
ar
X

iv
:2

50
6.

15
91

8v
1

 [
cs

.C
R

]
 1

8
Ju

n
20

25

Sudoku: Decomposing DRAM Address Mapping into Component Functions

Minbok Wi† Seungmin Baek† Seonyong Park† Mattan Erez‡ Jung Ho Ahn†

Seoul National University† The University of Texas at Austin‡

Decomposing DRAM address mappings into component-level
functions is critical for understanding memory behavior and
enabling precise RowHammer attacks, yet existing reverse-
engineering methods fall short. We introduce novel timing-based
techniques leveraging DRAM refresh intervals and consecutive
access latencies to infer component-specific functions. Based on
this, we present Sudoku, the first software-based tool to auto-
matically decompose full DRAM address mappings into channel,
rank, bank group, and bank functions while identifying row and
column bits. We validate Sudoku’s effectiveness, successfully
decomposing mappings on recent Intel and AMD processors.

1. Introduction
DRAM address mapping is a key feature of memory controllers
(MCs), which translates memory requests into physical loca-
tions in DRAM to maximize parallelism and minimize con-
tention in the memory system. Simultaneously, the growing
threat of DRAM-related attacks increases the importance of
precise and detailed knowledge of the DRAM address map-
ping [1, 5, 8, 9, 12, 18, 19]. However, despite its importance
for both performance and security, DRAM address mappings
remain undocumented by processor manufacturers, necessi-
tating efficient reverse-engineering methods.
Prior reverse-engineering methods [9, 16, 18, 22] primarily

use the well-known row-buffer conflict timing channel to re-
cover bank addressing functions; however, they require phys-
ical probing or fail to fully identify all row and column bits.
Furthermore, prior methods are unable to decompose DRAM
address mapping into component functions,1 which becomes
more important considering recent RowHammer attacks that
exploit specific DRAM internal components [1, 12, 15, 17].
In this paper, we revisit timing channels in DRAM-based

memory systems to enable component-level decomposition of
DRAM address mapping. First, we use DRAM refresh intervals
as an indicator for inferring the granularity of refresh opera-
tions, known as refresh groups. We can determine whether
two addresses are mapped to the same refresh group by al-
ternating two memory addresses, detecting refresh-induced
latency spikes, and measuring their intervals. Second, we ana-
lyze the latency of consecutive memory accesses and utilize
this to infer the functions of the DRAM component. Mem-
ory access patterns affect the latency of consecutive memory
accesses, depending on the target DRAM components, and
provide information for identifying bank group and address
functions. Lastly, we briefly cover the non-uniqueness of the

1We denote the memory system elements—such as the channel, DIMM,
and rank—and the logical elements of a DRAM chip—such as the bank group
and bank—collectively as components. We use “components” and “internal
components” interchangeably.

CPU

M
em

or
y

C
on

tro
lle

r

M
em

or
y

C
ha

nn
el

s Bank Group 0

…

DRAM Module

Su
bC

h
A

Bank
2

Bank
3

Bank Group 7
Bank

2
Bank

3

Bank
0

Bank
1

Same
Bank Group

Different
Bank Groups

DRAM Chip

Bank
0

Bank
1

R
K

0
(F

ro
nt

) /
 R

K
1

(B
ac

k)

Su
bC

h
B

Figure 1: DRAM-based memory system organization. DDR5 in-
troduces sub-channels and doubles the number of bank groups
compared to DDR4.

derived system of the DRAM addressing functions.
Based on our exploration, we develop Sudoku, a software-

based tool that identifies row and column bits and decom-
poses DRAM address mappings into component functions,
even without physical access to systems. Sudoku successfully
finds row and column bits and decomposes DRAM address
mapping into component functions across recent Intel and
AMD processors under various memory configurations. We
also verify our results based on the processor’s MC-related
registers and recent physical probing-based results of DRAM
address mappings [7, 9]. Lastly, we open-source our code to
aid future research on reverse-engineering the DRAM address
mappings.2

This paper makes the following key contributions:
• We analyze timing channels in modern DRAM-based mem-
ory systems based on refresh intervals and consecutive mem-
ory accesses.

• We develop Sudoku, a software-based tool that discovers full
DRAM address mappings and decomposes these mappings
into DRAM internal component functions, based on our
timing channel analyses.

• We identify row and column bits without requiring physical
access to the system, and we verify the results by confirming
the injectivity of the derived mapping.

• We find DRAM component functions in recent Intel and
AMD processors with various memory configurations.

2. Background
2.1. DRAM Organization, Operations, and Timings
DRAM-based main memory systems employ a hierarchical
structure—typically comprising multiple components, such as
channels, DIMMs, ranks, bank groups, and banks—to achieve
high parallelism (see Figure 1). Modern standards such as
DDR5 [11] further increase complexity by introducing sub-
channels and doubling the number of bank groups compared
to DDR4 [10]. Accessing data requires a Memory Controller

2https://github.com/scale-snu/sudoku.git

1

https://github.com/scale-snu/sudoku.git
https://arxiv.org/abs/2506.15918v1

(MC) to issue commands following specific timing constraints.
An ACT (activate) command opens a target row within a bank.
After a delay (tRCD), RD (read) or WR (write) commands access
specific columns in the open, activated row. Accessing a differ-
ent row within the same bank necessitates a PRE (precharge)
command and incurs an additional delay (tRP) prior to the next
activation. This sequence results in higher latency for same-
bank accesses compared to row hits, creating the well-known
row-buffer conflict timing channel.

Beyond row-buffer conflicts, other DRAM operations create
observable timing variations [5]. DRAM cells require periodic
refresh operations (REF) to retain data, which temporarily block
memory accesses for tRFC cycles and occur at an average
interval of tREFI. Modern DRAM devices support various
types of refresh operations, such as all-bank, fine-grained, or
same-bank refreshes, to reduce performance overhead from
refresh operations [10, 11]. MCs may implement those various
refresh schemes, potentially affecting access latency differently
depending on the target addresses.
Crucially for our work, DRAM employs mandatory timing

parameters for consecutive accesses, such as tRRD (row-to-
row delay) and tCCD (column-to-column delay), which vary
depending on whether the accesses target the same or different
bank groups [10,11]. However, rather than directly using these
DRAM timing parameters, MCs use their own set of timing
parameters—such as tRDRD, tRDWR, tWRRD, and tWRWR—based
on the sequence and type of memory accesses [2–4]. These
timing parameters are more complex, as they depend not only
on the bank group and bank, but also on the rank and DIMM.
Moreover, they are non-SPD related timings whose values
vary based on the system platform and configuration, and are
typically determined during DDR training for optimal perfor-
mance. While often small, these timing differences between
consecutive accesses represent another potential channel for
inferring address mapping details.
2.2. XOR-Based Hash Functions
Modern MCs typically use XOR-based hash functions to trans-
late physical addresses into DRAM component indices (e.g.,
channel, rank, bank group, bank, row, and column) [6, 20, 21].
Each XOR-based hash function generates a single-bit hash
value by XORing a selected subset of physical address bits.
Thus, each function can be represented as a bitmask, where
each set bit indicates that the corresponding address bit is in-
volved in the hash function [20]. The complete mapping can
be represented as a system of linear equations over GF (2),
often implemented as a binary matrix, designed to distribute
memory accesses evenly [6, 20, 21].
Reverse-engineering these undocumented functions relies

on observing system behavior. Prior methods employ brute-
force [9, 16, 18] or educated-guessing [6, 21, 22] techniques,
primarily analyzing row-buffer conflicts to deduce relation-
ships between physical address bits and bank/row mapping.
They generate random address pairs, observe conflicts (or lack
thereof), and attempt to solve the underlying linear system
with given input-output pairs.

While useful for identifying bank and some row/column bits,
these conflict-based approaches generally cannot decompose
the mapping into functions corresponding to memory sys-
tems’ architectural components (e.g., channel, rank, and bank
group). Determining this full component-level decomposition
is essential for precisely modeling memory behavior and en-
abling advanced security analyses, motivating the exploration
of additional timing channels in this paper.

3. Timing Channels for Component Function
Identification

In this section, we analyze DRAM timing channels beyond
simple row conflicts, focusing on refresh operations and con-
secutive accesses to infer component-level mapping details.
3.1. Understanding How Systems Configure Mem-

ory via System Registers
Accurate analysis requires understanding system-specific
memory configurations and timings. We identify these by
examining BIOS settings and reading processor-specific MC-
related registers [2–4]. For example, we obtain precise values
for key timing parameters such as tRFC, tREFI, and various
tRDRD timings, which are essential for our subsequent analyses.
We also examine the MC-related registers that are no longer
documented in recent processors but were disclosed in the
previous datasheets, as in [13], to obtain several configurations
related to DRAM address mapping [2, 3].
Knowing the system-configured refresh interval (tREFI) is

particularly important, as it depends on the type of refresh op-
erations and DRAM chip density [10, 11]. We also note that on
the tested Intel processors with DDR5 (Table 1), the MC treats
DDR5 sub-channels as two independent memory channels; a
single-rank DDR5 module is perceived as two channels, and
populating two physical channels results in the MC managing
four logical channels. This understanding informs our timing
analyses on systems with DDR5.
Modern processors also provide limited information about

DRAMaddressmapping throughMC-related registers [2,3], en-
abling verification of specific DRAM component mapping func-
tions. For example, Intel Core processors reveal a channel hash
mask and the bit used for bank group selection through their
MC-related registers [2, 3]. Also, in Linux, the EDAC (Error
Detection and Correction) subsystem utilizes these MC-related
registers to accurately diagnose the DRAM error locations,
thereby revealing portions of DRAM address mappings in the
server processors [14, 15]. We leverage this DRAM address
mapping information to validate Sudoku’s results (Section 5).
Finally, while accessing system registers aids our timing

channel analysis, our Sudoku tool does not require it.
3.2. Refresh Interval
Beyond simple detection, we exploit refresh-induced latency
spikes to infer refresh group—whether two addresses share the
same refresh resources. By alternately accessing a pair of ran-
domly generated memory addresses and monitoring the inter-
val between periodic latency spikes [5, 9], we observe distinct

2

0
400
800

1200
1600
2000

normal refresh interval

50000 100000 150000 200000 250000
Start (cycles)

0
400
800

1200
1600
2000

reduced refresh interval

La
te

nc
y

(c
yc

le
s)

Figure 2: Measured refresh-induced latency spikes in the AMD
Ryzen 9 7950X processor with DDR5 operating at 4.5GHz. We
iteratively access two memory addresses, measure their laten-
cies, and compute the average spike interval. Two types of
refresh intervals are shown: a normal refresh interval (top)
and a reduced refresh interval (bottom).

RD RD

RD RD

RD RD

RD RD

RD

RD

RD

RD

RD RD

RD RD

(a)
ACT

ACT

ACT

ACT

𝑡𝐶𝐶𝐷!

𝑡𝐶𝐶𝐷"

8×(𝑡𝐶𝐶𝐷! − 𝑡𝐶𝐶𝐷")

(b)

𝑡𝐶𝐶𝐷!

𝑡𝐶𝐶𝐷"

Figure 3: Theoretical timing differences between two consecu-
tive memory reads. Consecutive reads exhibit different timing
characteristics depending on their mappings. (a) Reads to dif-
ferent bank groups (tCCDS) incur a shorter interval than (b)
reads to the same bank group (tCCDL).

patterns. Addresses mapped to the same refresh group yield
spikes at the standard tREFI interval. By contrast, addresses
mapped to different refresh groups produce two interleaved
spike trains, resulting in a reduced effective interval between
observed latency spikes. Figure 2 shows measured memory
access latencies over time in the AMD Ryzen 9 7950X proces-
sor with DDR5. For the normal refresh interval, we observe
monolithic and periodic latency spikes. In contrast, for the
reduced refresh interval, there are two distinct periodic spikes
with a certain offset. This directly reveals whether the address
pair differs in the address bits determining the refresh group.
Applying this method, we observed all-bank refresh on an

Intel 12th Gen processor with DDR4, fine-grained refresh on
Intel 12th (Alder Lake) and 14th (Raptor Lake Refresh) Gen
processors with DDR5, and all-bank refresh operations on an
AMD Ryzen Zen 4 processor with DDR5.3 Furthermore, since
XOR-based hash functions tend to partition the address space
evenly, the proportion of random address pairs exhibiting re-
duced intervals provides an estimate of the number of address
bits (and thus, XOR functions) involved in determining the
refresh group.
3.3. Consecutive Memory Accesses
MC’s memory timing parameters, such as the variants of
tRDRD, specify different minimum intervals for consecutive
memory accesses depending on whether they target the same

3Measurements on AMD systems required careful thresholding due to
limited granularity of measuring timings and various noise factors.

350 400 450 500 550 600
Latency (cycles)

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y
D

en
si

ty

Channel/Sub-channel
Bank group
DIMM/Rank
Bank address

Figure 4: The distribution of consecutive memory access laten-
cies across memory address pairs that differ in only one of the
nine DRAM addressing functions.

bank group, different bank groups, different ranks, or differ-
ent DIMMs in both Intel and AMD processors [2–4]. While
these timing differences encode component mapping informa-
tion, they are typically small (a few nanoseconds) and easily
obscured by MC request scheduling and system noise.
To overcome this limitation, we amplify these subtle dif-

ferences. Our method creates and alternately accesses two
memory streams, each carefully constructed to ensure internal
row-buffer hits. This interleaving magnifies the base timing
differences dictated by the relevant tRDRD variant between the
two streams, as illustrated conceptually in Figure 3.

Measuring the latency of these alternating stream accesses
reveals distinct latency distributions (shown for an Intel Core
i9-14900K in Figure 4). The peaks of these distributions cor-
respond to the timing differences associated with accessing
different component levels. By comparing the measured peak
latencies to the system-configured tRDRD values (obtained as
per Section 3.1), we can group the underlying XOR functions
based on the component they likely map to (e.g., channel, sub-
channel, bank group, DIMM/rank, and bank address). Com-
bined, refresh interval analysis and consecutive access timing
allow us to group address mapping functions by component
type. However, the current method has limitations; system-
configured MC timing parameters highly affect the latency
of consecutive memory accesses. For example, distinguishing
rank and module functions could be ambiguous if their respec-
tive tRDRD timings are configured identically by the system.

4. Sudoku

We develop Sudoku,4 a software tool for reverse-engineering
DRAM address mapping in commercial computer systems,
requiring no physical access. Sudoku extends existing tools
(e.g., DRAMA [18] and ZenHammer [9]) that reverse-engineer
DRAM addressing functions using row-buffer conflicts. Specif-
ically, Sudoku takes the DRAM addressing functions produced
by these tools, automatically identifies row and column bits,
and decomposes DRAM address mappings into component
functions. As depicted in Figure 5, Sudoku integrates conflict-
based testing [18] with timing channel analyses from Section 3.

4The tool is named Sudoku because decomposing DRAM addressing func-
tions resembles solving a Sudoku puzzle, where each element must adhere to
specific constraints.

3

Row-buffer
conflicts

Grouping functions and bits
into disjoint sets

Checking # functions equals
bits in each set

Step 1. Identifying Bits

Refresh
intervals

Step 2. Checking Injectivity

Consecutive
memory accesses

Finding
DRAM

addressing
functions

Step 3. Decomposing Functions

Channel / Sub-channel
Rank / DIMM
Bank Group
Bank Address

Full DRAM address mapping (functions and bits)

Constraints

Figure 5: An overview of Sudoku. Sudoku i) leverages row-
buffer conflicts with constraints to identify row and column
bits, ii) validates the DRAM address mapping by checking in-
jectivity, and iii) exploits refresh intervals and consecutive
memory accesses to decompose DRAM address mapping.

1 1 0 0 0
0 0 1 1 1
0 0 0 1 1
0 0 1 0 1
0 0 0 0 0

1 1 0 0 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1
∗ ∗ 0 0 0

Disjoint Set A Disjoint Set B

XO
R

 F
un

ct
io

ns

b4 b3 b2 b1 b0

Identify Bits

Empty row

Check
Injectivity

Physical Address Bits

[0	1]	or	[1	0]

Figure 6: The process of verifying injectivity and finding an
additional function. Disjoint set A (subsystem) doesn’t satisfy
the injectivity, meaning that an additional function or bit is
required.

4.1. Generating Desired Memory Addresses

To effectively isolate the timing effects of specific DRAM com-
ponents (for decomposition) or row/column bits (for identi-
fication), Sudoku requires carefully crafted memory access
patterns. Instead of random testing or brute-forcing, Sudoku
solves the (partially) known mapping system to generate ad-
dress pairs that differ only in the output of specific target
functions, while keeping other function outputs identical. This
targeted approach is crucial for correctly attributing observed
timing variations.

Sudoku identifies row and column bits using row-buffer con-
flicts as an oracle, guided by an educated-guessing approach
similar to prior work to reduce the search space [6, 22]. The
key constraint is generating address pairs mapping to the same
bank (i.e., having identical outputs for all bank-related hash
functions). Sudoku systematically tests the role of each phys-
ical address bit by generating bitmasks. It considers masks
derived from the known functions and combinations involv-
ing previously unused address bits to ensure comprehensive
coverage. By generating address pairs based on these masks
(XORing the mask with a base address) and observing whether
accesses cause row-buffer conflicts or hits, Sudoku classifies
the corresponding physical address bits in the mask as con-
tributing to row or column indexing, respectively.

4.2. Validating the System of Hash Functions

A valid DRAM address mapping must be injective (one-to-one)
to ensure correctness. Sudoku verifies this property by rep-
resenting the derived functions and involved bits as a linear
system overGF (2) and applying the rank-nullity theorem [20].
Sudoku decomposes the system into disjoint subsystems and
checks if, for each subsystem, the number of linearly indepen-
dent functions (rank) equals the number of involved physical
address bits.

However, this conflict-based testing has inherent limitations
due to the non-uniqueness of XOR-based hash systems [6, 20]
(as illustrated in Figure 6). It may not be possible to uniquely
determine every function if multiple function/bit combinations
produce the same conflict behavior. To resolve such ambigui-
ties, Sudoku follows common assumptions (e.g., assigning high-
order bits to rows and low-order bits to columns [9, 18, 22]),
ensuring the final mapping preserves injectivity and functional
correctness, even if alternative valid representations might
exist [6, 20]. Lastly, we avoid excessive function reduction
(e.g., reducing the system to a minimal basis) that could al-
ter the original conflict characteristics relevant for analysis
when considering both DRAM address mapping functions and
row/column bits.

4.3. Decomposing DRAM Address Mapping

In its final step, Sudoku decomposes the validated set of DRAM
addressing functions, assigning each function to its correspond-
ing physical component (e.g., channel, rank, bank group, and
bank address). This decomposition leverages the distinct tim-
ing signatures identified in Section 3, measured using the
targeted memory access patterns generated as described in
Section 4.1. Sudoku systematically tests each relevant XOR
function (or group of functions potentially related to a com-
ponent) using the following timing analyses: refresh intervals
and consecutive memory accesses.
Refresh Intervals: Sudoku generates pairs of addresses that
differ only in the output bits produced by the target function(s).
By measuring the interval between refresh-induced latency
spikes when accessing these pairs (as detailed in Section 4.1),
Sudoku identifies the functions that control the refresh group.
Functions causing a “reduced” refresh interval pattern are
marked as related to the refresh scope defined by the sys-
tem configuration (e.g., channel/sub-channel, rank/DIMM or
potentially finer granularities, depending on the refresh type
employed by the system).
Consecutive Memory Accesses: To further differentiate
functions, especially those not distinguished by refresh or
those necessitating finer classification (like bank group vs.
bank address), Sudoku employs the consecutive access timing
analysis (Section 3.3). It generates alternating memory streams
where the underlying addresses differ only based on the tar-
get function(s). The resulting latency distribution is analyzed;
the location of the primary latency peak is compared against
the known tRDRD timing parameters of the system. A match
allows Sudoku to associate the target function(s) with the cor-

4

Table 1: Tested system configurations.

System Processor (microcode) Motherboard Memory Devices

Intel-A Intel Core ASUS 32 GB DDR4-3200
i9-12900K (0x38) Z690-A 2R×8 UDIMM

Intel-B Intel Core ASUS 32 GB DDR5-4800
i9-12900K (0x38) Z690-F 2R×8 UDIMM

Intel-C Intel Core MSI 32 GB DDR5-4800
i9-14900K (0x12C) B760M 2R×8 UDIMM

AMD-A AMD Ryzen 9 ASRock 32 GB DDR5-4800
7950X (0xA601206) X670E 2R×8 UDIMM

responding component level (e.g., mapping a function to bank
group if its activation leads to latency that is consistent with
tRDRD timing for different bank groups).
By systematically applying these two timing analyses to

the reverse-engineered functions using precisely controlled
address generation, Sudoku labels each function with its in-
ferred component role. This process yields the decomposed
DRAM address mapping, detailing how different sets of phys-
ical address bits map to channel, sub-channel, rank/DIMM,
bank group, and bank address indices.
The accuracy of this decomposition depends on the sys-

tem’s behavior and configuration, as noted previously. Factors
such as the MC’s refresh strategy, request scheduling policies,
and whether timing parameters for different component in-
teractions are distinct and measurable can limit the ability to
differentiate certain functions (e.g., channel vs. sub-channel,
or rank vs. DIMM).

5. Results
Experimental setup: We evaluated Sudoku on the recent
Intel and AMD systems detailed in Table 1. We used memory
access latencies in CPU cycles, measured using the rdtscp
instruction with core dynamic frequency scaling disabled to
ensure stable measurements [9, 18]. For channel/sub-channel
functions, which are often directly specified or easily inferred
from MC-related registers (MCHBAR), we used these known
values directly to constrain the reverse-engineering process,
without affecting the overall mapping functionality. Lastly,
we regarded recent physical probing-based DRAM address
mapping results [7, 9] as ground truth and verify that Sudoku
generates consistent DRAM address mapping results. Full
results, including the derived XOR masks, are presented in
Table 2.
Intel Core Processors: Sudoku successfully decomposed
the DRAM address mapping for the tested Intel Core proces-
sors with the given DRAM addressing functions derived us-
ing prior tool [18]. Consistent with trends observed in AMD
processors [9] and differing from some older Intel architec-
tures [18, 22], these recent Intel platforms utilize most iden-
tified physical address bits within their mapping functions.
Notably, for DDR5 configurations, we observed discontinu-
ities in the physical address bits used for row and column
indexing, influenced by multi-channel and multi-DPC (DIMM
per channel) setups. Our timing analyses also confirmed the
use of fine-grained all-bank refresh with DDR5, contrasting

with the standard all-bank refresh observed with DDR4 on the
same platform, demonstrating Sudoku’s ability to reveal such
configuration details. Lastly, it is worth noting that Sudoku
can identify full DRAM address mapping, thus requiring no
physical access to the system.
AMD Zen 4 Processor: On the AMD Zen 4 platform, con-
sidering the necessary PCI address offset as described in prior
work, Sudoku produced decomposed mappings consistent with
those reported by ZenHammer [9]. The tool successfully distin-
guished rank/DIMM and sub-channel functions using refresh
intervals and bank group and bank functions via consecutive
memory accesses. The AMD processors issue separate refresh
commands for each sub-channel, each DIMM, and each rank,
which means that it is possible to distinguish between channel
and sub-channel functions.

6. Conclusion
This paper has demonstrated novel techniques for decompos-
ing undocumented DRAM address mappings by exploiting pre-
viously underutilized timing channels. We first showed that
DRAM refresh intervals reveal refresh group, and second, that
amplified timing variations in consecutive memory accesses
expose component-level mapping information. Leveraging
these insights, we developed Sudoku, a software-based tool
that automatically decomposes DRAM addressing functions
into their specific component roles (e.g., channel, rank, bank
group, and bank). We validated its effectiveness on recent Intel
and AMD processors. This work provides crucial, fine-grained
mapping information necessary for advanced RowHammer
analysis and vulnerability assessment on modern platforms.
By open-sourcing Sudoku, we hope to enable further research
into DRAM security and system behavior.

Acknowledgment
We thank Hwayong Nam and Michael Jaemin Kim at Seoul
National University for their valuable feedback to the paper.

References
[1] Seungmin Baek, Minbok Wi, Seonyong Park, Hwayong Nam, Michael Jaemin Kim,

Nam Sung Kim, and Jung Ho Ahn, “Marionette: A RowHammer Attack via Row
Coupling,” in ASPLOS, 2025.

[2] Intel Corporation, “12th Generation Intel Core Processor Datasheet, Vol-
ume 2 of 2,” https://www.intel.com/content/www/us/en/content-details/655259/
12th-generation-intel-core-processor-datasheet-volume-2-of-2.html, 2022, 655259-
003, Accessed: April 1, 2025.

[3] Intel Corporation, “13th Generation Intel Core Processor, Volume 2 of
2,” https://www.intel.com/content/www/us/en/content-details/743846/
13th-generation-intel-core-processors-datasheet-volume-2-of-2.html, 2022,
743846-001, Accessed: April 1, 2025.

[4] Advanced Micro Devices, “BIOS and Kernel Developer’s Guide (BKDG) for AMD
Family 15h Models 70h-7Fh Processors,” https://www.amd.com/content/dam/amd/
en/documents/archived-tech-docs/programmer-references/55072_AMD_Family_
15h_Models_70h-7Fh_BKDG.pdf, 2018, 55072 Rev 3.09, Accessed: April 1, 2025.

[5] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen, Onur Mutlu,
Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, “TRRespass: Exploiting the
Many Sides of Target Row Refresh,” in IEEE Symposium on Security and Privacy
(S&P), 2020.

[6] Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos, “Gaussian Elimination
of Side-Channels: Linear Algebra for Memory Coloring,” in Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security, 2024.

[7] Patrick Jattke, Michele Marazzi, Flavien Solt, Max Wipfli, Stefan Gloor, and Kaveh
Razavi, “MCSEE: Evaluating Advanced Rowhammer Attacks and Defenses via Auto-
mated DRAMTraffic Analysis,” in Proceedings of the 34th USENIX Security Symposium
(USENIX Security 25), 2025.

5

https://www.intel.com/content/www/us/en/content-details/655259/12th-generation-intel-core-processor-datasheet-volume-2-of-2.html
https://www.intel.com/content/www/us/en/content-details/655259/12th-generation-intel-core-processor-datasheet-volume-2-of-2.html
https://www.intel.com/content/www/us/en/content-details/743846/13th-generation-intel-core-processors-datasheet-volume-2-of-2.html
https://www.intel.com/content/www/us/en/content-details/743846/13th-generation-intel-core-processors-datasheet-volume-2-of-2.html
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/55072_AMD_Family_15h_Models_70h-7Fh_BKDG.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/55072_AMD_Family_15h_Models_70h-7Fh_BKDG.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/55072_AMD_Family_15h_Models_70h-7Fh_BKDG.pdf

Table 2: Reverse-engineered DRAM addressing functions and decomposed results using Sudoku. N/A denotes that there is no
function for the corresponding component. Each value in the table represents a mask for an XOR-based hash function, where the
parity of the set bits in the mask determines the output.

System Memory
Configuration

Functions Bits

Channel and
Sub-Channel

DIMM and
Rank

Banks
Row ColumnBank Group Bank Address

Intel-A

1Ch-1DPC N/A 0x0000088000 0x0000002A00, 0x0124044000 0x0249910000, 0x0492620000 0x07FFFC0000 0x0000001FC0
1Ch-2DPC N/A 0x0000108000, 0x0000002A00, 0x0924084000 0x0249210000, 0x0492840000 0x0FFFF80000 0x0000001FC0

0x0000420000
2Ch-1DPC 0x0000082600 0x0000110000 0x0000005400, 0x0248088000 0x0493220000, 0x0924C40000 0x0FFFF80000 0x0000001FC0
2Ch-2DPC 0x0000082600 0x0000210000, 0x0000005400, 0x1248108000 0x0492420000, 0x0925080000 0x1FFFF00000 0x0000001FC0

0x0000840000

Intel-B,
Intel-C

1Ch-1DPC 0x00000C3200 0x0000410000 0x0000081100, 0x0222104000, 0x0088820000, 0x0111040000 0x07FFF80000 0x0000000FC0
0x0442080000

1Ch-2DPC 0x00000C3200 0x0000810000, 0x0000081100, 0x0222104000, 0x0114100000, 0x088A020000 0x0FFFE80000 0x0000000FC0
0x0001040000 0x0444408000

2Ch-1DPC 0x0000104200, 0x0000820000 0x0000102100, 0x0444208000, 0x0111040000, 0x0222080000 0x0FFFF00000 0x0000001BC0
0x0000186400 0x0888410000

2Ch-2DPC 0x0000104200, 0x0001020000, 0x0000102100, 0x0444408000, 0x0228200000, 0x1114040000 0x1FFFD00000 0x0000001BC0
0x0000186400 0x0002080000 0x0888810000

AMD-A

1Ch-1DPC 0x07FFF80040 0x0000040000 0x0084200100, 0x0108400200, 0x0042100800, 0x0421080400 0x07FFF80000 0x000003E080
0x0210801000

1Ch-2DPC 0x0FFFF00040 0x0000040000, 0x0108400100, 0x0210800200, 0x0084200800, 0x0842100400 0x0FFFF00000 0x000003E080
0x0000080000 0x0421001000

2Ch-1DPC 0x0000000100, 0x0000080000 0x0108400200, 0x0210800400, 0x0084201000, 0x0842100800 0x0FFFF00000 0x000007C080
0x0FFFF00040 0x0421002000

2Ch-2DPC 0x0000000100, 0x0000080000, 0x0210800200, 0x0421000400, 0x0108401000, 0x1084200800 0x1FFFE00000 0x000007C080
0x1FFFE00040 0x0000100000 0x0842002000

[8] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi,
“Blacksmith: Scalable Rowhammering in the Frequency Domain,” in IEEE Symposium
on Security and Privacy (S&P), 2022.

[9] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej Bölcskei, and Kaveh
Razavi, “ZenHammer: Rowhammer Attacks on AMD Zen-based Platforms,” in
Proceedings of the 33rd USENIX Security Symposium (USENIX Security 24), 2024.

[10] JEDEC, “DDR4 SDRAM,” 2017.
[11] JEDEC, “DDR5 SDRAM,” 2024.
[12] Ingab Kang, Walter Wang, Jason Kim, Stephan van Schaik, Youssef Tobah, Daniel

Genkin, Andrew Kwong, and Yuval Yarom, “SledgeHammer: Amplifying Rowham-
mer via Bank-level Parallelism,” in Proceedings of the 33rd USENIX Security Symposium
(USENIX Security 24), 2024.

[13] Andreas Kogler, Daniel Weber, Martin Haubenwallner, Moritz Lipp, Daniel Gruss,
and Michael Schwarz, “Finding and Exploiting CPU Features using MSR Templating,”
in IEEE Symposium on Security and Privacy (S&P), 2022.

[14] Linux, “Error Detection And Correction (EDAC) Devices,” https://docs.kernel.org/
driver-api/edac.html, accessed: April 1, 2025.

[15] Kevin Loughlin, Jonah Rosenblum, Stefan Saroiu, Alec Wolman, Dimitrios Skarlatos,
and Baris Kasikci, “Siloz: Leveraging DRAM Isolation Domains to Prevent Inter-VM
Rowhammer,” in Proceedings of the 29th Symposium on Operating Sytems Principles
(SOSP), 2023.

[16] Heckel Martin and Florian Adamsky, “Reverse-Engineering Bank Addressing Func-
tions on AMD CPUs,” in 3rd Workshop on DRAM Security (DRAMSec), 2023.

[17] Hwayong Nam, Seungmin Baek, Minbok Wi, Michael Jaemin Kim, Jaehyun Park,
Chihun Song, Nam Sung Kim, and Jung Ho Ahn, “DRAMScope: Uncovering DRAM
Microarchitecture and Characteristics by Issuing Memory Commands,” in ISCA,
2024.

[18] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Man-
gard, “DRAMA: Exploiting DRAMAddressing for Cross-CPUAttacks,” in Proceedings
of the 25th USENIX Security Symposium (USENIX Security 16), 2016.

[19] Victor van der Veen and Ben Gras, “DramaQueen: Revisiting Side Channels in
DRAM,” in 3rd Workshop on DRAM Security (DRAMSec), 2023.

[20] Hans Vandierendonck and Koenraad De Bosschere, “XOR-Based Hash Functions,”
IEEE Transactions on Computers, 2005.

[21] Stavros Volos, Cédric Fournet, Jana Hofmann, Boris Köpf, and Oleksii Oleksenko,
“Principled Microarchitectural Isolation on Cloud CPUs,” in Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security, 2024.

[22] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal, “DRAMDig: A
Knowledge-assisted Tool to Uncover DRAMAddressMapping,” inDesign Automation
Conference (DAC), 2020.

6

https://docs.kernel.org/driver-api/edac.html
https://docs.kernel.org/driver-api/edac.html

	Introduction
	Background
	DRAM Organization, Operations, and Timings
	XOR-Based Hash Functions

	Timing Channels for Component Function Identification
	Understanding How Systems Configure Memory via System Registers
	Refresh Interval
	Consecutive Memory Accesses

	Sudoku
	Generating Desired Memory Addresses
	Validating the System of Hash Functions
	Decomposing DRAM Address Mapping

	Results
	Conclusion

