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Abstract

In a wireless sensor network, the virtual connectivity between nodes is a function of the keys

shared between various nodes. Pre-embedding these key configurations in the nodes would

make the network inflexible. On the other hand, permitting subsets of nodes to engage in

a common key synthesis phase to create secure distributed connections amongst themselves,

would decouple and conceal the information flow from the controlling centre. An intermediate

solution is the notion of a centre driven key generation process through broadcast tokens, de-

signed to extract different keys in different nodes based on some prior information stored at the

nodes. As more tokens arrive, the virtual connectivity of the nodes are altered and the network

evolves. This evolution can be distributed and can be controlled to converge to a certain specific

connectivity profile. In this paper we present a framework and an algorithm which controls the

simultaneous and distributed key release in different nodes, resulting in the creation of parallel

virtual multicast groups. The design of the node shares and the supporting broadcast tokens

have been discussed in conjunction with the process of balancing the spans of individual groups

with spans of several coexistent multicast groups.
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Chapter 1

Introduction

In collaborative information processing applications, a large computational task is delegated

amongst several wireless nodes, by a centre. The main task is split into several sub-tasks and

each subtask is assigned to a different group of nodes. Since the computation of each subtask

entails a sharing of resources and may require further modularization, the nodes can form vir-

tual groups for exchanging information and also for delegating roles amongst themselves. The

information flow across virtual groups, group expansions, group migrations, group mergers,

group dissolutions etc. can either be completely distributed or can be triggered by the centre.

However when the nodes carry confidential information (related to a large product design) and

the overall computational task is also of a sensitive nature, the centre cannot afford to allow the

nodes to form their own sub-groups to perform this distributed processing. This would make it

difficult for the centre to monitor the flow and also perform intermediate checks on the infor-

mation fragments exchanged amongst the nodes. Hence, a centre directed group formation and

information exchange is recommended.

Secure virtual multicast connections either between subsets of nodes and/or dedicated unicast

links between each of the nodes and the centre C, are required to preserve confidentiality of

messages exchanged between the nodes within a specific virtual group or between the nodes

and the centre. Any secure connection, requires the sharing of an encryption key, which can

be pre-distributed by the centre at the time of forming the network and registering new nodes.

Alternatively the centre may facilitate the generation of keys in a distributed fashion between

several clusters of nodes. The strength of this key establishment phase or key distribution phase

is important in determining the overall security of the network. Several key distribution mech-
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anisms for Wireless Sensor Networks have been studied in the past.

In pre-distributed shared key mechanisms [3] [4], the centre pre-assigns a set of keys to each

node before they are deployed. The key pre- distribution is such that any two neighbouring

nodes share a single common key or a group of common keys with a certain probability. In

Random pair-wise key schemes [5], a random set of node IDs and corresponding link keys are

stored in each node prior to deployment. The nodes broadcast these IDs to advertise the pres-

ence of common keys and the connectivity graph is created. An important drawback of these

approaches is the degree of uncertainty in connectivity which could lead to disconnected net-

works. Location based Pair wise key distribution schemes [6] assume that the network topology

is known beforehand and the keys stored in each node depend on its neighbours. Hence any two

nodes are guaranteed to share a common key. However, these schemes assume that the topology

is known prior to deployment, which is rarely the case in practical scenarios. The main problem

with these approaches is that physical capture of a node could lead to the loss of many keys and

link associations.

Key matrix based schemes described in [7] define a key matrix which stores all the link keys.

Each node is given some public and private information derived from the matrix. Neighbouring

nodes exchange their public information which is then combined with their respective private

information to generate the link key. In Polynomial based key distribution approaches [8], each

node stores a partially evaluated symmetric polynomial which is evaluated using the IDs of

the neighbouring nodes to establish link keys. Above dynamic key distribution methods, avert

problems associated with node-capturing in static pre-distribution schemes. However these ap-

proaches are power hungry, computationally intensive and require costly vector multiplications.

Broadcast encryption schemes allow transmission of secrets to a privileged set through a broad-

cast channel [9]. Broadcast encryption techniques are used in schemes based on combinatorial

constructions, one-time revocation schemes based on secret sharing techniques, and tree-based

constructions which have been proposed in [10]. Broadcast encryption schemes define a pa-

rameter k which specifies that at least k users who do not belong to the privileged set have to

collude in order to decrypt the message. Hence they are generally only k-resilient. Moreover

they incur high communication cost to broadcast messages, large memory requirement to store
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keys in each node and limited group association structures. Further, in all of these schemes, the

establishment of group keys for an arbitrary privileged set of size m, would generally require

the exchange of at the most m messages resulting in wastage of the available bandwidth. If

NG simultaneous multicast groups must be created, the number of messages required would be

anywhere between NG and m × NG. Tree based constructions used in Broadcast encryption,

have been designed to counter multicast group dynamics and have been optimized for single

multicast groups. Simultaneous creation of multiple virtual multicast groups would however

require messages proportional to the number of groups.

Another common problem with the above mentioned approaches is that the configuration of the

network is static which means that the virtual connections within and between subsets of nodes

in the network cannot change with time. However in a collaborative processing application, the

topology of the network once deployed may have to be reconfigured to facilitate parallel and dis-

tributed computation and also to ensure that intermediate computational results are exchanged

amongst different virtual groups. Hence, dynamic re-configurability of the virtual network is

paramount. However, when the information handled by the nodes is of a sensitive nature, this

re-configuration must be triggered by the centre, to ensure transparency in the information flow.

Another approach, to address this issue of centre driven re-configurability [1], considered an

interaction between protected node shares of key blocks and broadcast tokens released by the

centre. Here, each wireless node in the network was assigned a protected node-share of an

encryption/decryption key set. Upon the release of specially designed tokens which are broad-

casted by a centre, the fusion of these shares with the tokens would unlock a set of encryption

keys. Common keys unlocked in different nodes can be used to form multicast group associa-

tions. The associations can then be easily changed by broadcasting new tokens. The scheme is

computationally feasible, fully resilient and physical node capture only results in the loss of the

keys which have been unlocked in the captured node. Thus a single broadcast token can result

in the formation of several multicast groups, the choice of groups and their evolution can be

pre-designed to satisfy a certain function. This pre-design retards the flexibility of the network.

However, it did not specify a design to control the key release and most importantly alter it

dynamically to suit a certain network computational goal. A solution which allows the centre to

3



design tokens that unlock desired keys (controlled key release) in different nodes is imperative

to achieve any desired configuration. In this report we propose such a solution based on the

protocol described in [1].

The thesis report is organised as follows: In chapter 2, the virtual reconfiguration scheme pro-

posed in [1] is discussed. Chapter 3 provides details of the software implementation of the

reconfiguration protocol. In chapter 4, we discuss our initial approach to incorporate controlled

key release. In chapter 5, we discuss the framework and the proposed solution which improves

up on the solution discussed in chapter 4 and achieves controlled and simultaneous key release.

Algorithms which use the proposed solution for efficient Token construction to achieve simul-

taneous creation of multicast groups is discussed in Chapter 6. Issues pertaining to key leakage

and token collusions are discussed in chapter 7. Comparison with tree broadcast encryption

and extensions towards forward secrecy are explored in chapter 8. Finally, in chapter 9, some

simulation results are presented.
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Chapter 2

Virtual Network Reconfiguration

A protocol based on key release mechanisms to reconfigure networks has been discussed in

detail in [1]. The entire protocol has been described here for the purpose of clarity which would

be useful in understanding subsequent sections. The network is assumed to have a distribution

center and a certain number of nodes. The scheme revolves around the idea that a set of encryp-

tion keys are locked within protected node-shares in each node of the network. When specially

designed tokens are broadcasted by the center, the fusion of these shares with the tokens release

a subset of the locked keys. With the arrival of every new token more keys would be released

at each node. If the node-shares stored in different nodes are dissimilar, it would imply that

different sets of keys could be released by the same token in different nodes. The unlocked keys

would then determine the configuration of the network. If a key is common to a set of nodes

it would necessarily imply a multicast connection between them in the sense that this key can

be used to transmit messages securely within the group formed. With the broadcast of each

new token, the configuration of the network changes dynamically, as the associations between

different nodes change owing to the release of new keys in each node.

2.1 Description of the model

The model considers a distribution center C and n number of nodes say Node 1, Node 2, Node

3, . . . , Node n. We assume that all the nodes including the center are in the transmission

range of any other node in the network. The center generates a set of v keys say K1, K2,

K3,. . . , Kv and a set of shares N 1, N 2, N 3, . . . , N n for each node in the network. This means

that the ith node is given the node-share N i prior to deployment. The center also generates and
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broadcasts specially designed tokens T k
’s. The node-shares N i

’s have complete information

required to extract all the v keys using the broadcast tokens T k
’s. The node-shares N i

’s are

different for different nodes and every broadcast token T k upon fusion with the node-shares,

unlocks different subset of keys in different nodes of the network. This results in the formation

of different clusters of nodes each with common shared keys which can be further used for

secure multicast communications.

2.2 Generation of node-shares and broadcast tokens

The distribution centre generates these node-shares and tokens using a non-perfect secret shar-

ing scheme called the MIX-SPLIT [11]. It assumes the keys to be uniform length Lp-bit random

strings. A block X of length (Lp × v ) bits is computed as follows. The keys K1, K2, K3,

. . . , Kv are first concatenated into a string and interleaved without changing the order of the

bits, to form a block X . The partition of a key is defined as the set of bit positions in X that are

filled with the bits of that particular key in the same order. Since there are v keys, there would

be v disjoint partitions which are designated as P 1, P 2, P 3, . . . , P v each of length Lp. These

partitions are also referred to as hidden partitions as they are unknown to the nodes. Another

block Y is defined as the bit complement of X (bit wise not of X).

Macro-mixing of fragments of X and Y is done to produce r preliminary shares say PS1, PS2,

. . . PSr. Subsets of fixed size from these preliminary shares in turn form different node share

matrices N i
′s. Each of these preliminary shares can be written in the following form:

PS i = (PS i1||PS i2||PS i3|| . . . PS iv) (2.1)

where the sub-sequence PSij is derived according to a pre-defined codebook C defined as

C =


c11 c12 . . . c1v

c21 c22 . . . c2v

. . . . . . . . . . . .

cv1 cv2 cv3 cvv


PS ij is obtained as follows

PS ij = X(P j) if cij = 1
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PS ij = Y (P j) if cij = 0

where cij is an entry of the code book. In general the code book can be partitioned as

C =

 N

T


where T is a t × v matrix whose rows are t code words which are used to construct the broad-

cast tokens and N is a (r – − t) × v matrix also called as the node-share matrix, whose rows

are code words which are used to construct the preliminary shares PS i. The preliminary node

shares and broadcast tokens are built from their respective code words by the above mentioned

method. Subsets of these preliminary shares in turn form node-shares which are distributed to

all the nodes Node 1, Node 2, Node 3, . . . Node n.

The operator ∥ stands for the concatenation and mixing operation. The values in the bit po-

sitions specified by the partition P j for a particular sub-sequence PS ij, are chosen from X or Y

depending on the value of ci,j. In other words, the values of the bit positions in PS i which are

specified by P j will either be equal to the bits of K j or K j
c depending on the value of cij. This

procedure is then repeated v times for each sub-sequence PS ij to form the preliminary share

PS i. The figures given below illustrate the mixing process for a particular 3 key system where

each key is 4 bits long.

Figure 2.1: An example of partition assignment in a 3 key system

7



Figure 2.2: Illustration of the key mixing process

2.3 Rules for the design of code books

Since information regarding all the v keys are contained in each of the preliminary shares, it is

possible to extract a subset of these keys by stacking selective shares one above the other [2].

The rules for the design of a code book to enforce conditional visibility and invisibility of par-

titions (for unlocking a subset of keys) are as follows:

Rule 1: Complementary and repetitive columns lead to inseparable partitions i.e, if a set of

code words which when stacked over each other form a matrix whose columns are either repet-

itive or complementary, then the preliminary shares or tokens generated from these code words

do not reveal any hidden partitions.

Rule 2: Row-sampling of a complementary pattern is complementary. In other words, if a

subset of code words are chosen from a set of code words satisfying the complementary col-

umn property, then these subset of code words would also satisfy the complementary column

property.

Rule 3: Single shares are always mixed i.e, no partitions are revealed by one share alone.

Multiple shares/tokens have to be stacked to reveal partitions.

Rule 4: At least one partition becomes visible if a column is distinct. Hence, if the code-words

which are stacked, form a matrix with a unique column, then that corresponding partition and
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hence that key, can be unlocked by stacking the actual shares/tokens generated by these code

words and searching for that unique column pattern.

The node shares that are distributed to nodes in the network, must not reveal any keys on their

own. Hence, the corresponding node share code words should have complementary or repetitive

columns (Rule 1). The keys should only be released upon fusion with the broad casted tokens.

This means that the stacking of node share code words plus the token code words should form a

matrix with one or more unique columns (Rule 4). An additional security requirement that can-

not be ignored is that the Tokens themselves should also satisfy Rule 1 to ensure that stacking

any subset of Tokens does not reveal hidden partitions to an eavesdropper.

2.4 Revealing hidden partitions

When the stacked code words reveal unique columns, these unique columns can be converted

into distinct bit patterns. For instance, if the unique column formed by stacking 3 code words

is the binary number [1 0 1]T, then it represents the bit pattern [b b̄ b]T. In order to reveal the

corresponding hidden partition in the actual shares (shares generated by the three code words),

this bit pattern is searched on these shares. In other words, the actual shares are traversed

column by column and the set of indexes of every column which represents this bit pattern, is

the hidden partition [2] [11]. In this example, the hidden partition corresponds to the column

indexes in the shares where the following condition is satisfied:

Share1(i) = Share2(i)c = Share3(i)

All the bit positions i which satisfy this condition form the hidden partition.

2.5 Illustration

Consider a case with a center C and 3 nodes in the network. Let us consider a node-share matrix

to be as follows:

N =


1 1 0 0 0 1

0 1 1 1 0 0

1 0 0 1 1 0


9



It can be observed that the above matrix satisfies Rule 1 i.e, no columns are unique. They are

either the same or complementary to each other. Using the above matrix let us construct the

node share code word matrices SH1, SH2, SH3 for the 3 nodes as follows:

SH1 =

 1 1 0 0 0 1

0 1 1 1 0 0


SH2 =

 0 1 1 1 0 0

1 0 0 1 1 0


SH3 =

 1 1 0 0 0 1

1 0 0 1 1 0


It can be noted here that these matrices are obtained by considering code word subsets of size

2. It is again imperative that the broadcast tokens Tk’s also satisfy Rule 1 as they are exposed

to traitors not belonging to the network. Our aim is to release some of the keys upon the fusion

of tokens with the node shares. Hence we consider a token generator matrix with repetitive

columns (to satisfy Rule 1). All the token code words obey the following format.

T =
(

z1 z2 z3 z2 z3 z1

)

The total number of arrangements of the bit-positions is 23 = 8, the total number of unique

tokens satisfying Rule 1 is 8. Now this number also includes those token code words which are

bit complimentary with respect to other tokens. These tokens will not change the stack relation

and are redundant. Hence the number of useful tokens is 23/2 = 4. Accordingly, the token

generator matrix can be represented as follows:

T =


1 1 0 1 0 1

1 0 1 0 1 1

1 1 1 1 1 1

1 0 0 0 0 1


where each row represents a broadcast token code word. The actual broadcast tokens are gen-

erated from these code words. When a Token for example T 1 is broadcasted , at Node 1 it

10



will fuse with the node-share corresponding to Node 1 which is SH1 and will give rise to the

following three distinct stack equations:


b

b

b

 ,


b

b

b̄

 ,


b

b̄

b



T 1 + SH1 =


1 1 0 1 0 1

1 1 0 0 0 1

0 1 1 1 0 0


Out of these three equations only one is unique which is

b

b̄

b


This implies that the partition P 4 will be made visible. To obtain key 4 corresponding to this

partition we traverse through the stack of actual shares/tokens (generated using the MIX SPLIT

method by substituting the code-word bits by the actual bits of X or Y) and check for the pattern

given above [11]. The indexes which satisfy this pattern will give us the desired bit locations.

The values at these bit locations when concatenated will give us either key K4 or its compli-

ment. Hence key 4 is unlocked. Similarly, this method is followed in all the other nodes as well.

The unlocked partitions in Node 2 and Node 3 are 6 and 4 respectively. The set of unlocked

keys at each node increases with the arrival of new tokens. The table below shows the sequential

unlocking process with the arrival of each token.

Table 2.1: Cumulative list of keys unlocked at each node

Token no Node 1 Node 2 Node 3

1 K4 K6 K4

2 K3,K4 K3,K6 K1,K3,K4

3 K2,K3,K4,K5 K3,K4,K6 K1,K3,K4

4 K2,K3,K4,K5 K3,K4,K5,K6 K1,K2,K3,K4
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Chapter 3

Implementation

3.1 Design environment and testing

We implemented the protocol on the contiki-2.6 operating system. It has been simulated on

the IEEE 802.15.4 based TMote Sky platform. The Cooja simulator that comes in built with

the Contiki OS, was used for simulating the wireless sensor network (WSN). The programming

was done in C language.

3.2 Implementation specifics

• Inbuilt code book: The code book is stored in the distribution centre prior to the deploy-

ment of the network.

• Initial Node share distribution: In our implementation, after the network simulation is

started, the centre computes the Node shares and unicasts them to the respective nodes.

We assume that network is deployed only after the initial node shares have been dis-

tributed by the centre. Hence, the eaves dropper cannot obtain these node shares.

• Token Broadcast: The centre broadcasts the Tokens periodically. Hence, the configuration

of the network will change at regular intervals.

• Encryption/Decryption algorithm: We implemented and tested the Tiny Encryption Al-

gorithm (TEA) along with this protocol. This symmetric key encryption/decryption al-

gorithm is optimum for small wireless device security. It can be used for actual encryp-

tion/decryption of messages that are exchanged between nodes once the reconfiguration

12



protocol unlocks some common keys. Provisions have been made for the messages to

be encrypted and sent in numbered fragments. Acknowledgements are sent back to the

sender upon successful reception. Duplicate packets are also removed automatically.

3.3 Simulations

We simulated the protocol for a 6 key 4 node network. One of the nodes in the network was

programmed to behave as the distribution centre. All the nodes were within the transmission

range of each other. We designed a code book and verified the pattern of keys released with

each new broadcast token. The protocol was observed to function properly and changes in the

configuration changes with each Token were observed to be correct.

After a thorough investigation, we were able to identify the main strengths and weaknesses of

the described scheme.

3.4 Protocol analysis

Strengths:

The main strengths of the protocol are:

• Enables virtual re-configurability of the network by using a center driven broadcast sys-

tem. For example, it can be used in a WSN to re-distribute load adaptively within the

network.

• For a network with a large number of keys, the damage caused by capturing certain nodes

can be reduced since only a small subset of keys will be compromised.

• Secure additions of nodes to a multicast group without leakage of information.

• Secure unicast connections with the center are also possible.

Drawbacks:

• Configuration Control - There is no control over the keys which are unlocked by the

tokens in each node and hence we have no control over the configuration change.

13



• Possible Configurations - The number of tokens that can be broadcasted, are limited by

the number of keys. For example only 4 tokens are possible for 6 keys. Since we do not

have control over the release of keys and tokens are easily exhausted only a few and not

all of the possible configurations can be achieved.

• Configuration Invariability - The configuration of the network cannot be changed after

the exhaustion of all the tokens or in other words it freezes after some amount of time.

• Configuration Re-traceability - We cannot revert back to a previous configuration after

the arrival of the token.

To overcome some of these drawbacks we initially proposed a solution. The solution uses a

new codebook design along with rules to generate node-shares and broadcast tokens from this

codebook. It has been described in detail in the following chapter along with a mathematical

proof and examples.
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Chapter 4

Selective Unlocking Mechanism

We understood that one possible solution to the Token exhaustion problem would be to design

tokens and node shares such that each token primarily unlocks only one key in one of the

nodes in the network. We worked towards developing such a solution which would allow the

distribution centre to control which key gets unlocked in which node in the network.

4.1 Node share matrix design

In order to realize the above mentioned solution, we propose to design a Node share matrix with

the following distance property.

Definition 1. Distance property: Let v be the number of keys. Then the hamming distance H

between any two pairs of the generated node share code words should lie between[4, v − 4].

In other words, let N i and N j be two node share code words. Then,

4 ≤ H(N i, N j) ≤ v − 4

4.1.1 Generation of Node share matrix with code words satisfying the Dis-

tance property

We briefly present a simple method to generate node share code words satisfying the Distance

property. For all future purposes we use the following notations:

• v represents the number of keys
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• n represents the maximum number of nodes that can be supported by a ‘v’ key system

• N represents an n× v Node share matrix

• Ni represents the ith node share code word or the ith row of the Node share matrix N

• S is an n× (v/2) matrix such that N= [S Sc]

• Si represents the ith row in S

We consider a n× (v/2) matrix S.

1. To construct S we start with a partial code word S1 with equal number of zeros and ones

i.e, S1 has (v/4) zeros and (v/4) ones. S1 is the first row of S.

2. To obtain the other rows we permute the bits of S1 and consider only the permutations

which are not complementary to each other i.e, no two rows Si and Sj should be comple-

mentary.

3. To obtain the Node share matrix, we concatenate S and its complement.

Note:

• It can be observed that the maximum number of such non complementary permutations

equals n. Hence,

n = (v/2)!/2(v/4)!(v/4)!

• The code words generated by this method are n out of n collusion secure.

4.1.2 Proof that these code words satisfy the Distance property

To prove the Distance property for these code words, we consider two partial code words Si and

Sj. Without loss of generality, let us assume that Sj is obtained by a permutation on the bits of

Si. Since Si and Sj have equal number of 1s and 0s, the least hamming distance that could be

obtained by a permutation is 2. Hence,

H(S i, S j) ≥ 2
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Similarly, since Si and Sj cannot be complements of each other, using the same equal number of

0s and 1s argument, we can prove that the maximum Hamming distance between them can be

at most (v/2) − 2. Hence,

H(S i, S j) ≤ (v/2) − 2

Since Ni and Nj are just concatenations of Si, Si
c, Sj and Sj

c respectively, we have

4 ≤ H(N i, N j) ≤ v − 4

Hence, the satisfaction of distance property has been proved for these code words.

4.1.3 Illustration: Node share matrix generation for a 12 key system

Since v=12, we get n=10 from the equation derived above. Let S1 = [0 0 0 1 1 1], then S is

given by:



0 0 0 1 1 1

0 0 1 0 1 1

0 0 1 1 0 1

0 0 1 1 1 0

0 1 0 0 1 1

0 1 0 1 0 1

0 1 0 1 1 0

0 1 1 1 0 0

0 1 1 0 1 0

0 1 1 0 0 1


The Node share matrix is then obtained as N = [S Sc]

4.1.4 Node share distribution

In this scheme, each node is given one node share. For example, the node share of node i is

generated using the ith row of the Node share matrix i.e, Ni becomes the node share code word

for node i.
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4.2 Token design

Let us say that the centre wants to unlock key ’j’ in node ’i’ without unlocking any other key in

any other node. Let the corresponding token be denoted by Tij. Then Tji is given by:

T ji = N i ⊕ I j

where Ij is the jth row of a v × v identity matrix I. In other words, the jth bit of Ni is flipped to

get Tji.

4.2.1 Proof of desired token behaviour

In this proof, we use the rules for conditional visibility and invisibility of partitions which have

been described earlier. Since only one bit of Ni gets flipped to get Tji, we have H(Ni,Tji) = 1.

But we already know that,

4 ≤ H(N i, N k) ≤ v − 4 ∀ k ̸= i

Since one bit flip to Ni can at most reduce the Hamming distance between Ni and Nk by 1 or

increase it by at most 1, we get

3 ≤ H(T ji, N k) ≤ v − 3 ∀ k ̸= i

Since the Hamming distance between Tji and Nk is at least 3, when Tji is stacked over Nk there

would be at least three columns satisfying the equation [ b̄ b ]T.

Similarly since the Hamming distance between Tji and Nk is at most v - 3, when Tji is stacked

over Nk there would be at least three columns satisfying the equation [ b b ]T

Hence there would be no unique equation that is revealed when Tji is stacked over Nk ∀k ̸= i So

no keys will be unlocked in any other node. However, when Tji is stacked over Ni, the column

which is given by the equation [ b̄ b ]T becomes unique. Hence Key ’j’ would be unlocked in

node ’i’.
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4.2.2 Illustration

Suppose, we need to unlock key 5 in node 6 in a 12 key system. We use the same Node share

matrix presented before in this example. T 56 equals:

T 56 =
(

0 1 0 1 1 1 1 0 1 0 1 0
)

By stacking T56 over each Ni, it can be easily verified that Key 5 will be unlocked only in node

6 and no keys will be unlocked in any other node.

4.2.3 Advantages of the proposed code book design

• Many Tokens can be generated and it is possible to achieve any network configuration. In

fact upto n*v different Tokens can be generated and nv configurations can be achieved.

• Node shares and Tokens are easy to generate.

• Node shares are n out of collusion secure i.e, even if all the node shares are stacked over

each other, no partition would be revealed.

• For larger values of v, a much larger network can be supported.
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Chapter 5

Proposed scheme

The method of release of keys described in [1] ensures dynamic reconfiguration. However, it

poses the challenge of control over the node associations. In the previous chapter, we proposed

a solution which incorporates control in forming these node associations. However, the code

book design had other issues. The tokens generated are only 2 collusion secure which means

that by combining more than two tokens, the eaves dropper could potentially learn the hidden

partitions. Another major drawback of the previouly proposed solution, is the bandwidth lim-

itations of the tokens. They do not support simultaneous release of multiple keys in different

nodes and hence the tokens waste a lot of bandwidth.

One of the common points that one could notice in the two schemes is that the partitions al-

lotted to the keys are fixed and do not vary from one node share to another. The token design is

constrained by the requirement to maintain and collusion security among tokens. The difficulty

in incorporating controlled key release over this frame work stems primarily from static parti-

tion allotment which in turn forces any two tokens to be related. Our next proposal differs from

these two schemes in this aspect. We vary the partitions to which different keys are allotted and

design tokens which are unrelated to each other. We show that our solution achieves controlled

and simultaneous key release without compromising the token security.

5.1 Description:

The setup of the network is similar to the one described in Section 2. The network comprises

of a center D and nodes Node 1, Node 2, . . . , Node n all within the transmission range of each
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other. Let K1, K2, K3,. . . , Kv be v keys each of length Lp, generated by the center. Let n be

the maximum number of nodes that can be supported by a ’v’-key system and M represent the

number of preliminary shares given to each node, i.e, for any node i , the set of node share code

words would be N i = N i1, N i2 , . . . , N iM

Each key K i in the set of v keys is divided into two halves K i1 and K i2. Each half is locked

in a hidden partition. Hence the size of each codeword is (1 × 2v). The first half of the keys,

K i1 ∀i = 1, 2, . . . , v are encoded using the first v bits of the code word while the second half,

K i2 ∀i = 1, 2, . . . , v are encoded using the next v bits of the code word.

5.2 Formulation

Prior to the code word construction, each Key K i is assigned a fixed number such that no two

keys are assigned the same number or its complement in binary. It is implied that since each key

is assigned a fixed number, both the halves of the key are implicitly assigned the same number.

For example, in a 4 key system, the following assignment could be made:

Table 5.1: Key Table

Key Number Assigned

K1 1

K2 2

K3 3

K4 7

M is calculated as the number of bits required to represent the largest number in the key table.

From the table shown above, it can be deduced that the value of M is 3 in this case.

5.3 Code word representation

Here we describe a convenient way to represent Node share code words. Consider a set of 3

preliminary share code words (which together are used to generate the node share for a partic-

ular node i) representing a 4 Key system (8 partitions numbered from 1 to 8). It must be noted

that these set of code words have repetitive columns (Rule 1). Hence the node shares generated
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from these code words do not reveal any keys.

1 0 0 0 0 0 0 1

1 1 1 0 1 1 0 1

1 0 1 1 0 1 1 1

If these code words are read column wise, it is easy to see that they represent the following

sequence of numbers:

N i = 7 2 3 1 2 3 1 7

If it is assumed that the above stated Key table is used in the mapping, then this means that, in

this set of code words the following mapping has taken place :

Table 5.2: Partition Assignment

Key (Half) Assigned Number Partition No.

K11 1 4

K12 1 7

K21 2 2

K22 2 5

K31 3 3

K32 3 6

K41 7 1

K42 7 8

A particular Key K j in the node i, can be represented by the positions of its two halves. In the

above example:

K1
i = (4, 7), K2

i = (2, 7), K3
i = (3, 6), K4

i = (1, 8)

5.4 Unique mapping property

If a particular key K i in node j is represented by the coordinates (x, y) i.e,

K i
j = (xi

j, yi
j)
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Then no other node has key K i in the positions (xi
j, yi

j) .This must be true for all K i
’s . Hence,

{K i
p ̸= (xi

j, yi
j) ∀p ̸= j} and ∀ i

5.5 Node share code word generation

In order to generate node shares N i satisfying the Unique mapping property, we define two

matrices C1 and C2 which are both (v× v) matrices whose rows are used to construct the node

share code words. Both matrices C1 and C2 are generated by the following algorithm. Let C i[j]

represent the j th row of the matrix C i.

Algorithm 1 Construction of C1 and C2

Start with a (1× v) random permutation (R) of the numbers in the key table

for j ← 1 to v do

C i[j]← R

Circular right shift R by 1

end for

Illustration :

Let the number of keys be 4. Refer to Table I for the mapping of keys. Let C1 represent a matrix

containing first half of node share code words formed using a random seed R1 say:

R1 =
[
7 1 2 3

]
C1 is then given by:

C1 =


7 1 2 3

3 7 1 2

2 3 7 1

1 2 3 7


Similarly, the other matrix C2 can be obtained with another random seed say

R2 =
[
3 2 1 7

]
C2 is then given by:

C2 =


3 2 1 7

7 3 2 1

1 7 3 2

2 1 7 3


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After the obtaining both matrices C1 and C2, the node share code word for any node with ID i

is constructed as follows,

Let q = Quotient(i/v); r = (i mod v), then,

N i = C1(q) ∥ C2(r) (5.1)

This procedure could generate a maximum of v2 node share code words. Hence, at most v2

nodes can be supported by a v key system. It can be easily seen that the node shares generated

by this procedure are n out of n collusion secure. Both random seeds R1 and R2 contain exactly

one instance of every number in the key table. Thus every node share code word contains ex-

actly two instances of every number in the key table. From Rule 1, one can infer that the code

words have repetitive columns and they do not reveal any hidden partitions.

Example:

Let us find the node share code word for Node 7. Since Node ID = 7 and v = 4, we have

q = 1, r = 3. Then,

N 7 =
[
3 7 1 2 2 7 1 3

]
Note: Appendix I proves that code words generated using this procedure satisfy the Unique

Mapping property.

5.6 Token design

The unlocking of desired partitions in one or more nodes is done with the help of broadcast

tokens. The tokens are fabricated in a way so as to unlock the corresponding partitions without

the release of undesired partitions in nodes other than the target nodes.

Illustration:

Referring to the example stated earlier, for a 4-key system let the node shares in two nodes

i and j be given by:

N i =
[
7 2 3 1 2 3 1 7

]
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N j =
[
7 2 3 1 3 2 7 1

]
Suppose we want to unlock the partitions corresponding to the number 7 ,i.e, we would like to

release key K4 in nodes i and j. Then they are represented by the following points:

K4
i = (1, 8)

K4
j = (1, 7)

This can be achieved effectively by the design of proper token. The token T is designed as:

T =
[
K41 KR KR KR KR KR K42

’ K42
’
]

P =
[
P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8

]
where K41 is the first half of K4 and K42

c is the bit-compliment of the second half of K4, and

KR is a random Lp bit binary number. P represents the corresponding partitions. In this exam-

ple, K41 is filled in partition 1 i.e P 1. K42
c is filled in partitions 7 and 8. The other partitions

are filled with random Lp bit numbers KR

When T fuses with N i and N j , stack relation equations corresponding to K41 and K42 be-

come unique. In this example, the equation for K41 will be [ b b b b ]T ( which corresponds to

the number [1 1 1 1 ]T ) whereas the stack equation for K42 is [ b̄ b b b ]T ( it corresponds to the

number [0 1 1 1]T ) in both nodes i and j.

In other words, the stack equation of P 1 in both nodes would be:[
b b b b

]
T

and the stack equation of P 7 in node j and the stack equation of P 8 in node i would be:[
b̄ b b b

]
T

In all the other partitions (other than P 1 and P 7 in node j and P 1 and P 8 in node i), no key

would be released. This is because the token holds a random number in these partitions which

is not related to any of the keys residing in them. Hence the stack equations would be invalid

for these partitions.
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Further, since the unique mapping property is satisfied, no other node will correspond to these

points (1, 8) and (1, 7) in the Key K4 space . In all the other nodes, the stack equations would

be invalid for at least one of the halves of the key K4. Hence at least one of the halves cannot be

unlocked in any other node. (In fact both halves cannot be unlocked in every other node. It will

be subsequently proved). This results in the simultaneous controlled release of Key K4 only in

nodes i and j.

K4 = K41 ∥ K42

5.7 General procedure

• Suppose K i is to be unlocked in nodes p and q. Let K i
p = (xi

p, yi
p) and K i

q = (xi
q, yi

q)

• Then if at least one of the coordinates are equal i.e, (xi
p = xi

q or yi
p = yi

q, the token is

constructed as follows :

K i1 is filled in partition numbers xi
p and xi

q, K i2
c is filled in partition numbers yi

p and

yi
q.

• This idea can easily be extended to more than two nodes as well, provided at least one of

the coordinates is the same for all nodes in the privileged set. In other words, suppose if

the key K i is to be released in the set of nodes S = (x1, y1), (x2, y2), . . . , (xN, yN) such

that x1 = x2 = . . . xN = x and yi are all distinct, a single token T can be constructed

as follows:

K i1 is filled in partition number x and K i2
c is filled in partition numbers yj ∀ j =

1, 2, ..., N . A similar approach can be used for the alternative scenario where all the

y coordinates are the same and all the x coordinates are distinct for the members of the

privileged set.

Note: Appendix II proves that the above stated procedure indeed achieves controlled and

simultaneous key release.

• It must be noted in the above stated general procedure that if both (xi
p ̸= xi

q and yi
p ̸=

yi
q, then the key will be unlocked in the desired nodes p and q as well as two other nodes
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corresponding to the points (xi
p, yi

q) and (xi
q, yi

p). Hence two separate messages must

be sent to avoid this.

• In other words, a single message can unlock a key in a set of nodes or points (x1, y1),

(x2, y2), . . . , (xN, yN) if and only if one of the coordinates (xi or yi) are equal for all the

points i.e the points lie on a line parallel to the x or y axis in a 2-D Grid. If this is not the

case, then the set of points can be broken into disjoint subsets each satisfying the above

stated requirement, and a token can be constructed for each subset to unlock the key in all

the nodes of that subset. The number of tokens required will then be equal to the number

of subsets. In the worst case, the number of subsets would be equal to the number of

points N which would in turn translate to N tokens.

• Further, if one of the coordinate say x is fixed, then y can take at most v values. This

means that a single token can unlock one key in a maximum of v nodes simultaneously.

• It must also be noted that two different keys K i and K j can also be unlocked simultane-

ously in two different nodes p and q respectively, provided both the coordinates are such

that xi
p ̸= xj

q and yi
p ̸= yj

q. This can be easily extended to more than two nodes as well.

• Another observation that can be made is that more than one key can be unlocked simul-

taneously in a particular node with a single token. In fact up to all the v keys can be

unlocked in a particular node with a single token.
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Chapter 6

Token construction

One of the goals of the reconfiguration protocol is to minimize the number of tokens and achieve

the desired configuration. In the previous section, we showed that a single token can unlock the

same key or different keys simultaneously in many nodes. This property of the design can be

used to reduce the number of tokens. This section describes a sub optimal greedy algorithm

which makes maximum utilization of each token. The algorithm uses two functions which are

analysed first.

6.1 Choosing points from a Key grid

Any desired configuration can be achieved by unlocking different subsets of keys in different

nodes. Since each key is represented by a point in that particular key space/grid depending on

the node at which it is to be unlocked, the whole configuration can be considered as a set of

v key grids G1, G2 . . . , Gv with each key grid Gi containing a set of points where each point

represents a node at which the Key Ki has to be unlocked. Let the desired configuration be

represented by G, then,

G = {G1, G2, . . . , Gv}

where, Gi = {p1, p2, . . . , pni} and |Gi| = ni

Let pi[x] and pi[y] represent the x and y coordinates of any point pi. Let SX[xk] be the set of

points from a given key grid with their x coordinate equal to xk. Similarly, let SY[yk] be the set

of points from a given key grid with their y coordinate equal to yk.
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Definition 2. A valid subset of points in a key grid Gi is any subset of points belonging to Gi

with all points in the subset having the same x coordinate or the same y coordinate. In other

words, all points in a valid subset lie on lines parallel to either the x axis or the y axis.

Algorithm 2 find largest valid subset(Gi)

SX ← ∅

SY ← ∅

for j ← 1 to |Gi| do

P j = Gi(j)

SX(P j[x]) = SX(P j[x])
⋃

P j

SY(P j[y]) = SY(P j[y])
⋃

P j

end for

SXbest = SX(λ) s.t λ = argmin
x
|SX(x)|

SYbest = SY(γ) s.t γ = argmin
y
|SY(y)|

if |SXbest| > |SYbest| then

return SXbest

else

return SYbest

end if

Algorithm 2 finds the largest valid subset in any key grid Gi. It has a running time of

O(|Gi|) which is O(|G|/v) on an average.

6.2 Building a token

The following algorithm (Algorithm 3) fills the partitions in a token with key halves. It imple-

ments the design principles described in the previous section. Let the T be the token and let

T [i] represent the ith partition in T i.e, P i. The algorithm takes in an argument a set S which is

a valid subset in the key space of a particular key say K i.

The running time of the algorithm is O(|S|) which is reasonably small.
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Algorithm 3 Build token(T, S,K i)

for i← 1 to |S| do

pi ← S[i]

T (pi[x])← K i1

T (pi[y])← K i2
c

end for

6.3 Token construction

The algorithm described in this subsection (Algorithm 4) uses the Algorithms 2 and 3 to con-

struct tokens and eventually achieve the desired configuration G. Before presenting the pseudo

code, two important definitions which are used by the algorithm are stated below.

Definition 3. Consider a key grid containing a set of points. A grid span βR,Gi of any set of

points R, is defined as

βR,Gi = {p ∈ Gi s.t ∃c ∈ R p[x] = c[x] OR p[y] = c[y]}

In general, for any two sets A and B,

βB,A = {p ∈ A s.t ∃c ∈ B p[x] = c[x] OR p[y] = c[y]}

Definition 4. The operation ∗ is defined on two sets A and B as follows,

A ∗B = A − βB,A

In other words, the operation ∗ finds the set of points in A which do not lie in the grid span of

B.

The algorithm progresses from one key grid to the next and at each step it finds the largest

valid subset among points in the key grid which do not belong to the grid span of any of the

previously computed largest valid subsets of the other key grids. The algorithm assumes that the

desired configuration G is available. At each iteration, a set R stores points (pairs of partitions)

which are to be filled by keys in order to construct the Token. The set R is updated from one

key grid Gi to the next by adding all points belonging to the largest valid subset of Gi+1 ∗R i.e,

by combining the largest valid subset computed from points in Gi+1 which do not lie in the grid

span of any of the previously computed largest valid subsets.
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Algorithm 4 Token construction
j ← 1

while G ̸= ∅ do

T j ← Random Init(|T |)

R← ∅

for i← 1 to v do

if No further points can be added to T then

Transmit(T j)

Jump to START

else

if Gi ̸= ∅ then

Ri ← find largest valid subset(Gi ∗R)

Gi ← Gi − Ri

Build token(T j, Ri, K i)

R← R
⋃

Ri

end if

end if

i← i + 1

end for

Transmit(T j)

START : j ← j + 1

end while

The algorithm has a run time complexity of O(|G|2). Our model assumes a powerful distribu-

tion centre which constructs tokens. Hence the burden of computation falls on the distribution

centre and computational costs at the nodes are minimal.
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Chapter 7

Security

7.1 Collusion resistance

Any set of nodes which do not belong to the privileged set cannot collaborate to reconstruct

key halves. Let us consider a scenario where a token releases key K i in a privileged set. Some

bits of the key halves Ki1 and Ki2 would be released in the other nodes. Can they collude and

reconstruct the key halves ?

The answer is that it would be difficult to do so in polynomial time. Each token is randomly ini-

tialised and hence the random numbers filled will be differ from one partition to another within

the same token. So the possible ”bit values” of K i1 and K i2 that could be revealed (in a node

which does not belong to the privileged set of K i ) would also vary from one node to another.

The relative position of these bits would also vary because the key halves would occupy differ-

ent partitions in different nodes. Since both the bit values as well as their positions differ from

one node to another, it would be difficult for the nodes to collude because they would not know

which bit values would have to be combined to get the key halves. Due to variation of the bit

positions, they should not be able to guess the order of bit combination as well. Further there

is an added complexity because only some bits of K i1 and K i2 will be released and they would

be revealed along with a union of some random bits. These random bits would also vary from

one node to another because of the random token initialisation. So two colluding nodes cannot

find out which bits in the released Union (some bits of K i1 or K i2 + some random bits) belong

to the key halves because both ( bits of K i1 or K i2 and random bits) would vary from one node

to another.
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7.2 Token security

Since the tokens consist of two partitions for each key-node pair which are randomly distributed,

the formation of any unique columns (if any) by stacking more than one token together will not

lead to the release of a key. When a key is released in a particular node i.e, when the partitions

corresponding to the point represented by the node are filled with the key halves, no other

subsequent token would have the same key halves in the same two partitions. Hence unique

columns cannot be formed by stacking because the partitions that a particular key occupies

keeps varying from one token to another. The tokens formed are unrelated to each other and thus

they are collusion-secure. The scheme can be made less sensitive to physical node capture by

introducing some additional steps. Since both halves of a key are unlocked separately to obtain

the key, we can ensure that the node deletes all bits of the node share that lie in the union of these

two partitions. The node then stores the union of the two partitions. Before processing tokens,

the node simply removes all bits in the token that lie in the union of the two partitions. The

other partitions remain intact and the stack relations do not change. The attacker who captures

the node can only recover the unlocked key and the union of its corresponding two partitions. If

he is able to identify the hidden partitions, then he could use the previously transmitted tokens

to obtain information about other keys which could have resided in the compromised partitions.

By storing only the union of the two hidden partitions, we ensure that the attacker cannot obtain

the two halves separately in polynomial time or gain information about other keys from the past

or future token transmissions.
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Chapter 8

Discussions

8.1 Properties of Tokens

Each token can carry at most v keys which are not necessarily unique. For each token, we define

the total instance of a particular Key K i as the number of nodes in which the token releases the

key K i. It is represented by the symbol IKi . If the key K i is not released by the token in any

node, IKi is set to zero. The tokens can be classified based on their bandwidth utilization, into

two types : Efficient and Inefficient. The classification depends on the total number of instances

of all keys released by the token i.e, the classification is done using the quantity |K| =
∑

i IKi

Efficient Tokens: Tokens which release atleast v instances of one or more keys are termed

as Efficient (|K| ≥ v). A single token can simultaneously release at most 2v − 2 instances in

total of two or more keys i.e |K|max = 2v − 2. For instance, simultaneous release of 2v − 2

instances of two keys (say K i and K j) is possible if two non overlapping valid subsets (of K i

and K j respectively) each of size v − 1 (IKi = v − 1 and IKj = v − 1) are grouped together

into one token. As an example, in a 3 key system, suppose the privileged set of K i is S i =

{(1, 4), (1, 5)} and the privileged set of K j is S j = {(2, 6), (3, 6)}, then the simultaneous release

of K i and K j in S i and S j respectively, can be achieved by a single token. This is because

the privileged sets are non overlapping i.e the partitions occupied by these privileged sets do

not intersect. In this example, although the total size of the transmitted token is only three key

lengths (since v = 3), it is able to unlock |K| = 4 instances of keys (2 instances of each key).

Such tokens where |K| ≥ v are Efficient because by transmitting only vLp bits, the token is

able to release useful information amounting to |K|Lp bits which is greater than or equal to the
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amount of bits transmitted.

Inefficient Tokens: Tokens which release less than v instances of one or more keys are termed

Inefficient (|K| ≤ v). The reasons for their inefficiency are obvious from the previous discus-

sion on Efficient Tokens. Inefficient tokens waste bandwidth because most partitions are filled

with random numbers which only ensure security and exclusive key release. If a token is heav-

ily underutilized, then transmitting the keys through other key distribution mechanisms could

save bandwidth. The process of assigning keys to different groups plays an important role in

minimizing the number of Inefficient tokens. For an arbitrary configuration with a large number

of nodes, the number of inefficient tokens is generally small. Usually, the final few tokens that

are transmitted to complete a given configuration, are inefficient.

8.2 Comparisons with Tree based Broadcast encryption

Tree based broadcast encryption schemes impose a hierarchical structure on the network and in-

herently form groups by doing so. Efficient low memory tree based schemes require each node

to store O(logn) keys. If the controller decides to form NG multicast groups in the network, the

group key establishment phase would require the transmission of only O(NG) messages pro-

vided these groups are the same as the inherently formed ones. However, if arbitrary multicast

groups are required, O(m) messages would have to be transmitted for each group of average

size m. This implies that formation of NG arbitrary groups would require the transmission

of O(mNG) messages. On the other hand, with the proposed scheme, any arbitrary multicast

group with a size m greater than v would necessarily have overlapping subsets. Hence, in gen-

eral less than m messages would be required to establish the group key. Moreover, the multicast

groups can grow simultaneously as well. Assuming each token adds k nodes to each group, one

token would release keys in kNG nodes on an average. The total number of messages required

would be O(m/k) which is much lesser when compared to that of the Tree based Broadcast en-

cryption schemes. However, for a network of size v2, each node would have to store O(v) keys

which is higher than the storage requirement of low memory broadcast encryption methods.

35



8.3 Forward secrecy

Nodes which leave a multicast group should not have acess to future conversations. This can

be achieved by creating one additional key not known to the leaving member of the group.

Fast group key revocation with minimum number of messages requires the group members to

form valid subsets in multiple key grids thereby imposing additional constraints on the design.

Furthermore, if the design is changed to include such partially overlapping subsets to form one

specific multicast group, it could reduce the flexibility in forming other groups linked to the

same key. Consider a scenario of a network with four nodes 1, 2, 3 and 4. Now let keys K1,

K2 and K3 be released such that the following multicast group associations are formed : Now

Table 8.1: Initial group associations

Group Group key

G1 = {1,2,3} K1

G2 = {1,3,4} K2

G3 = {2,3,4} K3

assume node 1 leaves the network. This would imply that node 1 should no longer have the

priviledge to future conversations within groups G1 and G2. This means that nodes 2 and 3

should share a unique common multicast key while the same is true for nodes 3 and 4. Individ-

ual nodes could form all possible functional combinations of keys released in them. This would

imply the mapping shown in Table. 8.2.

Table 8.2: Initial Node - key associations

Node Revealed Keys

1 K1, K2, H(K1, K2)

2 K1, K3, H(K1, K3)

3 K1, K2, K3, All possible hashes

4 K2, K3, H(K2, K3)

Since node 1 leaves the network all keys unlocked in 1 cannot be used further. The correspond-

ing mapping is shown in Table. 8.3.

The new group associations are given by G1
‘ = {2, 3}, G2

‘ = {3, 4}, G3
‘ = {2, 3, 4} with

group keys H(K1, K3), H(K2, K3) and K3 respectively. Node 1 has been removed from Groups
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Table 8.3: Node - key associations after revocation of node 1

Node Revealed Keys

2 K3, H(K1, K3)

3 K2,K3, H(K2,K3), H(K1,K3), H(K1,K2,K3)

4 K3, H(K2,K3)

G1 and G2 without the release of any new keys. The other members of each group still continue

to be a part of their respective groups.

However, if node 3 decides to leave all its groups, then all the keys in the other three nodes

would have to be updated which is in stark contrast to the previous scenario where no new keys

were released. In some situations it is also possible to use even the compromised keys to create

group keys for the modified groups without revealing any information about the new group keys

to the leaving node.

Another possible solution is to form all possible multicast group associations with a unique

key for each association.This would mean that the keys corresponding to subsets which contain

the leaving node can be discarded and other keys can be used. This pre-designed approach

would impose constraints on flexibility of group associations in the network and increase the

number of pre defined distinct keys K i.

We can define depth as the total number of nodes which have left the network or their groups.

This would imply that depth can vary from 1 to n − 1 for multicast group associations. Future

work should revolve around minimizing the number of disctinct keys, messages and support

forward secrecy at different depth values.
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Chapter 9

Simulations

We analyse the performance of the scheme based on the number of tokens that have to be trans-

mitted to configure the network. We study a scenario where the system contains a fixed number

of nodes and we find the number of tokens required to form all possible multicast groups of

different sizes. It must be noted here that the sizes of the networks simulated are small and as a

result, the number of required tokens should tend to be small as well. Consequently, significant

bandwidth gains cannot be expected because the final few tokens that are transmitted, often tend

to be inefficient. However, in larger networks, most of the transmitted tokens are likely to be

Efficient and wastage of bandwidth over all tokens is less likely. A seven key, five node network

is used in both scenarios. Since the network has 5 nodes, there are ten groups of size 2, ten of

size 3 and five groups of size 4. The five node share code words are generated according to the

procedure described in section 3.5. Further, it is assumed that every node computes and stores

some function or hash of all possible combinations of keys that were unlocked in that node.

Group size 2: By unlocking keys according to the following table, a unique group key can

be established for every possible group of size 2. The algorithm described in section 4 was

used to construct tokens and we found that all ten groups, each of size 2, can be created by the

transmission of four broadcast tokens.

Group size 3: For every group of size 3, a unique group key can be obtained as a function

of two primary keys K i and K j for some i and j. Table 7 shows the key mappings for every

possible triad of nodes. Similar to the previous case, we found that all the ten triads can be

created by transmitting 4 tokens.
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Table 9.1: Multicast groups of size 2

Group Group key Group Group key

{1,2} H(K1,K2) {2,4} H(K1,K6)

{1,3} H(K1,K3) {2,5} H(K2,K5)

{1,4} H(K1,K4) {3,4} H(K1,K7)

{1,5} H(K2,K4) {3,5} H(K5,K7)

{2,3} H(K1,K5) {4,5} H(K4,K7)

Table 9.2: Multicast groups of size 3

Group Group key Group Group key

{1,2,3} H(K1,K2) {1,4,5} H(K3,K4)

{1,2,4} H(K1,K3) {2,3,4} H(K1,K5)

{1,2,5} H(K2,K3) {2,3,5} H(K2,K5)

{1,3,4} H(K1,K4) {2,4,5} H(K3,K5)

{1,3,5} H(K2,K4) {3,4,5} H(K4,K5)

Group size 4: The key-group mappings shown in Table 8, when implemented yield five groups

after the broadcast of four tokens (Similar to the previous two cases).

Table 9.3: Multicast groups of size 4

Group Group key

{1,2,3,4} K1

{1,2,3,5} K2

{1,2,4,5} K3

{1,3,4,5} K4

{2,3,4,5} K5

The simulations reveal that only 4 tokens were required to form as large as 10 groups sig-

nalling improvement over traditional static key establlishment schemes and broadcast encryp-

tion schemes.
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Chapter 10

Conclusion

In this thesis report we have presented a design methodology for controlling the release of pro-

tected encryption keys in different nodes, to enforce a dynamic re-configuration of the virtual

wireless network, with the help of broadcast tokens. With the proposed node share and token

design, any arbitrary virtual multicast configuration can be realized through a sequence of care-

fully designed tokens. Both the node shares and the broadcast tokens are collusion resistant.

Further extensions have been discussed, to incorporate forward secrecy, which comes with a

price of compromising on the network flexibility. A paper on our proposal has been submitted

to the ACM WiSEC 2014 conference in manchester, UK and it is pending approval.
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Appendix I

Unique mapping property

The following proof demonstrates that when the general node share code generation procedure

described in section 3.5 is followed, the resulting node share codewords satisfy the the Unique

mapping property. Consider any two node shares which are distributed to two nodes i and j.

They are characterised by the tuples (q1, r1) and (q2, r2) respectively. It must be noted that the

two tuples cannot be equal because of the fact that they represent two distinct nodes. Hence, at

least one of the parameters, either q or r must be different.

Case 1: Assuming that the parameter r is different but q remains the same between the two

tuples, then the corresponding code word halves are C2(r1) and C2(r2) respectively. But C2(r2)

is obtained from C2(r1) by a certain number of circular shifts less than or equal to v − 1 ( v

circular shifts will result in the same sequence again). Since all the assigned key numbers (in

the code word representation) are distinct in both C2(r1) and C2(r2), no column will have the

same number as both entries when C2(r1) and C2(r2) are stacked one below the other. Hence

the y coordinate of every key (partition of the second half of every key) will differ in the Nodes

i and j.

Case 2: The parameter q is different but r remains the same between the two tuples. The

argument is similar to the one presented in Case 1

Case 3: Both q and r are different, follows trivially from Case 1 and Case 2
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Appendix II

Simultaneous key release

Let S = {(x1, y1), (x2, y2), . . . , (xN, yN} be a valid subset of nodes in which a key say

K i has to be released. Then S is defined as the privileged set of key K i. The following proof

demonstrates that the Token design procedure described in section 3.7 indeed unlocks the key

K i in every node belonging to the privileged set S. Further, the proof also shows that any node

which does not belong to the privileged set cannot obtain any information about the key K i.

Let T be a token that is generated using the token design procedure described in section 3.7 to

unlock K i exclusively in the privileged set S.

II.1 At a node belonging to the privileged set

Let the node j belong to the privileged set. Let it be represented by the point (x, y) with respect

to key K i. Since the token was randomly initialised, every other partition apart from partitions

x and y contain random numbers. No other key (apart from K1) could be unlocked at this node

because of invalid stack relations. Recall that in the node share N j K i1 is filled in the partition

x and K i2 is filled in the partition y. Since both K i1 and K i2 were assigned the same key table

number, they share the same stack equation in N i. However, one of the partitions (either x or

y) in the token T is filled with the complement of the corresponding key half. Fusion of the

token with N j results in unique stack equations for K i1 and K i2. Hence both K i1 and K i2 can

be extracted and concatenated to obtain key K i
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II.2 At a node which does not belong to the privileged set

Consider a node A which does not belong to the privileged set. Let it be represented by the point

(xa, ya) with respect to key K i. Let us assume that the x coordinate be the same for all nodes in

the privileged set S i.e, S = {(xk, y1), (xk, y2), . . . , (xk, yN}where the x coordinate equals xk.

Case 1 : xa = xk

In this case the y coordinate of A must be different from all the yjs of the privileged set S. This

is because if ya = yj for some yj in the privileged set S, then the point (xa, ya) will lie inside the

privileged set S which is not possible.

Hence, ya ̸= yj ∀ j = 1, 2, . . . , N

If the token design procedure is followed, then the partition corresponding to ya will be filled

with a random number which is not equal to K i2
c. Let this random number be KR. Since

KR ̸= K i2
c, some bits of KR must be the same as those of K i2

c. Let these positions in the

partition be represented by the set B. Since the partition corresponding to ya is filled with a

random number KR , the stack equations would become invalid and the second half K i2 cannot

be unlocked in node A. When node A tries to unlock K i1, the bits corresponding to the partition

xa i.e PXa are released along with the bits present in the positions denoted by the set B. In other

words when the node A tries to unlock K i1, it instead gets {PXa

⋃
B} i.e, a union of both these

sets. It cannot determine the partition PXa from this union. Hence K i1 would not be unlocked.

Thus both halves K i1 and K i2 cannot be unlocked. No other key would be unlocked as well

because every other partition would have invalid stack relations.

Case 2 : xa ̸= xk and ya = yj for some yj in S

Using similar arguments as in Case 1, it can be clearly seen that the partition corresponding to

xa i.e PXa will be filled with some random number KR1 . This will ensure that K i1 cannot be

unlocked by node A. Since KR1 ̸= K i1 some bits in KR1 will be equal to those in K i1
c. These

will again form a non-null set B which will ensure that K i2 is not unlocked. (Similar to Case

1). No other key would be unlocked as well because every other partition would have invalid

stack relations.

Case 3 : xa ̸= xk and ya ̸= yj ∀ j = 1, 2, . . . , N
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In this case, both the partitions corresponding to xa and ya will be filled with random numbers.

This yields invalid stack equations and both halves cannot be unlocked by node A. No other

key would be unlocked as well because every other partition would have invalid stack relations.

No other cases are possible. This proves that the key K i is not unlocked in any other node

which does not belong to the privileged set. Similar arguments can be given when for the sce-

nario where all the y coordinates of the privileged set S are equal and all the x coordinates are

distinct.
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