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A B S T R A C T

Federated learning (FL) has emerged as a transformative framework for privacy-

preserving distributed training, allowing clients to collaboratively train a global model

without sharing their local data. This is especially crucial in sensitive fields like health-

care, where protecting patient data is paramount. However, privacy leakage remains a

critical challenge, as the communication of model updates can be exploited by potential

adversaries. Gradient inversion attacks (GIAs), for instance, allow adversaries to ap-

proximate the gradients used for training and reconstruct training images, thus stealing

patient privacy. Existing defense mechanisms obscure gradients, yet lack a nuanced

understanding of which gradients or types of image information are most vulnerable

to such attacks. These indiscriminate calibrated perturbations result in either excessive

privacy protection degrading model accuracy, or insufficient one failing to safeguard

sensitive information. Therefore, we introduce a framework that addresses these chal-

lenges by leveraging a shadow model with interpretability for identifying sensitive ar-

eas. This enables a more targeted and sample-specific noise injection. Specially, our

defensive strategy achieves discrepancies of 3.73 in PSNR and 0.2 in SSIM compared

to the circumstance without defense on the ChestXRay dataset, and 2.78 in PSNR and

0.166 in the EyePACS dataset. Moreover, it minimizes adverse effects on model per-

formance, with less than 1% F1 reduction compared to SOTA methods. Our extensive

experiments, conducted across diverse types of medical images, validate the general-

ization of the proposed framework. The stable defense improvements for FedAvg are

consistently over 1.5% times in LPIPS and SSIM. It also offers a universal defense

against various GIA types, especially for these sensitive areas in images.

© 2025 Elsevier B. V. All rights reserved.

1. Introduction

As a response to the data privacy law (GDPR (2016)), feder-

ated learning (FL) (McMahan et al. (2017)) has been developed

⋆Code is available online at https://github.com/tekap404/ShadowDef.
∗Corresponding Authors: Liyan Ma and Guang Yang E-mail addresses:

liyanma@shu.edu.cn; g.yang@imperial.ac.uk;

to permit the joint training of deep learning models (LeCun

et al. (2015)) without necessitating exchange of original data.

In FL, a global model is collaboratively trained across multiple

global epochs to yield task performance similar to ones trained

with centralized data. At the start of each global epoch, clients

are allocated with a global model from the server, which forms

the basis for local models. Subsequent to several local training

epochs, trained local models or their updates are uploaded to the

http://www.sciencedirect.com
http://www.elsevier.com/locate/media
https://arxiv.org/abs/2506.15711v1
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server for aggregation into the global model, thereby avoiding

the need to transmit any original data.

Although FL is regarded as a learning framework that pro-

tects privacy, recent research (Huang et al. (2021)) has revealed

that transferring updated models or gradients to the server car-

ries the risk of training data being reconstructed. The recon-

structive strategy, known as gradient inversion attack (GIA) (Xu

et al. (2022); Geng et al. (2023); Liang et al. (2023)), aims

to minimize the difference between real gradients and recon-

structed ones. It also employs auxiliary information (Yin et al.

(2021)), such as batch normalization (BN) statistics, to improve

the fidelity of reconstructed data. Due to a large amount of pa-

tient privacy in medical images, such attack may lead to severe

violation of privacy protection laws, which is against the prin-

ciple of FL. Therefore, it is crucial to establish defensive mea-

sures against GIA to ensure data privacy.

To confront GIA, recent studies have proposed various de-

fense mechanisms. These include differential privacy (Abadi

et al. (2016)), secure multi-party computation (Zhang et al.

(2022)), and techniques to blur gradients, such as gradient spar-

sification (Zhu et al. (2019); Chang and Zhu (2024)) and gra-

dient clipping (Geyer et al. (2017); Wei et al. (2021)), along-

side perturbations in data representation (Sun et al. (2021)),

mixed methods (Wang et al. (2024a)), and orthogonal subspace

bayesian sampling (Zhang et al. (2025)). However, these strate-

gies cannot explain which gradients or image information are

vulnerable to privacy leaks, resulting in either aggressive or in-

adequate perturbations. This further leads to a suboptimal bal-

ance between privacy safeguards and model efficacy. As pri-

vacy protection is a cornerstone of FL, the development of be-

spoke defensive measures that address the issue of image-level

data leakage is imperative.

Drawing inspiration from the study on model inversion de-

fense (Wang et al. (2023)), we are devoted to designing a de-

fense strategy based on deep models, while avoiding consider-

able computational expenses incurred by direct mappings from

gradients to images (Wu et al. (2023)). We introduce a shadow

model-based privacy protection framework endowed with the

capability to interpret sensitive areas. This enables us to selec-

tively introduce sample-level noises, thereby impairing the cor-

relation between sensitive images and gradients or auxiliary in-

formation, while mitigating the reduction of task performance,

as shown in Fig. 1. (b).

In particular, we employ generative adversarial network

(GAN) (Karras et al. (2021)) to emulate behaviors of potential

foes, calculating noise maps from its output. These maps are

then equalized to obfuscate pathways to sensitive data, which

is a proventive strategy against GIA through defense imita-

tion (Li et al. (2022b)). Furthermore, to optimize the trade-

off between privacy protection and model performance, distur-

bances at task-critical areas are weakened. Considering the na-

ture of GIA under strong assumptions, i.e., the effectiveness of

this attack increases as training progresses (Hatamizadeh et al.

(2023)), we calibrate the noise intensification accordingly. Mo-

mentum noise maps then act as guidance for regions to add

noises in subsequent phases, easing the computational demands

of the shadow model.

Based on two medical image datasets and models used in pre-

vious study (Hatamizadeh et al. (2023)), our empirical findings

suggest that the proposed approach significantly improves the

effectiveness of privacy defenses, simultaneously keeping the

task performance similar to State-of-the-arts (SOTA) defense

methods. Additionally, our method exhibits a versatile protec-

tive capacity against both model-based GIA (Jeon et al. (2021))

and optimization-based one (Hatamizadeh et al. (2023)). This

shows the efficacy of the proposed framework in weaken the

mapping from sensitive gradients or auxiliary information to

images.

2. Related Work

2.1. Gradient inversion attack

Gradient inversion attack (GIA) can be classified into two

branches: optimization-based and model-based strategies. In

the optimization-based branch (Zhu et al. (2019)), dummy data

and labels are first initialized, thereafter calculating the gradi-

ent of dummy data by backpropagating through a model. These

dummy data and labels are then progressively updated by mini-

mizing their divergence from the actual shared gradients. It has

been theoretically demonstrated in iDLG (Zhao et al. (2020))

that, for classification tasks, the sign of gradients in fully con-

nected (FC) layers can act as hints of labels. A novel tech-

nique for the iterative refinement of dummy inputs via closed-

form solutions has been proposed in R-gap (Zhu and Blaschko).

The viability of GIA is probed by Huang et al. (Huang et al.

(2021)) under relaxed assumptions in FL. In Hatamizadeh et al.

(Hatamizadeh et al. (2023)), it is shown that with BN statis-

tics from a model and a template for dummy data, the strength

of GIA can be considerably amplified in medical imagery sce-

narios. A series of regularizing terms, such as total variance

regularization and group regularization, has been suggested in

E2EGI (Li et al. (2022a)) to augment the fidelity of dummy data

reconstruction when dealing with a large batch size.

Due to a lack of prior information, optimization-based meth-

ods can falter in accurate reconstruction of real images. The

model-based strategy was first proposed in GIAS (Jeon et al.

(2021)), similar to optimization-based methods that minimize

dual gradients. The difference lies in the treatment of dummy

data, which is the output of GAN rather than being directly opti-

mized. This technique initiates by updating inputs of GAN, i.e.,

latent codes. Subsequently, there is a fine-tuning stage for pre-

trained parameters of GAN. Extending from GIAS (Jeon et al.

(2021)), in GGL (Li et al. (2022b)), defensive methods are in-

tegrated in the process of GIA to imitate shared real gradients,

which achieves great results across several defensive strategies.

In GIFD (Fang et al. (2023)), based on a pre-trained GAN, inter-

mediate features from the generator of GAN are updated layer-

wise, and these features are bound by spherical regularization,

all in pursuit of improving the fidelity of reconstructed images.

Unlike mainstream techniques, in Wu et al. (Wu et al.

(2023)) proposed a novel mapping schema constructed directly

via multi-layer perceptrons between shared real gradients and

dummy images. This is improved by a feature hashing algo-

rithm to condense large gradients. Despite the straightforward-

ness of this method, its practicability is limited to attack within
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Fig. 1: (a) Basic pipeline of gradient inversion attack and drawbacks of defense methods. The curious server reconstructs dummy

images x̂ and labels ŷ to mimic training data from clients based on their uploaded gradients g of the global model f0. The gradient

inversion loss D is calculated between g and dummy gradients ĝ. Model-based GIA additionally uses GAN to recover these images.

Four challenges are in existing GIA defense works: d If perturbations are insufficient, uploaded information leaks more data

privacy to the attacker. f If perturbations are excessive, task performance of the global model will be reduced. f There is a lack of

interpretation on location and degree of data leakage. g Defensive strategies introduce much more training time. (b) d FFT refers

to Fast Fourier Transform(Bu et al. (2023)). Frequency information from low to high is protected. e Foreground noise is reduced

according to the training process. f Existing GIA defensive methods (the first row) are based on gradient distributions across

model layers. Our proposed framework (the second row) separate task-dominant and privacy-sensitive regions of training data to

generate noisy images for better balance between task performance and privacy protection. g Benefitted from pretainable defense

and region-coherent noise, our method achieves a better balance between task performance, privacy protection, and computational

efficacy (point size).

scenarios of low-resolution images and models of small param-

eter volume. It is due to the large volume of intermediate gra-

dients that burgeon during backpropagation.

2.2. Gradient inversion defense

To counteract GIA, existing defensive methods are manifold.

Differential privacy (DP) (Abadi et al. (2016); McMahan et al.

(2018)) adds noise into privacy-sensitive information, achiev-

ing a defense with theoretical assurance based on the privacy

budget. However, it usually incurs substantial degradation in

model performance. Secure multi-party computation (Zhang

et al. (2022); Bonawitz et al. (2017)) uploads and aggregates en-

crypted data, with decryption performed after download, which

suffers from non-negligible computational costs. Gradient blur

methods, such as gradient sparsification (GS) (Zhu et al. (2019);

Chang and Zhu (2024)), sets gradients of minimal amplitude

to zero, while gradient clipping (GC) (Geyer et al. (2017); Wei

et al. (2021)) clips gradients of maximum magnitude to a prede-

fined threshold. Data representation perturbation, represented

by Soteria (Sun et al. (2021)), performs disturbance in the rep-

resentation from a learned FC layer to maximize reconstruc-

tion error. The fusion approach, like OUTPOST (Wang et al.

(2024a)), analyzes pivotal assumptions in GIA, and proposes to

sparsify gradients with an empirical Fisher information lower

than a threshold. For rest parts, perturbations with Gaussian

noise are added to areas surpassing another threshold. The pri-

vacy risk is decided by the weight variance of each network

layer, and the probability of perturbation decreases as train-

ing with weak assumptions progresses. Orthogonal subspace

bayesian sampling is used in Censor (Zhang et al. (2025)),

where optimal orthogonal gradients related to training loss are

searched for each batch.

Aforementioned defensive tactics fall short when it comes

to explaining which gradients or image information are more

prone to lead to privacy breaches. Consequently, their pertur-

bations are either excessive or insufficient, leading to a com-

promise between privacy protection and model performance.
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Hence, our goal is to get the degree of privacy leakage at the

sample level first. Upon this foundation, we can employ de-

fensive strategies in a targeted manner. This will forestall the

disclosure of data with high privacy risks, while minimizing the

side effect on the task performance.

3. Preliminary

3.1. Federated learning

Assume N clients participate in federated learning (FL) to

collectively train a global model f0, with parameters ¹0. The

objective function of FL (McMahan et al. (2017)) is to minimize

the loss on all local datasets based on the global model:

min{¹0}

1

N

N
∑

i=1

Li(Di, ¹0), (1)

where each client owns a local dataset denoted as Di =

(x j, y j)
ni

j=1
, which comprises ni sample pairs, that is, image xi

and label y j. ¹0 is obtained through a weighted aggregation of

all local model parameters based on the number of local data.

Although FL obviates the need to transmit original data, it still

requires to send updated models or gradients, approximating

model updates, to the server. This operation poses a risk of

training data being reconstructed (Huang et al. (2021)).

3.2. Gradient inversion attack

In FL, an honest but curious server 1 can deploy GIA to re-

construct original data by leveraging uploaded model updates

to approximate gradients, as illustrated in Fig. 1. (a). For

optimization-based GIA (Zhu et al. (2019); Zhao et al. (2020);

Zhu and Blaschko; Huang et al. (2021)), optimization targets

are dummy images and labels. This process is accomplished by

minimizing the discrepancy between the shared real gradient gi,

a.k.a., target gradient, and the dummy gradient ĝ:

arg min
x̂,ŷ

D(gi, ĝ(x̂, ŷ)), (2)

s.t. ĝ(x̂, ŷ) =
∂L( f0(x̂), ŷ)

∂¹0
, (3)

where D is a distance function, typically chosen to be the L2

distance or cosine distance. x̂, ŷ are dummy images and labels

initialized randomly. L is the loss function for the primary task.

f0, ¹0 denote the global model and its parameters, respectively.

For model-based GIA (Li et al. (2022b); Jeon et al. (2021);

Fang et al. (2023)), dummy images are generated using a pre-

trained GAN and optimization targets are parameters of GAN,

input latent codes, and labels:

arg min
¹A,z0,ŷ

D(gi, ĝ(¹A, z0, ŷ)), (4)

s.t. ĝ(¹A, z0, ŷ) =
∂L( f0( fA(z0, ¹A)), ŷ)

∂¹0
, (5)

1The server wants to get private training data from clients, and do not harm

the task performance of the global model.

where fA, ¹A are generative model and its parameters, z0 is the

input latent codes. While optimization-based GIA is applicable

to wide scenarios, the computational time for convergence is

high and it is more likely to be trapped in local optimums. In

comparison, model-based GIA is more efficient but memory-

consuming due to the usage of GAN.

To better design a targeted defense framework, we need to

know several key attributes of GIA considering its effective-

ness:

Statistics of batch normalization layers improves fidelity

of reconstructed images. In existing GIA literatures (Huang

et al. (2021); Hatamizadeh et al. (2023); Li et al. (2022a)), it

is found that if BN statistics are uploaded along with gradients,

an honest but curious server can enhance the efficacy of attack

significantly by incorporating BN regularization terms during

GIA. This is because momentum mean and variance in BN lay-

ers offer pixel-wise distribution and contrast which are key in-

formation related to image details. Since medical images are

less diverse in a single dataset compared with natural images,

their BN statistics are thus more stable, which greatly increases

privacy leakage of patients. To defend against GIA, it is insuf-

ficient to only consider perturbing gradients. Therefore, in this

work, we propose to break the mapping from gradients or aux-

iliary information to images, disabling the BN regularization

term of GIA.

The extent of privacy leakage increases with training dy-

namic. Due to a decreased trend of gradient magnitude, a grad-

ually decreased defense strength is proposed in OUTPOST ac-

cording to the GIA trend (Wang et al. (2024a)). However, with

BN regularization, it is found that the GIA trend is on the con-

trary (Hatamizadeh et al. (2023)), since BN statistics become

more accurate during training. Therefore, we design a defense

technique with gradually increased strength. Such technique

can also be treated as regularization for task model, reducing

overfitting due to a limited amount of data in medical imaging.

The number of samples belonging to each class affect GIA

strength. For the classification task, labels of images can be ex-

actly reconstructed as long as label repetition rate is low (Zhu

et al. (2019)). However, for medical image diagnosis, the num-

ber of classes are usually small, thus increase the difficulty of

GIA. Besides, a non-IID setting in FL also make the estimation

part harder compared to an IID setting.

Training from a pretrained model reveals more privacy.

If a task model is trained from pretrained weights, sensitiv-

ity of gradients to private data will be higher in ealier stages

(Hatamizadeh et al. (2023)). Besides, new BN statistics will

converge faster and inter-class features are more separated,

both of which facilitate better GIA. Therefore, a pretained task

model is trained in our experiment to mimic vulnerable target

gradients and BN statistics.

Multiple iterations in local training blur target gradients.

In implementation of GIA methods under the centralized learn-

ing scenarios (Zhao et al. (2020); Li et al. (2022a)), gradi-

ents updated from one mini-batch serve as targets to attack.

However, it has been validated that if target gradients are up-

dated from several iterations (one for a mini-batch) and local

rounds(Xu et al. (2022); Zhu et al. (2023)), the strength of GIA
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Fig. 2: The overall framework of our method. In the first pretraining stage, the shadow model and latent codes are updated to

accelerate the FL local training by fitting low-frequency components (Bu et al. (2023)). In the second stage, local training is first

performed to generate victim gradients g. The top branch produces foreground map LCAM to imply task-dominant areas. For the

lower branch, model weights of the image generator in the shadow model ¹
gen
s are fine-tuned to mimic potential adversaries with

strong fitting ability on high-frequency components. Based on its outputs, we calculate defensive noises N to protect privacy of

training images, which are used for actual local training.

will be weakened due to the equalization of sample gradients.

In our experiments, we set different iterations for clients to rep-

resent various extents of privacy leakage, in which a client with

one data sample is used to test the lower bound of defense.

4. Methods

In this section, we introduce a privacy preservation frame-

work built upon the shadow model to defense GIA under strong

assumptions.

4.1. Framework overview

Fig. 2 shows our proposed privacy-protection framework

based on the shadow model. It includes two main steps: pre-

training and federated training. To imitate potential attack of

adversaries, we utilize a GAN model, renowned for exceptional

generative power, as our shadow model, denoted as fs. By pre-

training ¹s alongside latent codes for each image input z, the

cost of fine-tuning the shadow model in the next step can be

diminished, which further improves concurrency of the whole

federated training.

During the federated training phase, client i first performs

a pseudo-update on its local model fi to yield information re-

quired for pseudo fine-tuning of the shadow model. Recon-

structed outputs xs from the pseudo fine-tuned shadow model

serves as inputs for the computation of noise maps. Through-

out this procedure, we utilize foreground activation maps LCAM ,

obtained from the pseudo-updated local model, to mitigate dis-

turbance in foreground regions of noise maps. This strategy

avoids inappropriately compromising performance of the pri-

mary task. Noise maps are then added onto original data, fol-

lowing which the real update is performed for the local model.

The result gradients and statistical information are uploaded to

the server for global aggregation. As for the shadow model,

a momentum-based real update is done, since attack effective-

ness from adversaries in real-world scenarios might be limited

(Wang et al. (2024a); Hatamizadeh et al. (2023)). Since the

goal of updating the shadow model is to determine key regions

to add noises, and the computational expense of fine-tuning the

shadow model is high, this strategy also prevents the necessity

for redundant fine-tuning in subsequent iterations.

4.2. Pretraining

Model-level training: Preparation for real-time defense

in FL training. For gradient inversion defense, a critical bal-

ance must be struck not only between task performance and pri-

vacy but also considering the computational cost. Our goal is to
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fine-tune the shadow model efficiently during federated training

to counteract real-time attack capabilities of potential strong ad-

versaries. To this end, prior to federated training, we pre-train

the weights ¹s of the shadow model on a public dataset of a

similar task type. In our experiments, we adopt the pre-training

strategy of StyleGAN3 (Karras et al. (2021)).

Sample-level training: Further acceleration with low-

frequency components of images fitted. Once the shadow

model has been pre-trained, it acquires the capability to gen-

erate style features related to the data type. However, it is not

adept at capturing specific details of local data. To further ac-

celerate the fine-tuning of the shadow model during federated

training, the ability of the shadow model to fit low-frequency

components of data can be enhanced. Specifically, we fix pre-

trained parameters of the shadow model, while randomly ini-

tializing latent codes z j for each sample j. We then pre-train z j

by minimizing the discrepancy between original images x and

reconstructed images xs: ∥x − xs∥.

Real image

Reconstruction process

Pretrained knowledge from public data

Fitting of low-frequency components

Different

Similar

Fig. 3: The updating process of reconstructed images at the

pre-training stage for latent codes. In the first three rows, three

columns represent original images, reconstructive error maps,

frequency spectrum of reconstructive error maps, in sequence.

In practical applications, it is difficult for adversaries to esti-

mate precise style information for each image (Li et al. (2022b);

Jeon et al. (2021)). Consequently, an early-stop strategy is em-

ployed when updating z to minimize the additional computa-

tional time. The updating process, depicted in Fig. 2 and Fig.

3, demonstrates that only low-frequency components of images,

such as the overall structure, are accurately reconstructed when

solely updating z. However, discrepancies remain between re-

constructed and real images, particularly at edges and other fine

details.

4.3. FL training

Pseudo local training: Generating victim gradients to be

protected. To reflect sensitive privacy in GIA scenarios, it is

crucial to generate gradients of local training images. However,

unlike traditional methods directly modifying gradients based

on their statistics, we only treat these gradients as inputs in

later steps since large absolute gradients cannot intuitively re-

flect sensitive privacy. In Fig. 1. (b) and appendix, we demon-

strate that even with similar distribution of overall gradients,

these methods vary greatly in privacy protection.

Pseudo fine-tuning shadow model: Imitating real-time at-

tack strength considering sensitive privacy. In the standard

paradigm of FL, all clients are required to upload their model

updates in the form of gradients after local training. This pro-

tocol, however, raises concerns for privacy breaches of training

data under GIA. If we can simulate real-time attack capabilities

of adversaries and apply tailored perturbations for protection

at the sample level, the privacy leakage risk will be mitigated.

To implement this, we first fine-tune the shadow model on a

per-sample basis, using the pre-trained shadow model and la-

tent codes. Subsequently, we use images reconstructed by the

shadow model as a guide to introduce noise into original im-

ages.

During local training, all clients first pseudo-train their local

models, yielding updated gradients and BN statistics to serve as

simulation of potentially leaked information. Following this,

we perform pseudo update for the generator of the shadow

model, in order to imitate an almost optimal adversary. Specifi-

cally, we freeze the pre-trained sample-level latent codes and

weights of latent mappers in the shadow model ¹
map
s to en-

sure that major features of reconstructed images are more stable

(Karras et al. (2021)). Based on this, reconstructed images are

fed back to the untrained local model to compute the gradient

inversion loss:

arg min
¹

gen
s

Lshadow = D + RTV + RBN + RL2 + LMSE, (6)

where D represents the distance function between reconstructed

gradients and actual gradients. RTV is the total variance regular-

ization of reconstructed images. RBN is the regularization of BN

statistics. RL2 refers to the L2 regularization of reconstructed

images (Hatamizadeh et al. (2023); Fang et al. (2023)). LMS E

is the mean squared error loss between reconstructed and actual

images, which accelerates convergence of the shadow model.

¹
gen
s represents weights of the image generator in the shadow

model.

After completing pseudo fine-tuning of the shadow model,

we obtain parameters ¹′s. Based on these, we first generate im-

age noise, ensuring that the defense is always stronger than po-

tential attacks at early stages. Then, we perform the momentum

actual update on the shadow model. This simulates potential at-

tacks on the current training progress and serves as a guide for

crucial regions to add noises in subsequent rounds:

¹s = ³
shadow
ema · ¹s +

(

1 − ³shadow
ema

)

· ¹′s, (7)

where ³shadow
ema denotes the hyperparameter coefficient for mo-

mentum updating.
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Since the shadow model primarily functions as an indicator

of sensitive areas during image defense, rather than directly de-

termining the intensity of noises, we set a terminal round for

shadow updates, denoted as rshadow, to mitigate computational

expenses. This reduction in computational overhead does not

compromise the efficacy of the defense, as confirmed in our ex-

periments.

Foreground map generation: Acquiring task-dominant

regions to be preserved in noise generation. Traditional

noise-injecting methods are often quite detrimental to the task

performance (Abadi et al. (2016)). To mitigate this side effect,

it is imperative to minimize noises in task-relevant areas. We

employ Grad-CAM++ (Chattopadhay et al. (2018)) to first ob-

tain pixel-level saliency maps Lc from an intermediate layer of

the network due to its balanced representation of semantic and

spatial information.

Based on pixel-level saliency maps, areas with the highest

activation values, denoted as TCAM , are selected to form a bi-

nary mask MCAM . This mask represents the salient regions that

the task model focuses on during task processing, and is used

to generate the foreground activation map:

LCAM = Ã

(

MCAM · Lc

T

)

, (8)

s.t. MCAM = topk
(

Lc
i j,TCAM

)

. (9)

Noise generation: Reducing side effect for task adaptively

and concentrating on privacy-sensitive regions. After pseudo

update of the shadow model, reconstructed images are obtained.

Firstly, we calculate a pixel-wise MSE map between original

images and reconstructed ones: M =

{

∥

∥

∥xi − xi
rec

∥

∥

∥

2

2

}H·W

i=1
. Sub-

sequently, this map undergoes sharpening and normalization to

focus its key regions on where is prone to be reconstructed:

N1 =
1

Ã
(

M
T

) , (10)

s.t. Ã

(

Mi

T

)

=
e

Mi
T

∑H·W
j=1 e

M j

T

, (11)

where T is the temperature coefficient of the softmax function.

Since we have employed LMS E to accelerate convergence

during fine-tuning of the shadow model, some reconstructed ar-

eas are with excessive precision. However, this does not im-

ply that all such areas require a proportionately higher level

of privacy protection compared to others. Moreover, if noises

added to certain regions are excessive while being insufficient in

others, the visual robustness of noisy images is compromised.

This could cause a defect that allows adversaries to discern

the implementation of defense strategies during model training

more easily, and to simulate these defenses (Li et al. (2022b)).

Consequently, we apply histogram equalization (Garg and Jain

(2017)) and normalization to the initial relative noise N1:

N2 = Ã
(

G
(

N1
))

, (12)

where G(z) =
Ngray − 1

b − a

z
∑

i=a

p(ri), (13)

where Ngray represents the total number of gray levels, i.e., 256.

a, b denote the range of image grayscale values, i.e., 0 and 255,

respectively. p(r) is a normalized histogram probability of the

grayscale level r. Ã denotes the softmax function. Unless the

mapping function is known in advance, this process can be dif-

ficult to reverse. The visualization of N2, as shown in Fig. 5,

indicates that regions with smaller reconstruction errors receive

stronger noises, appearing darker in the noise map N2, and that

there is not an issue of excessive local noise.

During training, rapid convergence of the shadow model

might result in significant discrepancies between noise maps

from successive rounds. To avoid training instability caused by

this phenomenon, we use a momentum update strategy for N2:

N3 = ³noise
ema · N3 +

(

1 − ³noise
ema

)

· N2, (14)

where ³noise
ema denotes the coefficient hyperparameter. N3 is ini-

tialized with the first N2.

Start

End

High

Low

Fig. 4: Evolution of foreground map during training. Core con-

cerns of task models are moved from random regions to fore-

ground ones gradually. For the ChestXRay dataset (Chowdhury

et al. (2020); Rahman et al. (2021)), most foreground regions

locate inside or around the border of the entire lung, corre-

sponding to lesions related to classification results (Yue et al.

(2023)).

The capability of the network to focus on key areas, related to

the main task, becomes more and more accurate as training goes

on, as illustrated in Fig. 4. Consequently, the impact on fore-

ground pixels within the noise map is reduced in accordance

with the current training epoch:

N4 = N3 − ³CAM sign
(

N3
)

· LCAM , (15)

s.t. ³CAM = min

(

³max
CAM ,max

(

³min
CAM ,

r

R

))

, (16)

where ³max
CAM
, ³min

CAM
are coefficient hyperparameters that deter-

mine the maximum and minimum influence of LCAM . sign is a

sign function.

After determining relative noises, we need to further ascer-

tain the absolute magnitude of noises. Considering the fact that

the intensity of GIA under strong assumptions increases pro-

gressively at training (Hatamizadeh et al. (2023)), the overall
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scale of noises is similarly adjusted based on the training epoch:

N =

∣

∣

∣

∣

∣

∣

max(x)

max
(

N4
)wN

∣

∣

∣

∣

∣

∣

N4, (17)

s.t. wN = ³Ne
r
R , (18)

where ³N is the hyperparameter that controls the absolute

amount of noises.

True local training: Generating protected gradients. Pixel-

level noises N are ultimately applied to original images as addi-

tive noise, and noised images XN are utilized to actually update

the local model, resulting in a protected gradient for FL aggre-

gation. This leads to a fine-grained and interpretable effect of

privacy preservation, as shown in Fig. 5.

5. Experimental Setup and Results

5.1. Experimental setting

We use two medical image datasets, i.e., ChestXRay2

(Chowdhury et al. (2020); Rahman et al. (2021)) and EyePACS3

(de Vente et al. (2023)), for local model training in FL, sepa-

rately. The former includes one-channel X-ray data, while the

latter encompasses color fundus images. All images are resized

to a uniform resolution of 224× 224 pixels and normalized to a

zero mean and a unit variance. Our dataset partitioning is same

as the baseline established by the previous work (Hatamizadeh

et al. (2023)), involving 9 clients with the last one allocated one

training image to represent the upper bound of privacy leakage.

Alike the setting in Hatamizadeh et al. (Hatamizadeh et al.

(2023)), we use ResNet18 (Cardoso et al. (2022)) pre-trained

on ImageNet as initial local models. Optimizer for task model

is SGD with learning rate 1e-2 and cross-Entropy (CE) is used

as loss. Batch sizes for clients are configured as follows: 4

for client 1 to client 4, 8 for client 5 to client 8, and 1 for

client 9. Local round and global round for FL are set to 1 and

100, respectively. All experiments are implemented on a Nvidia

GeForce RTX 3090, utilizing the PyTorch framework (Imambi

et al. (2021)).

For shadow models, pretraining is conducted based on the

training strategy proposed in StyleGAN3 (Karras et al. (2021)).

The optimizers for shadow models and latent variables are

Adam, with initial learning rates set at 1e-3 and 1e-3, respec-

tively. These rates are further adjusted using a step scheduler.

Optimization epochs for each local round are designated as 5

and 500 for shadow models and latent variables. The global

round for updates of the shadow model is set at 20. An early

stopping round of 5 is set for updates of latent variables. For

the fine-tuning of shadow models, learning rates are set at 1e-3

for client 1 to client 4, 2e-3 for client 5 to client 8, and 1e-4 for

client 9. The default epoch of fine-tuning for shadow models is

20. For Grad-CAM++, we set the maximum percentile value

TCAM , to 30%. In our experiments, the target foreground is de-

fined by a bounding box encompassing the top 30% of pixels

2https://www.kaggle.com/datasets/tawsifurrahman/

covid19-radiography-database/data
3https://zenodo.org/records/5793241

based on Grad-CAM++ values. Maximum and minimum val-

ues ³max
CAM
, ³min

CAM
deciding the CAM influence are 0.1 and 0.5,

respectively. Hyperparameters for momentum updates of the

shadow model and relative noise, ³shadow
ema , ³noise

ema , are set at 0.5

and 0.9, separately. The coefficient hyperparameter for abso-

lute noise, ³N , is defaulted to 0.19.

5.2. Results

5.2.1. State-of-the-Art (SOTA) Comparison

We employ both model-based GIA (Jeon et al. (2021)) and

optimization-based GIA (Hatamizadeh et al. (2023)) to assess

the defensive capability of our proposed framework, with spe-

cific GIA details in section 3.2. Comparisons between re-

sults of SOTA defensive methods and our proposed framework

are shown in Table 1 and Table 2. ’FedAvg’ is the standard

FL training framework without privacy protection (McMahan

et al. (2017)). ‘SCAFFOLD’ introduces control variates for the

client-drift problem in FL (Karimireddy et al. (2020)). ‘DP’,

‘GS’, ‘GC’ are abbreviation of differential privacy, gradient

sparsification, and gradient clipping. We use ‘F1’ as an indi-

cator for task performance. Meanwhile, Mean Square Error

(MSE), Peak Signal to Noise Ratio (PSNR), Learned Percep-

tual Image Patch Similarity (LPIPS), Structural Similarity In-

dex Measure (SSIM) are used to test defensive capabilities of

SOTA methods.

Table 1 presents the model performance on two medical

datasets and defensive results of whole images and foreground

regions under model-based GIA. For methods without defense,

i.e., ‘FedAvg’ and ‘SCAFFOLD’, both of them suffers close

privacy leakage in the whole image level and in the Eye-

PACS dataset. The only exception is that SCAFFOLD achieves

high defense effect in the target region level of the ChestXRay

dataset. This reduction of attack strength could be due to facts

that contrast between foreground and background is higher in

the ChestXRay dataset, and that SCAFFOLD reduces client

drifts, generating more uniform gradients considering fore-

ground regions. Compared with FedAvg, DP, GC, and Censor

reduce task performance by more than 10% in the ChestXRay

dataset, and by more than 7% in the EyePACS dataset. The

first two of them share the common point of affecting more on

relative gradients in foreground regions, defensing better in tar-

get regions. However, GC is worse in MSE (-0.008) and PSNR

(-0.65) in the EyePACS dataset which is dominated by back-

ground regions, because it hardly defends low-frequency in-

formation. The reason why the defensive efficacy falls below

than FedAvg can be attributed to the effect of random seeds

during GIA implementation, which influences the initialization

of images or latent variables, consequently amplifying dispar-

ities during the reconstruction process (Li et al. (2022a)). For

Censor (Zhang et al. (2025)), its defensive strength is great on

target regions of the ChestXRay dataset, but not workable in the

EyePACS dataset. It could be due to a larger search space in the

EyePACS dataset, which reduces the probability of searching

orthogonal gradients with optimial training loss.

Other defensive methods, i.e., GC, Soteria, OUTPOST, and

Ours, cause minimal effects on task performance. For GS, it

fails to defend the EyePACS dataset in whole image regions.

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/data
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/data
https://zenodo.org/records/5793241
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: Weaker noise in less sensitive areas
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Smooth but protective
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Fig. 5: Visualization of various types of noise and images. X, Xrec, X
N are original images, reconstructed images, and noisy images,

respectively. M is the error map between X and Xrec. N1 is the initial relative noise. N2 is generated by histogram equalization

based on N1. The transforming process from N2 to N4 includes history update and foreground noise reduction.

Table 1

Comparison of our method with SOTA defense methods against model-based GIA. F1 represents task performance. For defense metrics, i.e., MSE, PSNR, LPIPS,

SSIM, are all the mean across 9 clients and 5 FL rounds, i.e., 1, 25, 50, 75, 100. Numbers in brackets are standard deviation of these defensive metrics across these

5 FL rounds. For each reconstructed image, we calculate metrics to the most similar real image since the gradient is derived from a global round. Target regions are

decided by bounding boxes based on Grad-CAM++. Bold numbers denotes the best result among all methods. For statistical meaning,  means p << 0.05 in the

Wilcoxon signed rank test for comparison between FedAvg and a specific method, while ! is for comparison between a specific method and all other SOTA

methods. ‘DP’, ‘GS’, ‘GC’ are abbreviation of differential privacy, gradient sparsification, and gradient clipping.

Dataset ChestXRay EyePACS

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓ F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.978 0.035 (0.012) 15.09 (1.43) 0.385 (0.051) 0.486 (0.057) 0.870 0.068 (0.030) 12.71 (2.37) 0.520 (0.093) 0.411 (0.063)

SCAFFOLD 0.976 0.034 (0.013) 15.16 (1.57) 0.380 (0.051) 0.496 (0.060) 0.875 0.069 (0.028) 12.64 (2.05) 0.523 (0.094) 0.406 (0.063)

DP 0.860 0.037 (0.010) 14.95 (1.38) 0.438 (0.054) 0.464 (0.059) 0.798 0.070 (0.032) 12.63 (2.33) 0.505 (0.095) 0.409 (0.055)

GS 0.968 0.043 (0.016) 14.43 (1.64) 0.390 (0.049) 0.437 (0.070) 0.861 0.067 (0.030) 12.83 (2.39) 0.520 (0.090) 0.410 (0.055)

GC 0.848 0.043 (0.012) 14.44 (1.38) 0.384 (0.053) 0.440 (0.066) 0.693 0.050 (0.024) 13.83 (2.43) 0.525 (0.104) 0.391 (0.084)

Soteria 0.973 0.034 (0.012) 15.05 (1.40) 0.386 (0.052) 0.490 (0.057) 0.862 0.071 (0.032) 12.54 (2.35) 0.535 (0.089) 0.405 (0.060)

OUTPOST 0.972 0.034 (0.012) 15.16 (1.53) 0.383 (0.049) 0.491 (0.059) 0.862 0.069 (0.031) 12.67 (2.27) 0.530 (0.098) 0.403 (0.069)

Censor 0.810 0.035 (0.010) 15.08 (1.32) 0.381 (0.049) 0.496 (0.059) 0.728 0.069 (0.020) 12.70 (2.25) 0.526 (0.106) 0.403 (0.076)

W
h

o
le

Im
ag

e

Ours 0.967 0.102 (0.018)! 11.36 (0.93)! 0.642 (0.040)! 0.286 (0.072)! 0.861 0.125 (0.031)! 9.93 (1.47)! 0.714 (0.057)! 0.245 (0.071)!

Dataset ChestXRay EyePACS

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓ F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.978 0.015 (0.007) 18.76 (1.51) 0.125 (0.027) 0.788 (0.034) 0.870 0.038 (0.020) 15.47 (2.76) 0.335 (0.060) 0.587 (0.047)

SCAFFOLD 0.976 0.023 (0.009) 16.99 (1.61) 0.190 (0.035) 0.672 (0.046) 0.875 0.039 (0.019) 15.31 (2.39) 0.338 (0.066) 0.585 (0.048)

DP 0.860 0.017 (0.005) 18.81 (1.63) 0.154 (0.032) 0.778 (0.035) 0.798 0.053 (0.023) 13.87 (2.41) 0.392 (0.048) 0.571 (0.046) 

GS 0.968 0.020 (0.007) 17.83 (1.57) 0.142 (0.028) 0.751 (0.039) 0.861 0.039 (0.020) 15.53 (2.73) 0.343 (0.057) 0.585 (0.038)

GC 0.848 0.020 (0.006) 17.96 (1.55) 0.153 (0.030) 0.758 (0.041) 0.693 0.032 (0.016) 16.04 (2.75) 0.385 (0.082) 0.570 (0.063) 

Soteria 0.973 0.015 (0.006) 18.86 (1.50) 0.120 (0.026) 0.781 (0.032) 0.862 0.042 (0.021) 14.99 (2.49) 0.359 (0.059) 0.581 (0.044)

OUTPOST 0.972 0.014 (0.004) 18.93 (1.41) 0.134 (0.025) 0.788 (0.036) 0.862 0.043 (0.021) 14.81 (2.44) 0.371 (0.061) 0.572 (0.051) 

Censor 0.810 0.020 (0.006) 17.81 (1.25) 0.160 (0.030) 0.664 (0.045) 0.728 0.040 (0.014) 15.23 (2.63) 0.340 (0.080) 0.581 (0.062)

T
ar

g
et

R
eg

io
n

Ours 0.967 0.071 (0.012)! 12.91 (0.94)! 0.418 (0.044)! 0.507 (0.054)! 0.861 0.086 (0.022)! 11.68 (1.55)! 0.507 (0.046)! 0.465 (0.051)!
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Since gradients of the EyePACS dataset is already small and

BN statistics are unchanged, the effect of GS is limited. Both of

Soteria and OUTPOST are good at defending the RGB Eye-

PACS and worse in most defensive metrics of the grayscale

ChestXRay dataset. This could be caused by several reasons:

For multi-channel images, attack is more difficult due to a larger

search space; adversarial noise from Soteria or combined tricks

from OUTPOST can disrupt relationship between channels; the

higher contrast of ChestXRay dataset is more likely to generate

large gradients facilitating GIA.

Compared to all defensive methods, our method achieves op-

timal performance across all defensive metrics. Compared with

the second best method on 4 metrics in target regions, our im-

provements are 0.048, 4.08, 0.228, 0.165 in the ChestXRay

dataset, and 0.033, 2.19, 0.115, 0.105 in the EyePACS dataset.

Taking FedAvg as reference of task performance, our frame-

work only degrades F1 marginally of 0.011 and 0.009 on two

datasets, respectively. When conducting defense strategies,

other SOTA methods have not explained which gradient or im-

age information is more susceptible to privacy breaches. Thus,

even with specialized treatment of gradients at their extremities

(Zhu et al. (2019); Geyer et al. (2017); Wang et al. (2024a)),

success is only confined to some scenarios. This limitation

stems from a relative insensitivity to the varying degrees of pri-

vacy risks across different image areas. In comparison, there

is a significant enhancement of privacy protection within fore-

ground regions when our framework is employed. It indicates

that the vulnerability of privacy breaches cannot be adequately

inferred through the magnitude of gradient values alone. De-

spite the integration of Grad-CAM++ to weaken noise in fore-

ground regions, our approach still shields these zones through

the relative noise derived from shadow updates.

Table 2 provides defensive results against optimization-based

GIA. Within whole-image metrics, our framework surpasses

SOTA methods across most measures. It is noteworthy that our

proposed shadow defense strategy, while similar in approach

to the model-based GIA, also exhibits generalizable protection

against other forms of GIA. This efficacy validates the moti-

vation of our method: to attenuate the mapping relationship

between gradients or auxiliary information and sensitive im-

ages. Furthermore, in the context of optimization-based GIAs,

foreground-area protection of our method remains unmatched

by other SOTA methods. Beyond performance and defensive

metrics, we have also listed computational costs associated with

each approach in the appendix.

To investigate the impact of various defensive measures on

the convergence of the task, we illustrate the F1 score curve

of local training in Fig. 6. Before the 20th global round, sig-

nificant oscillations are observed in performance of DP, gradi-

ent sparsification, and gradient clipping, whereas other meth-

ods appear to approach a state of convergence around this junc-

ture. Among these three, gradient clipping fails to stabilize

even at the 100th round. DP converges around the 80th round,

while gradient sparsification reaches a similar state only by the

40th round, which is twice as slow as that exhibited by other

SOTA methods. Our method can be equipped with different ad-

justment strategies of noise amplitude, thus achieving desired

Fig. 6: Comparison of F1 curve during FL training for differ-

ence methods. F1 values of the global model are calculated

based on an independent test set. ‘Fix’, ‘Increase’, ‘Decrease’

corresponds to fixing, decreasing and increasing the amplitude

of final noise N during FL training, respectively.

balance between task performance and privacy protection, as

shown in Fig. 6 and Fig. 8. The gap between fixing and in-

creasing the noise is less than 1% until the 75th epoch, showing

the minimum side effect of method to the main task, due to the

noise substraction operation for foreground regions. After the

75th epoch, the task performance with increased noise suffers

a 3% degradation, which calls for a better solution in the long-

time training scenarios.

To reflect the effectiveness of our method in protecting pri-

vacy throughout the entire FL process more accurately, we em-

ploy the Relative Data Leakage Value (RDLV), a metric pro-

posed in Hatamizadeh et al. (Hatamizadeh et al. (2023)), to

quantify the extent of privacy leakage. It is defined as:

RDLV =
SSIM (x, xs) − SSIM (xs, P)

SSIM (xs, P)
, (19)

where x, xs, P are training image, reconstructed image, and

prior image (the mean of an image dataset), respectively. An

RDLV value below 0 indicates that the degree of privacy leak-

age is less than that associated with a template image, which

suggests that the risk of privacy breach is negligible. As illus-

trated in Fig. 7, our method, along with gradient sparsification

and gradient clipping, demonstrates superior protective capa-

bilities in early training. At these stages, our approach achieves

the strongest defense on all datasets except for clients 2, 4, and

8. Overall, the trend of all curves indicate a robust privacy pro-

tection effect inherent in our method. The relatively weaker

protection observed on client 9 can be attributed to the fact that

this client possesses only one image. Consequently, the shadow

training is more prone to overfitting on that single training im-

age, leading to a less accurate estimate of the relative noise.

However, it should be noted that RDLV values for all defen-

sive strategies on client 9 are almost all below -0.1, signifying
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FedAvg DP GS GC Soteria OUTPOST Ours

Fig. 7: Comparison of RDLV curve for difference methods on all clients under model-based GIA. RDLV represents privacy reveal

degree compared with a template image (Hatamizadeh et al. (2023)). If RDLV is less than 0, privacy leakage is negligible.



12 Le Jiang et al. /Medical Image Analysis (2025)

Table 2

Comparison of our method with SOTA defense methods against model-based GIA. F1 represents task performance. For defense metrics, i.e., MSE, PSNR, LPIPS,

SSIM, are all the mean across 9 clients and 5 FL rounds, i.e., 1, 25, 50, 75, 100. Numbers in brackets are standard deviation of these defensive metrics across these

5 FL rounds. For each reconstructed image, we calculate metrics to the most similar real image since the gradient is derived from a global round. Target regions are

decided by bounding boxes based on Grad-CAM++. Bold numbers denotes the best result among all methods. For statistical meaning,  means p << 0.05 in the

Wilcoxon signed rank test for comparison between FedAvg and a specific method, while ! is for comparison between a specific method and all other SOTA

methods. ‘DP’, ‘GS’, ‘GC’ are abbreviation of differential privacy, gradient sparsification, and gradient clipping.

Dataset ChestXRay EyePACS

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓ F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.978 0.021 (0.004) 17.05 (0.97) 0.448 (0.034) 0.531 (0.065) 0.870 0.064 (0.012) 12.26 (0.95) 0.557 (0.041) 0.411 (0.042)

SCAFFOLD 0.976 0.021 (0.005) 17.14 (1.08) 0.450 (0.030) 0.524 (0.064) 0.875 0.063 (0.015) 12.36 (1.12) 0.558 (0.048) 0.414 (0.043)

DP 0.860 0.026 (0.004) 17.20 (0.94) 0.710 (0.052) 0.531 (0.075) 0.798 0.090 (0.020) 10.89 (1.06) 0.746 (0.037) 0.359 (0.098) 

GS 0.968 0.025 (0.006) 16.96 (1.28) 0.445 (0.031) 0.539 (0.064) 0.861 0.067 (0.018) 12.16 (1.27) 0.583 (0.051) 0.416 (0.041)

GC 0.848 0.028 (0.007) 16.66 (1.53) 0.449 (0.037) 0.544 (0.084) 0.693 0.057 (0.011) 12.74 (0.90) 0.582 (0.049) 0.410 (0.043)

Soteria 0.973 0.021 (0.005) 16.98 (1.06) 0.450 (0.033) 0.529 (0.066) 0.862 0.064 (0.014) 12.26 (1.04) 0.568 (0.048) 0.406 (0.043)

OUTPOST 0.972 0.020 (0.004) 17.35 (1.04) 0.463 (0.036) 0.520 (0.069) 0.862 0.063 (0.013) 12.33 (1.05) 0.561 (0.044) 0.410 (0.042)

Censor 0.810 0.025 (0.006) 16.85 (1.41) 0.462 (0.033) 0.521 (0.074) 0.728 0.064 (0.009) 12.26 (0.82) 0.558 (0.057) 0.411 (0.029)

W
h

o
le

Im
ag

e

Ours 0.967 0.021 (0.004) 17.10 (0.81) 0.710 (0.039) 0.384 (0.061)! 0.861 0.088 (0.014) 10.86 (0.67) 0.785 (0.016)! 0.277 (0.029)!

Dataset ChestXRay EyePACS

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓ F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.978 0.010 (0.002) 20.52 (1.03) 0.105 (0.015) 0.798 (0.030) 0.870 0.042 (0.010) 14.26 (1.15) 0.372 (0.021) 0.569 (0.026)

SCAFFOLD 0.976 0.014 (0.003) 18.98 (1.06) 0.181 (0.016) 0.692 (0.042) 0.870 0.040 (0.011) 14.48 (1.29) 0.362 (0.024) 0.571 (0.028)

DP 0.860 0.012 (0.002) 20.66 (1.06) 0.143 (0.016) 0.799 (0.036) 0.798 0.053 (0.011) 13.28 (1.03) 0.411 (0.022) 0.575 (0.078)

GS 0.968 0.012 (0.002) 20.09 (1.12) 0.123 (0.019) 0.792 (0.030) 0.861 0.033 (0.011) 15.38 (1.48) 0.327 (0.021) 0.672 (0.022)

GC 0.848 0.011 (0.003) 20.47 (1.55) 0.144 (0.020) 0.800 (0.042) 0.693 0.057 (0.009) 12.74 (1.08) 0.582 (0.024) 0.410 (0.032)

Soteria 0.973 0.009 (0.002) 20.70 (1.13) 0.105 (0.014) 0.794 (0.030) 0.862 0.042 (0.010) 14.23 (1.17) 0.378 (0.023) 0.569 (0.028)

OUTPOST 0.972 0.009 (0.002) 21.17 (1.17) 0.123 (0.017) 0.796 (0.035) 0.862 0.043 (0.010) 14.13 (1.13) 0.384 (0.018) 0.572 (0.030)

Censor 0.810 0.016 (0.002) 18.59 (1.17) 0.155 (0.017) 0.721 (0.035) 0.728 0.044 (0.010) 14.06 (1.13) 0.373 (0.018) 0.603 (0.030)

T
ar

g
et

R
eg

io
n

Ours 0.967 0.016 (0.003)! 18.42 (0.79)! 0.335 (0.034)! 0.589 (0.038)! 0.861 0.063 (0.009)! 12.28 (0.69)! 0.476 (0.014)! 0.496 (0.021)!

Table 3

Module ablation of the shadow defense framework. ‘PT’, ‘FT’, ‘z’, ‘S’, ‘Equ’,

‘CAM’ are abbreviations of pretraining, fine-tuning, latent code, shadow

model, histogram equalization, and Grad-CAM++.

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.978 0.035 15.09 0.385 0.486

w/o PT z 0.965 0.069 12.88 0.583 0.317

w/o FT S 0.959 0.073 12.87 0.573 0.378

w/o Equ 0.967 0.065 13.21 0.510 0.329

w/o CAM 0.946 0.098 11.14 0.658 0.240

Ours 0.967 0.102 11.36 0.642 0.286

a level of defense that is sufficient to protect this vulnerable

image. Furthermore, we show RDLV curves for optimization-

based GIA throughout the training process in the appendix.

5.2.2. Ablation Study

Module ablation. In Table 3, we show an ablation study on

main components of our framework. Among these components,

pre-training of latent variables and fine-tuning of the shadow

model occupy primary computational costs. It can be found that

the removal of either has a negligible effect on model perfor-

mance. However, the decreasement of most defensive metrics

is significant when either is omitted, particularly the degrada-

tion in PSNR, which exceeds 1.5. Moreover, the impact on the

SSIM varies as much as 0.061 between the two, indicating that

the fine-tuned shadow model effectively reduces the leakage of

statistical information in image features, thereby weakening the

key BN regularization in the GIA loss. Therefore, within our

framework, both operations are essential from a privacy preser-

vation standpoint.

After fine-tuning the shadow model, the post-processing step

of computing noise is also crucial. Without histogram equal-

ization on relative noise, although model performance remains

unchanged, there is a marked degradation across four defensive

Table 4

Effect of different kind of image noises on GIA. ‘Img’, ‘w’, ‘s’ are

abbreviations of image-level, weak noise, strong noise.

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.978 0.035 15.09 0.385 0.486

Img DP (w) 0.953 0.035 14.92 0.529 0.377

Img DP (s) 0.867 0.060 13.32 0.778 0.204

Ours 0.967 0.102 11.36 0.642 0.286

metrics by 0.011, 0.77, 0.08, and 0.038, respectively. This de-

cline is attributed to the focus of the original noise map, which

is on regions most susceptible to reconstruction, leaving other

potential areas of privacy information unprotected and provid-

ing adversaries with a shortcut for attack. In contrast, neglect-

ing noise reduction in foreground regions, identified by Grad-

CAM++, results in a 0.021 decrease in task performance, but

it enhances defensive capabilities. To strike a more favourable

balance between task performance and privacy protection, we

have retained this module. It is tailored to accommodate vary-

ing intensities of GIA in real-world scenarios (Wang et al.

(2024a)).

Image-level noise. Our defensive strategy can be regarded

as a variant of image-level DP. To this end, we present the re-

sults of directly applying DP to images instead of gradients,

as shown in Table 4. It is observed that if the privacy bud-

get is abundant (weaker noise) when we incorporate noise di-

rectly into images, the performance across all four defensive

metrics is significantly inferior to our approach. Moreover, the

task performance, as indicated by the F1 score, suffers an addi-

tional reduction of 0.014 compared to our method. It demon-

strates that the sensitive area simulation strategy of the shadow

model facilitates a better balance between privacy protection

and task performance. Furthermore, even when intense noise

is added, resulting in a tenfold performance reduction (row 3),
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our method still achieves stronger privacy protection capabili-

ties on PSNR. This is because information content of different

patches in an image often varies greatly. Applying noise indis-

criminately across all regions does not precisely protect image

information that is most vulnerable to GIA.

Fig. 8: Effect of noise adjustment strategy on GIA. ‘FedAvg’

represents the method without defense. ‘Fix’, ‘Decrease’, ‘In-

crease’ corresponds to fixing, decreasing and increasing the ab-

solute noise amplitude our method during FL training, respec-

tively.

Dynamic adjustment of noise. To determine the most ef-

fective noise adjustment strategy, we present effects of differ-

ent strategies on model performance and defensive capability

in Fig. 8. Compared to the unfortified FedAvg, progressively

increasing the noise level as training advances results in supe-

rior F1 scores relative to either diminishing or constant noise

levels. It is due to the minimal impact this strategy has on early

stages of convergence. There is a fact that BN statistics are in-

creasingly accurate during training, consequently enhancing the

potency of GIA (Hatamizadeh et al. (2023)). Thus, escalating

the noise amplitude aligns with this trend. Furthermore, this

graph demonstrates defensive advantages of this method over

a reduction in noise levels. Nonetheless, we observe that pro-

gressively increasing and maintaining the noise amplitude sep-

arately achieve optimal results on MSE and SSIM. The former

indicates the absolute precision in pixel reconstruction, while

the latter represents overall structural information. Consider-

ing significant disparities in task performance, we choose the

increasing scheme of the noise level, which strikes a better bal-

ance between privacy preservation and task performance.

Fine-tuning rounds of the shadow model. In the fine-

tuning process of the shadow model, to balance computational

costs, we showcase in Table 5 the effects of different termina-

tion epochs on task performance and privacy protection for the

most vulnerable client, i.e., client 8. First, the impact of various

termination epochs on task performance is marginal. Subse-

Table 5

Comparison of different fine-tuning rounds of the shadow model.

Round F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓ Time

10 0.969 0.097 11.92 0.423 0.277 1.000×

20 0.967 0.096 12.02 0.433 0.271 1.394×

40 0.966 0.105 11.30 0.491 0.224 1.963×

60 0.973 0.146 9.78 0.628 0.170 2.651×

80 0.967 0.115 10.62 0.578 0.191 3.460×

100 0.974 0.151 10.04 0.518 0.211 4.272×

quently, considering four defensive indices, selecting 60 as the

termination epoch for fine-tuning the shadow model is shown to

be optimal except for MSE. However, since the computational

expense of this setting is 2.651 times greater than that required

at 10 epochs, we set 20 as the final termination epoch after

weighing up performance, defense, and computational costs.

5.2.3. Visualization analysis

Reconstructed images. We illustrate reconstruction images

of the optimized-based GIA on two datasets in Fig. 9 and Fig.

10 at the middle of training. Images for FFT phase of ’FFT

Diff’ and conclusions are shown in the Supplementary Mate-

rials. Vulnerable training images, as well as visual results of

the model-based GIA and attacks during the FL process, can be

found in the appendix. For both datasets, DP and our method

significantly change the overall appearance of reconstructed im-

ages under arbitrary GIA types, proving that sensitive patient

privacy in foreground regions is greatly protected. Although

GC has also changed the appearance, some key parts are not

free from attack, e.g., the one under optimization based GIA.

Similarly, GS suffers the same problem, but with weaker pro-

tection ability. Both methods also only extremum values in gra-

dients, ignoring significance of sensitive privacy with moderate

gradients. In comparison, Soteria, aiming at maximizing re-

construction error through a single layer, is fragile for all med-

ical scenarios. For the ChestXRay dataset, Outpost is capable

of providing safe safety guarantee. However, when the feature

space becomes more complex, its delicate combination protec-

tion may lose its effcacy due to its unexplainable gradient per-

turbation nature.

From the frequency spectrum of reconstructive error map in

the thrid row of each setting (FFT Diff), we observe two specific

patterns of our method. Firstly, for both datasets, when it comes

to model-based GIA, shiny lines are greatly blurred, which rep-

resent high-frequency components (noise) have replaced low-

frequency ones along horizontal cross lines (the single-channel

ChestXRay dataset) or oblique cross ones (the multi-channel

EyePACS dataset). Secondly, for optimization-based GIA, or-

thogonal lines of dominant ones are brighter, with two lightspot

quite obvious. They usually indicate medium scale textures or

repetitive patterns, such as or rib structure in the ChestXRay

dataset or vascular reticular structures in the EyePACS dataset.

In summary, these unique and unified patterns are probably re-

lated to those features tend to be reconstructed through specific

type of attack. As a counteract, our method is generalizable

enough to defend various kinds of GIA, thus serving as a reli-
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Fig. 9: Reconstructed images of the ChestXRay dataset from optimization-based GIA. ‘Rec Img’, ‘Rec Diff’, ‘FFT diff’ represent

reconstructed images, reconstructive error maps, frequency spectrum of reconstructive error maps, respectively. The numbers

indicate PSNR between the original reference image and the reconstructed image.
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Fig. 10: Reconstructed images of the EyePACS dataset from optimization-based GIA ‘Rec Img’, ‘Rec Diff’, ‘FFT diff’ represent

reconstructed images, reconstructive error maps, frequency spectrum of reconstructive error maps, respectively. The numbers

indicate PSNR between the original reference image and the reconstructed image.
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able strategy for privacy protection.

6. Discussion

In this study, we propose a novel defense framework against

gradient inversion attack to meet some requirements in privacy

protection laws. For example, data minimization, anonymiza-

tion, de-identification, lawfulness, transparency are required in

GDPR (GDPR (2016)). This framework is under the scenario

of FL to meet data minimization, namely collecting only local

update information from clients. Since our framework prevents

potential attackers to reconstruct recognizable training data,

anonymization and de-identification are also met. Equipped

with explainable tools for both task and privacy protection, our

method is able to comply with lawfulness and transparency.

We validate several attributes of our proposed framework

through experiments. Here are some crucial conclusions:

• Compared with SOTA defense methods against GIA, our

method achieves state-of-the-art privacy protection with

minimal task performance degradation.

• Our method achieves significant improvements in

foreground-region protection.

• There is strong defense throughout training lifecycle of our

method.

• Our method is generalizability across medical image

datasets, GIA types, image processing tasks.

• Our method is superior to non-targeted image-level differ-

ential privacy.

• Each component in our design is necessary.

• Fine-tuning of the shadow model during FL training is

computationally efficient.

In addition to X-ray classification, our model is also general-

izale to other medical image modalities and tasks, like magnetic

resonance imaging (MRI) segmentation. Results are shown in

Section 3 in Supplementary Materials. To our best knowledge,

there is no existing label restoration algorithm in GIA for image

segmentation, so we use ground truth masks and fix them dur-

ing GIA. We find that our proposed method can also achieves a

good balance between task performance and privacy protection

in this setting, which validates that our method is applicable to

various medical imaging scenarios.

We also test compatibility of GIA with modern architectures,

such as Vision Transformer (ViT) in Section 4 in Supplemen-

tary Materials. Due to a lack of batch normalization layer, both

types of GIA fail to work at such a large model and high image

resolution. Therefore, defense is not neccessary in this case and

it remains a problem in GIA to work on larger models.

We have validate the effectiveness of our framework for both

model-based and optimization-based GIA. While the former is

based on GAN and similar to our defensive process, the later

alone may not show the full potential of our method against

various types of GIA. For this reason, we explore two more

GIA types, i.e., CI-Net (Zhang et al. (2023)) and MKOR (Wang

et al. (2024b)), in Section 4 and 5 of Supplementary Materials,

respectively. Our proposed framework is also generalizable to

CI-Net regarding privacy defense. For the analytics-based GIA,

i.e., MKOR, even with the assumption of a malicious server, it

can hardly achieve better reconstruction results compared with

other types of GIA on the medical image dataset.

To further test our proposed method in other privacy-sensitive

scenarios, we utilize our method on the VGGFace2 dataset (Cao

et al. (2018)). Although our method still works on non-medical

images regarding privacy defense, the task performance drop is

huge, which will be a further direction of our research work.

7. Conclusion

In this work, we introduce a shadow model-based defense

framework to counter gradient inversion attacks within the con-

text of Federated Learning. We develop pre-training and fine-

tuning methods for shadow models to rapidly adapt to real at-

tacks from potential adversaries in FL. Leveraging images re-

constructed from shadow models, we propose an image noise

generation technique to disrupt the mapping relationship be-

tween gradients or auxiliary information and training images.

Our method has been experimented on two public datasets,

ChestXRay and EyePACS, which outperforms SOTA defense

strategies in both complete images and foreground regions. Be-

sides, it can reduce the effectiveness of various types of gradi-

ent inversion attacks. In the future, it warrants further in-depth

exploration into the efficiency of our method to accommodate

large datasets and foundational models, as well as its applica-

bility in scenarios, like few-shot learning.
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1. Additional results for SOTA comparison

Computational costs on the EyePACS dataset of SOTA meth-

ods are listed in Table 1. Each value is a mean of all training

epochs.

In Table 2, we use Image Identifiability Precision (IIP)

Hatamizadeh et al. (2023) to quantify how much identifiable

information is leaked through gradient inversion attacks in fed-

erated learning. It measures whether reconstructed images from

such attacks can be matched back to the original training data

of a specific client. Specifically, IIP computes the fraction of re-

constructions whose closest match (based on deep feature em-

beddings and cosine similarity) in the training set is the exact

original image used during training.The numbers in 1-IIP, 3-

IIP, and 5-IIP refer to how many of the top-k closest matches

are considered for determining a successful identification. For

example: 1-IIP only counts a reconstruction as successful if the

closest match is the original image. 3-IIP allows a match if the

original image is among the top 3 closest. 5-IIP allows it among

the top 5. Our method still achieves approximately best defense

on these metrics.

Apart from amplitude spectrum of ’Rec Diff’ in Fig.9 and

Fig.10 of the main text, we also show their FFT phase in Fig.

1. Compared with other methods, ’FFT Diff’ phase of of our

method can be seen as noise without clear structure or clear

directional distortion. It validates that our proposed framework

successfully suppresses structural information leakage.

In Fig. 2, we demonstrate gradient distributions of defensive

methods. For conventional strategies, i.e., DP, GS, GC, their

characteristics are obvious. For example, perturbed distribution

from DP is uniformly across the entire value space. Only partial

points from GS are laterally spread, while ones from GC are

close to the origin of y-axis. However, for the rest methods,

their distributions resemble to each other. It is unlikely to show

statistics of privacy leakage directly through them. Thus, it is

significant for our image-wise privacy illustration.

As illustrated in Fig. 3, for GIA based on optimization,

the defense of gradient sparsification and gradient clipping is

weaker when compared to model-based GIA. DP demonstrates

inconsistent defensive performance across different clients. So-

teria and OUTPOST exhibit advantages only on clients with

larger datasets, specifically clients 4 and 8. With the exception

of client 9, our method results in a RDLV that is nearly equal to

or less than 0 for all other clients. It aligns with findings from

model-based GIA that shadow models are prone to overfitting

in extreme cases where only a single image is available.

Fig. 4 and Fig. 5 show images from the ChestXRay and Eye-

PACS datasets that are vulnerable to GIA, respectively. Com-

pared with other images, they are more likely to resemble re-

constructed images across various training epochs.

Fig. 6, 7, 8 depict reconstruction results of the ChestXRay

dataset subjected to model-based GIA during the 1st, 50th,

and 100th FL rounds. Fig. 9, 10 illustrate the ones for this

dataset following optimization-based GIA at the 1st and 100th

FL rounds. It can be concluded that although gradients are more

substantial in early training stages, aiding the computation of

the gradient matching loss, the BN statistics are not accurate,

thus limiting the reconstruction efficacy for both types of GIA.

For model-based GIA, due to part alignment of these prior in-

formation with the pre-training dataset for StyleGAN3, most

SOTA methods suffer significant privacy leakage across the ma-

jority of client datasets. Our proposed method stands as an ex-

http://www.sciencedirect.com
http://www.elsevier.com/locate/media
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Table 1

Computational cost comparison of our method with SOTA defense methods on the EyePACS dataset.

Method FedAvg DP GS GC Soteria OUTPOST Ours

Time(s) 566.436 698.794 699.565 703.01 1581.399 705.139 720.711

Table 2

IIP comparison on the ChestXRay dataset for model-based GIA.

FedAvg DP GS GC Soteria OUTPOST Censor Ours

IIP-1 0.0191 0.0128 0.0111 0.0093 0.0174 0.0111 0.0161 0.0059

IIP-3 0.0402 0.0305 0.0319 0.0277 0.0333 0.0562 0.3534 0.0279

IIP-5 0.0583 0.0465 0.0423 0.0437 0.0555 0.0771 0.0462 0.0434

FedAvg DP GS GC Soteria Outpost Ours
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Fig. 1: Comparison of FFT phase for ’Rec Diff’ in Fig.9 and Fig.10 of the main text.
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Fig. 2: Comparison of gradient distribution for difference methods across model layers. For each subfigure, the x-axis corresponds

to gradient values while the y-axis corresponds to frequency of gradient values. The first to the last rows correspond to the shallowest

to the deepest.
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FedAvg DP GS GC Soteria OUTPOST Ours

Client 1 Client 2 Client 3

Client 4 Client 5 Client 6

Client 7 Client 8 Client 9

Fig. 3: Comparison of RDLV curve for difference methods on all clients under optimization-based GIA.



Le Jiang et al. /Medical Image Analysis (2025) 5

1 2 3 4 5 6 7 8 9Client

Fig. 4: Vulnerable images in the ChestXRay dataset.

ception, effectively defending against such attacks for all but

client 9’s dataset. For optimization-based GIA, early training

stages also present challenges for effective attacks. However, by

later stages, except for DP and our method, other SOTA meth-

ods tend to leak structural information of the data to varying

degrees.

Fig. 13, 14, 15 show reconstruction results of the EyePACS

dataset from model-based GIA during the 1st, 50th, and 100th

rounds of federated training. Fig. 14, 15 illustrate results of

optimization-based GIA at the 1st and 100th global rounds for

the same dataset. Compared to the ChestXRay dataset, it is ev-

ident that in the EyePACS dataset, clients with fewer samples,

such as clients 1, 5, and 9, already exhibit significant privacy

leaks for both types of GIA early in the training process. Con-

clusions during the middle and later stages of training are sim-

ilar to those for the ChestXRay dataset. Overall, these visual

results reaffirm that our shadow defensive framework provides

a universally effective privacy protection capability across dif-

ferent medical imaging datasets and types of GIA.

2. GIA defense on medical image segmentation

To test effectiveness of our method in medical image seg-

mentation, we apply our method in the prostate MRI dataset

Nicholas et al. (2015); Lemaı̂tre et al. (2015); Litjens et al.

(2014). Similar to the setting in HarmoFL Jiang et al. (2022),

three sequential slices are stacked into an RGB like image and

the goal is to segment the middle slice. Differently, we change

the batch size and do not use data augmentation for better at-

tack. Besides, global epoch has been changed from 500 to 200.

Specially, batch size is set as follows: 8 for client 1 and 5, 16

for client 2 and 4, 4 for client 3 and 6. To our best knowledge,

there is no label restoration work in GIA for the image segmen-

tation task. Therefore, we use segmentation masks as known

prior, and fix them during training. We use training data of

prostate158 Adams et al. (2022) to pretrain our shadow model.

Learning rate for obtaining latent codes and fine-tunning the

shadow model are 1e-4 and 1e-6, respectively.

Results are shown in Table 3 and Fig. 16. For the task perfor-

mance, i.e., Dice, our method only reduces it by 0.008. For all

defense metrics, our method achieves improvements, proving

the wide applicability of our proposed framework.

3. GIA defense on Vision Transformer

To test effectiveness of our method in larger models, we ap-

ply our method to Vision Transformer (ViT) Han et al. (2022)

based on the ChestXRay dataset. Results are shown in Table

4 and Fig. 17. Under this circumstance, the F1 gap between

‘FedAvg’ and ‘ours’ is 0.043, which is larger than the one of

convolutional neural network (CNN). The reason is probably

that ViT tends to overfit these noise in training images, which

can be also validated on the performance drop of FedAvg com-

pared with CNN. We also find that our proposed framework is
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1 2 3 4 5 6 7 8 9Client

Fig. 5: Vulnerable images in the EyePACS dataset.

Table 3

Effectiveness of our method in image segmentation on the prostate dataset.

Optimization-based GIA Model-based GIA

Whole Image Whole Image

Method Dice↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓ Method Dice↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.901 0.062 12.18 1.030 0.089 FedAvg 0.901 0.050 13.23 0.663 0.102

ours 0.893 0.066 11.95 1.043 0.088 ours 0.893 0.051 13.09 0.686 0.094

Target Region Target Region

Method Dice↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓ Method Dice↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.901 0.038 14.32 0.416 0.434 FedAvg 0.901 0.027 15.97 0.452 0.388

ours 0.893 0.041 14.01 0.420 0.430 ours 0.893 0.028 15.73 0.483 0.373
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Fig. 6: Reconstructed images from model-based GIA at 1st global round on the ChestXRay dataset.
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Fig. 7: Reconstructed images from model-based GIA at 50th global round on the ChestXRay dataset.
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Fig. 8: Reconstructed images from model-based GIA at 100th global round on the ChestXRay dataset.

worse on defensive metrics. To find out the reason, we show

reconstructed images based on ViT. Due to a lack of batch nor-

malization layer, GIA methods do not work even in FedAvg on

client 9. Thus, under this circumstance, defense is not necces-

sary.

4. GIA defense against CI-Net

Unlike traditional model-based GIA, CI-Net Zhang et al.

(2023) do not use GAN as backbone. Instead, an over-

parameterized CNN is utilized due to the motivation that the

more the searching space is, the more likely training data will

be reconstructed. Besides, CNN is prone to learn low-frequency

semantics first, thus avoiding overfitting these high-frequency

random-noise in images. To achieve pixel affinity of neigh-

borhood regions, the variant of the progressive-growing net-

work with nearest-interpolation is used and Resnet-blocks are

removed. Results are shown in Table 5 and Fig. 18. It can

be seen that our method is workable to such attack, even if our

pipeline is quite different from it, which demonstrates general-

ization of our framework.

5. Analytics-based GIA

Analytics-based GIA is based a malicious server, which is

deviated from our assumption, i.e., an honest but curious server.

To be specific, in analytics-based GIA, certain parameters are

added into the task model, or some original parameters are mod-

ified to save activations of training data. We first consider the

circumstance of adding parameters. We choose LOKI Zhao

et al. (2024) as an example. Although only one convolutional

and two FC layers are added, the parameter size of FC layers

are positively related to image resolution. When we test LOKI

in ResNet18 on image resolution of 224 (only 32 in the experi-

ment of LOKI), the memory assumption is almost 24MB, which

is too suspicious for clients to notice the abnormality. Besides,

due to the huge amount of attack layer parameters, training fails

to converge.

As a better solution of analytics-based GIA, maximum

knowledge orthogonality reconstruction (MKOR) Wang et al.

(2024) carefully designs weight modifications for VGG based

on mathematically proven formulations, enabling reconstruc-

tion for high-resolution images. Results are shown in Table 6

and Fig. 19. Although modified parameters are hard to detect,

when we use original setting of the ChestXRay dataset, training

fails to converge as well (no task performance shown in exper-

iments of MKOR). Thus, we change the optimizer from SGD

to Adam and reduce the learning rate to 1e-5. It is observed

that task performance is worse and the reconstruction results

can hardly reveal any privacy except for client 9, which does

not require additional defense strategies.
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Fig. 9: Reconstructed images from optimization-based GIA at 1st global round on the ChestXRay dataset.

Table 4

Effectiveness of our method on ViT.

Optimization-based GIA Model-based GIA

Whole Image Whole Image

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓ Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.944 0.031 16.27 0.721 0.618 FedAvg 0.944 0.046 14.11 0.486 0.566

ours 0.901 0.027 17.24 0.691 0.647 ours 0.901 0.046 14.06 0.507 0.560

Target Region Target Region

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓ Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.944 0.020 18.73 0.251 0.777 FedAvg 0.944 0.026 16.92 0.164 0.742

ours 0.901 0.016 19.94 0.206 0.804 ours 0.901 0.028 16.65 0.199 0.740

Table 5

Effectiveness of our method against CI-Net.

Model-based GIA

Whole Image

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.978 0.056 12.90 0.522 0.413

ours 0.967 0.091 11.54 0.583 0.307

Target Region

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.978 0.036 14.79 0.252 0.618

ours 0.967 0.062 13.54 0.366 0.525
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Fig. 10: Reconstructed images from optimization-based GIA at 100th global round on the ChestXRay dataset.

Table 6

Results of MKOR.

Model-based GIA

Whole Image

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.839 9.527 0.70 0.696 0.397

Target Region

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.839 0.082 11.43 0.391 0.598
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Fig. 11: Reconstructed images from model-based GIA at 1st global round on the EyePACS dataset.

6. GIA defense on non-medical images

To test our framework in non-image datasets, we test it on

the VGGFace2 dataset Cao et al. (2018). We choose 10 identi-

ties (classes) with most number of images to construct our FL

dataset (except for the couple identity). In the pre-processing

step, centering crop based on relative size of height and width

and resizing of 224 resolution are performed. Then, we as-

sign each of 9 clients with class-balanced division of training,

validation, and testing datasets. Other experimental setting are

same as the one of ChestXRay dataset, except for the usage of

SGD with nesterov. Results are shown in Table 7 and Fig. 20.

Data privacy of these human face is effectively protected by our

framework, as can be seen in defensive metrics and visualiza-

tion. However, unlike medical image datasets, adding adaptive

noise to face images significantly harms the task performance,

since key attributes for recognizing human face are susceptible

to such noise. It remains an issue to improve our method in the

non-medical scenarios.
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Fig. 12: Reconstructed images from model-based GIA at 50th global round on the EyePACS dataset.

Table 7

Effectiveness of our method on the VGGFace2 dataset.

Model-based GIA

Whole Image

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.916 0.080 11.28 0.655 0.285

ours 0.791 0.114 9.73 0.704 0.267

Target Region

Method F1↑ MSE↑ PSNR↓ LPIPS↑ SSIM↓

FedAvg 0.916 0.053 13.13 0.418 0.531

ours 0.791 0.075 11.60 0.443 0.520
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Fig. 13: Reconstructed images from model-based GIA at 100th global round on the EyePACS dataset.
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Fig. 14: Reconstructed images from optimization-based GIA at 1st global round on the EyePACS dataset.
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Fig. 15: Reconstructed images from optimization-based GIA at 100th global round on the EyePACS dataset.
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Fig. 16: Reconstructed images of the prostate dataset.
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Fig. 17: Reconstructed images based on ViT.
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Fig. 18: Reconstructed images from CI-Net on the ChestXRay dataset.
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Fig. 19: Reconstructed images from MKOR on the ChestXRay dataset.
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Fig. 20: Reconstructed images based on the VGGFace2 dataset.
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