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Abstract—Federated Learning (FL) protects data privacy while
providing a decentralized method for training models. However,
because of the distributed schema, it is susceptible to adversarial
clients that could alter results or sabotage model performance.
This study presents SecureFed, a two-phase FL framework for
identifying and reducing the impact of such attackers. Phase
1 involves collecting model updates from participating clients
and applying a dimensionality reduction approach to identify
outlier patterns frequently associated with malicious behavior.
Temporary models constructed from the client updates are
evaluated on synthetic datasets to compute validation losses and
support anomaly scoring. The idea of learning zones is presented
in Phase 2, where weights are dynamically routed according to
their contribution scores and gradient magnitudes. High-value
gradient zones are given greater weight in aggregation and
contribute more significantly to the global model, while lower-
value gradient zones, which may indicate possible adversarial
activity, are gradually removed from training. Until the model
converges and a strong defense against poisoning attacks is
possible, this training cycle continues Based on the experimen-
tal findings, SecureFed considerably improves model resilience
without compromising model performance.

Index Terms—Federated Learning, Anomaly Detection, Secu-
rity, and Privacy.

I. INTRODUCTION

Federated Learning (FL) is a decentralized machine learning
paradigm that enables multiple clients to collaboratively train a
shared global model while maintaining their raw data local [1].
This design provides significant privacy advantages, especially
in domains such as healthcare, finance, and mobile applica-
tions, where sensitive data cannot be centrally aggregated due
to privacy regulations like GDPR. Despite these benefits, FL
is highly susceptible to adversarial attacks due to the lack of
centralized control over individual client updates [2]. One of
the major concerns in FL is the presence of malicious clients
that send tainted or modified model updates to the server,
aiming to degrade the overall model performance or generate
targeted misclassifications [3]. Since malicious updates are
usually designed to statistically mimic benign behavior, such
attacks can be challenging to identify. Therefore, protecting
FL systems against similar threats is crucial for preserving
their effectiveness and trustworthiness [4].

Motivated by these challenges, we propose SecureFed,
a two-stage FL framework designed to isolate and detect
rogue clients. Initially, SecureFed leverages publicly available
datasets to collect model updates from all participating clients.

It then applies a dimensionality reduction techniques, Principal
Component Analysis (PCA) to analyze weight vector patterns
[5]. This analysis enables us to identify irregularities in client
behavior. Further to assist in extensive anomaly detection,
a temporary model is constructed using the gradients and
validated on a synthetic datasets. The observed error rates and
loss values computed from the reduced-dimensional represen-
tations further assist in the anomaly detection. This score is
carry forwarded to phase 2, where SecureFed introduces the
concept of learning zones, the zones group clients based on
trustworthiness to guide training decisions, quantified using
weight magnitudes and gradient values. Clients exhibiting low-
gradient patterns, usually associated with adversarial manip-
ulation, are progressively removed from the training loop.
In contrast, clients with high-gradient values are deemed
reliable and continue contributing to the global model [6].
The proposed zoning strategy enables targeted learning and
enhances resistance to poisoning attacks.

The contributions of the article are as follows:
• A federated anomaly detection framework is proposed,

leveraging dimensionality reduction to identify suspicious
patterns in client weight updates.

• A preliminary scoring model is developed, trained on
real-world attack datasets to support early-stage anomaly
detection.

• A two-stage architecture termed SecureFed is presented,
combining client scoring and trust-based filtering.

• A dynamic learning zone mechanism is introduced, ad-
justing the model training process based on client trust-
worthiness.

• Extensive experiments are conducted to demonstrate the
effectiveness of SecureFed in mitigating adversarial im-
pacts.

The remainder of the article is structured as follows:
Section II reviews the background and relevant FL security.
Section III outlines the problem formulation followed by the
introduction of SecureFed framework in Section IV. Section V
presents the experimental setup, analysis, and results. Finally,
Section VI presents the discussions and Section VII concludes
the paper and presents future research directions.

II. BACKGROUND AND RELATED WORK

This section reviews the existing literature on security
threats in FL systems and highlights defense mechanisms
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developed to detect and mitigate malicious client behavior.

A. Security Issues in Federated Learning

FL was introduced as a privacy-preserving training
paradigm [7]. However, FL systems are susceptible to ad-
versarial threats, including poisoning, leakage and backdoor
attacks. In poisoning attacks, malicious clients injects ad-
versarial data into the system, degrading model accuracy
and sabotaging system performance. These attacks ultimately
aim to shift the model’s focus toward adversarial tasks and
remain undetected to high extent. Backdoor attacks employ a
more subtle approach, targeting specific inputs to trigger the
model into executing adversarial behavior. These backdoors
are stealthily embedded into the system in such a way that the
model’s performance on the primary task remains unaffected,
allowing the adversarial activity to go undetected [4]. Addi-
tionally, the exchange of gradients or model weights during
training may leak sensitive information (unintentionally or
even intentionally), exposing client-side data. These leaks can
be exploited by adversaries to launch powerful data leakage
and reconstruction attacks. In such attacks, adversaries are
able to reconstruct input data from the leaked information,
effectively gaining access without directly participating in the
system. Detecting and mitigating these threats remains a crit-
ical challenge in federated systems. Since malicious updates
often mimic benign ones, traditional outlier-based defenses are
often ineffective. This emphasizes the need for robust, adaptive
defense mechanisms that can identify and isolate malicious
behavior without disrupting the overall training process.

B. Methods to Detecting Malicious Clients in FL

Zhang et al. [8] presented one of the initial comprehensive
reviews that discussed the challenges in FL, highlighting
vulnerabilities such as model poisoning, data leakage, and
high communication costs was presented by Zhang et al.
[8]. The article emphasizes the complexity of ensuring both
privacy and robustness in decentralized settings. It evaluates
existing defense techniques like differential privacy, homo-
morphic encryption, and secret sharing, while identifying
gaps in incentive mechanisms and personalization. This work
presents the broader problem space where several FL security
frameworks similar to SecureFed operate.

Li et al. [9] presented an article focusing on the detection
of malicious clients, proposing a VAE-based framework for
learning low-dimensional embeddings of model updates. Ma-
licious updates generate higher reconstruction errors, enabling
their detection without labeled data. The method works in
both unsupervised and semi-supervised modes with dynamic
thresholds. The framework emphasizes adaptive, data-driven
detection of harmful contributions for both targeted and un-
targeted attacks. Similarly, FedDMC [10] is another frame-
work focusing on identifying malicious clients in poisoning
attack settings. The framework combines Binary Tree-Based
Clustering with Noise, PCA, and a Self-Assemble Detection
Correcting Module, forming a poisoning-resistant FL system.
The system detects malicious clients without clean validation

data by balancing high detection accuracy and low computa-
tional overhead. FedDMC’s multi-tiered detection strategy has
similarities to SecureFed’s use of dimensionality reduction and
trust-based filtering.

Gupta et al. [11] have proposed an FL-based anomaly
detection framework for healthcare systems. The framework
combines Digital Twins and Edge Cloudlet Computing to
avoid sensitive data transfer. In addition, several security
models for protecting IoT devices are discussed in [12], [13].

Even though the primary focus is not on adversarial detec-
tion, the work highlights FL’s potential in secure and privacy-
preserving applications.

C. Comparison with existing works

To improve robustness against adversarial updates, sev-
eral defenses rely on similarity or distance-based heuristics.
Conventional mechanisms like Krum selects updates closest
to the majority [14], while statistical aggregators like the
median and trimmed mean offer resilience to outliers but
overlook deeper structural patterns in client behavior [15].
FoolsGold [16] targets Sybil attacks by analyzing gradient
similarity, but may struggle with more nuanced poisoning
attempts. FLAME [17] is another popular mitigation strategy
that uses adaptive weighting and gradient clipping. In contrast,
SecureFed leverages dimensionality reduction to detect anoma-
lies based on the underlying distribution of client updates,
combining it with a trust-aware approach that dynamically
filters clients based on anomaly and gradient-based scoring.

SecureFed differs from FLTrust [18], which uses a static
reference model without revalidating client behavior, by in-
corporating synthetic validation prior to aggregation. Unlike
prior works that apply dimensionality reduction solely for
post-hoc analysis [19], SecureFed integrates it directly into
the FL pipeline to enable iterative anomaly detection.

III. PROBLEM IDENTIFICATION

Even though FL enhances privacy by keeping data local, its
decentralized architecture introduces significant security vul-
nerabilities. Particularly, malicious clients may inject poisoned
updates that degrade model performance or embed backdoors
into the global model.

A. Vulnerabilities in Federated Learning

FL is vulnerable to adversarial clients whose poisoned
updates can degrade global model performance. Traditional
aggregation methods such as Federated Averaging (FedAvg)
are vulnerable to such attacks as they assume all clients to be
benign. To address this, several robust aggregation strategies
have been proposed. One such framework, FLTrust [18] in-
troduces a server-side trust bootstrapping mechanism, where
the server maintains a small, trusted dataset. Client updates
are scored based on their similarity to this baseline, helping
to reduce the impact of malicious clients. MAB-RFL [20]
employs a multi-armed bandit strategy to adaptively select
clients for aggregation. By formulating client selection as



a bandit problem, the framework balances exploration and
exploitation to identify and prioritize reliable clients over time.

However, these defenses face limitations, particularly in
high-dimensional settings, where benign anomalies and ad-
versarial manipulations are difficult to distinguish.

B. Dimensionality Reduction for Malicious Client Detection
High-dimensional model updates in FL can make it chal-

lenging to distinguish between benign and malicious behavior.
To address this, dimensionality reduction techniques such as
autoencoders and PCA have been explored:

• Autoencoder-Based Anomaly Detection: Autoencoders
can learn compressed representations of benign client
updates by capturing their underlying structure. Devia-
tions from this structure (reflected as high reconstruction
errors) usually indicate anomalous or malicious activity.

• Gradient and Reconstruction Analysis: Existing lit-
erature has proven that combining gradient information
with autoencoder-based reconstruction improves anomaly
detection accuracy in FL. This hybrid approach leverages
both gradient deviations and reconstruction errors to
enhance robustness against poisoning attacks [21].

However, integrating these techniques into federated settings
remains challenging, particularly in ensuring an optimal trade-
off between representation reduction, client privacy, and po-
tential model performance degradation.

C. Secure Aggregation Protocols
Secure aggregation algorithms aim to preserve client

anonymity by aggregating model updates without revealing
individual contributions. However, the privacy guarantee can
unintentionally conceal malicious activity.

• ELSA introduces a secure aggregation scheme that dis-
tributes trust management between two non-colluding
servers. This design ensures the privacy of client updates
while enabling detection of malicious behavior [7].

• SeaFlame enhances communication efficiency using
share conversion and sharing techniques. It reduces
communication overhead while maintaining robustness
against malicious clients [22].

These protocols highlight the inherent trade-off between
protecting client privacy and retaining the ability to detect and
mitigate adversarial activities.

D. Feature Engineering and Client Behavior Analysis
Feature engineering plays a critical role in enhancing the

detection of malicious clients.
• Feature Selection Techniques: Methods such as re-

cursive feature elimination, chi-square tests, and mutual
information help identify relevant features that differen-
tiate between benign and adversarial behaviors. Effective
feature selection reduces dimensionality and improves
model interpretability.

• Modeling Client Behavior: Understanding and modeling
client behavior can assist in identifying anomalies. By
analyzing patterns in client updates over time, certain
deviations can be observed, indicative of malicious intent.

E. Research Gap
Even with the advancements in secure aggregation, anomaly

detection, and robust aggregation strategies, several key chal-
lenges can be identified:

• High-Dimensional Data: Existing defenses often fail in
high-dimensional settings, where distinguishing adversar-
ial behavior from benign outliers becomes unreliable.

• Integration of Techniques: There is a lack of unified
frameworks that effectively combines dimensionality re-
duction, anomaly detection, and secure aggregation to
address malicious client identification.

• Adaptive Learning Zones: Current systems are primar-
ily static, failing to dynamically adjust to evolving client
behavior, limiting their long-term robustness.

F. Proposed Approach
Motivated by these research gaps, the study proposes

SecureFed, a two-stage framework that combines anomaly
detection using dimensionality reduction with adaptive client
filtering based on trust scores. The proposed framework aims
to strengthen FL against adversarial attacks by improving
adaptive security via learning zone based client screening.

IV. PROPOSED FRAMEWORK

The SecureFed framework is designed to enhance the ro-
bustness of FL systems via a multi stage schema, presented
in Figure 1. It operates through two core phases: an anomaly
detection module and an adaptive aggregation module.

A. First layer: Client Side
To simulate the FL setup and extract client-side model

updates for subsequent analysis, the system begin by using
publicly available attack datasets. Data is then partitioned in
IID settings, followed by standard preprocessing approhces
such as reshaping and normalization. After preprocessing, FL
training is initiated by transferring the global model to clients,
who then begin their initial round of training. After training,
clients send their updated model weights to the central server
for aggregation and anomaly analysis.

.

B. Second Layer: Server Side
Server-side processing in SecureFed operates in two phases:

anomaly detection and adaptive zone-based aggregation.
1) Phase 1 (Anomaly Detection): After receiving weight

updates {Wr
c } from all clients in round r, the server applies

PCA to reduce each client’s update into a lower-dimensional
space:

W̃r
c = PCA(Wr

c )

An anomaly score Ac is computed for each client based
on deviations in the reduced representation. To calibrate the
detection process, a threshold τ∗ is estimated using a synthetic
validation dataset Ds. For the scope of this work, a standard
dataset with similar feature vectors to the training dataset was
used [23] in the place of synthetic data:

τ∗ = Validate(Ds, {Ac})



This threshold is further used to normalize and scale trust
computation in Phase IV-B2.

2) Phase 2 ( Adaptive Learning Zones): Each client’s
update Wr

c is temporarily applied to the current global model
to form a personalized model Mr

c :

Mr
c =Mr

g +Wr
c

This temporary model is evaluated on the synthetic dataset
Ds to calculate a validation loss Lc, which helps assess the
behavioral consistency of each client’s contribution. Simulta-
neously, the gradient magnitude is computed as:

Gc = ∥∇Wr
c ∥

Next, a trust score Tc is calculated by combining the normal-
ized anomaly score, validation loss, and gradient magnitude:

Tc = α ·
(
1− Ac

τ∗

)
+ β ·

(
1− Lc

max(L)

)
+ γ · Gc

max(G)

Based on this score, clients are dynamically assigned to
one of three learning zones determined by a preset threshhold
value: Zone 1 (High Trust) , Zone 2 (Uncertain) and Zone
3 (Low Trust). Each zone is assigned a weighting factor
αz(c) which determines its influence during aggregation. The
global model is updated through zone-weighted aggregation
as follows:

Wr+1 =

∑
c∈C αz(c) · nc · Wr

c∑
c∈C αz(c) · nc

Mr+1
g =Mr

g +Wr+1

The updated model Mr+1
g is then sent to all clients for

the next training round. This process continues until model
convergence. The overall framework of the proposed system
is illustrated in Fig. 1. This mechanism ensures that only
trustworthy clients contribute to the global model. The detailed
working of the framework is presented in Algorithm 1.

V. RESULTS

A. Experimental Setup

To evaluate the performance of SecureFed, we simulate a
FL environment using the standard MNIST dataset, distributed
under IID schema. The system is trained for three global
rounds with 20 clients, with varying malicious client ratios
(30-48%) injecting the model with poisoning updates. The poi-
soning attack primarily focuses on single-class label flipping
mechanism [24]. Each client trains their model on local data,
and the aggregation is initially performed using the vanilla
FL schema and then using the proposed SecureFed schema.
The SecureFed schema uses PCA for dimensionality reduction
(retaining top-5 components) combined with K-Means based
anomaly clustering, followed by a synthetic dataset based
validation for trust-based scoring.

Algorithm 1 SecureFed: Two-Phase Framework with Trust-
Zone Weighted Aggregation

Require: Initial global modelM0
g , client set C, public dataset

Dp, synthetic dataset Ds, number of rounds R
Ensure: Final global model MR

g

1: for each round r = 1 to R do
2: Server broadcasts Mr

g to all clients C
3: for each client c ∈ C in parallel do
4: Client c trains and returns Wr

c

5: end for
6: Phase 1: Anomaly Detection
7: Collect all client updates: {Wr

c }
8: Apply dimensionality reduction: W̃r

c = DR(Wr
c )

9: Compute anomaly scores: Ac = fanomaly(W̃r
c )

10: Estimate detection threshold via synthetic evaluation:
τ∗ = Validate(Ds, {Ac})

11: Phase 2: Adaptive Learning Zones
12: for each client c do
13: Temporarily update model: Mr

c =Mr
g +Wr

c

14: Evaluate Mr
c on synthetic data Ds to compute vali-

dation loss: Lc

15: Compute gradient magnitude: Gc = ∥∇Wr
c ∥

16: Compute trust score: Tc = α ·
(
1− Ac

τ∗

)
+ β ·(

1− Lc

max(L)

)
+ γ · Gc

max(G)

17: if Tc ≥ τhigh then
18: Assign c to Zone 1 (High Trust), set αz(c) = α1

19: else if τlow ≤ Tc < τhigh then
20: Assign c to Zone 2 (Uncertain), set αz(c) = α2

21: else
22: Assign c to Zone 3 (Low Trust), set αz(c) = α3

23: end if
24: end for
25: Weighted Aggregation from All Zones:

26: Wr+1 ←
∑
c∈C

αz(c)·nc·Wr
c∑

c∈C
αz(c)·nc

27: Update global model: Mr+1
g ←Mr

g +Wr+1

28: end for
29: return Final global model MR

g

B. Adversarial Robustness Evaluation

The primary focus of the SecureFed framework is attaining
adversarial robustness. Thus, the system’s ability to isolate
malicious clients is measured using precision, recall, and F1-
score of the aggregated model. Additionally, the aggregated
model’s accuracy is also compared against baselines trained
under both benign and poisoned environments. As shown in
Table I, SecureFed achieves the highest scores compared to
vanilla FL, due to the usage of low-dimensional behavior
patterns and synthetic data-based model evaluation.

C. Trust Score Dynamics and Zone Distribution

Figure 2 illustrates the functioning of trust score based zones
and how they evolve over rounds. Benign clients gradually
converge to high-trust zones (Zone 1), while malicious ones



Fig. 1: Secure Fed : Data flow diagram

TABLE I: Model performance metrics under varying malicious
client ratios.

FL Method Client Status A (%) P R F1

Vanilla FL
(FedAvg)

Benign 95.49% 0.95 0.95 0.95
30% Malicious 92.71% 0.91 0.93 0.93
48% Malicious 84.42% 0.90 0.86 0.84

SecureFed
Benign 95.49% 0.95 0.95 0.95

30% Malicious 93.11% 0.93 0.94 0.93
48% Malicious 92.50% 0.91 0.92 0.92

A → Accuracy, P → Precision, R → Recall, F1 → F1 Score

remain in or migrate to Zone 3. Based on the zones, a weighted
averaging is employed, ensuring primary contributions from
clients in zone 1. The observations validates the effectiveness
of adaptive learning zones in filtering malicious behavior
without compromising useful contributions.

D. Ablation Study

Further, to analyze the contribution of each SecureFed com-
ponent, an ablation study was performed and the observsation
are as noted in Table II.

TABLE II: Component-wise Ablation Study

Configuration Accuracy Detection Rate
SecureFed (Full) 92.50% 75%
w/o PCA 91.61% 66.75%
w/o Synthetic Validation 88.54% 38.25%
w/o Trust Score (Binary Filter) 89.27% 45.05%

Observations showcase that PCA-based detection, synthetic
validation, and trust-driven aggregation together ensure the
robustness and reliability offered by the SecureFed framework.

VI. DISCUSSION

The evaluation results demonstrate the effectiveness of the
proposed SecureFed framework for mitigating the influence of

malicious clients while preserving overall model performance.
As shown in Table I, SecureFed consistently outperforms the
baseline Vanilla FL (FedAvg) under increasing proportions of
adversarial clients. specifically, with 48% of malicious clients,
SecureFed achieves an accuracy of 92.50%, compared to only
84.42% with Vanilla FL, an improvement of 8.08%. Similarly,
the F1 score improves from 0.84 to 0.92, showcasing an
increase of 9.5%, indicating better balance between preci-
sion and recall in adversarial scenarios. This highlights the
resilience of SecureFed in malicious settings.

In scenarios with 30% malicious clients, SecureFed main-
tains its robustness, improving accuracy from 92.71% (Fe-
dAvg) to 93.11%, and increasing the F1 score from 0.93 to
0.93 (and a slight increase in precision and recall), indicating
that the framework does not compromise performance even
when with lesser adversarial clients. The ablation results in
Table II provide a comprehensive overview of the contribution
of each framework component. When PCA-based is removed,
the detection rate drops from 75% to 66.75%, and accuracy
declines by nearly 0.9%, indicating that PCA plays a mod-
erate but critical role in outlier isolation. A more significant
performance degradation is observed when synthetic valida-
tion is excluded as accuracy drops to 88.54% and detection
rate reduces by half to 38.25%. These observations confirms
the importance of cross-verification with synthetic data for
extensive anomaly detection.

Finally, removing the trust score mechanism and relying
solely on binary filters result in a reduced accuracy (89.27%)
and incomplete detection capability, highlighting the value of
trust-based aggregation over rigid thresholding.

Overall, these observations validate the functionality of
SecureFed. Each module contributes significantly to both per-
formance and defense. The dynamic learning zone strategy
enables graceful degradation in adversarial scenarios without
abrupt exclusions.

VII. CONCLUSION AND FUTURE WORK

In this research, we introduced SecureFed, a new two-
phase architecture that detects and isolates malicious clients to
improve the robustness of FL systems. SecureFed incorporates
dimensionality reduction techniques and a dynamic learning
zone strategy to systematically analyze client inputs and pro-
tect the model training process from adversarial participants.
In Phase 1, we used dimensionality reduction to collect and
analyze client weight vectors from publicly available datasets,
allowing the early detection of client behavior anomalies.
Further, the idea of learning zones is presented in Phase 2,
which enable the framework to filter out possibly dangerous
clients based on gradient importance and route reliable updates
for further training. Validations on standard attack datasets
show that SecureFed enhances the federated model’s overall
performance and security while successfully reducing the
effects of poisoned updates. The method preserves model
integrity by dynamically adjusting to adversarial behavior
without necessitating major changes to the fundamental FL
methodology.



Figure 2 (a): Trust Scores  – 0% Malicious Data Figure 2 (b): Trust Scores  – 30% Poisonous Run Figure 2 (c): Trust Scores  – 48% Poisonous Run

Figure 2 (d): FL Model Global Accuracy Over Epochs Figure 2 (e): Learning Zones aka Clusters without Malicious Data Figure 2 (f): Learning Zones aka Clusters with Malicious Data

Fig. 2: Results

However, a key limit observed in the current framework is
its high dependency gradient divergence for anomaly classifi-
cation. Since the system has only been evaluated under IID
data distribution schemes, the underlying assumption holds
true. However, in highly divergent settings, the assumption of
divergent clients being malicious becomes less reliable. Thus,
in the future work, we propose developing a robust aggregation
mechanism that combines gradient divergence with additional
behavioral features to support non-IID scenarios. Furthermore,
the trust-based filtering mechanism used in SecureFed is
limited to iteration-specific observations. Thus, in the future
works, we plan to formulate an enhanced credibility metrics
that integrate trust scores with historical performance trends
for more comprehensive and adaptive client evaluation.
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