, Jaak
Randmets, Raul-Martin Rebane, Ville Sokk, Kert Tali, and Sandhra-Mirella
Valdma. ZK-SecreC: a Domain-Specific Language for Zero-Knowledge Proofs.
In 37th IEEE Computer Security Foundations Symposium, CSF 2024, Enschede,
Netherlands, July 8-12, 2024, pages 372–387. IEEE, 2024.

5. Dan Bogdanov, Joosep Jääger, Peeter Laud, Härmel Nestra, Martin Pettai, Jaak
Randmets, Ville Sokk, Kert Tali, and Sandhra-Mirella Valdma. ZK-SecreC: a
domain-specific language for zero knowledge proofs. CoRR, abs/2203.15448, 2022.

6. Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How the estonian tax
and customs board evaluated a tax fraud detection system based on secure multi-
party computation. In Rainer Böhme and Tatsuaki Okamoto, editors, Financial
Cryptography and Data Security, pages 227–234, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

7. Dan Bogdanov, Joosep Jääger, Peeter Laud, Härmel Nestra, Martin Pettai, Jaak
Randmets, Raul-Martin Rebane, and Ville Sokk. Zk-secrec compiler. https://
github.com/zk-secrec/compiler, 2024.

8. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller.
Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Program Execution.
In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology -

https://github.com/zk-secrec/compiler
https://github.com/zk-secrec/compiler

16 D. Bogdanov et al.

ASIACRYPT 2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6,
2018, Proceedings, Part I, volume 11272 of Lecture Notes in Computer Science,
pages 595–626. Springer, 2018.

9. Lorenz Bornholdt, Julian Reher, and Volker Skwarek. Proof-of-location: A method
for securing sensor-data-communication in a byzantine fault tolerant way. In Mobile
Communication-Technologies and Applications; 24. ITG-Symposium, pages 1–6.
VDE, 2019.

10. Eduardo Brito, Amnir Hadachi, Liina Kamm, and Ulrich Norbisrath. Decentralized
Proof-of-Location systems for trust, scalability, and privacy in digital societies.
Scientific Reports, 15(1):1–20, 2025.

11. Paul Bunn, David Darais, Daniel Genkin, Steve Lu, Kimberlee Model, Tarik Riv-
iere, Muthuramakrishnan Venkitasubramaniam, Xiao Wang, Steven Eker, Karim
Eldefrawy, Stéphane Graham-Lengrand, Vitor Pereira, Hadas Zeilberger, Michael
Adjedj, Daniel Benarroch Guenun, Eran Tromer, Aurélien Nicolas, Constance Be-
guier, and Mayank Varia. SIEVE Intermediate Representation. https://github.
com/sieve-zk/ir, 2022.

12. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145. IEEE Com-
puter Society, 2001.

13. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kil-
ian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Pro-
ceedings, volume 2139 of Lecture Notes in Computer Science, pages 19–40. Springer,
2001.

14. Tanguy Catlin, Xueqi Chang, Doug McElhaney, and Dimitris Paterakis.
Connected revolution: The future of us auto insurance, 2023. McKin-
sey & Company, https://www.mckinsey.com/industries/financial-services/
our-insights/connected-revolution-the-future-of-us-auto-insurance.

15. Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015, pages 253–270. IEEE Computer Society, 2015.

16. Liisa Ecola, Paul Sorensen, Martin Wachs, Max Donath, Lee Munnich, and Betty
Serian. Moving Toward Vehicle Miles of Travel Fees to Replace Fuel Taxes Assess-
ing the Path Forward, 2011. Rand Corporation, https://www.rand.org/pubs/
research_briefs/RB9576/index1.html.

17. Jens Ernstberger, Stefanos Chaliasos, Liyi Zhou, Philipp Jovanovic, and Arthur
Gervais. Do you need a zero knowledge proof? Cryptology ePrint Archive, 2024.

18. Jens Ernstberger, Chengru Zhang, Luca Ciprian, Philipp Jovanovic, and Sebastian
Steinhorst. Zero-knowledge location privacy via accurate floating-point snarks,
2024.

19. Transport for London. Ultra Low Emission Zone., 2023.
20. Galois, Inc. swanky: A suite of rust libraries for secure computation, 2024. https:

//github.com/GaloisInc/swanky.
21. Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mah-

moody, Guru-Vamsi Policharla, and Mingyuan Wang. Experimenting with zero-
knowledge proofs of training. In Weizhi Meng, Christian Damsgaard Jensen, Cas

https://github.com/sieve-zk/ir
https://github.com/sieve-zk/ir
https://www.mckinsey.com/industries/financial-services/our-insights/connected-revolution-the-future-of-us-auto-insurance
https://www.mckinsey.com/industries/financial-services/our-insights/connected-revolution-the-future-of-us-auto-insurance
https://www.rand.org/pubs/research_briefs/RB9576/index1.html
https://www.rand.org/pubs/research_briefs/RB9576/index1.html
https://github.com/GaloisInc/swanky
https://github.com/GaloisInc/swanky

ZK-PoL for Vehicle Subsidies and Taxes 17

Cremers, and Engin Kirda, editors, Proceedings of the 2023 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2023, Copenhagen, Den-
mark, November 26-30, 2023, pages 1880–1894. ACM, 2023.

22. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for {Zero-Knowledge} proof
systems. In 30th USENIX Security Symposium (USENIX Security 21), pages 519–
535, 2021.

23. Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 305–326. Springer, 2016.

24. Iden3. The circom Language, 2021. https://docs.circom.io/circom-language/
signals/.

25. IEA. Global ev outlook 2021, paris, 2021.
26. Amirhossein Adavoudi Jolfaei, Abdelwahab Boualouache, Andy Rupp, Stefan

Schiffner, and Thomas Engel. A survey on privacy-preserving electronic toll col-
lection schemes for intelligent transportation systems. IEEE transactions on intel-
ligent transportation systems, 24(9):8945–8962, 2023.

27. Jong Wook Kim, Kennedy Edemacu, Jong Seon Kim, Yon Dohn Chung, and
Beakcheol Jang. A survey of differential privacy-based techniques and their appli-
cability to location-based services. Computers & Security, 111:102464, 2021.

28. Steve Klabnik and Carol Nichols. The Rust Programming Language, chapter 10.2
Traits: Defining Shared Behavior. No Starch Press, 2nd edition, 2022.

29. Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A Frame-
work for Efficient Verifiable Computation. In 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA, pages 944–961. IEEE Computer Society, 2018.

30. Andrew C. Myers. Jflow: Practical mostly-static information flow control. In
Andrew W. Appel and Alex Aiken, editors, POPL ’99, Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, TX, USA, January 20-22, 1999, pages 228–241. ACM, 1999.

31. Bulat Nasrulin, Muhammad Muzammal, and Qiang Qu. A robust spatio-temporal
verification protocol for blockchain. In Web Information Systems Engineering–
WISE 2018: 19th International Conference, Dubai, United Arab Emirates, Novem-
ber 12-15, 2018, Proceedings, Part I 19, pages 52–67. Springer International Pub-
lishing, 2018.

32. Huthaifa Obeidat, Wafa Shuaieb, Omar Obeidat, and Raed Abd-Alhameed. A re-
view of indoor localization techniques and wireless technologies. Wireless Personal
Communications, 119:289–327, 2021.

33. Republic of Estonia Land Board. L-est coordinate system, 2019.
34. Estonian Ministry of the Environment. Conditions and procedure for electric vehi-

cle purchase subsidies. Entered into force on December 16th, 2019. (in Estonian),
2019.

35. Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In 2001 IEEE Symposium on
Security and Privacy, Oakland, California, USA May 14-16, 2001, pages 184–200.
IEEE Computer Society, 2001.

36. Evangelos Pournaras. Proof of witness presence: Blockchain consensus for aug-
mented democracy in smart cities. Journal of Parallel and Distributed Computing,
145:160–175, 2020.

https://docs.circom.io/circom-language/signals/
https://docs.circom.io/circom-language/signals/

18 D. Bogdanov et al.

37. General Data Protection Regulation. Art. 22 gdpr. automated individual decision-
making, including profiling. Intersoft Consulting, https://gdpr-info. eu/art-22-
gdpr, 2020.

38. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of Lecture Notes in Computer Science, pages 239–
252. Springer, 1989.

39. Srinath T. V. Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J.
Blumberg, and Michael Walfish. Taking Proof-Based Verified Computation a Few
Steps Closer to Practicality. In Tadayoshi Kohno, editor, Proceedings of the 21th
USENIX Security Symposium, Bellevue, WA, USA, August 8-10, 2012, pages 253–
268. USENIX Association, 2012.

40. R. Steinbach and B.C. Tefft. American driving survey: 2022 (research brief). Tech-
nical report, AAA Foundation for Traffic Safety, Washington, D.C., 2023.

41. Gordon Stewart, Samuel Merten, and Logan Leland. Snårkl: Somewhat Practical,
Pretty Much Declarative Verifiable Computing in Haskell. In Francesco Calimeri,
Kevin W. Hamlen, and Nicola Leone, editors, Practical Aspects of Declarative Lan-
guages - 20th International Symposium, PADL 2018, Los Angeles, CA, USA, Jan-
uary 8-9, 2018, Proceedings, volume 10702 of Lecture Notes in Computer Science,
pages 36–52. Springer, 2018.

42. Justin Thaler. Proofs, arguments, and zero-knowledge (draft manuscript). https:
//people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html, 2023.

43. Verizon. Verizon connect near-real time gps fleet tracking, 2020.
44. Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system

for secure flow analysis. J. Comput. Secur., 4(2/3):167–188, 1996.
45. Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and

Michael Walfish. Efficient RAM and control flow in verifiable outsourced com-
putation. In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2015. The Internet Soci-
ety, 2015.

46. Sandra Wappelhorst, Dale Hall, Mike Nicholas, and Nic Lutsey. Analyzing policies
to grow the electric vehicle market in european cities. International Council on
Clean Transportation, 2020.

47. Chenkai Weng and Xiao Wang. emp-zk — efficient and interactive zero-knowledge
proofs, 2023. https://github.com/emp-toolkit/emp-zk.

48. Evan W Wu, Marius Jurt, Ben Holden, and Yichao Jin. Proof of location veri-
fication towards trustworthy collaborative multi-vendor robotic systems. In 2024
IEEE International Conference on Industrial Technology (ICIT), pages 1–8. IEEE,
2024.

49. Wei Wu, Erwu Liu, Xinglin Gong, and Rui Wang. Blockchain based zero-knowledge
proof of location in iot. In ICC 2020-2020 IEEE International Conference on
Communications (ICC), pages 1–7. IEEE, 2020.

50. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. Quicksilver: Efficient
and affordable zero-knowledge proofs for circuits and polynomials over any field. In
Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, Republic of Korea, November 15 - 19, 2021, pages 2986–3001. ACM, 2021.

https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://github.com/emp-toolkit/emp-zk

ZK-PoL for Vehicle Subsidies and Taxes 19

A Additional algorithms in the Highway Tax use-case

We collect here the specifications of local computations by the Prover. The first
of them, given in Alg. 6 determines whether a point is inside a triangle. One
possible way to check this is to compute the area of the given triangle, and also
compute the areas of three triangles that are formed by the given point and
two vertices of the given triangle. If the given point is inside the given triangle,
then these three triangles exactly cover the given triangle. If the given point is
outside, then they also cover the given triangle, but also cover some area outside
the triangle.

Input: Coordinates of a point (x, y)
Input: Vertices (Xj,k, Yj,k) of triangles (1 ≤ j ≤ ntri, k ∈ {1, 2, 3})
Output: Index t of the first triangle containing (x, y), or 1 if none

1 for i← 1 to ntri do
2 a← ∆area_dbl(Xi,1, Yi,1, Xi,2, Yi,2, Xi,3, Yi,3)
3 b← ∆area_dbl(Xi,1, Yi,1, Xi,2, Yi,2, x, y)
4 c← ∆area_dbl(Xi,1, Yi,1, x, y,Xi,3, Yi,3)
5 d← ∆area_dbl(x, y,Xi,2, Yi,2, Xi,3, Yi,3)
6 if a = b+ c+ d then
7 t← i
8 return t

9 return 1

Algorithm 6: Finding the triangle: find_triangle

The second local computation is that of get_bcoords, converting Cartesian
coordinates to unnormalized barycentric coordinates (summing up to twice of
the area of the triangle). The computation in Alg. 7 makes use of published
formulas5 for conversion. In order to make sure that we get positive coordinates
for points inside the triangle, we need to know the sign of the determinant in
(2). We thus define

∆area_dbl_sgn(a1, b1, a2, b2, a3, b3) = det

a1 a2 a3
b1 b2 b3
1 1 1

 .

B Extended Security and Privacy Analysis

We can present the security proof of our system in the universal composability
(UC) [12] framework (actually, our treatment is closer to the equivalent reactive
5 https://en.wikipedia.org/wiki/Barycentric_coordinate_system#Vertex_
approach

https://en.wikipedia.org/wiki/Barycentric_coordinate_system#Vertex_approach
https://en.wikipedia.org/wiki/Barycentric_coordinate_system#Vertex_approach

20 D. Bogdanov et al.

Input: Coordinates of a point (x, y)
Input: Coordinates of the vertices of a triangle: (a1, b1), (a2, b2), (a3, b3)
Output: Unnormalized barycentric coordinates (s, t) of the given point with

respect to the given triangle
1 area ← ∆area_dbl_sgn(a1, b1, a2, b2, a3, b3)
2 sgn← if area ≥ 0 then 1 else −1;
3 s← sgn ∗ (b1 · a3 − a1 · b3 + (b3 − b1) · x+ (a1 − a3) · y)
4 t← sgn ∗ (a1 · b2 − b1 · a2 + (b1 − b2) · x+ (a2 − a1) · y)
5 return (s, t)

Algorithm 7: Barycentric coordinates of a point in a triangle:
get_bcoords

simulatability framework [35]). We can abstract the system model presented in
Sec. 4 as an ideal functionality, with clear interfaces for both the environment
(a.k.a. “the rest of the system”) and for the adversary. We can then show that
the real system, consisting of the Witness device, the Prover, and the Verifier,
all running the cryptographic technologies discussed in Sec. 5, is a secure imple-
mentation of this ideal functionality.

B.1 Interface for the environment

Our system conceptually consists of three components — the Witness device,
the Prover, and the Verifier —, which react to the stimuli from the environment.
Both the real system and the ideal functionality offer the same interface towards
the environment. Logically, the interface is split into three parts, corresponding
to the components. The environment can give the following “stimuli” (i.e. com-
mands) to the real system or the ideal functionality, and receive the following
replies:

– At the beginning of the execution, the Witness device may receive the com-
mand (init, sid) from the environment. Here sid is the “session identifier”
that is used to tie together any other commands / messages that the system
or functionality may exchange in response to this command.

– During the execution, the Witness device may receive commands of the form
(move, sid , (x, y)), where (x, y) are the current coordinates into which the
environment has presumably moved the Witness device.

– At some point during the execution, the Prover may receive (prove, sid ,AD),
while the Verifier also receives (verify, sid ,AD). These commands indicate
that the system is now supposed to check whether the coordinate trace sat-
isfies some policy, a part of which is given by the authority’s data AD . The
input AD (which must be the same for the Prover and the Verifier) cor-
responds to Verifier’s inputs to Alg. 1 and Alg. 3. Note the use of sid to
indicate which request to prove and request to verify correspond to each
other. In response to these commands, the environment receives (ok, sid) or
(not_ok, sid) from both the Prover and the Verifier.

ZK-PoL for Vehicle Subsidies and Taxes 21

B.2 Ideal functionality

Our ideal functionality I is parametrized with a relation R corresponding to the
policy that the trajectory of the system has to satisfy. The arguments of R are
the list of coordinates S and the authority’s data AD . Our ideal functionality is
also parametrized with the hash function H used in Alg. 1 and Alg. 3.

The ideal functionality offers the described interface to the environment and
another one to the adversary. It keeps the list of coordinates S as its internal
state. The ideal functionality works as follows:

– At the beginning of the execution, it may receive (corrupt_prover) or (corrupt_verifier)
(but not both) from the adversary. If it receives them, I records that either
Prover or Verifier has been corrupted.

– On input (init, sid) from the environment over Witness device’s interface, I
initializes the sequence of coordinates S to the empty sequence.

– On input (move, sid , (x, y)) from the environment over Witness device’s in-
terface, I appends the coordinates (x, y) to the sequence of coordinates S.

These steps are straightforward. The handling of the proof request is more com-
plicated, because the output depends not only on the policy R and the list of
coordinates S, but also on authority’s data AD , whether the same AD was in-
put to the Prover and the Verifier, and, in case the Prover or the Verifier is
corrupted, also on the choices of the adversary. Thus, on input (prove, sid ,ADP)
from the environment to the Prover, and (verify, sid ,ADV) to the Verifier, I
works as follows:

– Initialize resP ← 1 and resV ← 1
– Send H(S), ADP , and ADV to the adversary.
– If Prover is corrupted, then also send S to the adversary.
– If R(S,ADP) = 0, then put resP := 0.
– If ADP ̸= ADV , or if R(S,ADV) = 0, then put resV := 0.
– If Prover is corrupted, then send (output, sid , resP) to the adversary, and

receive back (update, sid , b). Update resP := b.
– If Verifier is corrupted, then send (output, sid , resV) to the adversary, and

receive back (update, sid , b). Update resV := b.
– If resP = 0, then send (not_ok, sid) to the environment over Prover’s connec-

tion to the environment, otherwise send (ok, sid) over Prover’s connection.
– If Prover is corrupted, then wait for (proceed, sid) from the adversary.
– If resV = 1, then send (ok, sid) to the environment over Verifier’s connection

to the environment, otherwise send (not_ok, sid) over Prover’s connection.

We see that there are some values that I does not attempt to keep private. We
have discussed previously that we consider the leak of H(S) acceptable. We also
see that the adversary determines, what a corrupt Prover or Verifier returns to
the environment; this design choice is a standard one. Finally, we see that if S
does not satisfy the policy, then there is no way for an uncorrupted Verifier to
return ok.

22 D. Bogdanov et al.

B.3 Real system

The real system consists of (the Turing machines realizing the steps of) the
Witness device, the Prover and the Verifier. All machines are parametrized with
the hash function H. The Prover and the Verifier are also parametrized with the
relation R.

The Prover and the Verifier implement the ZKP protocol for the relation R.
In order to compartmentalize it, we make use of the composability properties
of the UC framework. Namely, we introduce a fourth machine FR

ZK to the real
system. This machine is an ideal functionality modelling a zero-knowledge pro-
tocol for the relation R. The functionality is defined in [4, Fig. 11], specialized
from the functionality given in [13]. It accepts inputs (prove!, sid , x, w) from the
Prover machine and (prove?, sid , x′) from the verifier machine, and sends back
(proven, sid) to the Verifier machine if R(x,w) holds, x = x′, and the adversary
allows it to proceed. Given the description of R as an arithmetic circuit, there
are a number of protocols that provide a secure implementation of FR

ZK. These
secure implementations consist of a prover machine for ZKP, and a verifier ma-
chine for ZKP; in the actual deployment, these machines would be a part of our
Prover and Verifier.

Witness device The Witness device maintains the list of coordinates S. It
works as follows:
– On input (init, sid) from the environment, generates a key pair (pk , sk) for

signing. Sends (witpk, sid , pk) to the Prover and the Verifier. Initializes the
sequence of coordinates S to the empty sequence.

– On input (move, sid , (x, y)) from the environment, appends the coordinates
(x, y) to the sequence of coordinates S.

– On input (getcoords, sid) from the Prover machine, sends (coords, sid ,S, σ)
back to the Prover machine, where σ = sigsk (H(S)).

We see that the description of the Witness device very much matches our system
model in Sec. 4.

Prover machine The Prover machine gets the list of coordinates from the
Witness device, and uses them to present a ZKP of policy satisfaction to the
Verifier (making use of FR

ZK). It works as follows:
– On input (witpk, sid , pk) from the Witness device, store pk .
– On input (prove, sid ,ADP) from the environment, send (getcoords, sid) to

the witness device, and expect back (coords, sid ,S, σ). Verify the signature
σ on H(S) using the public key pk , and check whether R(S,ADP) holds.
If not, send (not_ok, sid) to the environment. If yes, send (sig, sid , H(S), σ)
to the verifier machine, and (prove!, sid , (ADP , H(S)),S) to FR

ZK.

The adversary may corrupt the Prover machine by sending it the (corrupt)-
command at the beginning of the execution. In this case, the Prover machine
sends ADP , S and σ also to the adversary. Also, the adversary controls, what
the Prover machine sends to the Verifier, to FR

ZK, and to the environment.

ZK-PoL for Vehicle Subsidies and Taxes 23

Verifier machine The Verifier machine accepts the proof from the Prover
machine (via FR

ZK) It works as follows:

– On input (witpk, sid , pk) from the witness device, store pk .
– On input (verify, sid ,ADV) from the environment, expect (sig, sid , h, σ) also

from the Prover machine. Verify σ on h, using the public key pk . If it
did not verify, send (not_ok, sid) to the environment. If it verified, then
send (prove?, sid , (ADV , h)) to FR

ZK. On input (proven, sid) from FR
ZK, send

(ok, sid) to the environment.

Verifier machine may be corrupted. In this case, the adversary controls what the
verifier machine sends to FR

ZK and to the environment. Also in this case, the
Verifier machine sends ADV and h to the adversary.

B.4 Simulators

The goal of this section is to show that the real system is at least as secure as
the ideal functionality. We have to show that for any environment Z connecting
to the interface described in Sec. B.1 of the real system, and for any adversary A
connecting to the adversarial interface of both the real system and the environ-
ment Z, there exists an adversary S connecting to the adversarial interface of
both the ideal functionality I and the environment Z, such that the environment
Z cannot distinguish whether it is executing together with the real system and
A, or with the ideal functionality and S.

Given A, we construct S as the composition Sim∥A, where Sim is an inter-
active Turing machine. In the rest of this section, we give the description of Sim
and argue that it indeed makes Sim∥A a suitable adversary S. Note that the
machine Sim basically has two interfaces:

– At one side, it is able to connect to the interface that I offers to the adversary.
– At the other side, it must provide the same interface to A that is provided

by the real system.

In order to show that the simulator Sim turns any A to a suitable S, we have
to show that the real system is indistinguishable to the composition of the ideal
functionality and the simulator. This indistinguishability must be for a distin-
guisher that connects to both the interface for the environment (Sec. B.1), as
well as to the interface for A provided by the real system.

The simulator “simulates” the executions of uncorrupted parties, perhaps
with less inputs than the actual parties would have. If neither the Prover nor
the Verifier have been corrupted, then the construction of the simulator is trivial.
In this case, the simulator receives H(S), ADP and ADV from I. It does not
have to send any messages itself, except for notifying A that a ZK proof is
currently running by FR

ZK.
If either the Prover or the Verifier has been corrupted, then the simulator has

to construct the messages that the corrupted party would send to the adversary
A. Also, the simulator has to be able to handle the messages that the corrupted

24 D. Bogdanov et al.

party sends out; these messages have been constructed by A. When A sends out
the corruption request, the simulator forwards it to I. The following simulation
depends on which party was corrupted. As the request comes out at the beginning
of the execution, we can split the construction of the simulator to two parts.

Simulator for corrupted Verifier During the initialization, the simulator
generates a public-private key pair (pk , sk). Sends (witpk, sid , pk) to the adver-
sary (as Witness device sending a message to the Verifier).

During proving, simulator gets ADP , ADV and the hash h (and sid) from the
ideal functionality. Signs h using sk , obtaining σ. Also gets the value resV from
the ideal functionality. Sends (sig, sid , h, σ) to the adversary (as Prover sending a
message to the Verifier). Gets back (prove?, sid , (ADV , h)) as a message from the
Verifier to FR

ZK. If the the value h differs from its previous value, or if ADV differs
from ADP received previously, then Sim sets resV := 0. Sends (update, sid , resV)
to the ideal functionality.

We see that if the corrupted Verifier (controlled by the adversary) follows the
protocol, submitting h and ADV to the ZK proof system, then the output that
the environment receives from the Verifier is the same with both the real system
and with the ideal functionality, depending on the values S and ADP that the
environment submits through Prover’s interface. If the corrupt Verifier changes
the values it gives to FR

ZK, then the output to the environment will be not_ok.

Simulator for corrupted Prover During the initialization, the simulator gen-
erates a public-private key pair (pk , sk). Sends (witpk, sid , pk) to the adversary
(as Witness device sending a message to the Prover).

During proving, Sim gets S, ADP , and ADV from the ideal functionality
I. Computes σ on S, using sk . Receives (getcoords, sid) from the adversary (as
Prover sending a message to the Witness device). Sends (coords, sid ,S, σ) back.
Will again get these values from the adversary (as Prover submitting its inputs to
FR

ZK). Will also get the value b that the adversary A wants the Prover machine to
return to the environment. Sends it to the ideal functionality as (update, sid , b).
If the adversary has sent a different ADP to FR

ZK, or it has changed S, then do
not send (proceed, sid) to the ideal functionality.

The difference of the real system, and the composition of the ideal function-
ality and simulator is the following. In the real system, FR

ZK is used to evaluate
S and authority’s data. This evaluation is done by executing R on these data,
and the hash function and the signature are used to protect the integrity of the
witness that goes into FR

ZK. In the ideal system, the ideal functionality will eval-
uate the policy on S and AD ; the integrity of S holds by default because it is
not moved around before policy evaluation. Hence we have to argue that R is a
correct implementation of the policy. We also have to argue that the probability
of using different S in the real system and in the composition of the ideal system
and the simulator simulator, is negligible.

ZK-PoL for Vehicle Subsidies and Taxes 25

We have argued that R is a correct implementation of the policy in Sec. 5.1
and in Sec. 5.2. Also, changing S in the real system requires the adversary to
either forge the signature or find a different pre-image of the hash function.

	Zero-Knowledge Proof-of-Location Protocols for Vehicle Subsidies and Taxation Compliance

