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Watermarking the outputs of generative models has emerged as a promising approach for
tracking their provenance. Despite significant interest in autoregressive image generation
models and their potential for misuse, no prior work has attempted to watermark their outputs
at the token level. In this work, we present the first such approach by adapting language
model watermarking techniques to this setting. We identify a key challenge: the lack of
reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly
alters the token sequence, effectively erasing the watermark. To address this and to make our
method robust to common image transformations, neural compression, and removal attacks,
we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and
(ii) a complementary watermark synchronization layer. As our experiments demonstrate, our
approach enables reliable and robust watermark detection with theoretically grounded p-values.

Correspondence: nikola.jovanovic@inf.ethz.ch, pfz@meta.com
Code: https://github.com/facebookresearch/wmar

Watermark 
DetectionDetokenizer

2 9 1 4 7 ? 8

Autoregressive
Model

Watermarked
Sampling

Tokenizer

Watermarked!
p-value: 1.2 x 10-7

Generated Content

…
The Black Minorca is a rare 
and historic breed 
originating from the 
Balearic Islands of Spain. 
Here's an image of a Black 
Minorca hen, showcasing 
its signature green sheen 
on its feathers:

What is Black Minorca ?

Finetuned tokenizer Watermark synchronization

2 9 1 4 7 8

Figure 1 We watermark autoregressively generated images together with text in a theoretically principled way by
adapting LLM watermarking. We identify and address the novel challenges present in this setting (Section 3) via
a custom (de)tokenizer finetuning procedure (Section 3.1) and a watermark synchronization layer (Section 3.2).

1 Introduction

Autoregressive models are powerful frameworks for understanding and generating diverse content types.
By converting multiple modalities into discrete representations via custom tokenizers [78, 97, 110], a
single transformer is able to seamlessly process multiple domains, including text, images [11, 15, 93,
102], audio [8, 24], and even molecules [38]. Following patterns observed in large language models
(LLMs), established scaling laws [2, 35, 86] demonstrate that the performance of these models improves
predictably with size and computational resources, leading to increasing adoption across research and
industry [21, 68, 72]. Most notably, in the image domain, autoregressive models are widely studied as
an alternative to diffusion models for high-quality generation [76, 88, 94, 108].

Watermarking generative model outputs. Regardless of the specific method, the widespread deployment
of high-quality generative models has made the detection of AI-generated content increasingly challenging.
This has raised significant concerns about misuse, including deepfakes, harmful content generation, and
intellectual property violations. One promising direction to help address these issues is generative AI
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watermarking, in which the model provider proactively embeds imperceptible signals into generated
content to verify its origin later, ideally even under common transformations and removal attacks.

Recent research in this area can be categorized into post-hoc methods, which modify already generated
content in a model-agnostic way [9, 12, 22, 29, 83, 121], and modality-specific generation-time methods,
which alter the generation process of a specific model [1, 20, 28, 46, 101, 105]. The latter are the
standard in LLM watermarking, offering theoretically grounded watermark detection with provably
low false positive rates. However, most image watermarking research focuses on diffusion models, and
no prior work has attempted to adapt LLM watermarks to other token types, which could be a way
to develop a robust and theoretically principled watermark that is tailored to autoregressive image
generation models. This motivates our key question:

Can we robustly watermark autoregressive image generation models at the token level?

This work. To answer this question, we extend LLM watermarks to watermark autoregressively
generated image tokens as illustrated in Figure 1. We identify and address a key technical challenge.
Namely, while image tokenization is designed to be forward cycle-consistent, i.e., tokenizing and
detokenizing an image does not significantly alter it, reverse cycle-consistency (RCC) is often violated.
In particular, we show that decoding model-generated tokens and then re-tokenizing the resulting image
leads to, on average, one-third of the tokens being different. The tokens differ even more if the images
are transformed between generation and watermark detection (e.g., JPEG compressed or cropped),
which is a common scenario in practice. While RCC may not be important for generative model
performance, it is a crucial prerequisite to achieve strong and robust generation-time watermarking.

To mitigate this, we adopt two main strategies, shown in Figure 1. We introduce a lightweight finetuning
procedure that optimizes the detokenizer and tokenizer to be more reverse cycle-consistent, improving
watermark power and robustness to valuemetric transformations (e.g., JPEG) and attacks such as
diffusion purification [71] and neural compression [5, 14, 25, 80]. To then improve robustness to geometric
transformations (e.g., flips), we introduce a complementary post-hoc watermark synchronization layer,
repurposing localized watermarking [83] to detect and revert geometric transformations and recover
original tokens. As our experiments show, this results in a watermark that is quality-preserving,
effective, and robust. To inspire future work, in Section 5 we take first steps to extend our approach to
audio, another modality where autoregressive generation via tokenization is popular [8, 18, 24, 70].

Main contributions. We make the following key contributions:

• We conduct the first study of watermarking for outputs of autoregressive image generation models,
adapting LLM watermarks to obtain theoretically principled p-values. We notably identify a key
technical challenge, the lack of reverse cycle-consistency (RCC) (Section 3).

• We propose a finetuning procedure for image tokenizers and detokenizers that improves RCC and
significantly increases watermark power and robustness (Section 3.1).

• We introduce a complementary post-hoc watermark synchronization layer, which achieves geo-
metric robustness by leveraging off-the-shelf localized watermarking (Section 3.2).

• In our thorough experimental evaluation across several settings, we show that our watermark
is strong, quality-preserving, and persistent under a wide range of valuemetric and geometric
transformations and attacks such as diffusion purification and neural compression (Section 4).

2 Background and RelatedWork

Autoregressive image models. A long-studied approach to image generation, and the focus of our work,
is to first learn an image tokenizer and then train a (conditioned) autoregressive model M such as a
transformer, to create images by generating corresponding token sequences [76, 88, 94, 96, 100, 108, 109].
Notable examples of such models include DALL-E [76], Parti [108], VAR [94], and RAR [109]. This
approach is central to models for interleaved multimodal generation [11, 15, 31, 59, 60, 93, 102, 111], such
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as Chameleon [11], AnyGPT [111], or Janus [102]. In this work, we do not consider other models that use
continuous representations or combine diffusion with autoregressive mechanisms [26, 56, 66, 103, 120].

Tokenization. Formally, for a target modality m (in this work primarily text or image, but also audio in
Section 5), a tokenizer Tm maps each data sample x to a sequence of integer tokens s = (s1, . . . , sT ) ∈ V T ,
where V is the predefined vocabulary. The detokenizer Dm attempts to reverse this process. Most
text tokenizers are based on byte-pair encoding (BPE) [30]. While alternative approaches have been
explored [56, 94], the tokenization of images overwhelmingly relies on vector quantization (VQ) [32, 56].
Most models use VQ-VAE [78, 97] or its variants VQGAN [25], ImprovedVQGAN [107], and FSQ [67].
VQ tokenizers generally consist of an encoder network E and a quantizer QC . E maps x to a sequence
of soft latents z = E(x) ∈ RT×d. Then, QC replaces each zi with the index of the nearest entry in a
codebook C ∈ R|V |×d to obtain discrete tokens s ∈ V T :

si = QC(zi) = argmin
j∈{1,...,k}

∥zi − Cj∥22. (1)

The detokenizer Dm replaces each si with the corresponding ẑi = Csi (hard latents), and then applies a
decoder network D to obtain the detokenized sample x̂ = D(ẑ). All components (E, C, and D) are
typically trained jointly, primarily with the reconstruction objective.

Watermarking AI-generated outputs. Methods for watermarking of AI-generated outputs broadly fall
into two main categories based on the stage at which the watermark is introduced. Generation-time
watermarks directly alter generations to embed statistically detectable patterns, and are the standard
for LLM watermarking [1, 16, 46, 51]. Similar approaches also exist for diffusion models [28, 101, 105].
In contrast, post-hoc watermarks modify previously generated outputs in a modular model-agnostic
way, by paraphrasing text [4, 12, 116] or altering image pixels [9, 10, 41, 63, 65, 90, 121].

For both of these categories, we say that a watermarking scheme is zero-bit if only the presence of the
watermark can be detected, and multi-bit if it embeds a binary message. This message embedding
is sometimes done in a localized way [83, 85], such that a different message can be extracted from
different parts of the same data sample (e.g., one per pixel). While post-hoc watermarks have broad
applicability, generation-time approaches that introduce semantic changes to the content often offer
superior robustness to attacks such as diffusion purification [81] and provide provable, key-based
guarantees on false positive rates (unlike neural extraction methods, where recovered bits may be
biased or correlated [28, App. B.5]). To the best of our knowledge, no prior work attempts to develop
a generation-time watermarking scheme for autoregressive image models.

LLM watermarking. In this work, we focus on the LLM watermark of Kirchenbauer et al. [46] (KGW,
green/red scheme). At each step i of generation, this method uses a secret key ξ, and previous h tokens
of context si−h:i to pseudorandomly partition the vocabulary V of the tokenizer into γ|V | green tokens
Gi and other red tokens Ri. The logits corresponding to Gi are then increased by δ, the watermark
strength. The watermark detector computes the score S =

∑T
i=h+1 1(si ∈ Gi) as the number of green

tokens in the given sequence of T tokens. Under the null hypothesis H0 (no watermark), S follows a
binomial distribution with parameters T − h and γ. The p-value (often denoted as p) is calculated as:

p-value(S, T, h, γ) = Prob (X ≥ S | X ∼ Binomial(T − h, γ)) . (2)

A low p-value proves that the content was generated with M. More details are provided in Appendix B.

3 Watermarking Autoregressive Image Generation

In this section, we present our approach to watermarking autoregressive image models. We identify and
address the key challenge of low reverse cycle-consistency (RCC) via tokenization finetuning (Section 3.1)
and watermark synchronization (Section 3.2). As our experiments in Section 4 demonstrate, this leads
to a strong and robust watermark that does not affect generation quality.
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Unwatermarked Generation Tokens (p = 0.73) Watermarked Generation Tokens (p = 10−11)

Figure 2 Example of our watermark on an autoregressively generated image. We generate the upper half of the
image without the watermark. We then complete the bottom half in the same way (left) or with the watermark
(right). The overlay indicates generated image tokens detected as green ( ), red ( ), or ignored as a duplicate
( ). The watermark only alters semantics and could be detected even when applied only partially as in this case.

Setting. A model provider (Alice) deploys an autoregressive model M that may generate arbitrarily in-
terleaved text and images, using a tokenizer Tm and detokenizer Dm for each modality m ∈ {text, image}.
In line with the most prominent choices, we assume BPE for text [30] and VQ for images [25, 97].
Alice’s goal is out-of-model, generation-time, zero-bit watermarking (see Section 2), i.e., embedding a
later detectable watermark in all outputs of M, without modifying the model’s weights. We assume
that Bob has only black-box access to M, and no access to any Tm or Dm.

Adapting LLM watermarking. When M generates text, we directly apply KGW (Section 2) with
h = 1. For images, using a fixed split (h = 0), known to make watermarks insecure for text, i.e., easy
to reverse-engineer [42, 47, 118], may in our case be a more viable choice due to the opacity of the
VQ tokenizers. We thus explore both h ∈ {0, 1} in our experiments in Section 4. Another degree of
freedom is the choice of watermark context—we did not find exploiting the 2D structure of images to
be beneficial, despite the intuition that using tokens that correspond to spatially close regions as the
watermark context (instead of those last generated by the autoregressive model) may benefit robustness.
This idea and more values of watermark parameters are explored in Appendix F.2.

Detection. Given samples x(i) of varying modalities that Alice suspects were generated by M (e.g., a
post on a breed of hen as in Figure 1), she can apply Equation 2 in a unified way. We first tokenize each
x(i) to s(i) of length T (i) tokens, and score it using the corresponding h(i) to obtain a score S(i). We next
sum all S(i), T (i), and h(i), and deduplicate scored (context, token) pairs across all samples to preserve
statistical soundness [27, 43, 46, 84]. Then, we apply Equation 2 to obtain a single p-value. Notably,
the same γ must be used across all modalities. Alice may reject H0 (flag content as watermarked) if
the p-value is below the desired false positive rate (FPR). In Section 4.3 we investigate the benefits of
jointly watermarking multiple modalities, and discuss the involved tradeoffs.

In Figure 2, we visualize the watermark on an image generated with Taming [25], by applying it only
on the second half of generated tokens. As we later confirm in Section 4, the watermark imperceptibly
modifies images by altering semantics, while achieving high watermark confidence (low p-value).

Challenge: reverse cycle-consistency (RCC). The tokens s shown in Figure 2 as input to the detector
are those generated by the autoregressive model, which is not realistic. In practice, to apply the detector
to a sample x′, Alice must first tokenize it as s′ = Tm(x′). If tokens s′ significantly differ from s, the
watermark may be lost. To quantify this, we define the token match as:

TM(s, s′) =
1

T

T∑
i=1

1(si = s′i), (3)

where s′ = Tm(Dm(s)). We say that reverse cycle-consistency (RCC) holds if TM(s, s′) ≈ 1. In Ap-
pendix C.3 we discuss similar concepts studied in prior work and relate them to RCC.
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Table 1 Average token match between 1000 image token sequences generated with Taming (see Section 4) and
their re-tokenized versions, which may also undergo image transformations before re-tokenization.

Original Blur ksz = 9 Noise σ = 0.1 JPEG Q = 25 Brighten 2× Rotate 10◦ Flip ↔ Crop 0.75

0.66 0.26 0.17 0.31 0.11 0.02 0.01 0.01

Interestingly, RCC is not guaranteed to hold even in the text domain, despite BPE tokenizers ensuring
forward cycle-consistency (FCC), i.e., Dtext(Ttext(x)) = x always holds. For example, if tokens A,
B and their concatenation AB all exist in the vocabulary, then the token sequence [A,B] will be
re-tokenized as a single token AB due to the greedy tokenization algorithm of BPE, effectively violating
RCC. In Appendix C.1 we discuss this in more detail and provide a real example. Still, RCC in text
largely holds in practice, which is also evidenced by the fact that no prior LLM watermarking work
has cited related challenges. We confirm this experimentally: across 1000 completions generated with
Llama3.1-8B-Instruct the average token match was 0.995.

RCC in image generation. We repeat this experiment on image models, presenting the results in
Table 1 (full details in Appendix E.1). We also consider the case where images undergo transformations
(x → a(x)) before re-tokenization. Without transformations (Original), RCC is already weaker than
expected with TM = 0.66. As Section 4 will show, this often suffices under ideal conditions (e.g.,
our example in Figure 2 has a p-value of 10−9 after re-tokenization). However, common valuemetric
transformations (blur, noise, JPEG, brighten) lower TM (e.g., to 0.31 for JPEG with Q = 25), and
geometric ones (rotate, flip, crop) cause a further drop to almost 0. Two key factors explain this
behavior. First, neural image tokenizers are trained for FCC, not RCC. Their training data does not
include detokenized samples, which often lie off-manifold. Second, spatial sensitivity of the tokenizer
causes semantic-preserving edits to easily alter most tokens. We next show how to mitigate this.

3.1 Finetuning for Reverse Cycle-consistency

We propose a finetuning procedure (illustrated in Figure 3) that improves RCC in image tokenizers.
Recall the VQ components (Section 2): encoder E, quantizer QC with codebook C, and decoder D. Let
D0, E0 be the original weights of D and E. To avoid costly retraining of M, we must keep (E,QC , C)
fixed; otherwise, we risk modifying the codebook semantics (directly or by changing how images are
encoded by E), which harms the autoregressive model. Thus, we propose to only finetune D and an
encoder replica E′ (initialized to E0). E′ is used only for watermark detection, while the original E
may be used to condition M on images. Unlike usual VQ training that promotes FCC, we optimize
RCC: we aim to learn a decoder D whose outputs E′ can reliably invert.

Finetuning objectives. We first precompute tokenizations s from a set of images, which we use as our
training data. We encourage RCC by minimizing the following loss:

LRCC(s) = E
a∼A

∥ẑ − E′(a(D(ẑ)))∥22. (4)

Its goal is to match the original hard latents ẑ = Cs to soft latents obtained after detokenization
and encoding using E′. To ensure RCC holds robustly even under transformations, we uniformly
sample an augmentation a ∼ A with preset probability paug in each training step, or set it to identity
otherwise. Our augmentation set A includes valuemetric (brighten, contrast, JPEG) and weak geometric
transformations (e.g. ±1◦ rotation), with strength ramped up over training (see Appendix E.1).

To retain decoder quality we introduce a regularization that keeps the effect of D close to the effect of
its initial weights D0 via a mixture of MSE and LPIPS perceptual loss [115]:

Lreg(s) = ∥D(ẑ)−D0(ẑ)∥22 + LLPIPS(D(ẑ), D0(ẑ)). (5)

We found this sufficient as a quality constraint and easier to train compared to loss functions that
compare reconstructions to the original images or the use of adversarial discriminators.
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Figure 3 A replica E′ of the encoder and the decoder D are jointly trained to improve reverse-cycle consistency,
i.e., make E′(D(ẑ)) close to ẑ for most generations of the autoregressive model M, even under transformations.

We jointly train D and E′ to minimize:

L(s) = LRCC(s) + λ · Lreg(s), (6)

where λ is a tradeoff hyperparameter. In Section 4 we demonstrate that this efficiently boosts RCC and
watermark robustness against valuemetric attacks, neural compression, and diffusion purification [71].

3.2 Post-hocWatermark Synchronization

Semantic-preserving geometric transformations (e.g., flips) easily change image tokenization as each
token loosely corresponds to a local image patch. Therefore, RCC finetuning alone cannot recover the
watermark. One could run the watermark detector on multiple transformed image copies (rescaled,
rotated, etc.), but this is costly and significantly inflates false positives as noted in prior work [46].

Localization as synchronization. To address this in a more practical way, we repurpose localized
watermarks (see Section 2) as a synchronization signal. More precisely, we locally embed a fixed set of
messages whose detection estimates the applied transform, which we then aim to invert before applying
the original watermark detector. To not degrade original performance, our watermark should be robust
to the addition of this signal, which we verify in Section 4. Detecting this signal could in principle
be taken as evidence that the image is watermarked, as in some of the prior post-hoc watermarking
schemes that explore synchronization [33, 64]. However, applying the original watermark detector is
still necessary to obtain theoretically grounded p-values that can be combined with other samples
across modalities as described above. Moreover, as we will see in Section 4, post-hoc watermarks are
generally much more brittle to adversarial purification compared to the approach we propose.

Reverting transformations. In Figure 4, we show our instantiation of this idea, where we embed four
32-bit synchronization messages {032, 016116, 116016, 132} via the method of Sander et al. [85] into
the four image quadrants. We observe that the original watermark is well preserved (with p-value
p = 5 · 10−38) after adding the synchronization signal. However, a horizontal flip shuffles tokens and
breaks detection (p = 0.66). To identify this, we apply an algorithm that searches over a grid of rotation
angles, and for each fits the best axis-aligned pair of orthogonal lines that separate the four messages.
This is sufficient to identify and revert flips, rotations, and crops followed by upscaling to the respective
model’s original generation size, which we revert by downscaling and padding appropriately. We note
that our synchronization pattern (quadrants) assumes crops that preserve one corner—as we discuss
in Section 6, the same idea can be directly extended to arbitrary crops by using a more elaborate
synchronization pattern. In our example in Figure 4, our procedure detects that a flip was applied and
restores p = 5 · 10−38. Full algorithm and more examples are deferred to Appendix D.1.

In the following, we empirically show that synchronization enhances geometric robustness, complement-
ing RCC finetuning. This step is further aided by the use of small geometric augmentations during
RCC finetuning, as they effectively compensate for minor errors in our transformation estimates.
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Figure 4 Watermark synchronization. Localized messages are embedded into a generated watermarked image
and later used to discover the unknown transformation and revert it, which recovers the original watermark.

4 Experimental Evaluation

In Section 4.1, we measure the effect of RCC finetuning (Section 3.1) and the synchronization layer
(Section 3.2) on RCC, quality, and the power of our watermark. Section 4.2 studies robustness under
common transformations and attacks, while Section 4.3 studies joint watermarking of text and images.
Additional experimental details and results are given in Appendix E and Appendix F, respectively.

Setup. We consider three autoregressive image generation models. First, the class-conditional ImageNet
transformer from Esser et al. [25] that generates images at resolution 256×256 with a VQGAN tokenizer
with |V | = 16384 and downsampling factor f = 16, denoted Taming below. Next, the 7B variant of the
mixed-modal Chameleon [11] that can generate interleaved text and 512×512 images, with |V | = 8192
and f = 16. Finally, RAR-XL, the 955M configuration of the state-of-the-art RAR model [109],
generating 256×256 images conditioned on an ImageNet class, as Taming, with |V | = 1024 and f = 16.
In each experiment, we generate 1000 samples per model (100 samples per each of 10 ImageNet classes
for Taming and RAR-XL, and 1000 COCO prompts for Chameleon).

We evaluate 4 variants of our method: Base, which uses original models and tokenizers, FT and
FT+Augs, which apply the same watermark after RCC finetuning (Section 3.1) without and with
augmentations in training, respectively, and FT+Augs+Sync, which also uses our watermark syn-
chronization (Section 3.2) on top of augmented-RCC finetuning. We use δ = 2 and γ = 0.25 in all
experiments, h = 1 for Taming, RAR-XL, and Chameleon on text, and h = 0 for Chameleon on
images. We finetune models on tokens derived from 50,000 ImageNet training samples for 10 epochs
(2h on 16 V100 for Taming, 2.5h on 8 H200 for Chameleon, and 0.5h on 8 H200 for RAR-XL).

4.1 Reverse Cycle-Consistency,Watermark Power, and Generation Quality

The key question raised in Section 3 is if our proposed finetuning procedure can alleviate the lack of
reverse cycle-consistency (RCC) in image tokenizers, and in turn improve watermark power. We also
measure the effect of watermarking and finetuning on generation quality. In the following, we present
results with Taming. In Appendix F.3, we repeat the same experiments on Chameleon and RAR-XL
with the same finetuning hyperparameters (see Appendix E.1) and reach similar conclusions.

Finetuning improves RCC. We generate 1000 class-conditioned ImageNet samples using each of our 4
variants, and measure token match (TM, Equation 3) between the generated tokens and those obtained
by re-tokenizing the image. In our results in Figure 5 (left), we observe that TM is consistently below
0.8, as previously seen in Table 1, while for all finetuned variants it is generally above 0.8. This
demonstrates that finetuning is successful in improving RCC. Augs and Sync slightly reduce TM on
unmodified images, but significantly increase robustness (see Section 4.2).

Finetuning improves watermark power. In Figure 5 (right), we report the true positive rate (TPR) of
the watermark detector for different false positive rates (FPR). The Base variant already has practically
viable power, achieving TPR of ≈1 at FPR of 10−2 (dashed line), the setting commonly considered in
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Figure 5 Left : Finetuning improves token match (Equation 3) between original and re-tokenized image tokens.
Right : All variants achieve TPR ≈1 at FPR of 1%. Finetuning further boosts detection in low-FPR settings.

prior work [17, 20, 101, 119]. However, RCC gains directly translate to improvements in watermark
power: for all 3 variants, the TPR at lower FPR settings is significantly higher.

Watermarking and finetuning do not harm generation quality. To measure the quality of the generated
samples, we compute FID [36] on 50,000 generations (50 per ImageNet-1K class) for all variants. We find
that none of Base, FT, and FT+Augs have FID above 16.7, which is the FID of an unwatermarked
Base model. This confirms that our watermark preserves generation quality even after finetuning. The
FID of FT+Augs+Sync is 17.3, a minor increase inherited from the localized watermark used for
synchronization. We complement this with qualitative samples on all models in Appendix G.

4.2 Watermark Robustness

An important requirement for a generative model watermark is robustness to common domain-specific
transformations, as well as to removal attacks, which have shown to be effective against other water-
marks [3, 28, 81]. To evaluate this, in Figure 6 we report the watermark TPR for a fixed FPR of 1%
on a range of transformations of different strength, in the same setting as in Figure 5, using Taming
(the equivalent results for Chameleon and RAR-XL are deferred to Appendix F.3).

We summarize the results of this experiment for all three models in Table 2, where, as in prior work [101],
we average TPR over a set of (transformation, parameter) pairs, detailed in Appendix E.2. Our main
conclusions, discussed next, hold across all models, despite the variations in e.g., transformer or tokenizer
codebook size, which demonstrates the transferability of our approach.
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Figure 6 Top: RCC finetuning improves robustness to valuemetric transformations. Bottom Left: Watermark
synchronization unlocks robustness to geometric transformations. Bottom Right: Our watermark is also fairly
robust to realistic strengths of diffusion purification [71, 81] and neural compression [5, 13, 14, 53, 69, 75, 80].
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Table 2 TPR at 1% FPR of our watermark and post-hoc baselines, under valuemetric (Val.) and geometric (Geo.)
transformations, adversarial purification attacks (Adv.) and neural compression (NC). Scores (see Appendix E.2)
below 0.6 are marked red. RCC finetuning and the synchronization layer lead to a strong and robust watermark.

Taming (256× 256) Chameleon (512× 512) RAR-XL (256× 256)

None Val. Geo. Adv. NC None Val. Geo. Adv. NC None Val. Geo. Adv. NC

Ours

Base 0.99 0.26 0.01 0.43 0.48 0.98 0.50 0.02 0.80 0.82 0.98 0.22 0.01 0.29 0.27
FT 1.00 0.45 0.01 0.70 0.71 0.99 0.53 0.03 0.85 0.87 1.00 0.74 0.03 0.58 0.76
FT+Augs 1.00 0.92 0.01 0.70 0.79 0.99 0.89 0.02 0.82 0.88 1.00 0.98 0.03 0.79 0.95
FT+Augs+Sync 0.98 0.83 0.82 0.69 0.80 0.97 0.76 0.64 0.81 0.86 1.00 0.89 0.82 0.78 0.94

Post-
hoc

CIN 1.00 0.96 0.00 0.03 0.02 1.00 0.99 0.00 0.14 0.16 1.00 0.95 0.00 0.04 0.01
MBRS 1.00 0.98 0.02 0.36 0.31 1.00 0.99 0.02 0.27 0.56 1.00 0.99 0.01 0.38 0.34
Trustmark 1.00 0.98 0.75 0.40 0.86 1.00 0.97 0.74 0.64 0.99 1.00 0.99 0.75 0.42 0.90
WAM 1.00 0.89 0.98 0.06 0.02 1.00 0.97 0.95 0.26 0.48 1.00 0.92 0.98 0.08 0.02

Finetuning enables valuemetric and attack robustness. In Figure 6, we see that the watermark is fragile
to valuemetric and geometric transformations when used on Base. When we use it on FT+Augs,
robustness to valuemetric transformations greatly improves, validating our focus on RCC finetuning.
Surprisingly, finetuning also improves robustness to (i) neural compressors [5, 14, 69] of different
strengths (see details in Appendix E.2), including FLUX and SD VAEs [13, 53, 75, 80], and (ii) the
challenging diffusion purification attack [71]. We remark that high values such as t = 0.3 were found to
excessively alter images, making this regime less relevant [81]. This effect holds for RAR-XL but is
less pronounced for Chameleon in Table 2, where our watermark is already robust to these attacks
even without RCC finetuning, likely due to the detector scoring more tokens for larger images.

Synchronization enables geometric robustness. Geometric robustness (bottom left in Figure 6) remains
low across all models, even with FT+Augs, which is expected as autoregressive models cannot preserve
token sequences under semantic changes like flips, and the watermark is lost. This motivated our
synchronization layer (Section 3.2), which estimates and reverts such changes. As Figure 6 and Table 2
show, synchronization significantly improves geometric robustness while preserving watermark power on
unmodified images. However, this comes at the cost of a minor drop in valuemetric robustness. Namely,
moderate valuemetric transformations sometimes disrupt the synchronization signal, causing us to
estimate and revert a non-existent geometric transformation. Such a mistake corrupts most tokens and
breaks the watermark. This does not happen for strong valuemetric transformations that often fully
destroy the synchronization signal, as in this case we keep the image intact. A more elaborate and
robust synchronization layer could likely minimize this undesirable effect while further extending the
scope of supported transformations; we propose several concrete directions in Section 6.

Comparison to post-hoc methods. As noted above, no prior work targets watermarking of autoregressive
image generation. Thus, in Table 2 we compare to post-hoc methods [9, 41, 65, 85] applied on top
of generated images. While they are comparably or more robust than our watermark on valuemetric
transformations, each post-hoc watermark is either fully removed by geometric ones or not robust
to attacks (adversarial purification and neural compressors). Further, our watermark yields p-values
grounded in randomness, with theoretical guarantees inherited from LLM watermarking [27, 47, 119]
and empirically validated in Appendix F.5. In contrast, post-hoc methods use neural extractors to
recover messages and may introduce bias in their p-value estimators [28, App. B.5] and [83, App. B].
Finally, as a token-level generation-time method, our method is the only one able to watermark content
via semantic modifications (see Figure 2). In Appendix F.6 we provide an additional comparison to
generation-time watermarks for diffusion models, despite their inapplicability to our target models.

4.3 JointWatermarking of InterleavedModalities

Finally, we explore joint watermarking of multiple modalities generated by the same autoregressive
model. Equation 2 shows that scoring more equally watermarked tokens improves power. However,
acquiring more tokens is not always possible—in such cases, jointly watermarking multiple modalities
may be necessary to reliably detect the watermark. For example, consider that Alice aims to prove if
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an online article was generated by her model M. To simulate this, we run Chameleon (FT+Augs)
in interleaved mode on 1000 prompts to produce text and an image, and we model attempts to conceal
the use of M by randomly changing text tokens (a proxy for paraphrasing [50]).
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Figure 7 Joint watermark detection on
text and image generations.

Benefits of joint watermark detection. The orange line in Fig-
ure 7 shows TPR at 1% FPR when only text is watermarked,
quickly degrading with more text corruption. As all suspect
text is used, it is hard for Alice to improve detection in this
scenario. However, if both text and the image were originally
watermarked with our method, detection on combined tokens
as described in Section 3 significantly boosts watermark power
(top purple, Clean). At 10% text corruption TPR improves
from ≈0.9 to 1.0, and stays above 0.94 even in the hardest case,
where text-only TPR drops to ≈0. Alice also gets a rigorous
p-value, which would be hard if modalities were watermarked
separately. As our method is robust to moderate image trans-
formations, a similar trend holds when adding Gaussian noise
with σ = 0.1 (middle purple, Weak Noise).

Importantly, there is a tradeoff—integrating a weak watermark-
ing signal can degrade detection. We see this for σ = 0.3 (bottom purple, Strong Noise), where TPR
drops below 0.6 at 10% corruption, i.e., text-only detection is preferable. In Appendix H we provide
a more detailed discussion and present extended results and example interactions with Chameleon.
Inspired by this, in the following section we explore the extension of our method to additional modalities.

5 Extension to Additional Modalities: Audio Case Study

In this final section we ask: Can our approach be extended to other modalities? In an attempt to answer
this, we conduct a preliminary study on autoregressive audio generation [8, 18, 24, 70, 113, 117] focusing
on Moshi [24], a transformer-based speech-text foundation model. We observe similar challenges
and main results as for images, while noting several important differences. We defer many details to
Appendix C.2 (RCC experiment), Appendix D.2 (synchronization details), Appendix E.3 (experimental
details), and present extended results of audio experiments in Appendix F.7.

Audio tokenization. Moshi’s tokenizer (Mimi) relies on residual vector quantization (RVQ) [23, 52,
55, 110]. RVQ iteratively quantizes the residuals of the previous quantizer, such that si = (s1i , .., s

K
i )

for K different codebooks C1, .., CK (K streams) Each token here represents ≈80 ms.

RCC in audio. Défossez et al. [24, Sec. 6.4] already investigate the RCC properties of Moshi’s
tokenizer. They observe that the first stream is somewhat cycle-consistent, while this degrades for
later ones. We obtain similar results and also show that TM further worsens under transformations
(highpass, speedup). For instance, in an experiment on 1000 generated sequences, we measure average
TM of 0.36 (original), 0.21 (highpass 500 Hz), and 0.16 (1.1× speedup). This motivates an adaptation
of RCC finetuning (Section 3.1) and synchronization (Section 3.2) to audio.

RCC finetuning. To instantiate the finetuning procedure from Section 3.1 we make the following
changes to Equations 4 and 5. We use the pre-projection soft latents as target since the quantization
is done in a projected space [52]. We replace LPIPS with multi-resolution STFT loss [104]. Finally,
during training we apply augmentations from a set A that includes audio-specific valuemetric edits
(high/low/bandpass, gaussian/pink noise, etc.) as well as small (1-10ms) time-frequency shifts.

Synchronization. In contrast to images, no localized audio embedder proved robust: we found San Ro-
man et al. [83] to not be precise enough under time-frequency edits (see Appendix D.2). Thus, our
following experiment focuses primarily on the influence of finetuning. Future work on audio-specific
localized watermarking could improve on this, motivated by the synchronization usecase.
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Watermarking multiple streams. Early RVQ streams are more reverse cycle-consistent and thus more
likely to preserve the watermark signal. We observe however that limiting watermarking to a single
stream provides too few tokens for reliable statistical testing, significantly increasing p-values. On
the other hand, watermarking all streams introduces noise due to the lack of RCC in later codes.
Empirically, we find that watermarking the first four streams achieves a good balance.

Experimental setting. We perform RCC finetuning to obtain FT and FT+Augs using the VoxPop-
uli [99] dataset, such that final PESQ [79] (perceptual speech quality metric) is 4.3 w.r.t. Base samples.
For evaluation, we generate 12s watermarked audio samples with Moshi using 1000 text prompts
generated by Llama3.1-8B-Instruct and synthesized to audio with SeamlessV2 [6]. We set h = 0
and δ = 2 and watermark the first four audio streams as described above. As in Section 4, we evaluate
TPR at 1% FPR and quality, for which in this case we use the MOSNet [24] metric.

Table 3 TPR at 1% FPR and MOSNet [62] of our
watermark, under valuemetric (Val.), time-frequency
(Time) transformations, and neural compression (NC).
MOSNet is 3.80 for unwatermarked generation.

None Val. Time NC MOSNet

Ours
Base 0.97 0.62 0.24 0.80 3.82
FT 0.99 0.64 0.14 0.84 3.83
FT+Augs 0.99 0.80 0.24 0.86 3.73

Post-hoc AudioSeal 1.00 0.84 0.55 0.85 3.78

Results. We present the results in Table 3. As
for images, we do not observe notable quality
degradation due to watermarking, and obtain
high watermark strength even without RCC fine-
tuning. We find that Base already has nonzero
time-frequency robustness, likely due to non-
semantic streams being used to carry the wa-
termark. Finetuning without augmentations, in-
terestingly, impairs time-frequency RCC, which
is later recovered by FT+Augs. We hypothe-
size that this drop is due to catastrophic forget-
ting [48] as the model learns to detokenize the audio in a way that is not robust to time-frequency
transformations. This suggests that augmentations are a key component of finetuning, matching our
results on images. Yet, while FT+Augs improves valuemetric robustness, it fails to raise time-frequency
robustness to satisfactory levels, leaving this question open for future work. Finally, while we are not
aware of audio equivalents of diffusion purification used in Section 4, we evaluate robustness to neural
compression (DAC [52] and EnCodec [23]). We observe results comparable to post-hoc AudioSeal [83],
even though in contrast to AudioSeal we do not explicitly train against EnCodec during finetuning.

6 Conclusion and Limitations

Our work successfully applies watermarking to the previously unexplored setting of autoregressive
image generation, addressing low reverse cycle-consistency (RCC) through a custom finetuning stage
and a synchronization layer. Experiments demonstrate the power, robustness, and practicality of our
watermark across a range of settings. By broadening the scope of generative model watermarking, we
believe this work takes an important step towards more reliable content provenance.

Limitations. Our method’s scope could be extended in several important ways. As noted in Section 2,
we target the most prominent models that tokenize images via VQ. Our method is thus not applicable
to models that use continuous representations or hybrids that combine autoregressive and diffusion
models [26, 56, 66, 120]. Another dimension is modality: we present initial audio experiments in Section 5,
but this direction could be investigated further, e.g., finding ways to improve time-frequency robustness.
Next, our synchronization relies on off-the-shelf localized watermarks to embed a fixed pattern (quadrants,
see Figure 4), which is suboptimal for several reasons. First, localized watermarks are trained to embed
arbitrary patterns. Training a custom synchronization layer with a known pattern, potentially integrated
with RCC finetuning, would be a more principled approach that could significantly improve robustness.
Second, using more elaborate patterns could both improve the quality of our transformation estimation
step, but also expand its scope, e.g., to support arbitrary crops as discussed in Section 3.2. Finally,
our method is not robust to combined removal attacks (to disrupt synchronization) and geometric
attacks (to decrease token match)—to the best of our knowledge, this attack would also break most
other contemporary watermarks. We leave this question open for future work.
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Appendix

A Ethical Statement

A.1 Societal Impact

Watermarking in general improves the traceability of content, be it AI-generated or not. It can have
positive consequences, for example when it is used to trace the origin of fake news or to protect
intellectual property. This traceability can also have negative consequences, for example when it is used
to trace political opponents in authoritarian regimes or whistleblowers in secretive companies. Besides,
it is not clear how to disclose watermark detection results, which may foster a closed ecosystem of
detection tools. It may also exacerbate misinformation by placing undue emphasis on content that is
either not detected, generated by unknown models, or authentic but used out of context. We however
believe that the benefits of watermarking outweigh the risks, and that the development of robust
watermarking methods is a positive step for society.

A.2 Environmental impact

The cost of experiments and model training is high, though order of magnitude less than training the
generative models themselves. Finetuning the image tokenizer as done in the paper takes ≤ 32 GPU-
hours. We also roughly estimate that the number of GPU-days used for running all our experiments
is around 500, i.e., 12k GPU-hours. This amounts to total emissions in the order of 1 ton of CO2eq.
Estimations are conducted using the Machine Learning Impact Calculator presented by Lacoste et al.
[54]. Namely, using a default grid, we compute 250W × 12000h = 3000 kWh × 0.3 kg eq. CO2/kWh =
900 kg eq. CO2. We do not consider memory storage, CPU-hours, production cost of GPUs/CPUs, etc.

B Technical Details of LLMWatermarking

We here more thoroughly introduce LLM watermarking, following the notation in Section 2.

Generation. We consider an autoregressive model M generating a sequence of tokens s = (s1, s2, . . . , sT ),
where each token st is sampled from a probability distribution conditioned on the previous tokens
p(st|s<t). In practice, the model outputs a vector of logits ℓ ∈ R|V |, where V is the vocabulary (which
we can assume in the most general case can contain text, audio or image tokens), which is transformed
into a probability distribution p = softmax(ℓ/τ), with τ being a temperature parameter.

The watermark scheme modifies the token selection process using a secret key ξ. A cryptographic hash
function takes as input h previous tokens (st−h, . . . , st−1) (the context window) and the secret key ξ,
producing a seed for a random number generator (RNG) that influences the choice of the next token st.

Two prominent LLM watermarking approaches are:

• The method of Kirchenbauer et al. [46] (KGW), which uses RNG to randomly partition the
vocabulary V into a greenlist Gt and a redlist Rt, where Gt contains a proportion γ of the
vocabulary. The logit of each token in the greenlist is increased by δ > 0, effectively boosting the
probability of selecting tokens from the greenlist.

• The method of Aaronson and Kirchner [1], which uses a different approach based on the RNG to
sample secret values for each token. Although we do not present it in this work for simplicity, it
could have been adapted in the same way to watermark autoregressive models.

Detection. For the KGW method that we focus on, the watermark detection process analyzes a token
sequence s and computes a score S based on the count of green tokens:

S =

T∑
t=h+1

1(st ∈ Gt), (7)
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where Gt is the greenlist for position t, which depends on the h preceding tokens and the secret key ξ.

Statistical hypothesis testing. Detection uses a statistical hypothesis test distinguishing between H0:
“the sequence is not watermarked with secret key ξ” and the alternative H1: “the sequence was generated
with a watermark with secret key ξ.” Previous approaches, such as those by Kirchenbauer et al. [46] and
Aaronson and Kirchner [1], relied on a Z-test to compare the count of green tokens S to its expected
value under the null hypothesis H0. In this work we instead adopt an exact test [27], which is more
accurate, especially for short sequences.

Under H0, S follows a binomial distribution B with parameters (T − h) and γ, where γ is the expected
proportion of green tokens, T is the total number of tokens, and h is the size of the watermark context
window. The p-value determines the likelihood of observing a score as extreme as S under H0, and is
calculated as:

p-value(S, T, h, γ) = Prob (X ≥ S | X ∼ B(T − h, γ)) = Iγ(S, T − h− S + 1), (8)

where Ix(a, b) is the regularized incomplete Beta function.

Sequences are flagged as watermarked if the p-value falls below the desired false positive rate.

Main parameters. The main parameters of the watermarking method are the context window size h,
the watermark strength factor δ and the proportion of green tokens γ.

The context window size h determines how many previous tokens determine the greenlist. A smaller
h increases robustness against text modifications but may bias generation as the same hash is used
more frequently. It typically reduces security since recurring greenlists make the watermark easier to
spoof [42, 118]. When h = 0, the RNG seed depends solely on the secret key ξ, creating fixed green/red
lists for all tokens. For non-text tokens, we hypothesize that h = 0 maintains security since tokenizer
access is restricted and image tokenizers have more degrees of freedom than text ones.

The watermark strength factor δ determines the amount by which the logits of green tokens are
boosted. A higher δ increases the robustness of the watermark, but also increases the risk of generating
low-quality text/images. It is tuned for every model and application.

The proportion of green tokens γ affects both detection sensitivity and generation quality. With low δ,
a smaller γ reduces green token selection during generation, resulting in lower watermark power. With
high δ, it restricts token choice and may lower output quality. During detection, lower γ values yield
more significant p-values since green tokens are less likely to appear by chance [46]. At fixed watermark
power, higher γ distributes the watermark evenly, while lower values concentrate it on fewer tokens.
We set γ to 0.25 in our experiments, as it is a common choice in the literature [1, 46] and consistently
yields good results in our experiments.

C More on Reverse Cycle-consistency

In this section, we elaborate on the case of text tokenizers not being perfectly reverse cycle-consistent
(RCC), discuss audio tokenizers and our experiment measuring RCC in this setting, expanding on Sec-
tion 5, and discuss related topics studied in prior work.

C.1 RCC in Text Tokenizers

In BPE tokenizers, the vocabulary is initialized with all characters in the training set, and common
character pairs are iteratively merged and added to the vocabulary until the predefined size is reached.
Tokenization is performed greedily from left to right, by always selecting the longest possible token
from V . Detokenization is simply performed by a lookup into V .

RCC can be violated. Text tokenizers are not immune to the RCC issue. For example, consider the
following subset of the gpt-4o tokenizer: {cons : 9673, istent : 20908, consistent : 173878}. Due to the
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Table 4 Token Match across different streams for 1000 sequences, where audios are subject to transformations
before re-tokenization. Sequences of tokens are generated either as reconstructions of 10 second VoxPopuli
audios with the Mimi tokenizer, or by the Moshi model with audio prompts (described in Appendix E.3).

Mimi tokenizer Moshi

1 2 3 4 5 6 7 8 Avg. 1 2 3 4 5 6 7 8 Avg.

Identity 0.56 0.31 0.21 0.22 0.18 0.20 0.18 0.16 0.25 0.60 0.55 0.38 0.28 0.26 0.26 0.24 0.25 0.35

Transformations
Lowpass 3 kHz 0.38 0.15 0.15 0.17 0.14 0.16 0.15 0.12 0.18 0.50 0.39 0.30 0.21 0.19 0.21 0.20 0.21 0.28
Noise 0.001 0.50 0.33 0.19 0.20 0.17 0.18 0.17 0.14 0.24 0.51 0.34 0.19 0.18 0.17 0.18 0.18 0.13 0.23
MP3 16 kbps 0.44 0.19 0.16 0.18 0.15 0.17 0.16 0.13 0.20 0.54 0.41 0.29 0.20 0.18 0.20 0.20 0.21 0.28
Encodec 0.24 0.13 0.10 0.10 0.07 0.07 0.05 0.04 0.10 0.28 0.38 0.24 0.16 0.14 0.15 0.11 0.15 0.20
Speed ×1.25 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.11 0.08 0.05 0.05 0.06 0.04 0.07 0.06
Crop (90% kept) 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.08 0.15 0.11 0.07 0.07 0.08 0.05 0.09 0.09

greedy property of BPE tokenizers, Dtext is guaranteed to always invert Ttext, e.g.,

Dtext(Ttext(consistent)) = Dtext([173878]) = consistent,

guaranteeing forward cycle-consistency (FCC). In contrast, reverse cycle-consistency (RCC), necessary
for a strong watermark, may be violated, e.g.,

Ttext(Dtext([9673, 20908])) = Ttext(consistent) = [173878].

RCC approximately holds for text tokenizers in practice: while it is also a prerequisite for successful
watermarking in text, no prior art has highlighted this as a hurdle. Some works have even shown that
adversaries learning about the watermark can still be successful even if they use a different tokenizer [42],
which is only possible if the tokens match across tokenizers.

Experiment. As discussed in the main text, we confirmed this experimentally. We used Llama3.1-
8B-Instruct to generate 1000 answers to prompts from the Open Assistant dataset [49]. We then
compared the generated sequences of tokens with the re-tokenized sequences. Specifically, we took
the token IDs from the model’s generation, detokenized them to text, then re-tokenized this text and
computed the Levenshtein distance between the original and the new token sequence. Our results
showed that the average token match is 99.5%, confirming that text tokenizers exhibit very high reverse
cycle-consistency in practice.

C.2 RCC in Audio Tokenizers

A study of the RCC issue in Moshi’s tokenizer is already given by the authors [24] (called idempotence).
We however observe some differences in our study, as well as other key findings, such as the effect of
augmentations, that we summarized in Section 5, and that we discuss in more detail in the following.

RVQ tokenizer. As a reminder, Moshi’s tokenizer (Mimi) utilizes residual vector quantization
(RVQ) [23, 52, 55, 110]. In RVQ, the quantization process happens iteratively, where each step
quantizes the residual error from the previous quantization. Formally, for each step i, representing an
audio frame of 1920 samples, the tokenization results in a sequence of tokens (s1i , .., sKi ) corresponding to
K different codebooks C1, .., CK (referred to as K streams). Each token represents approximately 80 ms
of audio. The first token (or stream) is referred to as semantic, because there is a distillation loss during
training with a non-causal model that encourages this first codebook to capture the most semantically
relevant information. Défossez et al. [24] note that this semantic token exhibits higher cycle-consistency
compared to later streams, which are assumed to progressively capture more fine-grained details, and
to be less consistent.

Experimental setup. We measure Token Match (TM) for sequences either (a) generated as reconstruc-
tions of 10-seconds audios from VoxPopuli with the Mimi tokenizer, or (b) generated by the Moshi
model, as described in Appendix E.3. This corresponds to ≈125 time-steps for both cases, so ≈1,000
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audio tokens (counting all the streams). The audio is subjected to various transformations before
re-tokenization, which include the three categories: valuemetric (lowpass filtering at 3kHz, addition of
strong Gaussian noise at 0.01 amplitude), temporal-frequency (speed modification by 1.25x, cropping
90% of the original audio), and compression-based (MP3 compression at 16kbps, EnCodec compression).

Results. Table 4 presents the results that supplement the study by Défossez et al. [24]. Notably,
their study only focuses on pre-existing audio sequences, while we also include generated sequences,
which behave differently. For instance, the second stream sometimes shows higher consistency than
other streams contradicting the expectation that only the first (semantic) stream could maintain
high consistency. Different augmentations affect streams differently: e.g., lowpass has less impact on
streams 2 and 3 compared to strong noise addition, while EnCodec strongly decreases TM of the first
stream. Importantly, temporal-frequency augmentations (speed, cropping) reduce TM less dramatically
for Moshi (0.04-0.15) than would be expected given our image watermarking results where such
transformations typically yield near-zero consistency. This multi-stream aspect presents challenges and
opportunities for watermarking: while complicating RCC analysis, it enables potential development of
more sophisticated techniques leveraging complementary properties across streams.

C.3 Related Concepts

There are several concepts related to RCC that were studied in prior work.

Codec idempotence. In the context of codecs a relevant property is codec idempotence [44, 73, 114].
Directly applying the mathematical definition of idempotence to our case, we let f(·) denote the
encoder-decoder pair (e.g., f compresses an image to a JPEG file and then decompresses it back to
pixels), and say that a codec is idempotent if it satisfies:

f(f(x)) = f(x). (9)

This property is naturally of interest to codecs. While we assume that JPEG compressing an image is
lossy (i.e., we do not expect f(x) = x), we want our codec to not further degrade image quality on
successive applications, which can commonly occur in practice (i.e., f(f(x)) = f(x)). This is in stark
contrast with the notion of RCC relevant to our work. In our case, x are the tokens, while f(·) is the
detokenization followed by the tokenization. The first application of f(·) is crucial for us: as explained
above, we require f(x) ≈ x as otherwise the watermark that was present in the tokens of x is lost.
f(f(x)), i.e., re-tokenizing the image several times successively, on the other hand is not of particular
interest in this case, thus idempotence is not an important concern.

Consistency of tokenizers. Another related concern is the consistency of tokenizers [61, 87]. Intuitively
a tokenizer is consistent if the tokenization of a particular string (assuming the text domain) does not
change depending on the surrounding context. While the cited works show that this is a desirable
property, it is not as relevant to our motivation of preserving the watermark as RCC. In particular,
for generated token sequence x, if RCC is satisfied the watermark will be entirely preserved, even if
the tokenization was context-dependent. This may be a concern in the context of various attacks: for
example, infilling a part of the image before re-tokenization should ideally change only the tokens
corresponding to the infilled part, and not the entire image, which may happen depending on the setup
of the convolutions in the tokenizer. We do not explore this angle as part of this work.

Cycle-consistency in other contexts. Finally, a line of works studies cycle-consistency in various
generative models [39, 122], most commonly in the context of style transfer: a single cycle is the
translation from a style A to a style B and back to A, and cycle-consistency can in this case be
beneficial as a constraint for the model. Finally, Teng and Choromanska [92] explicitly parametrize
encoder-decoder pairs to be inverses of each other and Huang et al. [40] study cycle-consistency in the
context of disentangled representations.
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D More onWatermark Synchronization

In Appendix D.1 we provide a more detailed description of our watermark synchronization layer
(Section 3.2), and show additional examples. In Appendix D.2 we describe our attempt to use
AudioSeal [83] for synchronization in audio.

D.1 Image Synchronization Details

We remark that the problem of watermark synchronization was studied in the past, before the advent
of generative models, in the context of digital watermarking. These works suggest approaches such as
multiple testing with a carefully controlled number of tests to avoid the false positive rate increase we
mentioned in Section 3.2 [34], or similarly to us, embedding a synchronization pattern in addition to
the original watermarking pattern to revert the transformation [19, 74, 95]. As noted above, we are
aware of two works that study this in the context of post-hoc generative model watermarks [33, 64],
however their code is not publicly available.

Full algorithm description. Our algorithm consists of two main procedures: embedding a synchro-
nization pattern into the generated and decoded image, and estimating the transformation from an
incoming image where previously the watermark and the synchronization pattern were embedded. We
assume access to a localized watermark module L that can embed a different message in every pixel of
an image, and recover the probability that each pixel has the watermark along with the most probable
message in it. As noted above, we instantiate this using Sander et al. [85].

To embed the synchronization pattern, we use four 32-bit messages {m1 = 032, m2 = 016116, m3 =
116016, m4 = 132}. For each message, the corresponding mask is one of the quadrants (as in Figure 4),
where given parameter µ, we keep a horizontal and a vertical strip of width µ pixels in the middle of
the image free of messages (we use µ = 18 for Taming and RAR-XL, and µ = 36 for Chameleon as
we work with images of twice the resolution). Using this mask, we embed the pattern using L.

Given an incoming image, we first obtain and postprocess the predictions of L. Namely, for each pixel,
we take the closest message in Hamming distance from the four fixed messages above, as long as the
Hamming distance is below 6 bits and the probability of the pixel being watermarked as predicted by
L is above 0.5. Then, as a heuristic, we proceed only if we found at least one pixel for each of the 4
messages, and if the total area of the pixels with messages is at least 70% of the image—attempting to
estimate the transformation otherwise proved too unreliable.

To estimate the transformation, we sweep over rotations in [−20, 20] degrees, for each rotation rotate
the grid of extracted messages back by the inverse rotation, and attempt to find the best-fitting pair
(i, j) such that the row i of the rotated message grid best separates pixels with messages (m1,m3) as
well as (m2,m4), and the column j of the rotated message grid best separates pixels with messages
(m1,m2) as well as (m3,m4). For example, to find j that best separates (m1,m2), we compute the
cost of each candidate j′ as the number of wrongly positioned pixels, i.e., pixels with message m1 that
are to the right of j′ and pixels with message m2 that are to the left of j′. We repeat the same cost
computation for the horizontally flipped message grid: if we find that this leads to a lower cost, we
estimate that the image was flipped. The lowest-cost estimate for j and the estimate if the image was
flipped or not are then aggregated over (m1,m2) and (m3,m4) proportionally to the number of pixels
with these messages in the image. The process for i is analogous, with the final result for the fixed
suspect rotation being the tuple (i, j, isF lipped, cost).

We finally take such tuple with the minimal cost, returning the corresponding rotation and (i, j, isF lipped)
as our final estimate that we later revert.

Examples. Complementing Figure 4, in Figure 8 we show real examples of recovered synchronization
patterns and estimated transformations for horizontal flip, positive and negative rotation, crop, as well
as Gaussian noise, that we found to be the most challenging valuemetric transformation in terms of
disturbing the synchronization signal.
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Figure 8 Visualization of our synchronization layer (Section 3.2) on a real example from our experiments. In the
four middle rows we see that the watermark detection would have failed on original geometrically transformed
images, but has eventually succeeded after the synchronization signal was detected and reverted. In the bottom
row we see that a valuemetric transformation can disrupt the signal—in this case a JPEG compression. While
this did not hamper detection in this example, it can be problematic in practice as evidenced by the drop in
valuemetric robustness with synchronization shown in Table 2.
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(c) Example of unsuccessful detec-
tion after 1.05× speedup

Figure 9 The audio watermark synchronization method we attempted to incorporate. (a) how we embed the
watermark periodically in the audio; (b) successful case with a clear periodic pattern detected when the audio
is cropped for the first 0.84 seconds; (c) a 1.05× speedup creates a detection signal too noisy to reliably extract
the synchronization pattern.

D.2 Audio Synchronization with Localized AudioWatermarking

As explained in Section 5, we attempted to use the localization property of AudioSeal [83] for synchro-
nization similar to Section 3.2, but this approach proved less successful than with images. We describe
below the method and experiments supporting this claim and summarize the results in Figure 9.

Synchronization approach and transformation detection. We use AudioSeal’s watermark embedder to
embed watermarks with a periodic mask pattern across the audio signal. This enables detection of
transformations like time-stretching and phase shifts through cross-correlation analysis. We applied a
square wave template with periods of 6 frames, each frame being 1920 samples at 24kHz, as in Mimi.

When audio undergoes transformations, the periodic pattern distorts predictably. Through cross-
correlation between the detection signal and template patterns, we can estimate the speedup factor
(identified by the period maximizing cross-correlation) and phase shift (located by finding optimal
alignment). Once estimated, we can invert the transformation by resampling to original speed and
applying phase correction. More specifically, in our implementation, the detection results are first
downsampled by a factor of 8 and we sweep the template period from 0.5× to 1.5× the nominal
half-period (6 frames = 0.48s) in coarse steps of 10 samples, then refine over ±10 samples around the
best match; this two-stage cross-correlation yields precise estimates of speedup (from the best period)
and phase shift, which are used to resample back to 24kHz and correct the alignment.

Challenges and limitations. As shown in Figure 9(c), the detection signal extracted from AudioSeal is
not yet robust enough for general use, as it fails to detect the watermark reliably after a speedup of
1.05×. Future work could explore more sophisticated synchronization methods.

E Experimental Details

E.1 Omitted Details of Image RCC Evaluation and Finetuning

Here we provide more details on our RCC evaluation experiments shown above in Table 1 and details
related to RCC finetuning introduced in Section 3.1.

RCC evaluation. For Table 1, for simplicity, we re-use the watermarked Base model of Taming from
our main experiments. We confirmed that running the non-watermarked version results in very similar
values. We use the full set of valuemetric and geometric transformations as in the main experiments,
and for each transformation use the same parameter that was chosen for summarized scores in Table 2,
as detailed below in Appendix E.2.
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RCC finetuning. To complete our RCC finetuning description from Section 3.1 we provide the omitted
details. We note that the exact same hyperparameters were used for all models which demonstrates
the transferability of our finetuning procedure. The finetuning is done for 10 epochs with distributed
data parallel training on 16 V100 GPUs (Taming, training takes 2h) and 8 H200 GPUs (Chameleon
and RAR-XL, training takes 2.5h and 0.5h respectively). We use the Adam optimizer [45] with a
learning rate of 10−4, multiplied by a factor of 0.9 each epoch (StepLR). We use a total batch size
across all GPUs of 64 (4 per gpu for Taming and 8 per gpu for Chameleon and RAR-XL), and
always set λ = 1. As noted above, we use a set of augmentations A to improve robustness of our
watermark to transformations and attacks. JPEG is not differentiable, therefore we backpropagate only
through the difference between the uncompressed and compressed images (straight-through estimator):
x′ = xaug + nograd(xaug,JPEG − xaug) [106, 112]. We define three progressively harder sets: A1, A2,
A3, and use no augmentations for 1 epoch, then A1 for 1 epochs, then A2 for 4 epochs, and finally A3

for the last 4 epochs.

A1 uses JPEG compression with qualities {90, 80, 70}, Gaussian blur with kernel sizes {1, 3}, Gaus-
sian noise with standard deviations {0.005, 0.01, 0.015, 0.02}, Brigthening with factors {1.0, 1.1, 1.2},
Rotation with angles {−1, 1} degrees, and Cropping with % kept from {80, 90}. A2 uses JPEG with
qualities {80, 60, 40}, Gaussian blur with kernel sizes {3, 5}, Gaussian noise with standard deviations
{0.02, 0.04, 0.06}, Brigthening with factors {1.2, 1.3, 1.4}, Rotation with angles {−3,−2,−1, 1, 2, 3}
degrees, and Cropping with % kept from {50, 60, 70, 80, 90}. Finally, A3 uses JPEG with quali-
ties {40, 30, 20}, Gaussian blur with kernel sizes {5, 7, 9}, Gaussian noise with standard deviations
{0.06, 0.08, 0.1}, Brighten with factors {1.4, 1.7, 2.0}, and the same geometric augmentations as in A2.

E.2 Details of Main Experiments

We provide full details of our main experiments (Section 4.1 and Section 4.2), expanding on the
information provided in the main paper.

Models. For Taming, we use the VQGAN ImageNet (f=16), 16384 version available in the authors’
repository. For Chameleon, we use the 7B model. Since the open-weight version does not include
image generation capabilities (as noted in the original paper), we obtained the necessary weights directly
from the authors. Alternatively, image generation with Chameleon can be approximated using the
Anole model [15] and its associated repository: https://github.com/GAIR-NLP/anole, though we
note that its output quality is somewhat lower. For RAR-XL we use the official model and image
tokenizer from the authors’ repository.

Parameters. The results in Figure 5, Figure 6 and Table 2 are obtained from the same experiment,
repeated on Taming, Chameleon, and RAR-XL. For Taming and RAR-XL we set δ = 2, γ =
0.25, h = 1 and evaluate (for each transformation/attack) on 1000 generations, 100 per each of the
following ImageNet class indices: [1, 9, 232, 340, 568, 656, 703, 814, 937, 975]. For Chameleon we set
δ = 2, γ = 0.25, h = 0. We again use 1000 generations, conditioning the model on a text prompt each
time. Following the standard protocol in the literature [76, 77, 80, 82] we use the prompts from the
validation set of MS-COCO [58]. To do so, we first retrieve all the captions from the validation set,
keep only the first one for each image, and select the first 1000 (or 5000 when computing FID for
Chameleon). While we did not benchmark this in detail, the computational overhead of our watermark
matches that of the LLM watermarking scheme we inherit from and the localized watermark we use as
the synchronization signal. As discussed in Section 6 more thoroughly integrating these two components
could also make our watermark more efficient. A single run (e.g., Base with all (augmentation,
parameter) pairs detailed below on 1000 generations) with Taming was executed on 25 V100 GPUs,
lasting ≈30 minutes for Base, FT, FT+Augs and ≈1.5h for FT+Augs+Sync. For Chameleon and
RAR-XL, we use 10 H200 GPUs (50 for FT+Augs+Sync), taking comparable time as for Taming.

Split stratification. As noted in the literature [25, 107], trained VQGANs often suffer from low codebook
utilization, meaning that a certain percentage of the codebook is effectively not used and those codes
(dead codes) are in practice never emitted by the transformer nor used when tokenizing images. While
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later work addresses this issue [123], the VQGAN used in Taming and in our experiments suffers from
this issue and has only 971 alive codes, despite the codebook size of 16384.
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Figure 10 When the number of alive codes
nalive is much smaller than the codebook
size |V |, green/red splits may not correspond
to the expected ratio of γ. In this figure,
nalive = 12, |V | = 192, γ = 0.25. Stratifica-
tion, i.e., separate splitting of red and green
tokens, resolves this issue.

This can affect the soundness of the watermark. Namely,
the null hypothesis assumes that the ratio of green to-
kens in content produced without the use of the model
M is γ. However, if the number of alive codes nalive is
much smaller than the codebook size |V |, there is a non-
negligible chance that choosing the set of green tokens as
a uniformly random subset of |V | of size γ|V | results in
significantly more or less than γnalive alive green tokens.
As these are the only tokens emitted by the tokenizer in
practice, the green ratio under the null hypothesis can
thus be significantly different from γ, making Equation 2
inaccurate. While for h > 0 we can hope that this effect
averages out across different contexts (as the expected
alive green ratio is still γ), for h = 0 (fixed red/green split)
this can introduce a constant bias.

In particular, assume for simplicity that γ|V | and γnalive
are both integers. The probability Pg that a uniformly
random split of |V | into γ|V | green and |V | − γ|V | red
tokens results in exactly g green tokens among alive ones is not given by a binomial distribution but by
a hypergeometric distribution:

Pg(|V |, nalive, γ) =

(
γ|V |
g

)
·
(|V |−γ|V |
nalive−g

)( |V |
nalive

) . (10)

In Figure 10 we plot the distribution of actual green ratios, i.e., compute Pg(|V |, nalive, γ)/nalive for
different values of g, for |V | = 192, nalive = 12, γ = 0.25 (corresponding roughly to the ratio nalive/|V |
of the VQGAN we use in our experiments). We see (in red) that there is in fact only ≈25% chance that
the green ratio among alive tokens is correctly set to γ. To resolve this, for Taming we use a stratified
split, i.e., we separately sample a red/green split on alive and dead codes, ensuring that the green ratio
of alive tokens is exactly γ (green in Figure 10).

An interesting question, to the best of our knowledge not explored before, is if similar effects can
be observed in LLM watermarking. For example, a uniformly random split of a large multilingual
vocabulary may introduce a particularly biased split on e.g., Cyrillic tokens, which are effectively the
majority of the alive ones when the LLM is prompted to write in a language that uses the Cyrillic
script. Especially for h = 0, this may point at unfairness towards certain subdomains, where for a
particular subdomain the watermark is overly conservative or more importantly has a much higher
FPR than stated theoretically.

Image transformations. We next list all image transformations and their parameters used in our main
experiments. We evaluate 90 variants (the original image and 89 transformations described below) for
each image, i.e., 90,000 images in total per evaluation. For valuemetric transformations we use:

• Gaussian Blur: kernel sizes [0, 1, 3, 5, 7,9, 11, 13, 15, 17, 19].

• Gaussian Noise: standard deviations [0, 0.025, 0.05, 0.075,0.1, 0.125, 0.15, 0.175, 0.2].

• JPEG Compression: quality factors [100, 95, 85, 75, 65, 55, 45, 35,25, 15, 5].

• Brighten: factors [1, 1.25, 1.5, 1.75,2, 2.25, 2.5, 2.75, 3].

For geometric transformations we use:

• Rotation: angles [−20,−15,−10,−5, 0, 5,10, 15, 20].

26

https://en.wikipedia.org/wiki/Hypergeometric_distribution


Original Gaussian Blur 9 Gaussian Noise 0.1 JPEG 25 Brighten 2

Rotation 10 HFlip 1 Crop 0.75 DiffPure 0.1 NC bmshj2018-factorized-q=3

Figure 11 Examples of transformations with parameters used to compute the scores in Table 2.

• Horizontal Flip: parameters [0,1], where 1 indicates that a flip was performed.

• Crop: percent of the image kept [1.0, 0.95, 0.9, 0.85, 0.8,0.75, 0.7, 0.65, 0.6, 0.55, 0.5], where we crop
from the top-left corner of the image and then resize it back to the original size.

Finally, we use the following attacks:

• DiffPure: timesteps [0.01, 0.05,0.1, 0.2, 0.3] with the 256× 256 ImageNet diffusion model used in
the original attack of Nie et al. [71].

• Neural Compression: a range of 22 models with different quality factors; see details below.

The underlined values above correspond to transformations that do not change the image (showing
the maximum of robustness in each subplot of Figure 6). The bold values are used to, following prior
work [101], summarize the results to a single score per transformation/attack type in Table 2, where
we average the 4 valuemetric scores and 3 geometric scores independently. For neural compression we
describe how we compute the score below. Visual examples of each bold transformation/attack are
shown on a real Taming generation in Figure 11.

Neural compression. For neural compression we use the following models from the CompressAI [7]
library:

• BMSHJ18 (Factorized) [5] with quality factors q ∈ {1, 3, 6}.
• BMSHJ18 (Hyperprior) [5] with quality factors q ∈ {1, 3, 6}.
• CSTK20 (Anchor) [14] with quality factors q ∈ {1, 3, 6}.
• CSTK20 (Attention) [14] with quality factors q ∈ {1, 3, 6}.
• MBT18 [69] with quality factors q ∈ {1, 3, 6}.
• MBT18 (Scale) [69] with quality factors q ∈ {1, 3, 6}.

To sort these by compression strength we compute bpp (bits per pixel) as done in the library:∑
i logLi

− ln 2 · npix
, (11)

where L is the likelihood vector and npix is the number of pixels in the image. Empirically we
observe bpp of around 0.1 (q = 1), 0.3 (q = 3), and 1.0 (q = 6). When reporting a single score for
neural compression we average the six scores with q = 3. Additionally, we evaluate the following four
autoencoders from the diffusers [98] library for which we compute bpp manually by considering the
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downscaling factor in the latent space, the latents size, and 16-bit/32-bit floating precision. We see
that our calculations are consistent with the results of neural compressors from CompressAI:

• The Stable Diffusion VAE [80] (stabilityai/sd-vae-ft-ema; SD VAE (ft-EMA)), with bpp 2.

• The Stable Diffusion XL VAE in half precision [75] (madebyollin/sdxl-vae-fp16-fix; SDXL VAE
(fp16)), with bpp 1.

• The Deep Compression AE [13] (mit-han-lab/dc-ae-f64c128-in-1.0-diffusers; DC-AE), with bpp
1.

• The VAE of Flux [53] (from the black-forest-labs/FLUX.1-schnell pipeline; FLUX VAE), with
bpp 1.

E.3 Details of Audio Experiments

Audio prompt generation. We observed that Moshi frequently generates brief responses and typically
expects human interaction to continue the conversation. When using conventional text prompts such as
those from Alpaca [91] or Open Assistant Conversations [49] datasets, the model rarely produced audio
outputs of sufficient length (e.g., 10 seconds). We therefore synthesized specialized prompts designed
for this particular use case. These prompts are used when prompting the Moshi model to generate
(possibly watermarked) audio, such as in the experiments described in Section 5, Appendix C.2, and
Appendix F.7.

To create a diverse collection of audio monologue topics, we leveraged Llama 3.1-8B-Instruct to
generate 1000 unique text prompts. We guided the model using a system+user template to produce
concise single-sentence requests (each beginning with action verbs like “Describe”, “Talk about”, etc.)
covering distinct subjects. We then filtered out near-duplicates by calculating pairwise Rouge-L
scores [57] (using a threshold of 0.7) and eliminated texts that fell outside our desired length parameters.
Representative examples include: “Describe the life cycle of a butterfly and the symbolic meanings
associated with it.”, “Explain the process of photosynthesis in plants and its importance to ecosystems.”,
or “Discuss the cultural significance of traditional Japanese tea ceremonies.”. Finally, we converted
these text prompts into audio using the SeamlessV2 [6] (large) model, saving each resulting waveform
alongside its corresponding source prompt. The resulting audio prompts average approximately 4
seconds in length.

Audio transformations. We evaluate robustness to a set of audio edits grouped into valuemetric,
time-frequency, and neural compression transformations. When evaluating (e.g., in Table 3), each is
applied with the following fixed strengths:

• Valuemetric:

– Bandpass Filter: (300,3000), (500,5000), (1000,8000) Hz.

– Highpass Filter: 100, 500, 1000 Hz.

– Lowpass Filter: 1000, 3000, 8000 Hz.

– Noise Injection (white): std = 0.001, 0.01, 0.05.

– Pink Noise: std = 0.01, 0.05, 0.1.

– Echo: (delay = 0.1 s, vol = 0.2), (0.3 s, 0.5), (0.5 s, 0.7).

– Smooth: window fraction = 0.001, 0.005, 0.01.

– Boost Audio: +50 %, +90 %.

– Duck Audio: −50 %, −90 %.

– MP3 Compression: bitrate = 16, 64, 128 kbps.
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• Time-frequency:

– Speed: factor = 0.75, 0.9, 1.0, 1.1, 1.25.

– Temporal Crop: keep 50 %, 70 %, 90 % of duration.

– Time Shift: shift = 10 ms, 20 ms, 40 ms.

– Up/Down Resample: intermediate = 24 kHz, 36 kHz, 48 kHz.

• Neural Compression:

– DAC Compression (24 kHz): full model pass.

– EnCodec Compression (24 kHz): full model pass.

We use the same implementation as in AudioSeal [83] when the augmentations are available. For
DAC [52] and EnCodec [23] we use the official models at 24 kHz.

RCC finetuning. We perform finetuning for 200 epochs with 1000 steps per epoch on batches of 64 audio
clips of 10-seconds from VoxPopuli [99], using 2 H200 GPUs for 1 day. We use the AdamW optimizer [45]
with a base learning rate of 2 × 10−5, linear warmup over 5 epochs, and cosine annealing down to
2× 10−7. We set λ to 0.01 for the regularization loss in the FT+Augs model (with transformations),
while using 0.001 in the FT model (without transformations). For the regularization loss we use the
Multi-Resolution STFT between the audios reconstructed either with the original decoder D0 or the
finetuned decoder D. Following notations from Section 3.1, for the RCC loss we use the MSE between
z, the soft latents before the projection and quantization step, and z′, the soft latents generated by the
encoder replica E′. To improve robustness for the FT+Augs model, we apply augmentations A from
the start, sampling one augmentation per batch. The augmentations are chosen randomly at each step,
and the parameters are sampled uniformly from the ranges below:

• Lowpass filter: cutoff 2000-6000 Hz

• Highpass filter: cutoff 200-600 Hz

• White noise injection: std 0.001-0.01

• Pink noise: std 0.001-0.01

• Smooth: window fraction 0.001-0.005

• Time shift: 0.3-10ms

F Additional Experimental Results

In this section, we present additional results: ablations of RCC finetuning (Appendix F.1), investigations
of different watermarking parameters (Appendix F.2), additional results for Chameleon and RAR-XL
on token match, watermark power, quality, and robustness (Appendix F.3), comparison of the original
and final decoders via PSNR (Appendix F.4), validation of statistical test correctness (Appendix F.5),
comparison to generation-time watermarks (Appendix F.6), and omitted audio results (Appendix F.7).

F.1 Finetuning Ablations

We train five more finetunes of Taming to test the influence of different parameters:

• λ = 10 uses a higher regularization weight, i.e., puts less weight on the RCC loss.

• λ = 0.1 uses a lower regularization weight, i.e., puts more weight on the RCC loss.

• lr = 10−5 uses a lower learning rate.

• lr = 10−3 uses a higher learning rate.
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FT+Augs λ = 10 λ = 0.1 lr = 10−5 lr = 10−3 FT+Augs All

Figure 12 Visual examples of images produced by finetuning ablations introduced in Appendix F.1. The first
row shows a detokenized image (based on the same token sequence as we fix the seed) and the second row
zooms in on the top-left 64× 64 pixel region to more clearly show artifacts. We see that the λ = 0.1, α = 10−3,
and FT+Augs-All variants lead to significant degradation in image quality.

• FT+Augs-All finetunes all components of the VQGAN, including the codebook.

The results are presented in Table 5 and visual examples in Figure 12 where the first row shows a
detokenized output and the second row zooms in on the top-left 64 × 64 pixel region. Our baseline
here is our FT+Augs variant (we do not consider synchronization in this experiment). We see that
increasing λ to 10 slightly degrades the results (likely within the level of experimental noise) and
reducing the learning rate reduces robustness. We also experimented with training for more epochs
with a lower learning rate, but this did not lead to better results than our best variant.

We also see that λ = 0.1, α = 10−3, and FT+Augs-All lead to much better results. However, the
visual results in Figure 12 show that all three of these variants lead to degradation in image quality.
For FT+Augs-All this is the most evident, which motivates our discussion above regarding the
importance of carefully choosing which modules to finetune. The artifacts in α = 10−3 clearly show
that the learning rate is too high for stable training. For λ = 0.1 the artifacts are clearly visible in the
second row of the figure, showing that this setting puts too much weight on the RCC loss.

Training on transformer-generated tokens. Finally, we hypothesized that using token sequences
generated by the transformer as the training set instead of tokenizations of ImageNet images would
improve finetuning, as the former more closely matches the distribution of inputs that the detokenizer
sees at evaluation time. Another experiment we tried was using a mixture of these two token sequences.
We did not observe any benefits of this approach.

Table 5 TPR at 1% FPR of finetuning ablations on Taming in the setting of Table 2. The ablations are
described in Appendix F.1. Three of the variants improve the results; however, Figure 12 shows that they also
lead to significant degradation in image quality.

None Valuemetric Geometric
Adversarial
Purification

Neural
Compression

Base 0.99 0.26 0.01 0.43 0.48
FT+Augs 1.00 0.92 0.01 0.70 0.79

λ = 10 1.00 0.91 0.01 0.68 0.77
λ = 0.1 1.00 0.98 0.01 0.85 0.96
lr = 10−5 0.99 0.75 0.01 0.63 0.76
lr = 10−3 0.98 0.98 0.01 0.81 0.78
FT+Augs-All 1.00 1.00 0.02 0.85 0.98
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Table 6 TPR at 1% FPR of watermark parameter ablations (δ, h, γ, context choice) on Taming in the setting
of Table 2 using FT+Augs. The ablations and their results are discussed in Appendix F.2.

None Valuemetric Geometric
Adversarial
Purification

Neural
Compression FID

FT+Augs 1.00 0.92 0.01 0.70 0.79 16.33

h = 2 1.00 0.82 0.01 0.41 0.57 15.70
h = 3 1.00 0.73 0.01 0.24 0.39 15.87
h = 3 (Spatial) 1.00 0.69 0.01 0.22 0.36 16.12
δ = 1 1.00 0.69 0.01 0.29 0.40 16.22
δ = 4 1.00 0.97 0.01 0.86 0.93 18.76
γ = 0.5 1.00 0.86 0.01 0.51 0.63 15.71

F.2 Watermark Parameters

In the following experiments, starting from FT+Augs on Taming, we vary the main watermarking
parameters: context size h, strength δ, green ratio γ, the choice of watermark context, and the
partitioning strategy, presenting the key results in Table 6.

For the context size h, we observed that h > 1 generally led to non-robust watermarks. We explore
both h = 2 and h = 3 and both the standard choice of watermark context (preceding h tokens) and the
image-specific one (the h tokens spatially close, e.g., for h = 3 the tokens above the current token, to
the left of it, and top-left of it in the image; denoted Spatial). As Table 6 shows, all of these variants
significantly degrade robustness compared to the baseline (FT+Augs). For adversarial purification
and neural compression, the results are comparable to the non-ablated results without finetuning.

This is in line with the intuitive understanding of h from prior work [46, 119]: large h makes watermark
removal easier, as changing any of the preceding h tokens changes the red/green split at the following
token. On the other hand, low h makes the watermark less secure, i.e., easier to forge. As noted above,
we hypothesize that h = 0 is a more viable choice for images (and thus use it for Chameleon), as
reverse-engineering of the watermark rules (as successfully done for h = 0 in text [42, 118]) is likely
much more difficult due to the complex image tokenizer being hidden.

Regarding strength, we found that δ = 2 is for both our models the strongest watermark that does not
degrade quality. As seen in Table 6, δ = 1 degrades robustness, while δ = 4 greatly boosts it at the
cost of generation quality: for all rows in Table 6, FID is lower or comparable to the baseline value,
while δ = 4 increases it to 18.7. Across our experiments we found that γ = 0.25 leads to slightly better
tradeoffs overall than γ = 0.5, as illustrated in the last row of Table 6.

Finally, we briefly experimented with a semantic partitioning strategy, related to similar attempts for
LLMs [37]. In particular, instead of choosing green tokens G uniformly at random from the vocabulary
at each partitioning step, we use k-means clustering to partition the hard embeddings of each token in
the vocabulary into k = 100 clusters and assign colors such that all tokens in the same cluster have the
same color, while keeping the overall green ratio at γ. In theory, this should make the watermark more
robust to modifications that do not change the semantics, as the resulting change in the token would
hopefully not leave the k-means cluster and thus remain green. On the other hand, it might make it
harder for the decoding-time watermark to replace a green token with a red one, as all tokens from
the same k-means cluster, which may be good alternatives, are also red. In practice, we consistently
observed higher robustness but at the cost of significant quality degradation. More work is needed to
understand how to find a good tradeoff with this approach.
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Figure 13 Token match and watermark power results for Chameleon, analogous to Figure 5.
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Figure 14 Robustness results for Chameleon, analogous to Figure 6.
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Figure 15 Token match and watermark power results for RAR-XL, analogous to Figure 5.
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Figure 16 Robustness results for RAR-XL, analogous to Figure 6.
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F.3 Full Results for Chameleon and RAR-XL

In Figure 13 and Figure 14 we present token match and watermark power results for Chameleon and
RAR-XL, complementing the Taming results presented above in Figure 5. Similarly, in Figure 15
and Figure 16 we present robustness results for Chameleon and RAR-XL, similar to those in Figure 6.

Additionally, we report FID results on Chameleon and RAR-XL using 50,000 images as for Taming,
where for Chameleon we use 10 independent generations per each of the 5000 COCO validation
prompts (see Appendix E.2). Our conclusions match those made in the main text. None of Base, FT,
or FT+Augs exceed the unwatermarked FID of 19.7 for Chameleon and 11.5 for RAR-XL. For
these models synchronization does not increase FID. We note that we obtain slightly higher baseline
FID for RAR-XL compared to Yu et al. [109]; we suspect that this is due to sampling differences (we
used the default parameters from the project repository) and did not investigate this further, as for our
study only the difference in FID is of interest. For all models, we also visually confirm the quality of
the generated images; we present examples in Appendix G.

F.4 Distance to the Original Decoder

FID assesses the quality of the generative model by comparing distributions of generated and real
images. Our generation-time watermark modifies each sampling step, which results in a completely
different generation (semantic watermarking, see Figure 2). This makes direct comparison between
image pairs not viable as a quality metric in our case. However, using the same latent representation
and watermarking parameters, we can directly compare the image decoded by the original decoder with
the one decoded by the RCC-finetuned decoder. While not necessarily the best proxy for image quality,
this experiment gives us some insight into how much the decoder behavior changes after finetuning.

To this end, we compute the average PSNR over 1000 image pairs, where in each pair, one image is
decoded using the decoder from Base, and the other using the decoder from FT or FT+Augs, or using
both the decoder and synchronization layer from FT+Augs+Sync. Even with synchronization, which
as expected reduces the PSNR the most, the average PSNR is 37.6 for Taming, 39.5 for Chameleon,
and 29.0 for RAR-XL, indicating that the final decoding does not significantly deviate from the original.

F.5 Empirical Validation of Statistical Test Correctness

We empirically validate the correctness of our statistical test by computing p-values of our watermark
detector on unwatermarked images. In Figure 17 we show the distribution of such p-values on 50,000
unwatermarked images generated with the base model of Taming, using the corresponding watermark
(γ = 0.25, h = 1) across 10 different random seeds for the watermark. We observe that the distribution
is roughly uniform; this holds also for each individual seed.

We push this investigation further by running our watermark detector on huge token sequences, as
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Figure 17 The distribution of p-values on unwatermarked images.
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Figure 18 Left : On extremely long token sequences, the p-values on unwatermarked data increase as the real
expected green ratio γ′ = 242/971 is slightly below γ = 0.25 used in the test, making the test sound but overly
conservative. Right : Using γ′ in the test rectifies this, and p-values behave as expected.

Table 7 TPR at 1% FPR of different generation-time baselines. As these methods are not applicable to
autoregressive image generation models, we show results on the stabilityai/stable-diffusion-2-1-base diffusion
model. The transformations and attacks are the same as in Table 2

None Valuemetric Geometric
Adversarial
Purification

Neural
Compression

Stable Signature [28] 1.00 0.71 0.71 0.39 0.54
Tree-Ring [101] 1.00 0.89 0.36 0.81 0.85
Gaussian Shading [105] 1.00 1.00 0.01 1.00 1.00

in Sander et al. [84], despite those not being crucial to our usecase. Namely, for 10 random seeds, we 10
times independently concatenate 50,00 images to obtain a sequence of above 1M tokens, and compute
the p-value on prefixes of this sequence of increasing length. We show the results in Figure 18 (left,
mean and standard deviation over 100 runs described above). Interestingly, while we would expect
convergence around 0.5, the p-values of extremely long token sequences become as high as 0.8.

The reason for this is the relationship between the effective vocabulary size (i.e., the set of alive
codes, see Appendix E) nalive = 971 and the watermark parameter γ = 0.25. Specifically, as the
number of green tokens γ · nalive = 242.75 in the vocabulary assumed by our test (Equation 2) is not
an integer (which is never an issue for common values of |V | and γ in the literature), we chose to
conservatively select 242 green tokens. This keeps the statistical test sound as the real expected green
ratio γ′ = 242/971 ≈ 0.2492 is smaller than γ = 0.25, but may sacrifice some power. To further confirm
that this is the main cause for the observed behavior, we repeat the experiment using γ′ instead of γ
in Equation 2 and present the results in Figure 18 (right). We observe that the p-values now converge
to slightly below 0.5, which matches results in prior work [84].

F.6 Comparison to Generation-timeWatermarks for DiffusionModels

In Table 7 we present results on generation-time watermarks for image models. As no prior work studies
autoregressive models, we show results for diffusion models. In particular, we study stabilityai/stable-
diffusion-2-1-base [80]. For Tree-Ring [101] we use the official implementation and set the watermark
pattern to ring, w_channels to 3 and use 50 inference steps for generation and testing. For Stable
Signature [28] we use the official implementation and set unconditional_guidance_scale to 9, steps
to 50, and use PLMSSampler with ddim_eta set to 0. For Gaussian Shading [105] we use the
official implementation, enable chacha_encryption, set the number of inference steps for generation
and inversion to 50 and the number of bits to 256 with channel_copy set to 1 and hw_copy to 8.

We observe that each watermark is either fragile to geometric transformations or to adversarial
purification and neural compression.
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Figure 19 Token match histograms for sequences generated with Mimi (left) and Moshi (right). We observe
substantial consistency gains for Mimi-generated sequences and minimal change for Moshi-generated ones.

F.7 Omitted Audio Results

RCC finetuning. We presented in Appendix E.3 the details of our finetuning approach. Here we
discuss the validation metrics and demonstrate how finetuning influences RCC and token match. We
first evaluate the perceived audio quality of the generated samples using the PESQ and STOI metrics.
After finetuning, we achieve a PESQ [79] score of 4.3 for both FT and FT+Augs when compared
to Base samples. STOI [89] scores reach 0.98 for FT and 0.99 for FT+Augs (we fixed the audio
regularization loss weight to maintain approximately similar values for both approaches). The resulting
audio is very hard to discriminate from the original, although we observe that it sometimes lead to
light humming artifacts.

RCC and TM results are presented in Figure 19. We observe significant token match improvements
after finetuning when considering sequences of tokens generated by reconstructing 10-seconds VoxPopuli
audios with the Mimi tokenizer. However, the finetuning process does not substantially improve token
match for sequences generated by the Moshi model with audio prompts. This may explain why
finetuning does not significantly enhance watermark power for the Moshi model, as observed in Table 3
of Section 5. A potential approach for improving watermark TPR would be to specifically finetune
the model on generated sequences, which we leave for future work. (We attempted this approach for
images but did not observe significant improvements, see Appendix F.1 for details.)

Detailed robustness results. In Table 3 of the main paper, we report the average TPR at 1% FPR over
multiple audio-specific augmentations. Table 8 provides the TPR for each individual augmentation
that contributes to these averages, with a detailed view of how each transformation impacts watermark
robustness. Table 8 also reports TPRs for different δ values. For instance, increasing δ to 4.0 pushes
TPR above 0.9 across most augmentations, but the resulting audio quality deteriorates noticeably
compared to lower-strength settings.

G Qualitative Examples

In Figure 20 (Taming), Figure 21 (Chameleon), and Figure 22 (RAR-XL) we show qualitative
examples of images generated with our watermark and images post-hoc watermarked by the baselines
previously evaluated in Section 4.2. We notice no observable degradation in quality, which is also
confirmed by FID measurements. Interestingly, RAR-XL shows larger pixel-wise differences in decoder
behavior due to finetuning (confirming PSNR results in Appendix F.4), but the finetuned decoders are
still able to generate images of good quality. We remark that we use the same finetuning parameters
for all models, which may not be optimal. Tuning the hyperparameters specifically for RAR-XL may
thus be able to achieve similar watermark strength and robustness with smaller decoder changes.

35



Table 8 TPR at 1% FPR for the different tokenizer models, watermarking at different values for δ and different
augmentation strengths. Audios are generated with Moshi using the prompts described in Appendix E.3.

δ = 0.5 δ = 2.0 δ = 4.0

Transformation Base FT
FT+
Augs Base FT

FT+
Augs Base FT

FT+
Augs

Identity
Identity 0.31 0.57 0.46 0.98 0.99 0.99 0.99 0.99 0.99

Time-frequency
Speed 0.75 0.06 0.04 0.05 0.09 0.03 0.08 0.19 0.07 0.17
Speed 0.9 0.07 0.07 0.08 0.27 0.20 0.30 0.63 0.49 0.70
Speed 1.1 0.04 0.03 0.04 0.21 0.06 0.20 0.59 0.14 0.55
Speed 1.25 0.02 0.01 0.02 0.09 0.02 0.07 0.26 0.04 0.19
Crop 0.5 0.06 0.04 0.06 0.24 0.15 0.23 0.49 0.28 0.46
Crop 0.7 0.06 0.05 0.07 0.30 0.19 0.33 0.59 0.35 0.54
Crop 0.9 0.07 0.05 0.08 0.37 0.21 0.36 0.69 0.40 0.63
Shift 10.0 0.09 0.09 0.14 0.56 0.33 0.80 0.91 0.68 0.97
Shift 20.0 0.06 0.04 0.03 0.26 0.12 0.11 0.65 0.32 0.30
Shift 40.0 0.06 0.08 0.03 0.17 0.24 0.12 0.48 0.64 0.39

Valuemetric
Bandpass (1000, 8000) 0.03 0.04 0.16 0.10 0.15 0.45 0.28 0.38 0.85
Bandpass (300, 3000) 0.15 0.15 0.18 0.66 0.69 0.95 0.92 0.92 0.98
Bandpass (500, 5000) 0.10 0.17 0.18 0.45 0.53 0.94 0.83 0.85 0.98
Boost 50 0.37 0.27 0.22 0.98 0.98 0.97 0.98 0.99 0.98
Boost 90 0.21 0.19 0.14 0.96 0.93 0.88 0.98 0.98 0.98
Duck 50 0.14 0.15 0.12 0.81 0.84 0.81 0.98 0.98 0.97
Duck 90 0.11 0.09 0.14 0.48 0.30 0.58 0.83 0.63 0.90
Echo (0.1, 0.2) 0.12 0.20 0.13 0.87 0.97 0.93 0.98 0.99 0.98
Echo (0.3, 0.5) 0.05 0.09 0.07 0.55 0.79 0.60 0.89 0.97 0.93
Echo (0.5, 0.7) 0.04 0.05 0.04 0.38 0.56 0.40 0.77 0.91 0.79
Highpass 100 0.27 0.49 0.40 0.98 0.99 0.99 0.98 0.99 0.99
Highpass 1000 0.02 0.07 0.11 0.09 0.44 0.42 0.23 0.80 0.81
Highpass 500 0.04 0.16 0.19 0.32 0.81 0.95 0.80 0.98 0.98
Lowpass 1000 0.00 0.01 0.01 0.07 0.07 0.06 0.27 0.23 0.22
Lowpass 3000 0.33 0.34 0.39 0.97 0.98 0.98 0.99 0.98 0.99
Lowpass 8000 0.31 0.40 0.46 0.98 0.99 0.99 0.99 0.99 0.99
MP3 128 0.28 0.48 0.44 0.97 0.99 0.98 0.99 0.99 0.99
MP3 16 0.30 0.32 0.25 0.97 0.98 0.98 0.99 0.99 0.99
MP3 64 0.27 0.43 0.43 0.97 0.99 0.99 0.98 0.99 0.99
Noise 0.001 0.24 0.04 0.47 0.97 0.38 0.99 0.98 0.72 0.99
Noise 0.01 0.03 0.01 0.31 0.50 0.01 0.98 0.86 0.01 0.98
Noise 0.05 0.05 0.00 0.04 0.17 0.00 0.29 0.39 0.00 0.63
Pink 0.01 0.24 0.49 0.43 0.97 0.98 0.99 0.98 0.98 0.99
Pink 0.05 0.17 0.18 0.32 0.97 0.97 0.98 0.98 0.98 0.98
Pink 0.1 0.07 0.06 0.14 0.93 0.80 0.96 0.97 0.96 0.97
Smooth 0.001 0.06 0.04 0.10 0.44 0.24 0.79 0.83 0.52 0.96
Smooth 0.005 0.01 0.00 0.10 0.02 0.01 0.58 0.07 0.01 0.90
Smooth 0.01 0.01 0.01 0.07 0.02 0.02 0.38 0.04 0.03 0.76
UpDown Res. 24000 0.31 0.57 0.46 0.98 0.99 0.99 0.99 0.99 0.99
UpDown Res. 36000 0.30 0.52 0.46 0.98 0.99 0.99 0.99 1.00 0.99
UpDown Res. 48000 0.31 0.52 0.46 0.98 0.99 0.99 0.99 1.00 0.99

Neural Compression
DAC 0.24 0.17 0.38 0.97 0.96 0.99 0.98 0.98 0.99
EnCodec 0.07 0.06 0.09 0.62 0.55 0.69 0.91 0.91 0.94
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Figure 20 Qualitative results on Taming with samples from 3 of the ImageNet-1k classes. The left column
shows the images and the right column the diffs. For variants of our watermark (top) the diff is computed w.r.t.
the Base decoder (as there is no notion of an original unwatermarked image). For post-hoc baselines (bottom)
the diff is computed w.r.t. the original image. All diffs are displayed with the same postprocessing applied for
visibility, namely clip(|a− b| · 30, 0, 255), where a and b are pixel values of the two images in range [0, 255].
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Figure 21 Qualitative results on Chameleon with 3 COCO validation prompts. The left column shows the
images and the right column the diffs. For variants of our watermark (top) the diff is computed w.r.t. the Base
decoder (as there is no notion of an original unwatermarked image). For post-hoc baselines (bottom) the diff is
computed w.r.t. the original image. All diffs are displayed with the same postprocessing applied for visibility,
namely clip(|a− b| · 30, 0, 255), where a and b are pixel values of the two images in range [0, 255].
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Figure 22 Qualitative results on RAR-XL with samples from 3 of the ImageNet-1k classes, as in Figure 20 and
Figure 21. We observe bigger pixel-wise differences of finetuned decoders for our watermark compared to other
models, but no observable degradation in quality, confirmed by FID. More elaborate tuning of the finetuning
hyperparameters (we use the same ones for all models) could achieve same results with smaller decoder changes.

H On JointWatermarking of InterleavedModalities

In this section, we extend our discussion on joint watermarking of interleaved modalities from Section 4.3,
provide omitted experimental details, and present extended experimental results.

Experimental details. We query Chameleon with 1000 prompts, each generated from one of ImageNet-
1K classes, asking the model to teach the user about the notion represented by the class label and
illustrate it. We use γ = 0.25 and set h = 0 for images and h = 1 for text. Two example interactions
are shown in Appendix H.1. For text corruption we explore percentages in [0, 60]. For Gaussian noise
corruption of images, we use σ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.
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Figure 24 Left : Using more tokens at the same green ratio reduces the p-value. As orange crosses show, using
5× more tokens can improve the p-value even if the green ratio drops (28% → 27%). Right : Simulated results
similar to Figure 7. Both axes are flipped to match Figure 7: x-axis reduces the green% (weaker signal) and
y-axis reduces the p-value (stronger detection). As images carry many tokens, merging e.g., text with 28% green
tokens with an image with 26% green tokens still improves detection.
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Figure 23 Full results on joint water-
mark detection, extending Figure 7.

Full experimental results. Extended results are shown in Fig-
ure 23. We observe that for high-quality images where the wa-
termark signal is preserved, joint detection is always beneficial,
while for highly corrupted images, it almost never is. Between
these two, joint detection becomes beneficial starting from some
text corruption level. The intuitive understanding is that joint
detection that integrates a better quality signal is always benefi-
cial. Perhaps unexpectedly, it can be also beneficial when signal
is of slightly lower quality if it sufficiently increases the number
of tokens. This is important as a single image consists of a large
number of tokens, in particular 1024 for Chameleon, while the
average text length in our experiment is ≈227.

When is joint detection beneficial? First, to elaborate on our
claim from the main paper that scoring more equally watermarked tokens improves power, we plot
the p-value of the watermark detection as a function of token length for a fixed green ratio S/(T − h)
(Figure 24, left). For each line, increasing the number of tokens can rapidly improve the detection
p-value. To illustrate the point made above that increasing the number of tokens can be beneficial
even if the green ratio drops, note the two orange crosses. Increasing the number of tokens fivefold
(500 → 2500) while reducing the green ratio from 28% to 27% has still dropped the p-value from around
0.06 to almost 0.01 which for FPR of 1% is the passing threshold.

Rounding the average text length in our experiment to 256, the fivefold increase corresponds exactly to
the average case we observed (256 → 1024+ 256). We simulate this case (a combination of 256 text and
1024 image tokens) while fixing the green ratio for both modalities. Our results in Figure 24 (right)
show a similar trend as in our above experiment on real data. For example, merging text with 28%
green tokens with an image with only 26% green tokens still improves the p-value.

These results illustrate the benefits of watermarking modalities jointly. In contrast, if text and images
were watermarked separately, to reject the null hypothesis of this online article was not generated by
my model M in a statistically sound way, we would need to take the maximum of the p-values of the
two individual tests, i.e., the improvements seen above would not be possible.

Outlook. We hope this investigation opens the door to more detailed studies of cross-modal water-
marking. Other interesting questions include the impact of transformations on the watermark across
modalities, and the relationship between using more tokens from the same or a different modality.
Intuitively, as vocabularies are disjoint, for long sequences the former may add many duplicate tokens,
which do not affect the p-value. On the other hand, the probability of such duplicates may be higher
for some modalities: in the first example in Appendix H.1, the image mostly contains white tokens.
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H.1 Example Interactions

We show two real interactions with Chameleon from our joint watermark experiment (Section 4.3),
along with the corresponding watermark detection results. In the detector view, for both modalities,
denotes tokens scored green, denotes tokens scored red, and those ignored due to duplication (e.g.,
plain white visual tokens in the first example, we use gray for visibility).

User Prompt

I amwondering about the following: acoustic guitar. Can you teachme something about it in a way that is easy to understand and also
generate a picture of it?

Chameleon

Certainly, I’d be happy to help!

The acoustic guitar, as shown in the image below, is a popular instrument for playingmusic. It is made of a wooden body, a neck, and
strings that are plucked or strummed to produce sound. The sound of an acoustic guitar is created by the vibrations of the strings,
which are then amplified by the body of the guitar.

Watermark Detector (p = 1.7 · 10−16)

Certainly, I’d be happy to help!

The acoustic guitar, as shown in the image below, is a popular instrument for playingmusic. It is made of a wooden body, a neck, and
strings that are plucked or strummed to produce sound. The sound of an acoustic guitar is created by the vibrations of the strings,
which are then amplified by the body of the guitar.
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User Prompt

I amwondering about the following: thatch. Can you teachme something about it in a way that is easy to understand and also
generate a picture of it?

Chameleon

Sure! Thatch refers to the plant material used to cover roofs andwalls in traditional or indigenous architecture. It is made from various
types of grasses, leaves, or other vegetation. Here is an image of an example of thatch, used as roofingmaterial in the construction of
this house.Thatch is oftenmade from locally available resources, such as reeds, rushes, or grasses, and is often woven or tied together
to create a durable and effective roofingmaterial. It requires regular maintenance to keep it in good condition and can last for many
years with proper care. In some areas, thatch is still used today as a traditional buildingmaterial, while in others, it has been largely
replaced bymodern roofing systems.

Watermark Detector (p = 1.2 · 10−34)

Sure! Thatch refers to the plant material used to cover roofs andwalls in traditional or indigenous architecture. It is made from various
types of grasses, leaves, or other vegetation. Here is an image of an example of thatch, used as roofingmaterial in the construction of
this house.Thatch is oftenmade from locally available resources, such as reeds, rushes, or grasses, and is often woven or tied together
to create a durable and effective roofingmaterial. It requires regular maintenance to keep it in good condition and can last for many
years with proper care. In some areas, thatch is still used today as a traditional buildingmaterial, while in others, it has been largely
replaced bymodern roofing systems.
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