arXiv:2506.16626v1 [cs.CR] 19 Jun 2025

Few-Shot Learning-Based Cyber Incident Detection
with Augmented Context Intelligence

Fei Zuo*, Junghwan Rhee*, Yung Ryn Choe’, Chenglong Fu?, Xianshan Qu*
*University of Central Oklahoma, tSandia National Laboratories, iUniversity of North Carolina at Charlotte
{fzuo, jrhee2, xqul} @uco.edu, yrchoe@sandia.gov, chenglong.fu@uncc.edu

Abstract—In recent years, the adoption of cloud services has
been expanding at an unprecedented rate. As more and more
organizations migrate or deploy their businesses to the cloud, a
multitude of related cybersecurity incidents such as data breaches
are on the rise. Many inherent attributes of cloud environments,
for example, data sharing, remote access, dynamicity and scal-
ability, pose significant challenges for the protection of cloud
security. Even worse, cyber threats are becoming increasingly
sophisticated and covert. Attack methods, such as Advanced
Persistent Threats (APTs), are continually developed to bypass
traditional security measures. Among the emerging technologies
for robust threat detection, system provenance analysis is being
considered as a promising mechanism, thus attracting widespread
attention in the field of incident response. This paper proposes a
new few-shot learning-based attack detection with improved data
context intelligence. We collect operating system behavior data of
cloud systems during realistic attacks and leverage an innovative
semiotics extraction method to describe system events. Inspired
by the advances in semantic analysis, which is a fruitful area
focused on understanding natural languages in computational
linguistics, we further convert the anomaly detection problem into
a similarity comparison problem. Comprehensive experiments
show that the proposed approach is able to generalize over
unseen attacks and make accurate predictions, even if the incident
detection models are trained with very limited samples.

Index Terms—Incident Detection, Anomaly Detection, Cyber
Threat, Cloud Security, Few-Shot Learning.

I. INTRODUCTION

Cybersecurity incidents are emerging incessantly nation-
wide. Commercial organizations, government bodies, and even
educational institutions can all be potential targets for cyber-
attacks. For example, an investigation [1] conducted on 550
organizations revealed that 83% of them had more than one
data breach, and the cost of a data breach averaged USD 4.35
million. Furthermore, over the recent years, a noteworthy trend
has been the sharp increase in the number of attacks on cloud
environments per organization, “which shot up by 48% in 2022
compared with 2021 [2]. Even worse, cloud environments
are demonstrably vulnerable to Advanced Persistent Threats
(APTs), which can be covert over a prolonged period of time
but difficult to defend. Therefore, in this paper, we focus on
threat detection towards cloud incidents.

In the arsenal of threat detection, system provenance anal-
ysis is believed to possess great potential in detecting cy-
ber threats because system-level data can not only represent
complex dependencies within a system, which is crucial for
understanding potential threats, but also correlate with attack
scenarios, providing a valuable historical context that helps in

predicting and preventing future attacks. The two interrelated
system entities, along with the operation between them, collec-
tively constitute an event, which is a basic unit in provenance
data for tracking and recording system-level behaviors. We
thus extract events from a provenance graph and regard them
as informative features for describing the characteristics of a
cyber incident.

More specifically, in an event, the entity that issues an
operation is modeled as a subject, while the other entity that
passively undergoes an operation is modeled and referred to
as an object. Inspired by this, we analogize the semantic
description of an event to a sentence in linguistics. To this
end, we particularly develop a semiotics extraction method to
capture the event’s semantics with enriched expressivity. Then,
we further adopt the embedding method in Natural Language
Processing (NLP) to generate a numeric representation for
every event’s description, which will lay a solid foundation
for the subsequent threat detection.

Furthermore, we notice that with the tremendous success
of machine learning in the recent decade, leveraging related
advancements to assist and automate system provenance anal-
ysis has become more of a need than an option. Industry
statistics show that in practical incident response applications,
fully deployed Al-driven systems “were able to identify and
contain a breach 28 days faster than those that didn’t, saving
USD 3.05 million in costs” for the organizations [1].

It is generally acknowledged that training high-quality ma-
chine learning models typically requires massive amounts
of data. However, well-labeled large datasets are usually a
precious or even scarce resource in the field of cybersecurity.
One widely seen challenge in collecting cyber incident data
is that the actually expected distribution of samples is not
balanced because system events in practical scenarios are
mostly benign. Even worse, this imbalance is quite likely to
result in a high false positive rate, which would be less useful
for many security-sensitive tasks. Not surprisingly, researchers
consider existing threat detection methods “may not be robust
enough to distinguish malicious behavior from benign ones
accurately” [3]. Thus, what we are looking for is a more
effective threat detection technique towards realistic incidents
in cloud environments, which can cope with not only various
known attacks but also previously unseen ones.

In the field of machine learning, Few-Shot Learning (FSL)
aims at enabling models to generalize over unseen data and
make accurate predictions, even if they are trained with very
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Fig. 1: A provenance graph example (CVE-2021-41773 case).

limited samples. In light of the great progress in FSL, we
convert anomaly detection within the context of incident
response into a semantic comparison problem. Our intuition
is that normal and attack behaviors can be mapped to two
different clusters in a certain feature space. The FSL-based
neural network model is thus used as a kernel function, which
maps the data points from the original space to a feature space
where the intra-cluster distance is relatively larger than the
inter-cluster distance. Based on a well-trained model, we are
able to predict whether a previously unseen behavior is an
attack or not, by comparing it with a known case.

Following the aforementioned pipeline, we develop a cy-
ber threat detection system for incident response. First, we
adopt an innovative semiotic extraction method, which can
accurately capture the key semantics of system call-based
program behaviors. To generalize cyber threat intelligence over
unseen attacks, we present a new few-shot learning technique
applied to provenance data, which converts an anomaly detec-
tion problem into a similarity comparison problem. We have
explored a systematic strategy to address security threats in
an increasingly challenging cloud environment. To this end,
realistic cyber-attacks on cloud applications are investigated in
this work. At last, wee empirically demonstrated that few-shot
learning is applicable to operating system behavior datasets.
The comprehensive experiments show that our proposed ap-
proach is capable of generalizing over previously unseen
attacks and making accurate classifications, even if there exist
very limited training samples in each attack scenario.

II. BACKGROUND

In incident response research and practice, provenance data
reflects activities at the level of system entities, which offers
great potential for tracking the dependencies across system
events and further exposing attack sequences. System-level
provenance can usually be recorded in the form of graphs,
where vertices and edges represent entities and the operations
amongst entities respectively.

Figure 1 shows a provenance graph example that exposes an
attack scenario in an Apache HTTP server. Upon a connection
from the network with an accept system call, a worker
process of the web server (httpd) is invoked. Then due to the
exploit code from an attack, this server allows the shellcode
which invokes the 1s process that lists files as a demonstration
of arbitrary command execution.

The system entities refer to the components within a system
responsible for producing, modifying, or processing informa-

tion and resources. Examples of entities include processes,
files, and network objects, which are indicated by orange, blue,
and green nodes in Figure 1, respectively. For various operat-
ing systems, similar types of entities can be found. Therefore,
we can apply a similar approach to different operating systems.

The operations between two system entities are described
using a system call, which is a lower-level service interface
invoked by software to use the privileged services or resources
provided by the kernel. For instance, process operations can
include execve, fork and clone system calls. Besides,
open, close, read, and write system calls are examples
of file operations. Lastly, operations such as connect and
accept system calls are invoked by network activities.

When taking both operations and the entities that issue such
operations into consideration, all these elements come together
to form an event. Moreover, multiple events can manifest
causality dependency if there exist direct or indirect data and
control flows across them. Provenance data is often represented
as a graph because graphs can intuitively depict dependencies
between events or their chronological order. However, consid-
ering that hackers launch multi-stage attacks, extracting attack-
relevant events from a vast number of system events over a
long time span and linking them is non-trivial. As a result, the
generated provenance graph often contains significant noise,
posing challenges for threat detection. Therefore, it should be
noted that the proposed approach focuses on system events
in provenance data.

III. PROBLEM DEFINITION AND BASIC ASSUMPTIONS
A. Problem Statement and Objectives

In the operating system of a cloud environment, the target
that we are interested in monitoring is processes. A process p
is an executing instance of a program A. The behavior of a
process in the system is recorded in the form of provenance
data consisting of a large number of events. Given a new
process instance p of A, our aim is to infer whether it
implicitly involves a malicious attack by analyzing its prove-
nance data. In particular, our research objective is to seek an
effective threat detection technique for realistic incidents in
cloud, which can handle previously unseen attacks. Intuitively,
capturing and modeling the behaviors of each program by
a provenance graph seems feasible, but challenges still lie
ahead of us. In practice, we need to address the following
two challenges.

Challenge 1: Representativeness and Generalizability.
In modern computer systems, the programs that might be
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Fig. 2: System overview.

used are diverse. Exhaustively enumerating every possible
program and empirically constructing provenance graphs to
indicate the presence or absence of malicious attacks requires
domain expertise and substantial human effort. In addition,
cloud environments are complex and dynamic. For the same
program, provenance graphs from a similar workload may
look identical, but if the input workloads differ, the resulting
provenance graphs may also differ. Therefore, it is uncer-
tain whether stereotype provenance graphs established based
on experience or limited simulations can cover all possible
scenarios. Finally, malicious attacks can also be mixed and
hidden in normal operations. Therefore, attackers can generate
a complex provenance graph by adding a large number of
normal events, attempting to obscure the malicious events
within. As a result, treating the graph as a whole for anomaly
detection becomes undesirable.

To address this challenge, we decompose a provenance
graph into events, which is a basic unit for recording system-
level behaviors. The benefits of this approach are evident.
Different APT attacks in a cloud environment share common-
alities at the level of system calls. Therefore, malicious events
captured in one attack scenario can be generalized to other
unseen attack scenarios. Again, from the attack example of
Apache HTTP server (Figure 1), we observed that remote shell
execution is issued by httpd, indicating exploitation. How-
ever, these events should not occur when normal workloads
are input. On top of that, the object of examination is no
longer the entire graph, but individual events. Hence, methods
that use normal operations to obscure malicious attacks at the
graph level are no longer effective. After using appropriate
embedding methods, benign events form clusters in the high-
dimensional feature space, which are distinct from the clusters
formed by adversarial events.

Challenge 2: Feature Preparation for Anomaly Detec-
tion. The performance of traditional machine learning methods
heavily relies on feature engineering, where domain knowl-
edge plays a significant role in creating and selecting features
from raw data. Moreover, current powerful system provenance
data recorders, e.g., Sysdig and Auditd, are able to provide
abundant fields to describe an event, for instance, but not
limited to timestamps, system call names, process IDs (PIDs),
file names, IP addresses, port numbers, and user IDs (UIDs),
etc. Therefore, which features to select and how to evaluate
the impact of each feature on the performance of anomaly

detection in different attack scenarios depend on expertise
and manual effort. Not only that, many fields in provenance
data are descriptive text and therefore unstructured, such as
file paths or process names. These unstructured data can be
further divided into two categories. The first category consists
of meaningful entities that correspond to specific tasks in the
system. The other category consists of non-representative en-
tities that are temporarily generated during intermediate steps,
such as temporary files. Obviously, we need to design different
response strategies for these two categories of entities. To sum
up, how to prepare input features to represent system events
for anomaly detection models is non-trivial.

To address this challenge, we view a system event as a
sentence in natural language. The nodes and edges in a graph
correspond to the subject, predicate, object, or complement
of a sentence, which describes a system-level behavior. Fur-
thermore, we can project a sentence to a numerical vector in
the feature space using those advanced neural networks-based
embedding methods. A key advantage of neural networks
is their ability to learn directly from the raw data with
minimal need for feature engineering. Relying on the em-
bedding method for accurate semantic capture, in the feature
space, sentences with similar semantics have closer vector
representations, while different sentences are farther apart.
For example, “java execve sh” is supposed to possess a
numerical vector representation approximating that of “httpd
execve sh”. As a result, we are able to develop distance-
based classifiers as our anomaly detection models.

B. Threat Model and Assumptions

Our threat model has several assumptions on adversary
activities of our interest. First, we assume the security attack
involves the change of the operating system calls as behavior
to use system resources or services. While it is possible to
make trivial attacks without involving system calls, they would
have very limited impact because most serious impacts such
as privilege changes, files, network activities seen in privilege
escalation and data leak require system calls. The attacks
without any system calls are hence out of focus.

Second, adversaries may use software exploits to cause
compromise of software and subsequent damages. However,
we assume the integrity of the security event recorder so
that the system calls of the adversary events can be properly
recorded. Similar to event detection and response (EDR)



TABLE I: Types of system calls used for semiotics.

Event type System call names

Process events
File events
Network events

fork, vfork,
open, close,
listen, connect, and variants

clone,

exec,
read, write, unlink, dup,

kill, and variants

rename, chmod, and variants

solutions, the recorded events are remotely transferred and the
integrity of the OS kernel and the data recorder are assumed
to be protected.

IV. METHODOLOGY

In this section, we propose a new cyber threat intelligence
framework for the analysis and detection of cloud incidents.
Figure 2 shows the overview of our proposed approach, which
consists of three major components, i.e., semiotics extraction,
embedding generation, and similarity comparison.

A. Key Insights

Our proposed methods are motivated by several key insights
on the provenance data collected from realistic cloud incidents.

Program behavior can be abstracted into text. Programs
utilize common OS interfaces that have a uniform format.
Hence, we can standardize the description of program behavior
into generic sentences.

Insight 1: We embed system event details as natural lan-
guage sentences that are composed of subject entities (i.e.,
programs), the type of operations acted by the subject entities
as a predicate (e.g., system calls), and object entities that are
the target of the operations by the subject entities. The object
component includes @ processes, @ files, and @ network
entities (e.g., IP addresses).

Certain process events lack sufficient details. Certain sys-
tem events may have limited context of behavior because of the
way software handles code. One example is interpreters such
as bash, python, and java. These programs rely on common
software binaries even though the actual software code differs.
Such differences in program code are not determined from
the main executable names (i.e., interpreters’ names) because
they are provided as parameters to them. Our insight was that
assisting the model in such lacking contexts can drastically
improve the performance of machine learning based solutions.

Insight 2: In linguistics, an object complement is a gram-
matical construction that provides additional information about
a direct object in a sentence. Drawing an analogy to this,
we improved the system events description by supplementing
extra information such as process executable names.

Non-representative files are widespread. Operating sys-
tems use a lot of “temporarily generated” information, which
is used in intermediate steps. Such information is generally
not important, as it is eventually deleted after a certain period
or upon reboot, and it can introduce unnecessary complexity
into the machine learning process. These files can be identified
due to specific locations or naming schemes.

Insight 3: We leveraged multiple patterns to recognize
and normalize non-representative files. In addition, we use an

algorithm to detect hash-like names based on a high diversity
of file names.

B. Semiotics Extraction

We use operating system calls for our behavior modeling.
While our experiment is mainly focused on Linux, our method
is general and the same mechanism can be applied to other
operating systems which also have system calls as seen in
related work [4]-[7].

1) Program behavior abstraction: Table I shows a list of
system calls collected, extracted, and used in our work. Process
events include process creation system calls such as fork,
vfork, and clone and the exec system call that replaces the
program image inside a process is also used. kill system
calls are used to terminate processes. File events refer to
file behavior such as file creation, file deletion, file open,
file close, file read, file write, rename, duplication etc. For
instance, open, close, read, write are common examples.
In Unix-like operating systems, almost everything is accessible
as a file. Therefore, most system behavior can be tracked by
utilizing file activities. Over the years, operating systems have
added support for variant system calls. One example is the
xat system calls (e.g., openat) which enable file operations
relative to the referred directory descriptor in a parameter.
Another example is px system calls (e.g., popen) which are
used to operate a process with a pipe. We only list the major
system calls here. Their variants are available depending on
the versions of the Linux kernels. Network events for both the
client side (e.g., connect) and the server side (e.g., listen)

are considered.

Modeling system events as sentences. A system call is
always executed on behalf of a particular process, which serves
as the identity of that particular system call action. Hence, we
model a system event in the following triplet form, that is
composed of a Subject (a process initiating a system call),
Predicate (a system call type), and Object (a target upon
which the system call is applied). For instance, in the example
below, we have two system event descriptions where the ps
program operates on the stat file.

(Subject) (Predicate) (Object)
ps open stat
Ps close stat

Data enhancement for certain program types. In Unix-
like operating systems, a program identity is determined by an
executable loaded by the exec system call. While this method
works for most programs, there are exceptions where program
executables are not representative.

1) Interpreter-based scripting shells: Shells with script-

ing capabilities use the script interpreter as the main
executable. For example, Linux shells (e.g., bash, csh,



zsh) use the main script file as the first parameter
allowing it to be used together with the executable file
to represent the program.

2) Software platforms using interpreters: Multiple soft-
ware languages use interpretation for code execution.
Well known examples include Python, Perl, Ruby, and
JavaScript. Programs falling into this category will be
recognized by its interpreter executable name and the
script file name.

3) Single software-based' virtual machines: Virtual ma-
chines execute an executable after obtaining the code
file as one of the command-line parameters. For instance,
Java, Scala, and Kot 1in use the Java Virtual Machine
(JVM) to run their executable files.

These cases commonly describe the program’s identity as one
of the parameters referring to the program file. Consequently,
we handled such cases by appending the program file param-
eter to the behavior description sentence, which is analogical

to an object complement in a natural language sentence.

New modeling of system events as sentences. Based on
the initial modeling introduced earlier, we further improve it
with the following new ideas in this work. The new augmented
sentence format thus obtained is

(Subject)
(Object)

(Predicate) (Subject complement)
(Object complement)

This new sentence format is grounded in multiple aforemen-
tioned insights. The “Subject complement” and “Object
complement” are two newly added optional components.

o Subject complement: The data enhancement for shells,
interpreters, and single-software based virtual machines
are supported with supplemental parameters of program
execution. Such information is listed as one of the sub-
ject complement after applying multiple normalization
techniques. Plus, we simplify the program arguments by
removing flags and normalizing hash-like values.

¢ Object complement: We applied normalization to the
object of each system event as shown in Algorithm 1 (See
Section IV-B2). It uses multiple normalization techniques
including hash detection to reduce the diversity of tokens
that are not likely to be reused.

More concretely, we present several examples demonstrat-

ing how this augmented semantic information improves system
event representations.

# (Subject): java
# (Predicate): clone

# (Subject complement): executable parameter

extension = java 8983 /opt/solr/server/logs
start.jar

# (Object): <NA>

BEFORE: java clone <NA>

AFTER: java clone Jjava 8983 /opt/solr/server/logs

start.jar <NA>

Listing 1: Example 1 of augmented system event expression.

I'We used the term, “single software-based” virtual machine to differentiate
it from the virtual machines that execute an OS such as virtualbox.

Listing 1 shows the first example, where the augmented
subject complement adds new information to the process
context. The initial sentence (BEFORE) only had the program
name (java), the system call name clone, and invalid target,
<NA>, indicating that object information is not used for this
type of system call (clone). The new format (AFTER) shows
that, ffter filtering out the option fields starting with ‘-, several
command-line parameters are listed, and the main Java JAR
file, start. jar, appears.

(Subject) : dockerd
(Predicate) : openat
(Object) : .tmp-config.v2.json07205514

(Object complement) :
.tmp-config.v2.json072055514 -> <TMP>

He H W 4

BEFORE: dockerd openat .tmp-config.v2.json07205514
AFTER: dockerd openat <TMP>

Listing 2: Example 2 of augmented system event expression.

As shown in Listing 2, the second example illustrates the
normalization process. The original form (BEFORE) included
a temporary file name, .tmp-config.v2.json07205514,
which is not likely to be reused and thus is not helpful for
subsequent machine learning task. The new format (AFTER)
shows that the Docker daemon (dockerd) opens a temporary
file that is normalized to <TMP>.

2) Data normalization of non-representative data: Model-
ing raw data requires careful arrangement of the data because it
is well-known that non-representative (e.g., volatile noise that
may not be used twice) can cause undesired side effects to
machine learning performance. For example, the exact names
are not likely to appear in the test run. The resulting out-of-
vocabulary issue often causes language models to misunder-
stand or misinterpret the meaning of the input. Therefore, these
identifiers are better to be normalized for our machine-learning
tasks. To this end, we propose to use several mechanisms
based on reasonable assumptions. We recognize such files and
replace them using a constant label such as <TMP>, <PIPE>,
or <HASH> depending on categories. Algorithm 1 specifically
demonstrates our processing strategy.

Normalization of non-representative files based on op-
erating system knowledge: One assumption is that we can
utilize well-known knowledge about operating systems. For
instance, most operating systems have well-known common
directory locations used by kernels (e.g., /bin, /tmp) as
described in operating manuals. Certain directories in UNIX
variants such as /run/, /dev/ and /proc/ are all utilized to
contain operating system internal states such as devices, and
a list of program processes. Such states have high volatility
or randomness that may cause out-of-vocabulary issues in ma-
chine learning approaches. Thus, the files in such directories
are normalized by replacing them with <TMP>. Any file used
for a pipe (in Unix everything is a file) is generalized as
<PIPE> as well. For brand-new operating systems where pre-
knowledge is incomplete, this knowledge can be easily figured
out by a system administrator with a one-time effort.



Algorithm 1 An algorithm for normalization of a token

Require: token ¢, and IsHighvVarietyCharacterName(t)
1: if ¢ is in the directories reserved for temporary files or has
the . tmp extension then
return <TMP>
3: end if
4: if ¢ is in the OS internal state directories such as /run/,
/dev/, or /proc/ directory then
S: return <TMP>
6: end if
7: if ¢ is a pipe then
8
9

»

: return <PIPE>
. end if
10: if ¢ is a hash-like identifier then
11: return <HASH>
12: end if
13: return ¢

Normalization of temporary files: Temporary files are
generated by programs or operating systems for short-term use.
They are another source of non-representative data, since such
file names may not be persistent. Our assumption to handle
this data is that such knowledge is also well-known or the
knowledge can be easily obtained with one-time effort. For
instance, /tmp in UNIX, C:\Users\Username\AppData\
Local\Temp, or C:\Windows\Temp in Windows are non-
regular (i.e., specially designated) directories for temporary
files. Algorithm 1 illustrates our practice in handling non-
representative file names of targets whose names are randomly
determined. In addition, the file extensions for temporary files
(e.g., .tmp) are also used.

Normalization of the identifiers with a high variety of
characters: Another source of randomness comes from the
identifiers that alternate numbers (0-9), alphabets (a—zA-2),
and special characters (e.g., @,—,_, $,%). We observed that
that certain programs generate hash-like filenames (e.g.,
75619cbc—879c-4076-8539-181392588ced) because they
use certain algorithms such as UUID, MD5, SHA that alternate
alphabets and numbers for filenames. To mitigate the negative
impact caused by non-representative data, any file or directory
name recognized as a hash-like literal is normalized using
<HASH>. At a high level, our determination method uses
generally two different strategies. First, the files with well-
known extensions such as .conf (configuration files), . jar
(Java Archive file), and .so (libraries) are ruled out from
being considered because they may be used consistently over
multiple executions with the same names even with complex
names. Second, for the rest of the filenames, if they exhibit
the characteristic of frequent transitions among letters, digits,
and special characters, they will be recognized as a hash-like
identifier.

In a nutshell, our normalization algorithms opportunistically
generalize the names of non-representative file and directory
names based on operating system knowledge and data with
simple pattern matching. If their names are not matched,

simply the raw names will be used without being replaced
by generalized names. They would not cause runtime errors
or incorrect results.

C. Embedding Generation

The provenance record contains a large amount of un-
structured data. To facilitate subsequent machine learning
tasks, embedding methods are required. In natural language
processing, embedding refers to the process of representing
text as a fixed-length numerical vector in a continuous vector
space. We have observed that multiple embedding techniques
have been proposed for words [8], sentences [9] and docu-
ments [10]. This vector representation not only extracts the
semantic meaning of the text but also can be further fed into
a neural network. From the semiotics extraction stage, we have
obtained textual descriptions for each system event. Therefore,
in the embedding generation stage, we particularly adopt
Sent2Vec [9] to generate numeric representations for these
events. This method leverages n-gram features and an efficient
unsupervised objective to capture the contextual information
of sentences. As a result, we use a 50-dimensional vector to
represent an event. Higher dimensions often have the capacity
to encode richer information, but they also typically entail
greater computational complexity. Considering the relatively
small vocabulary size and the short sentence length in our
application, we empirically choose 50 as the dimension of
embeddings.

D. Similarity Comparison

In Few-Shot Learning, Siamese networks stand out particu-
larly in the area of detecting similarities among multiple com-
parable items, and they have already been applied in security
applications [11], [12]. We thus propose a Siamese-network-
based threat detection method that converts the anomaly
detection problem into a semantic comparison problem. In
the training phase, we prepare three types of event pairs:
® both events in a pair are benign; @ both events in a
pair are adversary; © one event is benign while the other is
adversarial. Benign and adversary events inherently come from
two different clusters in the feature space, and the intra-cluster
distance is relatively larger than the inter-cluster distance.
Consequently, the ground truth assigned to the first and second
types of event pairs is a binary label false, i.e., the two events
in a pair are considered similar. By contrast, the ground truth
assigned to the third type of event pair is true, indicating that
the two events in the pair are from two distinct clusters.

Furthermore, we adopt a lightweight and shallow network
design for each sub-network of the Siamese architecture,
comprising three layers of fully-connected feed-forward neural
networks with ReLLU activation functions. The purpose herein
is to explore how well the threat detector performs even when
it only uses a simple network design. Once the neural network
with fine-tuned weights is constructed through training, we can
determine if a previously unseen event is adversarial or not by
evaluating the discrepancy between it and a known event.



TABLE II: The number of system events extracted from provenance data

C01~CO05 co6 c0o7 c08 c09 C10 Cl1
Events in ben. scenarios 4,341 272 324 1,620 336 339 3,678
Events in adv. scenarios 4,516 438 237 2,527 477 399 5,041
Overlap between ben. and adv. 2,629 178 190 | 1,202 | 309 324 | 2,958
Events in adv. after refinement 1,887 260 47 1,325 168 75 2,083

The optimization objective of our model training is to
minimize a contrastive loss [13], which is a distance-based
loss. This loss function is widely used in few-shot learning
to describe the degree of similarity between two samples.
Namely, two similar inputs have a small distance and two
dissimilar inputs instead have a relatively large distance.

Our evaluation shows that, even with a relatively small
training dataset and a network with very few layers, our
threat detection solution can still distinguish previously unseen
malicious incidents from benign ones.

V. EVALUATION
A. Dataset

The performance of our technique was evaluated using a
publicly accessible research dataset PROVSEC [14], which
includes provenance analysis data collected from a cloud envi-
ronment involving 11 attack scenarios. They reflect real cyber
attacks in cloud based on CVE entries and the corresponding
proof-of-concept (PoC) exploit code. In the following descrip-
tion, we use CO01~C11 to represent each category of attacks.

When the attack is on, the corresponding provenance data
of a specific adversary scenario is recorded. We accordingly
extract events and preliminarily consider them as adversarial.
Otherwise, if the attack has not been launched, the events
extracted from the corresponding provenance data are regarded
as benign. It is unsurprising that there exist some events that
may be on both sides. The intersection between the benign
events and the preliminary adversary events is not sufficiently
iconic to indicate an attack behavior. Therefore, we remove
those overlapped patterns from the original adversary events
to obtain a refined dataset. The details of events per category
extracted from provenance data are shown in Table II.

Furthermore, we prepare both similar and dissimilar pairs
in the dataset to train a Siamese-network-based model. The
two events in a dissimilar pair are from different clusters, i.e.,
one is benign while the other one is adversarial. In contrast,
the two events in a similar pair are from the same clusters.
Namely, they must be either both benign or both adversarial.
Table III shows the number of pairs per category, where the
sizes of similar and dissimilar pairs are balanced. Additionally,
among the similar pairs, half are benign pairs while the other
half are adversarial.

B. Evaluation Metrics

Precision, Recall, Fy score, and Accuracy are commonly
used metrics in the field of machine learning to evaluate the
performance of classification models. Precision is a measure
of how many of the positively predicted instances are actually

TABLE III: The datasets consisting of similar and dissimilar
event pairs

Dataset D01~D05 D06 DO7 D08 D09 D10 D11
Source C01~CO05 Cc06 c0o7 c08 c09 C10 Cl1l
# of pairs 3,380 516 92 2,648 332 148 4,164

true positives. High precision indicates that the model has
a low rate of false positives. False positive is the number
of predicted similar pairs that actually are not. Recall, aka
True Positive Rate (TPR), is the measurement describing how
robust the model is in identifying malicious attacks. A high
Recall means the method can effectively distinguish a benign
event from an adversary one. I} score is the harmonic mean
between Precision and Recall. A higher F score implies a
lower false positive rate as well as a lower false negative rate.
Accuracy is the ratio of the number of correct predictions to
the total number of input samples. Thus, a high Accuracy
means that the model performs well overall.

C. Embedding Visualization and Model Interpretability

Intuitively, if the numerical representations for events pro-
vided by the embedding model are semantically meaningful,
the degree of similarity between events can be often reflected
in the embedding space by the proximity or distance. There-
fore, we examine the interpretability of event embeddings
generated by Sent2Vec [9] through visualization. In detail,
we randomly selected 1,000 samples from D01~D05, D08,
and D11, respectively. The reason we choose these three
categories is that there are too few samples in the other sets.
We project the event embeddings to a three-dimensional space
using t-SNE [15]. As Figure 3 shows, the red points represent
benign samples while and green ones represent adversarial
samples. It should be noted that the numbers of benign and
adversarial samples are balanced. It turns out that benign
and adversarial samples are not trivially separable, especially
when mixing different attacks together, as Figure 3(a) shows.
One explanation is that we compress the high-dimensional
space into a three-dimensional space, and due to information
loss, the separating hyper-planes between groups that could
originally be distinguished are no longer apparent. On the
other hand, we can still observe small cliques formed by
similar events, which is particularly evident in Figure 3(c).
This implies that the existing event embeddings can be used as
a feasible starting point. Based on this, we can take advantage
of the subsequent FSL-based neural network model to further
amplify the distance between benign and adversary events in
a feature space. At the same time, the distance between two
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Fig. 3: Visualization of initial event embeddings based on Sent2Vec [9].

benign events, and the distance between two adversarial events
can both be reduced.

D. Effectiveness

As previously mentioned, to address real-world cyber inci-
dents in cloud environments, we are particularly interested in
an effective threat detection system capable of detecting pre-
viously unseen APT attacks. Ideally, the knowledge acquired
from a few known attack scenarios is supposed to generalize
over other unseen attacks. To validate our hypothesis, we
divided the data into 7 subsets based on different attacks,
as shown in Table III. After that, we conducted four groups
of experiments, from Group 1 to Group 4, where the size
of the training set gradually increases in each group. Models
trained on known attacks will be used to test unseen attacks.
Specifically, we will use the metrics described in Section V-B
to evaluate the effectiveness of the attack detection models.

We perform the evaluation in multiple groups as we change
the size of the training set and the testing set. Table IV
summarizes our main results. Group 1 uses five cases from
D01 to DO5. We also varied the group by including additional
data cases in the training set. Groups 2, 3, and 4 respectively
have six, seven, and eight cases in the training set. The
remaining unused cases in the training stage are evaluated as
the testing set. The FSL-based method we proposed has shown
promising results overall, achieving an average accuracy of
91.7% across 18 tests.

E. Case Study

In general, we observed the FSL model performs differently
depending on the evaluated data cases as it has more cases in
the training set. Some cases like DO9 have better accuracy,
precision, and recall in the Group 4 experiment with 8 cases
in the training. This is typically in line with our expectations,
“as the model sees more data, it can predict better”.

Also, we noticed that the performance on the D10 category
is often worse than that on other categories. Our manual
examination found that the D10 case, an SQL injection case,
exhibits more distinct behavior compared to the other attack
cases causing less consistent behavior. Other cases include
similar behavior, such as command injections and new shell

TABLE 1IV: Evaluation on unseen attacks

Group Train Test | Accuracy | Precise | Recall F1
D01~DO05 | D06 88.2% 93.0% | 82.6% | 87.5%
D01~DO05 | D07 91.3% 952% | 87.0% | 90.9%

Gl D0O1~DO05 | DO8 92.9% 88.9% | 98.2% | 93.3%
D0O1~DO05 | D09 94.0% 90.1% | 98.8% | 94.3%
D01~DO05 | D10 85.8% 87.3% | 83.8% | 85.5%
DO1~DO05 | D11 94.7% 91.2% | 99.0% | 95.0%
D01~DO06 | DO7 91.3% 932% | 89.1% | 91.1%
D01~DO06 | D08 95.1% 92.1% | 98.7% | 95.3%

G2 DO1~DO06 | D09 95.5% 98.8% | 92.7% | 95.6%
D01~DO06 | D10 82.4% 87.5% | 7577% | 81.2%
D01~DO06 | DI1 96.2% 943% | 98.3% | 96.3%
D01~DO07 | DO8 93.2% 88.7% | 98.9% | 93.5%

G3 D01~DO07 | D09 94.0% 89.2% 100% | 94.3%
D01~DO07 | D10 83.8% 85.7% | 81.1% | 83.3%
D01~DO07 | D11 96.0% 93.4% | 98.9% | 96.1%
D01~D08 | D09 96.4% 93.3% 100% | 96.5%

G4 D01~D08 | D10 83.1% 90.2% | 743% | 81.5%
D01~D08 | DI1 96.6% 953% | 98.0% | 96.6%

invocations due to the shell code, which are represented as
new program invocations even though they are performed
by different programs with different exploits. This unique
behavior of this particular case made its behavior far from
other cases causing unusual behavior.

VI. RELATED WORK
A. Provenance Analysis

Using provenance in intrusion analysis and detection has
been explored by a large body of work [16]. Dependence
tracking analysis [17] has been used to analyze a large volume
of data effectively. Provenance tracking has been done in dif-
ferent data granularity. BEEP [18] and PROTRACER [19] use
units that are execution partitions of application code which is
common in event-handling loops. MPI [20] uses user input on
data structures to define execution partitions. PRIOTRACKER
[4] proposed priority-based causality tracking using rareness
score and fanout score as indications of unusualness. Bates et
al. [21] proposed Linux Provenance Modules (LPM), a kernel-
based framework and data loss prevention system for sensitive
data. PALANTIR [22] uses a processor tracing (PT) hardware
technique to enable finer-grained instruction level tracking.



KAIROS [23] proposed a graph neural network-based encoder
and decoder to learn the temporal evolution of the provenance
graph’s structural changes. We analyze the provenance data
using few-shot learning algorithm with the goal of detecting
anomalies from the behavior of few samples.

B. Attack detection

Using provenance data for attack detection is a branch
of active research. Multiple attack detection approaches have
been proposed based on dependency graphs. HOLMES [24]
proposed an approach to detect and summarize APT attack
campaign stages. SLEUTH [25] proposed a tag-based attack
detection system to prioritize behavior. Hossain et al. [26] im-
proved a tag-based system reducing false alarms significantly
in the detection of APT-style attacks. NODOZE [5] uses a
network diffusion algorithm that propagates anomaly scores
across dependency graphs to calculate anomaly scores. Hassan
et al. [6] propose another graph-based scoring scheme for an
alert triage system with path preferences and graph reduction
schemes. In this work, we propose using Few-Shot Learning
on the provenance data due to the growing diversity of attack
mechanisms. The presented results shed light on a promising
direction for scenarios where adversary data is inadequate.

VII. CONCLUSION

System provenance analysis is believed to be a promising
mechanism. Due to its remarkable ability to track dependen-
cies across system events in a cyber incident, this potent
technique can play a crucial role in the analysis of incidents
as well as in detecting attacks. While various attack patterns
are possible, having a limited set of attack datasets becomes
a challenge. In this paper, we propose a new approach that
applies few-shot learning to attack detection based on system
events. Our evaluation of a set of 11 different attack scenarios
shows a promising result of 91.7% accuracy on average
from 18 experiments with varied training and testing sets,
demonstrating that the threat prediction on different attacks
with few data samples is possible.
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