
ar
X

iv
:2

50
6.

15
64

8v
1

 [
cs

.C
R

]
 1

8
Ju

n
20

25

deepSURF: Detecting Memory Safety Vulnerabilities in Rust Through Fuzzing
LLM-Augmented Harnesses

Georgios Androutsopoulos
Purdue University

gandrout@purdue.edu
West Lafayette, Indiana, USA

Antonio Bianchi
Purdue University

antoniob@purdue.edu
West Lafayette, Indiana, USA

Abstract—Although Rust ensures memory safety by default,
it also permits the use of unsafe code, which can introduce
memory safety vulnerabilities if misused. Unfortunately, exist-
ing tools for detecting memory bugs in Rust typically exhibit
limited detection capabilities, inadequately handle Rust-specific
types, or rely heavily on manual intervention.

To address these limitations, we present deepSURF, a tool
that integrates static analysis with Large Language Model
(LLM)-guided fuzzing harness generation to effectively identify
memory safety vulnerabilities in Rust libraries, specifically tar-
geting unsafe code. deepSURF introduces a novel approach for
handling generics by substituting them with custom types and
generating tailored implementations for the required traits,
enabling the fuzzer to simulate user-defined behaviors within
the fuzzed library. Additionally, deepSURF employs LLMs to
augment fuzzing harnesses dynamically, facilitating exploration
of complex API interactions and significantly increasing the
likelihood of exposing memory safety vulnerabilities. We eval-
uated deepSURF on 27 real-world Rust crates, successfully
rediscovering 20 known memory safety bugs and uncovering
6 previously unknown vulnerabilities, demonstrating clear im-
provements over state-of-the-art tools.

1. Introduction

Rust’s focus on prioritizing memory safety while main-
taining high performance makes it a compelling competitor
in the systems programming space. Unlike traditional low-
level languages like C/C++, which rely on manual memory
management and are prone to common memory safety bugs
such as buffer overflows, Rust’s unique set of safety rules
eliminates these risks as early as during compilation. This
feature has enabled its adoption in mainstream operating
systems [21], [35], while its public registry of over 180k
crates1 highlights its growing popularity [12].

There are scenarios in systems programming where
Rust’s safety checks can be too restrictive. To handle such
cases, developers can use the unsafe keyword to mark
code blocks or functions where the compiler’s safety checks

1. In Rust, a crate is a unit of code that can be a library or a binary.

are suspended. This explicitly signals that the enclosed code
may violate Rust’s memory safety guarantees [8].

Previous studies have shown that approximately one in
four Rust projects use unsafe mode [2]. Developers often
rely on it to implement features that are not feasible in Rust’s
safe mode. In other cases, unsafe Rust is used to pursue
better performance or due to the complexity of writing code
that the Rust compiler can verify as being safe [19], [29].

Unsafe Rust undermines the language’s memory safety
guarantees, introducing memory safety vulnerabilities. Mi-
crosoft and Google report that over 70% of critical bugs
stem from memory safety issues [34], [47], leading agen-
cies such as CISA to advocate for memory-safe program-
ming [14], [27]. To date, around 27% of Rust bugs in
the RustSec Advisory Database [46] are related to memory
corruption, resulting from incorrect use of unsafe Rust [30],
[49]. This significant percentage has motivated research into
static [7], [31], [33] and dynamic [5], [13], [36] analysis
tools to detect such issues.

Static analyzers such as Rudra [7] and Yuga [31] aim
to identify certain bug patterns in Rust source code. Al-
though these tools successfully detect memory safety bugs,
significant human involvement is required to filter their
output (with high false positive rates) and to create proof-
of-concept (PoC) test cases to confirm each bug. In con-
trast, dynamic analysis approaches, such as fuzzing, due
to their context-sensitive analysis tend to have lower false
positives and can uncover a broader range of bugs [5], [36],
[39]. Although fuzzers are effective at detecting memory
safety violations, their utility is often limited in the Rust
ecosystem, where most code is provided as libraries rather
than standalone binaries that can be directly tested by the
fuzzer [23]. Consequently, before fuzzing Rust libraries, it is
necessary to generate appropriate harnesses that encapsulate
the library’s functionality and convert the fuzzer’s input into
well-typed, valid data types expected by the target functions.

Harness generation in Rust is tedious and time-
consuming due to its complex type system and syntax.
To ease this burden, several tools use static analysis to
automate harness generation. However, despite improving
test coverage, these tools struggle to detect memory safety
bugs. RULF [23] and FRIES [51] lack support for traits, and

https://arxiv.org/abs/2506.15648v1

RuMono [54] does not handle closures—both crucial for
modeling buggy user-defined behavior. RPG [50] targets all
unsafe code, including explicitly unsafe APIs, resulting in
false positives. Additionally, these tools use heuristics and
API dependency analysis to generate API call sequences.
While the sequences can be syntactically valid, their API
calls are often not semantically related and fail to reflect
realistic usage patterns. Due to these limitations, although
these tools have discovered bugs in various Rust crates, none
of the reported issues have involved memory safety.

More recently, the rise of Large Language Models
(LLMs) for code generation has prompted their use in
automating test generation [10], [11], [22], [48]. As unit
test generators, LLMs tend to focus on components they
infer as important—guided largely by the user’s prompt.
The effectiveness of this process strongly depends on prompt
quality [52], a challenge amplified in Rust due to its expres-
sive and strict type system, which complicates the genera-
tion of valid code without precise context. To address this,
researchers augment prompts with static analysis metadata
and break down the generation task into smaller, focused
sub-tasks. RUG [11] follows this approach, using ChatGPT-
4 and static analysis to generate unit tests that capture
complex trait relationships. While RUG’s high-quality test
code improves coverage, its evaluation has not demonstrated
discovery of memory safety bugs.

In summary, the limitations of existing tools, include
their insufficient approach to targeting unsafe code and rele-
vant API call sequences, as well as limited support for Rust
types such as generics requiring custom implementations
and closures.

To address these limitations, we present deepSURF, a
tool that combines static analysis and LLMs to automatically
generate harnesses targeting unsafe code with the goal of
uncovering memory corruption vulnerabilities. deepSURF
uses the Rust compiler’s analysis to identify APIs that
can reach unsafe code and generates initial harnesses ac-
cordingly. It then employs DeepSeek-R1 [15] to augment
these harnesses with complex API call sequences, enabling
the fuzzer to explore richer execution paths and increasing
the chances of exposing memory corruption in multi-step
interactions. deepSURF also introduces a novel approach
to handling generics by generating custom types and trait
implementations. This allows the fuzzer to simulate ex-
ecution of user-defined code within the library’s context,
further increasing the likelihood of exposing memory bugs.
For unsafe traits, where implementations must uphold safety
guarantees, deepSURF prompts the LLM to decide candi-
date types within the library that satisfy the required bounds.

deepSURF employs fuzzing to test the generated har-
nesses, shifting the burden of discovering bug-triggering
conditions from the developer to the fuzzer and eliminating
manual effort. To reduce false positives, it generates har-
nesses that invoke safe APIs capable of reaching unsafe code
and configures the fuzzer to exclude crashes unrelated to
memory corruption—a common issue in Rust fuzzing [39].

We evaluate deepSURF on 27 crates with real-world
memory safety vulnerabilities and detect 26 bugs via

fuzzing. Notably, six of these were previously-unknown and
have been disclosed to the respective library authors. Our
key contributions are summarized below.
• Targeting Memory Safety Bugs. We generate LLM-

augmented harnesses that exercise semantically related
API call sequences capable of reaching unsafe code. Their
interaction with unsafe code can lead to memory safety
violations, which our approach exposes through fuzzing.

• Innovative Handling of Generics. We introduce a novel
method for generating harnesses for APIs that require
generic type arguments, including substitution with cus-
tom types and implementation of required traits. This ap-
proach simulates the insertion and execution of potentially
buggy user-defined code within the Rust library’s context.

• Enhanced Data Type Support. Our approach includes
the generation of Rust-specific function arguments, such
as closures and containers of complex or generic types,
unlocking the limitations of previous work and extending
the range of functions that can be fuzzed.

• LLM-Guided Search Space Reduction. We use LLMs
to guide decisions in large search spaces by prioritizing
potentially vulnerable API call sequences and selecting
among multiple candidates for generics implementing un-
safe traits and for complex types requiring instantiation.

• deepSURF Tool for Automatic Detection of Memory
Safety Bugs. We implement deepSURF, a tool that com-
bines LLM-augmented harness generation with fuzzing to
detect memory safety bugs in Rust libraries. Compared
to existing approaches, deepSURF shows significantly
improved bug-finding capability, identifying 26 memory
bugs—20 previously-known and six newly-discovered.

2. Background

Rust: Memory-Safe by Design. The Rust program-
ming language enforces strong protections against memory
violations through a set of strict rules imposed by the
Rust compiler (rustc) that developers must follow. These
rules ensure memory safety by identifying potential issues
either at compile time, causing the compilation to fail, or
at runtime, leading to controlled program termination. In
Rust, every memory object is tied to a single owner (vari-
able). Ownership can be transferred between variables or
temporarily borrowed through references, all in a controlled
manner [8]. Additionally, Rust introduces the concept of
lifetimes [8], which ensure that references remain valid
for as long as the referenced memory object exists and
is accessible. Thanks to lifetime rules, memory bugs such
as use-after-frees and double-frees are impossible in safe
Rust. Finally, Rust performs bounds checking at compile or
runtime, blocking out-of-bounds memory access.

Unsafe Rust: Superpowers with High Risk. Systems
programming often requires low-level operations, such as
interfacing with native C/C++ libraries—tasks that cannot
be performed using “safe” Rust alone. To support these
use cases, Rust provides unsafe Rust, which relaxes safety
rules to give developers low-level control at the cost of
reintroducing the risk of memory bugs.

Developers switch to unsafe Rust using the unsafe
keyword to begin an unsafe code block. Functions contain-
ing unsafe blocks can be marked as either safe or unsafe.
If a function is explicitly marked as unsafe, its caller is
responsible for ensuring the function is not invoked with
arguments that could cause memory violations. In contrast,
if an unsafe code block is enclosed in a safe function, the
function should act as a safe wrapper for the internal unsafe
operations. Additionally, Rust defines unsafe traits for which
the compiler does not enforce safety checks. Unsafe code
may rely on their implementations, and the responsibility
for ensuring safety lies with the developer who implements
them—whether a library author or a user [8].

Fuzzing. Fuzzing is one of the most effective methods
for detecting memory bugs. Fuzzers generate diverse inputs
and run programs against them to uncover vulnerabilities.
Greybox fuzzers such as AFL++ [20] are especially ef-
ficient, using coverage feedback to explore different code
paths. Their bug-finding capability can be further enhanced
with sanitizers. AddressSanitizer (ASan) [38], for exam-
ple, detects subtle memory corruption bugs—such as small
buffer overflows—that may not crash the program. However,
sanitizers introduce performance overhead, which can slow
down fuzzing. In Rust, the afl.rs [5] crate integrates the
functionality of AFL++ and automates advanced features
such as CmpLog [6] and persistent mode [4].

Rust Libraries and Harness Generation. Rust code
is organized into crates, which may be either binaries or
libraries [8]. Binary crates are standalone executables that
must define a main function as the program’s entry point.
Library crates, however, typically lack a main function and
instead provide reusable functionality by exposing an API
of public functions for users to call. The Rust ecosystem
primarily consists of library crates, posing challenges for
automated testing tools like fuzzers [23]. While binaries
can be fuzzed directly, libraries require the generation of
harnesses—test cases that invoke the library’s API using
input provided by the fuzzer. These harnesses are compiled
into executables, allowing the fuzzer to explore the library’s
functionality and uncover bugs.

LLM-Based Harness Generation. Large Language
Models (LLMs) have shown strong capabilities in code
generation by learning from large-scale code corpora [3],
[9], [25]. Their ability to synthesize semantically meaningful
code has motivated security researchers to use LLMs to
generate fuzz harness (sometimes referred to as fuzz drivers
or fuzz targets). This approach is particularly effective when
bugs are triggered by chained API sequences, as LLMs can
generate interactions beyond typical usage patterns, enabling
deeper testing and uncovering more intricate bugs [16], [28].

The effectiveness of LLM-based harness generation
heavily depends on prompt quality [42], [53]. Yet, even
with sufficient documentation and examples, LLMs often
struggle to generate valid harnesses for complex targets like
the Linux kernel [24] or Rust libraries [11], [48]. In Rust
specifically, the combination of intricate trait relationships
and a highly expressive type system poses major challenges.
These complexities often prevent the automatic creation of

valid harnesses, as accurately reasoning about such features
is better suited to traditional static analysis techniques.

Definitions. To aid in understanding the rest of the paper,
we propose the following terminology:
• Unsafe Block (UB): A code segment enclosed within the
unsafe keyword, allowing operations that bypass the
language’s safety checks.

• Unsafe Function (UF): A function explicitly marked with
the unsafe keyword in its signature. Any operation
within this function can bypass Rust’s safety checks. A
UF can only be called within a UB or another UF.

• Safe Function (SF): A function that is not UF.
• Unsafe Encapsulating Function (UEF): A SF that con-

tains a UB. UEFs are designed to encapsulate internal
unsafe code within a safe wrapper, preventing its callers
from being affected by unsafe behavior.

• Unsafe Reaching Function (URF): A SF that is not a UEF
itself but can reach unsafe code indirectly by calling other
UEFs or URFs.

• Unsafe API (UAPI): A publicly accessible UF of a Rust
library.

• Unsafe Reaching API (URAPI): A publicly accessible
function of a Rust library that is either a UEF or URF.

• URAPI Coverage: The URAPI coverage of a set of
harnesses is the ratio of URAPIs directly called in the
harnesses to the total number of URAPIs in the library.

Memory Safety Bugs in Rust Libraries. The use
of unsafe Rust can introduce memory safety bugs due to
incorrect handling of unsafe code [30], [49]. These bugs
are similar to those found in other systems programming
languages, including use-after-free, double-free, and buffer
overflows. However, in Rust, not all memory violations
constitute genuine memory bugs.

In a library crate, functions not explicitly marked as
unsafe are expected to be safe to call under all circum-
stances—even if they contain internal unsafe code. If a user
triggers memory corruption by interacting only with such
safe functions, this constitutes a genuine memory bug: the
library has failed to properly encapsulate its unsafe behav-
ior [7], [43]. In contrast, if corruption results from incorrect
use of a UAPI, the fault lies with the user for violating
the safety contract [8], [32]. The same principle applies to
unsafe traits. When users implement unsafe traits defined
by a library, they are responsible for ensuring correctness.
However, if the library itself provides implementations of
unsafe traits for use by its clients, it must guarantee that
these implementations do not expose unsafe behavior.

Thus, identifying genuine memory safety bugs in Rust
libraries requires harnesses that target URAPIs and rely on
library-defined implementations of unsafe traits. Conversely,
harnesses that directly invoke UAPIs or implement unsafe
traits without adhering to their safety contracts can lead to
false positives.

3. Challenges of Fuzzing Rust Libraries

Fuzzing Rust’s ecosystem, which is primarily composed
of libraries, requires generating harnesses that invoke library

APIs with arguments derived from the fuzzer’s input. While
C functions often accept arguments constructed directly
from raw bytes, Rust’s expressive type system and language-
specific features, such as traits, demand more sophisticated
handling.

Furthermore, although Rust confines potential memory
vulnerabilities to unsafe code—unlike C, where all code is
vulnerable—this introduces unique challenges in identifying
and reaching that code. Unsafe code in Rust is governed by
safety contracts that developers are expected to uphold. A
memory violation caused by misusing a UAPI or incorrectly
implementing an unsafe trait is typically attributed to the
user for violating these contracts and does not constitute a
true memory bug. Additionally, Rust fuzzers [5], [36] may
classify panics and assertion failures as bugs, even when
intentionally inserted by library developers. While such
failures may indicate logical errors, they do not represent
exploitable memory corruption and should be filtered out.

Generating harnesses to expose memory vulnerabilities
in Rust requires overcoming several key challenges. Based
on our analysis of real-world bugs in Rust libraries, in this
section, we explain these key challenges and illustrate them
with concrete examples.

1 impl UnsafeSer for StructA {
2 fn process(&self) -> Vec<u8> {
3 unsafe { /* Unsafe operations */ }
4 }
5 }
6
7 impl SafeSer for StructA {
8 fn process(&self) -> Vec<u8> { ... }
9 }

10
11 pub unsafe fn unsafe_read(addr: usize) -> u8 {
12 /* Unsafe operations */
13 }
14
15 pub fn unsafe_ser<T: UnsafeSer>(data: T) -> Vec<u8> {
16 data.process()
17 }
18
19 pub fn safe_ser<T: SafeSer>(data: T) -> Vec<u8> {
20 data.process()
21 }

Listing 1: Callee target resolution influenced by trait bounds.

Challenge 1 (C1): Targeting Unsafe Reaching APIs and
Memory Corruption Vulnerabilities. The use of unsafe
code can cause memory violations. As discussed in Sec-
tion 2, for a memory violation to be considered a true
memory bug, it must occur when the users interact solely
with the library’s safe APIs. Thus, identifying the URAPIs
of a library is essential, but challenging.

A first challenge lies in determining which functions
are actually part of a library’s public API, as this often
requires analyzing more than just the file where a function is
defined. In Rust, a function marked with the pub keyword
may still be inaccessible to users if it resides in a private
module [44]. Additionally, public re-exports of private mod-
ules and feature-gated code—which can alter the visible API
surface across builds—introduce further complexity.

Even after identifying the exported APIs, determining
which ones are URAPIs is non-trivial. Treating every API
that reaches unsafe code as a URAPI can lead to false
positives during fuzzing, especially if UAPIs are invoked

directly in the harness. Avoiding this requires a more tar-
geted control-flow analysis of the library. This analysis
presents additional challenges. As shown in Listing 1, both
unsafe_ser and safe_ser call process, but the
method invoked depends on the trait bound—UnsafeSer
or SafeSer. Resolving the correct callee requires analyz-
ing the caller’s type context, which is further complicated
by the use of dynamic dispatch [8]. Finally, beyond false
positives from misuse of UAPIs, fuzzers may also classify
crashes from developer panics and assertions as bugs [39].
To avoid this, the fuzzer must be configured to ignore non-
memory corruption bugs.

To address these challenges, deepSURF performs dedi-
cated analysis to determine unsafe code reachability, identify
URAPIs, and generate fuzz harnesses that target them. These
harnesses are then tested using a specially configured fuzzer
that ignores crashes caused by panics or assertions that
do not indicate memory corruption. In the case of List-
ing 1, deepSURF generates a harness only for the URAPI
unsafe_ser, and not for the UAPI unsafe_read or
the function safe_ser that does not reach unsafe code.

1 impl<T> TooDee<T> {
2 pub fn with_capacity(cap: usize) -> TooDee<T>
3 pub fn init(c: usize, r: usize, val: T) -> TooDee<T>
4 pub fn from_vec(c: usize, r: usize, v: Vec<T>) -> TooDee<T>
5 pub fn insert_row<I>(&mut self, ...)
6 }

Listing 2: TooDee constructors and URAPI insert_row.

Challenge 2 (C2): Supporting Complex Types. Rust
supports the definition of complex types through structs
and enums. Unlike in C, where such types can often be
instantiated directly from raw bytes, Rust’s visibility rules
typically require using specialized functions to construct
instances [45]. However, Rust does not have constructors
as a built-in language construct. Instead, any library API
function with the appropriate inputs and output can act as a
constructor for a complex type.

Identifying APIs that serve as constructors for a given
complex type requires type analysis and type matching, tasks
made non-trivial by Rust’s expressive type system. Even
after identifying compatible constructors, selecting which
ones to include in a harness remains a challenging decision.
The selection is often heuristic-driven and constrained by the
number of harnesses to generate, or whether a constructor
has already been used in another harness [23], [50]. Our ex-
periments show that constructor choice significantly affects
both the likelihood and speed of bug discovery. However,
it is not possible to statically determine which constructor
will be more effective in triggering a bug. Listing 2 shows
three constructors for the TooDee object from the toodee
crate, along with the URAPI function insert_row. The
choice of constructor has a substantial impact on the time
required to trigger the double-free bug in insert_row:
objects created with init trigger the bug within seconds,
whereas those created using from_vec may take over
five hours. Interestingly, empty objects constructed with
with_capacity do not trigger the bug at all.

To address this, deepSURF leverages rustc’s type
analysis to identify and extract constructor APIs for complex

type arguments. These constructor candidates are passed to
the integrated LLM, which uses its semantic understand-
ing to select a heterogeneous subset. The resulting LLM-
augmented harness allows the fuzzer to dynamically choose
among these constructors based on its input, prioritizing
those more likely to trigger bugs.
Challenge 3 (C3): Handling Generics Types. Rust sup-
ports generic data types, enabling reusability through type
parameters. Generic types often have trait bounds specifying
the behavior a type must implement. When an API expects
a generic type, the harness must substitute it with a concrete
type that satisfies the required trait bounds. This substitution
is complex, as trait definitions may be scattered across the
target or external libraries and some bounds may depend
on supertraits [8]. Such complexity requires robust static
analysis to extract complete trait information.

To address this challenge, deepSURF performs trait
analysis at compile time to collect all required bounds for
generic arguments. During harness generation, it uses this
information to generate custom types with corresponding
trait implementations that substitute the generic arguments.
These custom types allow the fuzzer to control traits be-
havior based on its input. For generics bounded by unsafe
traits, deepSURF prompts the integrated LLM to identify
compatible library-defined types for substitution [8], thereby
avoiding violations of safety contracts due to incorrect cus-
tom implementations (see Section 2).

1 struct MyRead(());
2 impl Read for MyRead {
3 fn read(&mut self, _: &mut [u8]) -> Result<usize> {
4 Ok(131313) // Return always the same big number
5 }
6 }
7 fn main() {
8 let mut hashes = BlockHashes::empty(32);
9 let diff = hashes.diff_and_update(MyRead(()));

10 }

Listing 3: PoC for the RUSTSEC-2021-0094 BOF bug.

Challenge 4 (C4): Simulating Interaction with User-
Defined Code. Rust libraries often allow users to define
custom behavior through closures and traits. Closures are
anonymous functions that can capture variables from their
surrounding scope and are typically passed as arguments to
enable dynamic behavior. Traits, by contrast, define required
functions that describe a behavior types must implement.
Users can create custom types with specific trait implemen-
tations, allowing libraries to adapt their functionality.

Our analysis of real-world memory safety bugs shows
that library developers often fail to fully account for the
range of behaviors that user-defined trait implementations
or closures may exhibit—especially when interacting with
unsafe code. For example, if a user-defined closure panics
inside an unsafe block of the library, the Rust runtime
will unwind the stack and invokes destructors for all live
variables. If the unsafe code has duplicated ownership of
any of these variables without proper safeguards, this can
lead to double-free bug.

For instance, an incorrect custom implementation of the
read function from the Read trait can trigger a buffer
overflow in the rdiff crate (Listing 3). In this case, the

vulnerable URAPI diff_and_update takes a generic
argument bounded by the Read trait. During execution, it
creates a Window object with vector lengths determined by
the user-provided read function, using unsafe blocks to set
these lengths without validation (Listing 4). If the developer
supplies a Read implementation that reports reading more
bytes than the buffer can hold, the library will incorrectly al-
locate vectors with lengths exceeding their capacity, leading
to memory corruption.

To simulate the execution of user-defined code within the
library’s context, deepSURF generates custom functions that
substitute trait implementations or closures, adhering to the
correct syntax for each case. These functions are designed
so that their behavior is driven by the fuzzer, allowing them
to mimic user-defined logic that may panic or return edge-
case values within the expected return type—conditions that
can trigger bugs in the tested library.

1 impl<R: Read> Window<R> {
2 pub fn new(mut r: R, b_sz: usize) -> Result<Window<R>>{
3 let mut back = vec![0; b_sz];
4 let size = r.read(back.as_mut_slice())?;
5 unsafe { back.set_len(size); }
6 // Similar unsafe length set for front
7 Ok(Window {
8 front,
9 back,

10 ...

Listing 4: Unsafe length setting in Window constructor.

Challenge 5 (C5): Supporting Sequences. Although some
bugs can be triggered by fuzzing a single API, others require
exercising sequences of API calls, where each call sets up
conditions for a more complex bug. For example, Listing 5
shows a POC for a heap buffer overflow bug due to an
off-by-one error in the unsafe code of remove of the
simple-slab crate. Notably, this bug is only triggered
after inserting at least two items into a Slab object before
calling remove.

The three APIs (with_capacity, insert, and
remove), encapsulate unsafe code and are therefore identi-
fied as URAPIs. However, approaches that fuzz each URAPI
in isolation fail to expose the bug described above. This
example highlights that targeting a single URAPI is often
insufficient; instead, harnesses must be designed to fuzz
a target API within meaningful sequences of related API
calls. For instance, as shown in the example, if we want to
target a method called remove (removing elements from a
collection), it is reasonable to first call one or multiple times
the method insert on the same collection.

Existing methods extract fixed sequences of APIs using
static analysis and dependency graphs, aiming to maximize
API coverage. While these sequences are often syntactically
valid, they may yield API combinations that cannot rep-
resent realistic usage scenarios. To address this limitation,
deepSURF leverages LLMs to generate harnesses that em-
bed URAPIs within semantically relevant sequences of other
API calls. For example, in the case of the simple-slab
crate, if the LLM is provided with appropriate documen-
tation, it can infer that Slab implements a list-like data
structure and, accordingly, group operations such as inser-
tion and removal within the same harness.

Although LLMs are effective at generating semantically
coherent API groupings, they are less suited for exploring
code paths or identifying paths with high coverage or a
greater likelihood of exposing bugs [11]. To address this,
deepSURF prompts the LLM to generate harnesses in which
both the length and composition of API sequences are
parameterized by the fuzzer’s input. This enables the fuzzer
to dynamically compose sequences—skipping, repeating, or
prioritizing API calls—based on runtime feedback.

1 struct StructA(String);
2
3 fn main() {
4 let mut slab = Slab::with_capacity(2);
5 slab.insert(StructA("Hi".to_string()));
6 slab.insert(StructA("Bye".to_string()));
7 slab.remove(0); // Crashes due to HBOF
8 }

Listing 5: PoC for the RUSTSEC-2020-0039 BOF bug.

Existing Solutions. As shown in Table 1, state-of-the-
art Rust fuzzing tools face key limitations in addressing
the explained challenges, hindering their ability to uncover
memory safety bugs.

None of the existing tools configure the fuzzer to ig-
nore non-memory corruption bugs, leading to false positives
when crashes caused by panics or assertions are reported.
Only RPG and RUG employ strategies to target unsafe code,
but they may also directly fuzz UAPIs without preserving
their safety invariants, which can also result in false posi-
tives. While all four tools support complex type arguments,
some struggle when these types are nested within container
types such as vectors. Although several approaches support
generic types, none supports user-defined code simulation
through custom trait implementations.

Regarding C5, RUG generates sequences of APIs needed
to construct arguments for each target function but does not
embed the target function itself within broader sequences
of semantically related APIs. Other tools use static analysis
to build API dependency graphs and extract sequences by
maximizing API coverage, prioritizing unsafe functions,
or mimicking real-world usage patterns. However, these
approaches impose fixed sequences that often miss “se-
mantic” connections between related APIs (e.g., insert
and remove) and may combine unrelated or already well-
tested APIs. This limits the fuzzer’s ability to dynamically
explore alternative interactions that could be more effective
at exposing bugs.

In summary, as we will show in Section 5, while these
tools improve test coverage and have identified some bugs,
they have not yet demonstrated effectiveness in uncovering
memory corruption vulnerabilities.

4. deepSURF Design

The design of our tool is illustrated in Figure 1. deep-
SURF consists of three key components: Static Analysis,
Harness Generation, and Dynamic Analysis. The tool
processes a Rust library as input and attempts to detect
memory safety vulnerabilities affecting it.

Tool C1 C2 C3 C4 C5
RULF ✗ G# ✗ ✗ G#

RPG G# G# ✓ ✗ G#
FRIES ✗ G# ✗ ✗ G#

RuMono ✗ ✓ ✓ ✗ G#
RUG G# ✓ ✓ ✗ G#

deepSURF ✓ ✓ ✓ ✓ ✓

TABLE 1: Tools comparison against the challenges (C1-C5).
Symbols indicate: full (✓), partial (G#) or no (✗) support.

Unsafe

Reachability
Analysis

Static Analysis

Rust Library Crate

Memory Bugs

Arguments
Analysis

Static
Harness

Generation
Fuzzing

Harnesses Generation Dynamic Analysis

deepSURF

LLM-based
Augmentation

Figure 1: The workflow of deepSURF.

4.1. Unsafe Reachability Analysis

First of all, deepSURF needs to identify all URAPIs in
the provided Rust library, since these are the functions that
can potentially trigger the execution of unsafe code. This
process consists of two steps: (a) detecting all locations
of unsafe code within a library and (b) finding publicly
accessible safe functions that can reach those locations.

4.1.1. Identifying Unsafe Usage and UEFs. In a Rust
library, unsafe code can be found in unsafe blocks and in
unsafe functions (i.e., code blocks and functions marked by
the keyword unsafe). deepSURF focuses specifically on
unsafe code that is reachable through safe functions (SFs),
as directly calling UFs may lead to false positives (see
Section 2). Therefore, deepSURF identifies UEFs within
the library, which act as transition points from safe to
unsafe code. To achieve this, deepSURF utilizes rustc’s
unsafety checking pass to detect all occurrences of unsafe
blocks. It then leverages Rust’s High-Level Intermediate
Representation (HIR) to identify safe functions containing
these unsafe blocks, forming the set of UEFs in the library.

4.1.2. Detecting Public Entry Points to UEFs. The next
step for deepSURF is to identify all safe API functions in
the library that can reach the previously-extracted UEFs.
We focus on safe APIs capable of reaching UEFs since
they serve as public entry points for the harness to access
unsafe code when the fuzzer provides appropriate inputs. To
identify call paths between safe APIs and UEFs, deepSURF
needs to build a Control Flow Graph (CFG) for the input
library through the following steps.

Function Call Resolution. First, deepSURF analyzes
the calling relationships between functions in the library
by leveraging the Mid-Level Intermediate Representation
(MIR) of each function to record all caller-callee pairs. It
identifies three types of function calls: (a) direct calls with
a single target, (b) direct calls with multiple targets, and (c)

indirect calls through function pointers. deepSURF does not
perform pointer analysis, so type (c) is not supported. Direct
calls with single target are resolved at compilation time us-
ing the context in which the call occurs. deepSURF extracts
this information from rustc to record the corresponding
caller-callee pairs. Regarding calls with multiple potential
targets at compile time, which require dynamic dispatch,
deepSURF handles such cases by over-approximating and
recording a caller-callee pair for each possible callee.

CFG Construction and URAPIs Extraction. After
collecting all caller-callee pairs, deepSURF constructs the
CFG involving all functions of the library. Next, it uses the
unique identifiers assigned during HIR analysis to locate the
UEFs within the CFG. Starting from each UEF, deepSURF
performs a reverse traversal of the graph using breadth-first
search (BFS), moving from callees to callers until it reaches
functions with no further callers. During this traversal, any
function that is both public and safe is added to the set
of URAPIs. By the end of this process, the URAPIs form
a subset of the library’s public API: safe functions that
can reach unsafe code. This set becomes the fuzzing target,
addressing C1 (see Section 3).

4.2. Arguments Analysis

Rust supports a diverse range of types, from primitive
types such as integers to common types found in other
programming languages, such as structs and generics, as
well as Rust-specific types like closures. deepSURF is de-
signed to handle this variety to enable effective fuzzing
of URAPIs with diverse inputs, addressing the limitations
of state-of-the-art tools in supporting different argument
types. A complete list of the data types that deepSURF can
generate using fuzzer’s input is provided in Appendix A.

4.2.1. Complex Types Support. Rust uses complex types
such as structs and enums to define new types within a
library. Since deepSURF aims to support a wide range of
URAPIs, including those requiring complex type arguments,
it must identify ways to generate instances of these types to
invoke the respective URAPIs during testing.

Instantiation of Complex Types in Rust. Structs group
related data into a single complex type. Although structs
can be initialized by directly assigning values to their public
fields, this approach is discouraged as it bypasses encapsula-
tion. Instead, struct fields in Rust are by default private, and
constructor functions are used for validated initialization.
Similarly, enums define a type that can represent one of
several variants, each of which can optionally hold data.
The variants of a public enum can be directly assigned, or
constructors can be used for initialization.

Identifying Constructors of Complex Types. Since
constructors are not a built-in language construct in Rust,
deepSURF identifies candidate constructors for structs and
enums by searching for functions that meet specific criteria.
We qualify a function as a candidate constructor for a
complex type if it satisfies all of the following: (a) it is
public, (b) none of its input arguments are of the same

type as the target complex type (nor contain it as an inner
type), and (c) its return type matches the target type—either
directly, wrapped (e.g., in an Option), or as a field within a
tuple. To verify condition (a), deepSURF uses the visibility
analysis provided by rustc. For (b) and (c), it recursively
analyzes input and output types (see §4.2.3), leveraging
unique type identifiers from the HIR and internal structures
of rustc’s type checker for precise type matching. In the
case of enums, deepSURF also collects and inspects their
variants, analyzing any inner data types. Collectively, these
steps help address C2 (see Section 3).

4.2.2. Generic Types Support. Based on our analysis of
real-world memory safety bug PoCs, nearly 90% of the
involved APIs use generic arguments, most bounded by
traits. Additionally, we observed that many of these bugs
stem from two factors: (a) substituting these generics with
user-defined types, and (b) providing faulty custom trait
implementations. This highlights the prevalence of generic
arguments in Rust libraries and their connection to memory
bugs when misused. As deepSURF aims to generate har-
nesses that expose memory safety vulnerabilities, supporting
generic arguments and trait bounds is essential.

Collecting Trait Bounds. When handling APIs with
generic type arguments, deepSURF must collect their trait
bounds to ensure valid substitutions. Trait bounds define
the traits a concrete type must implement to substitute the
generic argument. These bounds may also include super-
traits—traits a type must implement as a prerequisite to the
current trait. deepSURF utilizes metadata of the trait analy-
sis performed by rustc to collect the trait (and supertrait)
bounds for each generic argument.

Collecting Trait Functions and Associated Types.
Traits in Rust define required behavior through trait func-
tions that a type must implement to satisfy the trait. Some
traits also declare associated types—types tied to the trait
and used within its context. Like generic parameters, asso-
ciated types can have trait bounds and must be substituted
with concrete types during harness generation. Additionally,
APIs may impose constraints that link associated types to
generic parameters, creating dependencies between them.

To support generic type substitution required by C3,
deepSURF collects detailed information about all rele-
vant traits—including their trait functions and associated
types—by leveraging rustc’s APIs. In Rust, traits with
multiple functions often include default implementations,
meaning only a subset must be explicitly implemented for
a type. deepSURF records both the required trait func-
tions and any default ones that can be overridden by user-
defined implementations. This information is also essential
for addressing C4, guiding the substitution of generics and
associated types with custom types and implementations of
the required and optionally overridden trait functions.

4.2.3. Recursive Type Analysis. To invoke URAPIs, the
harness must construct argument types from the fuzzer’s
byte stream input. While trivial for primitives, this is more
complex for structs, generic types, and container types (e.g.,

vectors). To ensure correct invocation of library functions,
deepSURF performs recursive type analysis on function
arguments during static analysis and leverages rustc’s
type-checking system for precise type matching. For generic
and complex types, deepSURF analyzes trait function or
constructor arguments, respectively. For container types, it
recursively analyzes inner types. The pseudocode for this
recursive analysis is provided in Appendix A.

1 pub struct Shape{ sid: u64 }
2 impl Shape {
3 pub fn new(sid: u64) -> Self { Self { sid } }
4 pub fn zero() -> Self{ Self{ sid: 0 } }
5 pub fn foo<S: STrait, U: UTrait>(&self, i1: S, i2: U) {
6 unsafe { ... }
7 }
8 }
9 pub trait STrait{ fn desc(&self) -> String; }

10 pub unsafe trait UTrait{ unsafe fn u_desc(&self) -> String; }
11 impl STrait for Shape{
12 fn desc(&self) -> String { ... }
13 }
14 unsafe impl UTrait for Shape{
15 unsafe fn u_desc(&self) -> String { ... }
16 }

(a) Example library foo.

URAPI
Complex Type
Constructor
Generic Type
Trait
Trait Function
Primitive Type
Reference Type

foo

Shape U

S

STrait
desc

new

u64

zero

UTrait

&

Self& Self

u_desc

(b) deepSURF’s dependency tree for URAPI foo.

1 struct CustomTy0(String);
2 struct CustomTy1(String);
3
4 impl STrait for CustomTy0 {
5 fn desc(&self) -> String {
6 if _to_u8(fz_data)%2 == 0{ panic!("INTENTIONAL PANIC!") }
7 return _to_string(fz_data);
8 }
9 }

10 unsafe impl UTrait for CustomTy1 {/*Similar to STrait*/}
11
12 fn main (){
13 fuzz!(|fz_data: &[u8]| {
14 let t0 = foo::Shape::zero();
15 let t1 = _to_string(fz_data);
16 let t2 = CustomTy0(t1);
17 /* Similar steps with the above for building t3*/
18 &t0.foo(t2, t3);
19 });
20 }

(c) Statically generated harness for the URAPI foo.

Figure 2: deepSURF’s static harness generation for foo.

4.3. Static Harness Generation

After completing the static analysis phase, deepSURF
uses the collected information to generate fuzz harnesses. It
streamlines this process for each URAPI by constructing a
dependency tree that captures the relationships among the
function’s arguments and their components. After building
the dependency tree, deepSURF generates harnesses by
performing a Depth-First Search (DFS) from the leaves up to

the root (URAPI), progressively constructing each argument
along the way.

Example. In Figure 2a, we present the example library
foo. We focus on harness generation for the URAPI foo;
a simplified version of its dependency tree appears in Fig-
ure 2b. The tree’s root is the target foo, with child nodes
for its argument types (Shape, S, U). These nodes connect
to their corresponding constructors or trait bounds.

Handling of Multiple Candidate Constructors. De-
pendency trees with multiple constructors per complex type
are split into separate dependency trees, where each complex
type is tied to a single constructor. To mitigate the expo-
nential growth of possible trees, the number of constructors
considered during this step is configurable.

Generating Arguments. For primitive type nodes, deep-
SURF directly converts the fuzzer’s input bytes into the
required types using helper functions. For generic nodes,
it substitutes all occurrences of the generic parameter with
custom concrete types. For complex types, it first generates
the constructor arguments, which uses to invoke the con-
structors. Listing 2c shows a harness generated for the foo
function: the complex type Shape is instantiated via its
zero constructor (line 14), while the generic parameters S
and U are replaced with CustomTy0 and CustomTy1, re-
spectively—custom structs that enable trait implementation.

Generating Custom Functions. To address C4, deep-
SURF generates custom implementations for all required
traits. Given the trait names and trait function signatures,
it synthesizes their bodies that produce return values of the
expected types, using the fuzzer’s input. At this stage, it
also implements unsafe traits, which temporarily introduces
unsafe code into the harness—a practice we should avoid
to prevent false positives (see Section 2). However, this
unsafe code is removed during the LLM augmentation stage.
Following a similar process, deepSURF generates custom
functions to substitute closures. As shown in Listing 2c,
deepSURF generates a custom implementation of the desc
method for the trait STrait. To simulate user-defined
behavior, the generated desc function uses the fuzzer’s
input to either trigger a panic—potentially exposing panic-
safety bugs—or return any value of the expected type.

4.4. LLM-based Augmentation

LLM

Statically
Generated
Harnesses

Fuzzing
Corpus

Harness
Selector

Harness
Augmenter

prompt Augmented
Harnesses

harness

harness

harnessharness

harness

harness
harness + feedback

compilation
error

Validity
Checker

Figure 3: deepSURF’s LLM harness augmentation.

The harnesses generated in the previous stage represent
a foundation for targeting the respective URAPIs, but they
do not fully address all the challenges we explained in
Section 1. Specifically, they lack support for initializing
complex types using multiple constructors (C2), fail to
substitute generic parameters with unsafe trait bounds using
library-defined concrete types (C3), and do not incorporate
semantically related API call sequences that involve the
targeted URAPI (C5). These limitations are addressed in
the current stage using LLMs.

Figure 3 outlines the steps deepSURF performs in this
stage. In summary, the Harness Augmenter attempts to use
an LLM to improve statically-generated harnesses, while the
Harness Selector optimally combines statically-generated
and LLM-generated harnesses.

Prompting the Model. The Harness Augmenter selects
a statically generated harness from the Statically Generated
Harnesses set, targeting a specific URAPI, and uses it to
prompt the LLM for an augmented version. When available,
we prioritize fetching statically generated harnesses that
compile successfully. If none exists for a given URAPI, we
fall back to non-compilable ones, which, based on our exper-
iments, often still provide sufficient structure for the LLM
to produce corrected and functional augmented versions.

Each prompt includes: (a) the fetched harness, (b) the
targeted URAPI, (c) metadata from static analysis, (d) rele-
vant documentation, and (e) augmentation instructions. The
static metadata includes available constructors for complex
types and the list of URAPIs defined in the library. Docu-
mentation—extracted via rustdoc—is included when in-
put token limits allow. The instructions guide the model on
how to augment the harness and outline side effects to avoid.

To fully address C2, we instruct the model to analyze
the list of compatible constructors, select a heterogeneous
subset it deems relevant, and modify the harness to support
instantiating complex types using any of these constructors.
The augmented harness includes a switch statement driven
by the fuzzer’s input to dynamically select among them.

As a final step in addressing C3, we prompt the model to
replace custom types used for generic parameters bounded
by unsafe traits with compatible, library-defined types that
already implement the required traits. Importantly, we di-
rect the model to preserve custom types wherever possible,
removing only those associated with unsafe traits. This is
crucial, as custom types are often paired with valuable
custom trait implementations that simulate user-defined code
execution (C4), so we aim to preserve as many of them as
possible—removing only those associated with unsafe traits.

Finally, to address C5, we instruct the model to identify a
set of semantically related APIs compatible with the targeted
URAPI, enabling the construction of meaningful API call
sequences. We also request that the generated harnesses use
the fuzzer’s input to dynamically determine the ordering of
these sequences rather than relying on fixed orderings.

Validating Augmented Harnesses. After receiving the
augmented harness (response) from the LLM, the Validity
Checker uses the Rust compiler as an oracle to determine
whether the harness compiles. If it does, the harness is added

to the Augmented Harnesses set, and the Harness Augmenter
is notified of the successful augmentation. In this case, the
feedback to the Harness Augmenter also includes a list of all
URAPIs invoked in the augmented harness. This list is then
used to decide future harness selection for augmentation.

However, the harness may fail to compile due to errors
introduced during augmentation or inherited from the orig-
inal statically generated version. In such cases, the Validity
Checker retries augmentation by updating the prompt: it
replaces the previous harness with the latest version and
appends the relevant compiler error message before re-
prompting the model. This process continues for a config-
urable number of tries. If all tries fail, the failure is recorded,
no augmented harness is stored, and the Harness Augmenter
proceeds to the next URAPI awaiting augmentation.

Harnesses Selection for LLM Augmentation and
Fuzzing Corpus Generation. deepSURF’s goal is to create
a corpus of fuzzing harnesses that targets unsafe code (C1)
and captures diverse and complex behaviors within the
fuzzed crate. However, generating too many harnesses risks
dispersing the fuzzer’s efforts and reducing its effective-
ness. Furthermore, statically-generated and LLM-generated
harnesses often reach different code paths in the fuzzed
code; thus, an appropriate combination of LLM-generated
and statically-generated harnesses should be included in the
final Fuzzing Corpus. For these reasons, we apply specific
harness selection policies both in the Harness Augmenter
and in the Harness Selector to choose which Statically
Generated Harnesses to augment and which harnesses to
include in the final Fuzzing Corpus.

Specifically, following the Harness Augmenter’s harness
selection policy we skip augmenting a statically generated
harness for URAPI A if another already augmented harness
invokes URAPI A. This arises when the LLM augments a
harness for URAPI B by including a call to URAPI A (e.g.,
when addressing C2 or C5). However, Statically Generated
Harnesses containing custom implementations are always
augmented. This decision is based on our observation that
such implementations, which simulate user-defined code
(C4), cannot be reliably generated by the LLM alone. In
contrast, when a statically generated harness with these
implementations is provided to the LLM, the LLM can often
successfully augment it while preserving its custom logic.

Regarding the Harness Selector, we apply the follow-
ing harness selection policy. First, we include in the final
Fuzzing Corpus all compilable LLM-augmented harnesses,
as these address all C1–C5. For URAPIs whose augmenta-
tion fails after the maximum number of attempts, we check
the set of Statically Generated Harnesses for compilable op-
tions and add up to four harnesses if available. Additionally,
for each URAPI involving custom functionality, we include
up to four compilable Statically Generated Harnesses, re-
gardless of whether augmentation succeeded (C4).

Appendix B and Appendix C evaluate alternative har-
ness augmentation and harness selection policies, and they
provide further justification for the chosen policies.

4.5. Fuzzing for Memory Bugs.

deepSURF dynamically tests the generated harnesses
using AFL++, delegating the task of finding bug-triggering
conditions to the fuzzer. While effective at detecting memory
bugs in Rust, fuzzing can produce false positives from
panics or asserts inserted by developers to enforce invariants
or handle errors [8], [39]. To prevent such cases from being
treated as crashes, deepSURF modifies afl.rs and enables
ASan [38] to detect non-crashing memory violations. Its out-
put is then used to filter out false positives caused by large
memory allocations. These measures ensure that fuzzing
focuses exclusively on memory corruption vulnerabilities,
fully addressing C1.

5. Evaluation

In this section, we evaluate deepSURF by addressing the
following three research questions:
RQ1: Can deepSURF automatically generate harnesses that

uncover memory safety bugs through fuzzing?
RQ2: How does deepSURF compare to state-of-the-art Rust

fuzzing tools in detecting memory safety bugs?
RQ3: How do the key components of deepSURF contribute

to its bug-finding capability and unsafe code coverage?

5.1. Experimental Setup

To evaluate deepSURF’s effectiveness in detecting mem-
ory bugs and to compare it against state-of-the-art ap-
proaches, we use the ERASAN dataset. ERASAN is a Rust-
specific sanitizer, and its dataset includes 272 library crates
from the RustSec repository [46], each containing real-world
memory safety issues [37]. We chose this dataset because
it is sufficiently large, includes well-documented memory
corruption bugs across diverse libraries, and has been used
in prior work [30], making it a heterogeneous and unbiased
foundation for deepSURF’s evaluation.

We ran our experiments on a machine equipped with
AMD EPYC 7B13 CPUs (112 cores, 2.2GHz) and 224GB
of memory, running Ubuntu 24.04. In all experiments, we
used DeepSeek-R1 with its default settings (temperature and
top-p = 1.0) and set the maximum number of prompt retry
attempts to 6. For static harness generation, we considered
up to 4 constructors per complex type, we selected depen-
dency trees using seeded random sampling and attempted to
compile up to 50.

5.2. Evaluation Results

RQ1: deepSURF’s Bug-Finding Capability. In this ex-
periment, we evaluate deepSURF on ERASAN’s dataset to
determine its ability to automatically generate harnesses that
uncover existing or new memory safety bugs. We fuzz each
of the generated harnesses for 24 hours using two AFL++

2. The xcb crate is excluded due to its dependency on external software.

Crate

#Detected
Memory Bugs

(New Bugs)
URAPI Coverage (#Harnesses)

deepSURF deepSURF RUG RPG RULF
algorithmica 1 100% (4) 100% (20) 0% (1) 0% (1)

arc-swap 0 55.6% (7) 22.2% (12) 0% (0) 0% (0)
tokio 0 69.2% (7) — 0% (0) 0% (0)

secp256k1 0 96.5% (92) — 31.4% (56) 20.9% (35)
bumpalo 0 96.4% (48) 64.3% (32) 35.7% (29) 35.7% (9)
toodee 4 (1) 90% (34) 28.3% (65) 0% (0) 0% (0)

nano arena 0 100% (1) 0% (15) — 0% (0)
stack dst 2 57.1% (8) 0% (3) 0% (0) 0% (0)

slice deque 5 (4) 95.3% (316) 64.7% (67) — 0% (0)
lru 0 80.8% (18) 0% (0) 0% (0) 0% (0)

rusqlite 0 84.2% (108) 0% (0) 2% (39) 1% (3)
stackvector 1 82.5% (44) 0% (0) 0% (0) 0% (0)
insert many 1 100% (3) 0% (0) 0% (0) 0% (0)

smallvec-0.6.6 1 87.5% (52) 0% (0) 0% (0) 0% (0)
smallvec-1.6.0 1 84.7% (56) 0% (0) 0% (0) 0% (0)

futures-task-0.3.3 0 78.3% (8) — 0% (0) 0% (0)
futures-task-0.3.5 0 68.2% (11) — 0% (0) 0% (0)

simple-slab 2 100% (3) 75% (6) 0% (0) 0% (0)
ordnung 2 (1) 97.1% (69) 45.7% (18) — 0% (0)

cbox 1 66.7% (11) 0% (2) 0% (0) 0% (0)
string-intern 0 100% (2) 33.3% (8) 33.3% (1) 33.3% (1)

http 0 86.4% (109) 48% (178) — —
qwutils 1 100% (10) 80% (143) 0% (0) 0% (0)

endian trait 1 100% (9) 100% (60) 0% (0) 0% (0)
pnet packet 1 100% (42) — ! 0% (21)

rdiff 1 100% (4) 0% (23) 0% (3) 0% (2)
through 1 100% (4) 50% (1) 0% (0) 0% (0)

Total 26 (6) 87.3% (1080) 21.8%(653) 4% (129) 3% (72)

TABLE 2: Bug-finding capability of deepSURF and com-
parison of URAPI Coverage and number of compilable gen-
erated harnesses with other Rust fuzzing tools. — signifies
cases where the tool crashes and ! denotes cases where
harness generation did not finish within 24 hours.

threads working together on the same target: one with ASan
and the other with CmpLog [20], as suggested by [1].

deepSURF generates harnesses that detect 26 memory
bugs by fuzzing, as detailed in the second column of Table 2.
These include double-free (DF), buffer overflow (BOF), ar-
bitrary memory accesses (SEGV), and use-after-free (UAF)
violations. Out of the 26 found memory corruption vulner-
abilities, 20 are previously-known which deepSURF detects
automatically without any human involvement. In addition,
deepSURF discovers 6 new memory bugs in three crates.

We have disclosed all the newly-discovered bugs to their
affected developers. After our reporting, the bug in toodee
has been patched and is pending RustSec ID assignment
and the bugs in the maintained fork3 of slice-deque
are pending patches.

Many of the memory bugs detected by deepSURF in-
volve intricate scenarios and advanced Rust features that
pose challenges for automated tools. For example, trigger-
ing 12 bugs requires custom function implementations that
panic or return unexpected values. Others, such as those in

3. The crate slice-deque has been unmaintained since 2020, but the
bugs we found also affect its maintained fork, slice-ring-buffer.

slice-deque and simple-slab, are triggered only by
specific API call sequences. These bug-triggering patterns
are typically found only in human-written PoCs, yet deep-
SURF generated harnesses containing them automatically.

deepSURF misses 11 reported memory bugs across the
remaining 11 crates. These require language features beyond
its current support, including async programming, multi-
threading, and sequences of function calls that involve not
only library-defined APIs but also other internal operations
like unexpected calls to std::mem::forget.

RQ1: deepSURF identified 26 memory safety bugs (in-
cluding 6 previously-unknown) by fuzzing the harnesses
that it automatically generated.

RQ2: Comparison with State-of-the-Art Tools. We eval-
uated existing Rust fuzzing tools on our dataset to compare
their bug-finding capabilities with deepSURF. Specifically,
we ran RUG [11], RPG [50] and RULF [23] to generate
harnesses for the libraries in our dataset and fuzzed these
targets to compare their findings with deepSURF. For this
comparison, the other tools were tested with their original
settings. We could not test RuMono [54] and FRIES [51], as
their code was not publicly available at the time of writing.

None of the other tools were able to automatically
expose any of the bugs that deepSURF uncovered in our
dataset. Moreover, as shown in Table 2, deepSURF achieved
a high overall URAPI Coverage (see Section 2) of 87.3%,
while RUG, RPG, and RULF achieved just 21.8%, 4%,
and 3% respectively. This significant difference highlights
deepSURF’s focus on fuzzing unsafe code reachable through
APIs, along with its broad support for Rust data types,
enabling it to cover a substantially larger set of potentially
vulnerable APIs.

RUG was the best-performing tool among the existing
ones, generating harnesses of relatively high quality. While it
failed to detect any memory corruption vulnerabilities when
tested with its default fuzzing engine (libFuzzer [26]), we
observed that it could potentially detect one of the bugs in
the toodee crate if used with AFL++. In contrast, RULF
and RPG exhibit limited argument-type support, preventing
them from fully addressing C2 and C3. As a result, their
ability to fuzz complex libraries with diverse API argument
types is limited.

None of the existing tools fully addresses C4 (support
for custom implementations simulating user-defined logic)
or C5 (support for generating semantically-related complex
API sequences), which are critical for detecting complex
memory corruption vulnerabilities. Moreover, all three tools
failed to properly address C1, since they produced false pos-
itives due to crashes unrelated to actual memory safety bugs
either by directly invoking unsafe code without preserving
safety invariants or due to incorrect handling of panics and
assertions. Finally, RUG and RPG failed to run on five
crates, and RULF on one, due to crashes, timeouts, or errors
caused by unimplemented features or implementation errors.

RQ2: deepSURF outperforms state-of-the-art Rust fuzzing
tools in detecting memory corruption vulnerabilities by
supporting complex sequences of APIs with diverse and
complex argument types, enabling it to detect 26 memory
safety bugs that other tools fail to uncover.

RQ3: Effectiveness of deepSURF’s Components. We per-
formed an ablation study to assess the impact of the three
core components of deepSURF: (1) static analysis for static
harness generation, (2) LLM-based augmentation, and (3)
the harness selection policies. We fuzz three crates from
our dataset, which require diverse harness characteristics to
reveal memory bugs. We compared the bug-finding capabil-
ity and unsafe code coverage deepSURF achieves in these
crates against four configurations. deepSURF-static disables
LLM-based augmentation, while deepSURF-llm omits static
harness generation. Details regarding all the tested con-
figurations, along with further discussion, are provided in
Appendix C.

Our results show that deepSURF achieves the high-
est bug-finding capability—detecting seven memory corrup-
tion vulnerabilities—and the highest unsafe code coverage
(86.2%) when combining static analysis with LLM-based
augmentation. In contrast, deepSURF-llm and deepSURF-
static detected only two and three bugs, with unsafe code
coverage of 72.2% and 32.7%, respectively. Moreover, the
default harness selection policy (see Section 4.4) detected
one additional bug compared to the second-best configura-
tion.

RQ3: deepSURF performs best when combining static
analysis with LLM integration, as each component con-
tributes uniquely and synergistically to its effectiveness.

6. Related Work

Several approaches have been proposed by researchers
to identify bugs in Rust code. Static analysis tools such as
Rudra [7] and Yuga [31] scan Rust source code to identify
specific bug patterns and have uncovered numerous memory
safety issues [17], [18]. However, these tools are limited
to detecting specific bug types, suffer from a high false
positive rate, and require manual effort to validate results
and develop PoCs.

Dynamic analysis, which tests programs by execut-
ing them, has also been used in this domain. Specifi-
cally, sanitizers like ASan [38] instrument code to detect
bugs during execution but introduce performance overhead.
ERASAN [30] mitigates this overhead by leveraging safety
checks already performed by rustc, but it cannot detect
bugs on its own and must be integrated with fuzzers or man-
ually written test cases. Grey-box fuzzers such as AFL++
[20] and libFuzzer [26] use coverage feedback to discover
more bugs and are available in Rust via specific crates [5],
[36]. However, since Rust code is typically distributed as
libraries, it must first be harnessed. SyRust [41] synthesizes
well-typed API call sequences by modeling Rust’s type
system, but its scalability and lack of input mutation limit its

testing power. CrabTree [40] extends SyRust with support
for traits, closures, and integrates fuzzing, using feedback
to guide test synthesis toward sequences that improve cov-
erage and introduce new types. However, its effectiveness
depends heavily on user-provided input templates, reducing
automation. In contrast, deepSURF fully automates harness
generation, eliminating the need for developers to under-
stand library internals.

Some works have aimed to automate Rust fuzz harness
generation. RULF [23] models API relationships with a
dependency graph to generate harnesses. FRIES [51] im-
proves RULF’s scalability by fuzzing API sequences that
reflect real-world usage. RPG [50] and RuMono [54] aim
to maximize code coverage by supporting generics and
traits, with RPG also targeting unsafe code. However, none
has detected memory corruption bugs. RUG [11] combines
LLMs and fuzzing to generate high-quality unit tests but
primarily focuses on improving test coverage and is not
well-suited for detecting memory safety bugs. deepSURF
overcomes these limitations by targeting key challenges that,
based on our analysis of real-world Rust vulnerabilities,
underlie memory violations.

7. Conclusion

Fuzzing Rust for memory bugs is challenging due to its
complex type system and the need for harness generation. In
this work, we present deepSURF, a tool that automatically
generates and fuzzes LLM-augmented harnesses to expose
memory bugs in Rust libraries. deepSURF targets code
with potential memory corruption risks, introduces novel
approaches to support Rust data types and leverages LLMs
to support complex sequences of semantically related APIs.
Evaluated on 27 crates, deepSURF detected 26 memory
corruption vulnerabilities, including 6 previously-unknown,
outperforming existing tools.

References

[1] AFL++ Developers. Fuzzing in depth. https://aflplus.plus/docs/
fuzzing in depth/, 2023. Accessed: 2025-06-02.

[2] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller,
and Alexander J. Summers. How do programmers use unsafe rust?
Proc. ACM Program. Lang., 4(OOPSLA), November 2020.

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Hen-
ryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael
Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

[4] Rust Fuzzing Authority. Add persistent mode to afl.rs. https://github.
com/rust-fuzz/afl.rs/pull/137, 2018. GitHub pull request.

[5] Rust Fuzzing Authority. afl.rs: Fuzzing rust code with american fuzzy
lop. https://github.com/rust-fuzz/afl.rs, 2022. Accessed: 2024-12-07.

[6] Rust Fuzzing Authority. Add cmplog support to afl.rs. https://github.
com/rust-fuzz/afl.rs/pull/392, 2023. GitHub pull request.

[7] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Tae-
soo Kim. Rudra: Finding memory safety bugs in rust at the ecosystem
scale. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 84–99, New York,
NY, USA, 2021. Association for Computing Machinery.

[8] The Rust Programming Language Book. The rust programming
language. https://doc.rust-lang.org/book. Online documentation.

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-
rique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri
Burda, Nicholas Joseph, and Greg Brockman et al. Evaluating large
language models trained on code, 2021.

[10] Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng,
and Jianwei Yin. Chatunitest: A framework for llm-based test
generation. In Companion Proceedings of the 32nd ACM Interna-
tional Conference on the Foundations of Software Engineering, FSE
2024, page 572–576, New York, NY, USA, 2024. Association for
Computing Machinery.

[11] Xiang Cheng, Fan Sang, Yizhuo Zhai, Xiaokuan Zhang, and Taesoo
Kim. Rug: Turbo llm for rust unit test generation. In 2025 IEEE/ACM
47th International Conference on Software Engineering (ICSE), pages
634–634. IEEE Computer Society, 2025.

[12] The Rust Community. crates.io: The rust community’s crate registry.
https://crates.io/. Accessed: December 6, 2024.

[13] Miri Contributors. Miri: An interpreter for rust’s mid-level intermedi-
ate representation. https://github.com/rust-lang/miri, 2015. Accessed:
December 7, 2024.

[14] Cybersecurity and Infrastructure Security Agency (CISA). The case
for memory safe programming: Roadmaps for safer software. https:
//www.cisa.gov/case-memory-safe-roadmaps, 2023. Accessed: 2024-
12-05.

[15] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, and Peiyi Wang
et al. Deepseek-r1: Incentivizing reasoning capability in llms via
reinforcement learning, 2025.

[16] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang,
and Lingming Zhang. Large language models are zero-shot fuzzers:
Fuzzing deep-learning libraries via large language models. In Pro-
ceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2023, page 423–435, New
York, NY, USA, 2023. Association for Computing Machinery.

[17] Rudra Developers. Rudra-poc. https://github.com/sslab-gatech/
Rudra-PoC?tab=readme-ov-file. Accessed: 2025-01-07.

[18] Yuga Developers. Yuga repository. https://github.com/vnrst/Yuga,
2024. Accessed: 2025-06-03.

[19] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. Is
rust used safely by software developers? In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
ICSE ’20, page 246–257, New York, NY, USA, 2020. Association
for Computing Machinery.

[20] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
AFL++ : Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association, August 2020.

[21] Rust for Linux Contributors. Rust-for-linux/linux. https://github.com/
Rust-for-Linux/linux, dec 2019. Accessed: December 5, 2024.

[22] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon, Junsik Kim,
Intae Jeon, Taesoo Kim, WooChul Shim, and Yong Ho Hwang.
Utopia: Automatic generation of fuzz driver using unit tests. In 2023
IEEE Symposium on Security and Privacy (SP), pages 2676–2692,
2023.

[23] Jianfeng Jiang, Hui Xu, and Yangfan Zhou. Rulf: rust library
fuzzing via api dependency graph traversal. In Proceedings of the
36th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’21, page 581–592. IEEE Press, 2022.

[24] Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chijin Zhou,
Yuheng Shen, Zhiyong Wu, Jingzhou Fu, Mingzhe Wang, Shanshan
Li, and Quan Zhang. When fuzzing meets llms: Challenges and
opportunities. In Companion Proceedings of the 32nd ACM Interna-
tional Conference on the Foundations of Software Engineering, FSE
2024, page 492–496, New York, NY, USA, 2024. Association for
Computing Machinery.

https://aflplus.plus/docs/fuzzing_in_depth/
https://aflplus.plus/docs/fuzzing_in_depth/
https://github.com/rust-fuzz/afl.rs/pull/137
https://github.com/rust-fuzz/afl.rs/pull/137
https://github.com/rust-fuzz/afl.rs
https://github.com/rust-fuzz/afl.rs/pull/392
https://github.com/rust-fuzz/afl.rs/pull/392
https://doc.rust-lang.org/book
https://crates.io/
https://github.com/rust-lang/miri
https://www.cisa.gov/case-memory-safe-roadmaps
https://www.cisa.gov/case-memory-safe-roadmaps
https://github.com/sslab-gatech/Rudra-PoC?tab=readme-ov-file
https://github.com/sslab-gatech/Rudra-PoC?tab=readme-ov-file
https://github.com/vnrst/Yuga
https://github.com/Rust-for-Linux/linux
https://github.com/Rust-for-Linux/linux

[25] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang.
Is your code generated by chatgpt really correct? rigorous evaluation
of large language models for code generation. In Proceedings of
the 37th International Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates
Inc.

[26] LLVM Project. Libfuzzer — a library for coverage-guided fuzz
testing. https://llvm.org/docs/LibFuzzer.html, 2024. https://llvm.org/
docs/LibFuzzer.html.

[27] Bob Lord. The urgent need for memory-safe soft-
ware products. https://www.cisa.gov/news-events/news/
urgent-need-memory-safety-software-products, 2023. Accessed:
2024-12-05.

[28] Yunlong Lyu, Yuxuan Xie, Peng Chen, and Hao Chen. Prompt fuzzing
for fuzz driver generation. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’24, page 3793–3807, New York, NY, USA, 2024. Association
for Computing Machinery.

[29] Ian McCormack, Tomas Dougan, Sam Estep, Hanan Hibshi, Jonathan
Aldrich, and Joshua Sunshine. A mixed-methods study on the impli-
cations of unsafe rust for interoperation, encapsulation, and tooling.
https://arxiv.org/abs/2404.02230, 2024.

[30] Jiun Min, Dongyeon Yu, Seongyun Jeong, Dokyung Song, and
Yuseok Jeon. Erasan: Efficient rust address sanitizer. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 4053–4068, 2024.

[31] Vikram Nitin, Anne Mulhern, Sanjay Arora, and Baishakhi Ray.
Yuga: Automatically detecting lifetime annotation bugs in the rust
language. IEEE Trans. Softw. Eng., 50(10):2602–2613, August 2024.

[32] Alex Ozdemir. Unsafe in rust: The abstraction safety con-
tract and public escape. https://cs.stanford.edu/∼aozdemir/blog/
unsafe-rust-escape/, 2022. Accessed: 2025-06-04.

[33] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang.
Understanding memory and thread safety practices and issues in real-
world rust programs. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2020, page 763–779, New York, NY, USA, 2020. Association
for Computing Machinery.

[34] Alex Rebert and Christoph Kern. Secure by design: Google’s
perspective on memory safety. Technical report, Google Security
Engineering, 2024.

[35] The Register. Microsoft is rewriting core windows libraries in
rust. https://www.theregister.com/2023/04/27/microsoft windows
rust/, 2023. Accessed: December 5, 2024.

[36] Rust Fuzzing Authority. cargo-fuzz: A cargo subcommand for fuzzing
with libfuzzer! https://github.com/rust-fuzz/cargo-fuzz/. Accessed:
2025-01-07.

[37] S2-Lab. Erasan pocs. https://github.com/S2-Lab/ERASan/tree/main/
poc. Accessed: 2025-01-10.

[38] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. Addresssanitizer: a fast address sanity checker. In
Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, page 28, USA, 2012. USENIX Asso-
ciation.

[39] Diane B. Stephens, Kawkab Aldoshan, and Mustakimur Rahman
Khandaker. Understanding the Challenges in Detecting Vulnera-
bilities of Rust Applications . In 2024 IEEE Secure Development
Conference (SecDev), pages 54–63, Los Alamitos, CA, USA, October
2024. IEEE Computer Society.

[40] Yoshiki Takashima, Chanhee Cho, Ruben Martins, Limin Jia, and
Corina S. Păsăreanu. Crabtree: Rust api test synthesis guided by
coverage and type. Proc. ACM Program. Lang., 8(OOPSLA2),
October 2024.

[41] Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S.
Păsăreanu. Syrust: automatic testing of rust libraries with semantic-
aware program synthesis. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and
Implementation, PLDI 2021, page 899–913, New York, NY, USA,
2021. Association for Computing Machinery.

[42] OSS-Fuzz Team. Fuzz target generation using llms. https://google.
github.io/oss-fuzz/research/llms/target generation/. Accessed: 2025-
05-28.

[43] The Rust Reference. Behavior considered undefined. https://
doc.rust-lang.org/reference/behavior-considered-undefined.html. Ac-
cessed: 2024-12-21.

[44] The Rust Reference. Visibility and privacy. https://doc.rust-lang.org/
reference/visibility-and-privacy.html. Accessed: 2025-05-26.

[45] The Rust Team. Rust by example - struct visibility. https://doc.
rust-lang.org/rust-by-example/mod/struct visibility.html. Accessed:
2025-05-26.

[46] The RustSec Advisory Database. Rustsec: A security advisory
database for rust. https://rustsec.org. Accessed: 2024-12-05.

[47] Gavin Thomas. A proactive approach to more se-
cure code. https://msrc.microsoft.com/blog/2019/07/
a-proactive-approach-to-more-secure-code/, 2019. Accessed:
2024-12-05.

[48] C. Zhang X. Wu, N. Cheriere and D. Narayanan. Rustgen: An
augmentation approach for generating compilable rust code with
large language models. In ICML 2023 Workshop on Deployment
Challenges for Generative AI, 2023.

[49] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and
Michael R. Lyu. Memory-safety challenge considered solved? an
in-depth study with all rust cves. ACM Trans. Softw. Eng. Methodol.,
31(1), September 2021.

[50] Zhiwu Xu, Bohao Wu, Cheng Wen, Bin Zhang, Shengchao Qin, and
Mengda He. Rpg: Rust library fuzzing with pool-based fuzz target
generation and generic support. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE ’24,
New York, NY, USA, 2024. Association for Computing Machinery.

[51] Xizhe Yin, Yang Feng, Qingkai Shi, Zixi Liu, Hongwang Liu, and
Baowen Xu. Fries: Fuzzing rust library interactions via efficient
ecosystem-guided target generation. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2024, page 1137–1148, New York, NY, USA, 2024.
Association for Computing Machinery.

[52] Zhiqiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
Xin Peng, and Yiling Lou. Evaluating and improving chatgpt for unit
test generation. Proc. ACM Softw. Eng., 1(FSE), July 2024.

[53] Cen Zhang, Yaowen Zheng, Mingqiang Bai, Yeting Li, Wei Ma,
Xiaofei Xie, Yuekang Li, Limin Sun, and Yang Liu. How effective are
they? exploring large language model based fuzz driver generation. In
Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2024, page 1223–1235, New
York, NY, USA, 2024. Association for Computing Machinery.

[54] Yehong Zhang, Jun Wu, and Hui Xu. Rumono: Fuzz driver synthesis
for rust generic apis. ACM Trans. Softw. Eng. Methodol., December
2024. Just Accepted.

https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products
https://www.cisa.gov/news-events/news/urgent-need-memory-safety-software-products
https://arxiv.org/abs/2404.02230
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-escape/
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-escape/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://github.com/rust-fuzz/cargo-fuzz/
https://github.com/S2-Lab/ERASan/tree/main/poc
https://github.com/S2-Lab/ERASan/tree/main/poc
https://google.github.io/oss-fuzz/research/llms/target_generation/
https://google.github.io/oss-fuzz/research/llms/target_generation/
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/reference/visibility-and-privacy.html
https://doc.rust-lang.org/reference/visibility-and-privacy.html
https://doc.rust-lang.org/rust-by-example/mod/struct_visibility.html
https://doc.rust-lang.org/rust-by-example/mod/struct_visibility.html
https://rustsec.org
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/

Appendix A.
Data Types Supported by deepSURF and Type
Analysis

Category Examples

1. Primitive Types
Integers (e.g., i32, usize), Booleans
(bool), Floating-point numbers (f64),
Characters (char)

2. Standard Library Types
Strings (String), Vectors (Vec<T>),
Options (Option<T>), Results
(Result<T, E>), Boxes (Box<T>)

3. Slices Common Slices (&[T]), String Slices
(&str)

4. Compound Types Arrays ([T; N]), Tuples ((T1, T2,
..., Tn))

5. Complex Types Structs, Enums

6. Reference and Pointer Types References (&T, &mut T), Raw Point-
ers (*const T, *mut T)

7. Generic Types

Type parameters (e.g., G) serve as place-
holders for compatible concrete types and
may require traits (G: Trait1 + Trait2
+ ... + Traitn)

8. Rust-Specific Types Closures, Trait-associated Types, Dy-
namic Trait Objects (dyn Trait)

TABLE 3: Rust data types supported by deepSURF. N refers
to an integer; T, T1, T2, ..., Tn refer to types from categories
1 to 7; Trait, Trait1, Trait2, ..., Traitn define
required behaviors; and E represents an error type.

Table 3 presents the full list of Rust data types sup-
ported by deepSURF, while Algorithm 1 outlines the recur-
sive analysis of function arguments performed by the tool.
This analysis enables deepSURF to extract URAPI argu-
ment types and identify appropriate generation strategies.
By marking already-analyzed functions, deepSURF avoids
infinite recursion and efficiently records and reuses type
information.

Algorithm 1 Recursive Type Analysis
1: function ANALYZE ARGS(fn)
2: for all arg ∈ fn.args do
3: ANALYZE ARG(arg)
4: end for
5: end function
6: function ANALYZE ARG(arg)
7: atype← GET ARG TYPE(arg)
8: if IS GENERIC(atype) then
9: for all fn ∈ GET TRAIT FNS(arg) do

10: MARK(fn); ANALYZE ARGS(fn)
11: end for
12: end if
13: if IS COMPLEX(atype) then
14: for all ctor ∈ GET CONSTRUCTORS(arg) do
15: MARK(ctor); ANALYZE ARGS(ctor)
16: end for
17: end if
18: if IS CONTAINER(atype) then
19: ANALYZE ARG(GET INNER ARG(arg))
20: end if
21: return atype
22: end function

Appendix B.
Harnesses Selector Policies

When experimenting with LLM-based augmentation, we
observed that, despite prompting the LLM against it, the

LLM often removes statically-generated custom functional-
ity during augmentation. However, such custom logic can
be crucial for exposing memory bugs during fuzzing since
it allows simulation of user-defined code execution (C4). To
avoid missing bugs that may be triggered only by statically
generated harnesses, the harness selection policy of the
Harness Selector includes up to four of the corresponding
statically generated harnesses in the Fuzzing Corpus for all
URAPIs with custom functionality.

Regarding the selection of up to four harnesses per
URAPI, we experimented with deepSURF-static (see Ap-
pendix C) generating different numbers of harnesses by
selecting varying numbers of dependency trees. Specifically,
we tested configurations generating up to one (1fh), two
(2fh), and four (4fh) harnesses per URAPI, and fuzzed
them for six hours. Table 4 summarizes the vulnerabilities
detected in each case. Results show that 4fh achieved the
best results. For this reason, we select up to four statically
generated harnesses per URAPI for inclusion in the Fuzzing
Corpus when the URAPI involves custom functionality or
when LLM-based augmentation fails.

RUSTSEC ID Crate Bug Type 1fh 2fh 4fh
RUSTSEC-2021-0018 qwutils DF ✓ ✓ ✓

RUSTSEC-2021-0028 toodee HBOF ✓ ✓ ✓

RUSTSEC-2021-0028 toodee DF ✗ ✓ ✓

* toodee HBOF ✗ ✓ ✓

* slice deque DF ✓ ✓ ✓

* slice deque DF ✓ ✓ ✓

RUSTSEC-2021-0047 slice deque DF ✗ ✓ ✓

RUSTSEC-2021-0094 rdiff HBOF ✓ ✓ ✓

RUSTSEC-2021-0053 algorithmica DF ✓ ✓ ✓

RUSTSEC-2021-0049 through DF ✓ ✓ ✓

RUSTSEC-2021-0039 endian trait DF ✓ ✓ ✓

RUSTSEC-2020-0167 pnet packet HBOF ✓ ✓ ✓

RUSTSEC-2020-0005 cbox SEGV ✓ ✓ ✓

RUSTSEC-2021-0042 insert many DF ✓ ✓ ✓

RUSTSEC-2020-0038 ordnung DF ✗ ✗ ✓

* ordnung UAF ✗ ✗ ✓

TABLE 4: Bug detection capability of deepSURF without
LLM-based harness augmentation. Each row corresponds to
a unique bug. ✓ indicates detection via fuzzing, ✗ indicates
failure to detect. * signifies a new bug discovered by deep-
SURF; otherwise, the assigned RustSec ID is provided.

Appendix C.
Results of the Ablation Study

To assess how deepSURF’s core components contribute
to its effectiveness in detecting memory safety bugs and
fuzzing unsafe code reachable through a library’s API, we
conducted an ablation study targeting three key components:
(1) static analysis for static harness generation, (2) LLM-
based augmentation, and (3) the harness selection policies.
We compared the full version of deepSURF against four
alternative configurations, each disabling or modifying one
of these components, as summarized in Table 5.

We evaluated these configurations on three crates from
the ERASAN dataset that contain memory safety bugs re-
quiring harnesses with diverse characteristics to be exposed.
Since each configuration yields a different number of har-
nesses, and to ensure a fair comparison, we allocated the
same total fuzzing time per configuration: 672 CPU-hours.
Thus, the fuzzing time per harness is computed as:

FuzzingTimePerHarness =
672

#Harnesses

This approach gives more fuzzing time per harness to
configurations that yield fewer harnesses. We fuzz each
target using two AFL++ threads in a master-slave setup:
one with ASan and the other with CmpLog.

To measure unsafe code coverage, we count code lines
within unsafe blocks or unsafe functions that are reachable
through safe APIs of the evaluated crates. We exclude empty
lines, comments, and feature-gated code not compiled under
the default feature set.

Configuration Components
Static Harness

Generation
LLM-based

Augmentation
Harness Selection Policy

deepSURF ✓ ✓
Skip URAPIs without
custom functionality

deepSURF-static ✓ ✗ —
deepSURF-llm ✗ ✓ —

deepSURF-skip-all ✓ ✓ Skip any URAPI
deepSURF-no-skip ✓ ✓ Do not skip

TABLE 5: Configurations used in the ablation study. Each
disables or modifies core components of deepSURF to
evaluate their impact. Symbols indicate: ✓= enabled, ✗ =
disabled, and — = not applicable.

C.1. Static vs. LLM-based Analysis

We distinguish the deepSURF-static and deepSURF-llm
configurations to evaluate the individual contributions of
static analysis and LLM integration to deepSURF’s ability
to fuzz unsafe code and uncover memory corruption bugs.

In deepSURF-static, LLM-based augmentation is dis-
abled, and the Fuzzing Corpus consists solely of compilable
harnesses produced during the static harness generation
stage. In contrast, deepSURF-llm disables static analysis en-
tirely—no initial harnesses are statically generated. Instead,
the model is prompted to perform control-flow analysis to
identify URAPIs and synthesize harnesses from scratch. In
this case, we use a similar prompting strategy to the full
deepSURF setup, but instead of seeding the LLM with a
statically generated harness, we provide a simple template
that specifies the expected fuzzer macro structure and in-
cludes examples for converting fuzzer bytes into basic Rust
types (e.g., primitives and strings). Also, no static analysis
metadata is included in the prompt. The results of the
comparison are summarized in Table 6a.

Based on our results, deepSURF achieves the highest
bug-finding capability (seven bugs) and the highest unsafe

code coverage (86.72%) compared to the other two configu-
rations, demonstrating that the combination of static analysis
and LLM-based augmentation outperforms approaches that
rely on only one of these components.

We observed that deepSURF-llm struggled to iden-
tify URAPIs, particularly in the case of toodee, where
it returned APIs that could not reach unsafe code and
failed to generate harnesses for 65% of the crate’s
URAPIs. Although it achieved high unsafe code coverage
in smallvec-1.6.0, it did not trigger the bug, which
required custom trait implementations—a feature supported
by deepSURF through its static analysis. In contrast, for
simple-slab, deepSURF-llm performed comparably to
deepSURF, discovering both memory safety bugs. Upon
inspection, we found that simple-slab has a relatively
simple API (e.g., lacking complex trait relationships), and its
bugs depend primarily on sequences of API calls, a feature
supported in both deepSURF and deepSURF-llm.

On the other hand, deepSURF-static detected only three
bugs in toodee and achieved much lower unsafe code cov-
erage than the other configurations. Its success in toodee
is attributed to static control flow analysis and support for
custom trait implementations. However, it failed to find any
bugs in simple-slab due to the lack of sequence support.
Also, it could not find the bug in smallvec-1.6.0,
where all URAPIs require generic arguments implementing
the unsafe Array trait, feature supported only by the LLM-
based augmentation. Consequently, it was unable to generate
valid harnesses for smallvec-1.6.0.

C.2. Comparing Harness Policies

In Section 4.4, we described the operation of the Harness
Selector and Harness Augmenter, along with their corre-
sponding harness selection policies. These policies influence
both the composition and size of the final Fuzzing Corpus
and, consequently, affect deepSURF’s bug-finding capabil-
ity. In this section, we evaluate alternative harness selection
policies for both components.

We consider two additional configurations: deepSURF-
skip-all and deepSURF-no-skip. In deepSURF-skip-all, the
Harness Augmenter’s harness selection policy is modified
to skip augmentation for a statically generated harness if its
target URAPI has already been invoked in a previously aug-
mented harness—regardless of whether the current harness
includes custom functionality. In contrast, deepSURF-no-
skip disables the skip logic entirely, augmenting all statically
generated harnesses. In both configurations, the Harness
Selector’s harness selection policy still falls back to stat-
ically generated harnesses when LLM-based augmentation
fails. However, unlike the default deepSURF configuration
(see Section 4.4), neither configuration retrieves statically
generated harnesses for URAPIs whose arguments support
custom user-defined implementations.

The results of this comparison are presented in Ta-
ble 6b. Among all harness selection policies, deepSURF’s
default policy achieves the highest bug-finding capability.
The second-best configuration is deepSURF-no-skip, which

Crate deepSURF deepSURF-llm deepSURF-static
Detected

Bugs
Unsafe

Coverage
URAPI Coverage

(#Harnesses)
Detected

Bugs
Unsafe

Coverage
URAPI Coverage

(#Harnesses)
Detected

Bugs
Unsafe

Coverage
URAPI Coverage

(#Harnesses)
toodee 4 83.8% 90% (35) 0 47.2% 35% (9) 3 83.1% 81.7% (159)

simple-slab 2 100% 100% (3) 2 100% 100% (12) 0 50% 100% (14)
smallvec-1.6.0 1 86.8% 84.7% (56) 0 85.9% 66.7% (44) 0 0% 0% (0)

TOTAL 7 86.2% 87.9% (94) 2 72.2% 56.4% (65) 3 32.7% 40.7% (173)

(a) Impact of static analysis and LLM integration.

Crate deepSURF deepSURF-skip-all deepSURF-no-skip
Detected

Bugs
Unsafe

Coverage
URAPI Coverage

(#Harnesses)
Detected

Bugs
Unsafe

Coverage
URAPI Coverage

(#Harnesses)
Detected

Bugs
Unsafe

Coverage
URAPI Coverage

(#Harnesses)
toodee 4 83.8% 90% (35) 2 92.9% 91.7% (31) 3 95.8% 95% (49)

simple-slab 2 100% 100% (3) 2 100% 100% (3) 2 100% 100% (9)
smallvec-1.6.0 1 86.8% 84.7% (56) 0 81.5% 81.9% (22) 1 89.4% 84.7% (49)

TOTAL 7 86.2% 87.9% (94) 4 84.9% 87.1% (56) 6 89.1% 90% (107)

(b) Alternative Harness Selection Policies of the Harness Augmenter.

TABLE 6: Ablation study results across different deepSURF’s configurations.

detects six bugs. The only missed bug is one that deepSURF
identifies using a statically generated harness containing cus-
tom trait implementations. As discussed earlier, deepSURF-
no-skip does not retrieve such harnesses from the static
generation stage.

On the other hand, deepSURF-skip-all misses two addi-
tional bugs compared to deepSURF-no-skip. This occurs be-
cause it skips augmentation of statically generated harnesses
that involve custom implementations, based solely on the
fact that the corresponding URAPI has already been invoked
in another augmented harness. The issue in these cases is
that the LLM is unaware of the custom implementations
derived from our tool’s static analysis, as they are encoded
only in the statically generated harnesses. As a result, the
LLM calls the URAPI using its own heuristics, which may
fail to expose the bug.

Finally, we observe that deepSURF achieves lower un-
safe code coverage than deepSURF-no-skip, yet it discovers
more bugs within the same set of URAPIs. This highlights
that while high unsafe code coverage allows exploration of
more potentially vulnerable regions of a Rust library, it does
not necessarily result in finding more bugs. Our experiments
show that bug-finding capability depends not only on the
amount of unsafe code covered, but also on the context in
which that code is exercised. This context is influenced by
the types of arguments passed to the APIs and the specific
sequences in which those APIs are invoked.

	Introduction
	Background
	Challenges of Fuzzing Rust Libraries
	deepSURF Design
	Unsafe Reachability Analysis
	Identifying Unsafe Usage and UEFs
	Detecting Public Entry Points to UEFs

	Arguments Analysis
	Complex Types Support
	Generic Types Support
	Recursive Type Analysis

	Static Harness Generation
	LLM-based Augmentation
	Fuzzing for Memory Bugs.

	Evaluation
	Experimental Setup
	Evaluation Results

	Related Work
	Conclusion
	References
	Appendix A: Data Types Supported by deepSURF and Type Analysis
	Appendix B: Harnesses Selector Policies
	Appendix C: Results of the Ablation Study
	Static vs. LLM-based Analysis
	Comparing Harness Policies

