
ar
X

iv
:2

50
6.

15
54

7v
1

 [
cs

.C
R

]
 1

8
Ju

n
20

25

An efficient construction of Raz’s two-source randomness extractor
with improved parameters

Cameron Foreman⋆1, 2, ∗, Lewis Wooltorton⋆3, 4, 5, †, Kevin Milner1 and Florian J. Curchod3

1Quantinuum, Partnership House, Carlisle Place, London SW1P 1BX, United Kingdom
2Department of Computer Science, University College London, London, United Kingdom

3Quantinuum, Terrington House, 13–15 Hills Road, Cambridge CB2 1NL, United Kingdom
4Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom

5Quantum Engineering Centre for Doctoral Training, H. H. Wills Physics Laboratory and Department
of Electrical & Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom

Randomness extractors are algorithms that distill weak random sources into near-perfect random
numbers. Two-source extractors enable this distillation process by combining two independent weak
random sources. Raz’s extractor (STOC ’05) was the first to achieve this in a setting where one
source has linear min-entropy (i.e., proportional to its length), while the other has only logarithmic
min-entropy in its length. However, Raz’s original construction is impractical due to a polynomial
computation time of at least degree 4. Our work solves this problem by presenting an improved
version of Raz’s extractor with quasi-linear computation time, as well as a new analytic theorem with
reduced entropy requirements. We provide comprehensive analytical and numerical comparisons of
our construction with others in the literature, and we derive strong and quantum-proof versions of
our efficient Raz extractor. Additionally, we offer an easy-to-use, open-source code implementation
of the extractor and a numerical parameter calculation module.

I. INTRODUCTION

Perfectly unpredictable, or random, numbers are essential for applications such as numerical simulation and cryp-
tography. However, generating such numbers directly is challenging, if not impossible. Most sources of random
numbers produce outputs that are weakly random, meaning that their outputs are only somewhat unpredictable. The
most general weakly random source is a min-entropy source [1], which, for sources that produce bitstrings of length n,
has the guarantee that any output bitstring appears with a probability of at most 2−k, where k is the source’s min-
entropy. Min-entropy sources are common in practice because certifying significant structure on the unpredictability
of the outcomes is typically difficult. This creates a problem: many applications require perfect randomness, yet most
sources only produce weak randomness. Extensive research has focused on this issue, particularly through randomness
extractors, which distill weakly random sources into near-perfect random numbers.

Since min-entropy sources are the most general classification of random number generating sources, the ideal solu-
tion is to develop deterministic randomness extractors that work for any min-entropy source. However, this is known
to be impossible [1] even when the source is almost perfect, i.e., has min-entropy deficient by just one bit (k = n− 1).
The next best approach is to construct probabilistic extractors, which require an additional source of randomness. Nu-
merous probabilistic extractors exist, requiring different sources and assumptions. Broadly, they can be categorized
into seeded extractors (requiring an additional seed of perfect random numbers) [2–5], two-source extractors (requir-
ing an additional min-entropy source) [6–12] and multi-source extractors (requiring multiple additional min-entropy
sources) [13]. Of these, two-source extractors are the best solution, since they require the weakest assumptions and
the least additional resources of probabilistic extractors. This makes them desirable for both theoretical and practical
applications. Key examples include cryptography, where mismatches between theoretical assumptions and real-world
conditions can lead to adversarial attacks, and in the derandomization of probabilistic algorithms, where two-source
extractors enable randomized algorithms to operate with an asymptotically vanishing amount of randomness [14].

Recent theoretical advances in two-source extraction have resolved several long-standing open problems (see [15] for
a summary). However, a key outstanding challenge is whether these extractors can be implemented with a computation
time suitable for real-world applications. Indeed, even quadratic-time O(n2) methods often become impractical for
input sizes of n ≥ 106, which are common in many practical scenarios. Appendix E of [4] gives a concrete example:

∗ Electronic address: cameron.foreman@quantinuum.com
† Electronic address: lewis.wooltorton@ens-lyon.fr
⋆ These authors contributed equally to this work.

mailto://cameron.foreman@quantinuum.com
mailto://lewis.wooltorton@ens-lyon.fr
https://arxiv.org/abs/2506.15547v1

2

using an O(n2) algorithm for privacy amplification in quantum key distribution (QKD) with an input size of n = 107

can reduce throughput to at most 30 kbps, even on a 3 GHz clock-rate CPU processing 100 bits per cycle, which is
far below the typical ≥ 300 kbps in current QKD systems. We provide further numerical evidence of this observation
in Section IV C. Thus, it is essential to develop extraction algorithms with at most quasi-linear computation time,
i.e., O(n logk n) for some constant k.

Recently, the Dodis et al. two-source extractor [16] was implemented with quasi-linear computation time [17], but
it imposes strict constraints: both input sources are required to have equal length n, and the sum of their respective
min-entropies, k1 and k2, must satisfy k1 + k2 > n. Raz’s extractor [6] relaxes these constraints, enabling extraction
when one source (of length n1) has linear min-entropy k1 > n1/2, and the other (of length n2) has only logarithmic
min-entropy k2 > O(log n2). However, the original algorithm runs in O(n4

1) time [17], which poses a significant
limitation. This raises the question of whether a more efficient, ideally quasi-linear time, implementation exists.

In this work, we solve this question by presenting an improved version of Raz’s extractor, implemented with
O(n1 log(n1)

2) computation time, with increased output length and reduced entropy requirements on the input
sources. We provide both analytic and numerical parameter calculations across various security models, including
extraction in the presence of an adversary with quantum side-information, and compare our results to other versions
of Raz’s extractor in the literature. In addition to theoretical improvements, we provide a highly optimized code
implementation of the extractor, capable of handling input lengths up to n1 ≈ 1.5 · 108, making it usable even in the
device-independent regime [18–21]. Notably, we use the number-theoretic transform (NTT) instead of the fast Fourier
transform (FFT) in our implementation, avoiding possible rounding errors caused by FFT floating point arithmetic1.
Also provided is a separate calculation module that returns optimized extractor parameters based on a user-defined
figure of merit, such as maximizing output length or minimizing entropy requirements. We demonstrate that this
numerical approach outperforms known analytical theorems, due to the asymptotic statements of the theorems being
non-optimal in finite-sized regimes. Both the parameter calculation module and the optimized implementation are
publicly available in the Cryptomite library [5] at https://github.com/CQCL/cryptomite and can be installed via
the terminal command pip install cryptomite. The results presented in this work pave the way for future imple-
mentations of randomness amplification protocols (e.g., those which are device-independent [17, 22–24]), the efficient
implementation of a broader class of extractors that use Raz’s extractor as a subroutine (see, e.g., [9, 12, 25–33]), and
advancements in other tasks [34–36].

The manuscript is structured as follows. In Section II we provide the necessary background. In Section III we
review the original statement of Raz’s extractor and state our main results. Section IV compares the performance of
our efficient implementation and parameter calculation module, both with the original and other constructions in the
literature. We then conclude and discuss some open problems in Section V. All proofs can be found in the Appendix.

II. BACKGROUND

A. Classical random variables

We denote random variables using upper case, e.g., X, which take values x in some finite alphabet X with probability
Pr(X = x) = pX(x). Given two random variables, X and Y , over alphabets X and Y with distributions pX(x) and
pY (y), respectively, we label X ◦ Y the joint random variable over X × Y distributed as pXY (x, y) with marginals
pX(x) and pY (y). We label the distribution of X conditioned on Y by pX|Y (x|y) = Pr(X = x|Y = y). If X
and Y are independent the joint distribution factors, i.e., pXY (x, y) = pX(x)pY (y). Over a given finite alphabet
(or domain) D, the statistical distance between X and Y is SD[X,Y] = 1

2

∑
x∈D |pX(x) − pY (x)|. We denote by

pUn
(x) the uniform distribution over an alphabet of size 2n for some positive integer n, i.e., pUn

(x) = 2−n when
X = {0, 1}n. A random string of n bits, X = X0 . . . Xn−1, is then said to be ϵ-close to uniform if SD[X,Un] ≤ ϵ.
Moreover, the min-entropy of X is given by2 H∞(X) = − log[maxx∈X pX(x)], and its min-entropy conditioned on
Y is H∞(X|Y) = − log[

∑
y∈Y pY (y)maxx∈X pX|Y (x|y)]. The random variable X is called an (n, k)-source if it has

a min-entropy H∞(X) ≥ k. For cryptographic applications, X must have conditional min-entropy H∞(X|Y) ≥ k,
where Y is all side information accessible to the adversary. The following definition is also needed:

1 The FFT relies on floating-point arithmetic because it computes the discrete Fourier transform using complex roots of unity, which
require floating-point approximations. This introduces rounding errors due to limited precision of representing and manipulating these
numbers. In contrast, the NTT replaces complex roots with finite field roots of unity, allowing all operations to be performed exactly
using modular arithmetic.

2 Throughout this work, logarithms are taken to be base 2 unless otherwise stated.

https://github.com/CQCL/cryptomite

3

Definition 1 (ζ-biased for linear tests of size p′). Let Z = Z0, . . . , ZN−1 be an N -bit random variable. Let p′ ≤ N
be a positive integer, and ζ ≥ 0.

(a) Z is ζ-biased for linear tests of size p′ if, for all non-empty subsets of indices τ ⊆ {0, . . . , N − 1} of size |τ | ≤ p′,
the variable defined by Zτ :=

⊕
i∈τ Zi satisfies

2 · SD[Zτ , U1] ≤ ζ . (1)

(b) If Z is ζ-biased for linear tests of size p′ = N , we say Z is ζ-biased for linear tests.

(c) Let X be a bitstring of length r < N distributed uniformly. A function G : {0, 1}r → {0, 1}N is a (p′, ζ)-biased
generator if the random variable G(X) = G(X)0, . . . , G(X)N−1 is ζ-biased for linear tests of size p′.

(d) If G is an (N, ζ)-biased generator, we say G is a ζ-biased generator.

B. Two-source extractors

We reproduce the following definition of a two-source extractor [6]:

Definition 2 (Two-source extractor). Let X and Y be any (n1, k1) and (n2, k2) independent sources, respectively. A
function Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m that satisfies

SD[Ext(X,Y), Um] ≤ ϵ , (2)

is called an (n1, k1, n2, k2,m, ϵ) two-source extractor. Moreover, Ext is said to be strong in the first input if

SD[Ext(X,Y) ◦X,Um ◦X] ≤ ϵ , (3)

and strong in the second input if

SD[Ext(X,Y) ◦ Y, Um ◦ Y] ≤ ϵ . (4)

Seeded extractors are a special case of two-source extractors in which n2 = k2, meaning the second source is perfectly
random and referred to as the seed.

C. Two-source extractors in the quantum setting with Markov sources

Definition 2 can be generalized to sources that are independent in a weaker sense (e.g., under a Markov condition,
see below) and can be made secure against adversaries capable of storing information in quantum systems. In the
quantum setting, we denote the system E as the adversary’s (Eve’s) quantum side-information, with the associated
Hilbert space HE . Let X and Y be classical random variables which take values in {0, 1}n1 and {0, 1}n2 , represented
in Hilbert spaces HX and HY , respectively. The joint state with Eve before extraction is a classical-classical-quantum
(ccq) state on HX ⊗HY ⊗HE :

ρXYE =
∑

x∈{0,1}n1

∑
y∈{0,1}n2

pXY (x, y) |x⟩⟨x|X ⊗ |y⟩⟨y|Y ⊗ ρx,yE , (5)

where {ρx,yE }x,y is a set of normalized quantum states on HE . The minimum uncertainty in sampling X or Y from
Eve’s perspective is quantified by the conditional min-entropy H∞(X|E)ρ or H∞(Y |E)ρ, respectively, evaluated on
the state ρXYE . For a classical-quantum (cq) state ρXE on HX ⊗ HE , the conditional min-entropy is given by
H∞(X|E)ρ = − log[pguess(X|E)ρ], where pguess(X|E)ρ = max{Ex}x

∑
x Tr[(|x⟩⟨x| ⊗ Ex)ρXE] and the maximum is

taken over all positive operator-valued measures (POVMs) {Ex}x on HE . In practice, the sources X and Y may
be correlated. To account for this, we relax the independence assumption from the classical definition to that of
conditionally independence given the adversary’s information. In this case, ρXYE is called a Markov source:

Definition 3 (Markov source). The ccq-state ρXYE in Eq. (5) is a (n1, k1), (n2, k2) Markov source if H∞(X|E)ρ ≥ k1,
H∞(Y |E)ρ ≥ k2 and I(X : Y |E)ρ = 0, where I(X : Y | E)ρ = H(XE)ρ +H(Y E)ρ −H(XY E)ρ −H(E)ρ denotes the
conditional mutual information, and H(·)ρ = −Tr[ρ log ρ] is the von Neumann entropy.

4

Applying an extractor Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m to XY can be described by a quantum channel N on
ρXYE , where ρExt(X,Y)XYE = N [ρXYE]. After tracing out XY , the state becomes

ρExt(X,Y)E =
∑

e∈{0,1}m

pExt(X,Y)(e) |e⟩⟨e| ⊗ ρeE , (6)

where pExt(X,Y)(e)ρ
e
E =

∑
x,y|Ext(x,y)=e pXY (x, y)ρ

x,y
E . For two quantum states ρ and σ on a Hilbert space H, we

denote the trace distance by TD[ρ, σ] = 1
2∥ρ− σ∥1 = Tr[

√
(ρ− σ)†(ρ− σ)], which captures the maximum probability

with which any quantum measurement can distinguish between ρ and σ. We let ωm = 2−m 12m denote the maximally
mixed state on H = C2m . We now define a two-source extractor in the quantum setting, considering Markov sources:

Definition 4 (Quantum-proof two-source extractor secure in the Markov model). Let n1, k1, n2, k2,m and ρXYE be
any (n1, k1), (n2, k2) Markov source. A function Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m which satisfies

TD[ρExt(X,Y)E , ωm ⊗ ρE] ≤ ϵ , (7)

where ρE = TrExt(X,Y)[ρExt(X,Y)E], is called a quantum-proof (n1, k1, n2, k2,m, ϵ) two-source extractor secure in the
Markov model. Moreover, Ext is said to be strong in the first input X if

TD[ρExt(X,Y)XE , ωm ⊗ ρXE] ≤ ϵ , (8)

and strong in the second input Y if

TD[ρExt(X,Y)Y E , ωm ⊗ ρY E] ≤ ϵ , (9)

where ρXE and ρY E are defined by taking the partial trace of ρExt(X,Y)XYE .

Finally, we state the result of Arnon-Friedman et al. [37], which shows that any two-source extractor can be made
quantum-proof in the Markov model, albeit with a worse parameters:

Lemma 1 ([37], Theorem 2). Every (strong) (n1, k1, n2, k2,m, ϵ) two-source extractor is a (strong) quantum-proof
(n1, k1 + log(1/ϵ), n2, k2 + log(1/ϵ),m,

√
3ϵ2m−2) two-source extractor secure in the Markov model.

Note that we place “strong” in parentheses because a strong two-source extractor retains this property when made
quantum-proof in the Markov model, while a weak extractor (i.e., one that is not strong) remains weak.

III. IMPROVED RAZ EXTRACTOR

A. The original construction

In reference [6], Raz presents an explicit two-source extractor, which can be made strong in either input at the cost
of a reduced output length. Precisely, consider any independent (n1, k1) source X and (n2, k2) source Y . Let m be a
positive integer, N = m · 2n2 and G : {0, 1}n1 → {0, 1}N be a (p′, ζ)-biased generator of output length N , as defined
in Definition 1, i.e, if X is distributed uniformly, the string G(X) = G(X)0, . . . , G(X)N−1 is ζ-biased for linear tests
of size p′. We can associate each generator output bit with a label (i, y), where i ∈ {0, ...,m − 1} and y ∈ {0, 1}n2 ,
and Raz shows that the function Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m, defined bit-wise by Ext(x, y)i = G(x)(i,y), is a
strong two-source extractor.

Lemma 2 ([6], Lemma 3.3 and Lemma 3.4). Let N = m · 2n2 . Let G0, ..., GN−1 be 0-1 random variables that are ζ-
biased for linear tests of size p′, and can be constructed using n1 random bits. Define Ext : {0, 1}n1×{0, 1}n2 → {0, 1}m
by Ext(x, y)i = G(x)(i,y). Then for any even integer p ≤ p′/m, the function Ext is a (n1, k1, n2, k2,m, ϵ = 2m/2γ)
two-source extractor for any

γ ≥ 2(n1−k1)/p ·
[
ζ1/p + p · 2−k2/2

]
, (10)

and a strong (in either input) (n1, k
′
1, n2, k

′
2,m, ϵ′) two-source extractor with

k′1 = k1 +m/2 + 2 + log(1/γ) ,

k′2 = k1 +m/2 + 2 + log(1/γ) , (11)

ϵ′ = γ · 2m/2+1 .

5

By an appropriate choice of p and p′ in Lemma 2, the following Lemma is recovered:

Lemma 3 ([6], Lemma 3.6). For any n1, k1, n2, k2,m and any 0 < δ′ < 1/2, such that

n1 ≥ 6 log(n1) + 2 log(n2) ,

k1 ≥ (1/2 + δ′)n1 + 3 log(n1) + log(n2) ,

k2 ≥ 4 log(n1 − k1) ,

m ≤ δ′ ·min[n1/8, k2/16]− 1 ,

(12)

there exists an explicit strong (n1, k
′
1, n2, k

′
2,m, ϵ′) two-source extractor with ϵ′ = 2−3m/2, with

k′1 = k1 + 3(m+ 1) ,

k′2 = k2 + 3(m+ 1) .
(13)

One can see that the above constraint on k1 implies k′1 ≥ (1/2 + δ′)n1, i.e., the first source must have entropy rate
α1 := k1/n1 of at least 1/2. For the second source, the third constraint implies that k′2 can be logarithmic in n1,
implying that α2 := k2/n2 can take values well below 1/2. This allows Raz’s extractor to break the barrier α1+α2 > 1
required by the Dodis et al. extractor [16, 17] and others [4, 38]. Furthermore, Raz’s extractor requires an algorithm
that generates variables biased for linear tests of size p′. The approach in [6] suggests using [39, Lemma 4.1], which
comprises two algorithmic building blocks: (i) generating strings ζ-biased for linear tests [40, Proposition 3], and (ii)
generating strings which are p′-wise independent (that is, (ζ = 0)-biased for linear tests of size p′) [41, Proposition
6.5]. Based on these building blocks, it has been pointed out in [17, Remark 14] that, while the computation time for
this implementation of Raz’s extractor is polynomial in the input size n1, it is at least O(n4

1), making it unsuitable
for most practical tasks.

B. New construction with improved computation time

To address the computation time bottleneck, we propose an implementation of Raz’s extractor using the fast
(p′, ζ)-biased generator due to Meka et al. [42]. This construction does not rely on the concatenation of two steps,
and its output can be computed in O(log(p′)) finite field operations. Coupled with an algorithm for fast finite field
arithmetic using circulant matrices [4], this approach reduces the overall computation time of Raz’s extractor to
O(n1 log(n1) log(p

′)). In what follows, we will find that p′ = poly(n1) is an appropriate choice for both our analytical
and numerical parameter calculations (see Theorem 1 and Section III), resulting in an overall quasi-linear computation
time.

1. The fast (p′, ζ)-biased generator of reference [42, 43]

We present the construction from [42] and its application as a computationally efficient (p′, ζ)-biased generator.

Construction 1 ([42], Section 1.1). Let n and p′ be positive integers satisfying p′ ≤ n. Let ζ > 0 and F be a finite
field with |F| ≥ max{n, p′/ζ}. Let A,B be arbitrary subsets of F, with |A| = n and |B| = p′/ζ. Define the generator
G : B × F → F|A| as follows: for every α ∈ A,

G(β, ν)α := ν ·
p′−1∑
i=0

(αβ)i , β ∈ B, ν ∈ F . (14)

Let us fix the finite field F as the Galois field with 2t elements, F = GF[2t], where t is a positive integer. Suppose we
choose ζ and p′ such that r := log(p′/ζ) is a positive integer, and write B = GF[2r]. Then the input to the generator
G is an element (β, ν) ∈ GF[2r]×GF[2t], which can be viewed as a bitstring of length r+ t generated from a uniform
distribution. The output can be viewed as |A| blocks of t bits, or equivalently a bitstring of length n · t when |A| = n.
Finally, according to Construction 1, we must choose values of (r, t, n) such that 2t ≥ max{n, 2r}. We can therefore
view G as a (p′, ζ)-biased generator with a generator input (its seed) of length r+ t bits and an output length of n · t
bits. Moreover, reference [42] continues to show that each block of t bits (that is, the choice of α ∈ A in Eq. (14)),
can be computed efficiently. These facts are summarized below:

6

Lemma 4 ([42, 43], Section 1.1). Let n, ζ and p′ be chosen according to Construction 1 with p′ a positive power of
2. Let t be a positive integer, and suppose r := log(p′/ζ) is a positive integer, such that 2t ≥ max{n, 2r}. Then the
generator of Construction 1 viewed as a function G : {0, 1}r+t → {0, 1}n·t is a (p′, 2ζ)-biased generator. Moreover,
given any seed (β, ν) ∈ GF[2r]×GF[2t] and an index j ∈ {0, ..., n− 1}, the jth block (of t bits) can be computed using
O(log(p′)) field operations over GF[2t].

For completeness, we provide a detailed proof in Appendix A. The efficiency claim comes from the following observa-
tion [42]. Let p′ = 2l where l is a positive integer. Then

G(β, ν)α = ν ·
p′−1∑
i=0

(αβ)i = ν ·
log(p′)−1∏

j=0

(1 + (αβ)2
j

) . (15)

Since α, β, ν ∈ GF[2t], one can verify the right hand side of Eq. (15) can be computed in O(log(p′)) finite field
operations over GF[2t]. We emphasize that the generator G is only efficient with respect to the computation of a
single (or constant number) of blocks, rather than the entire output of the function.

2. Application to Raz’s two-source extractor

We now match up the parameters of the generator to those required by Raz’s extractor. To summarize the above
discussion, reference [42] presents a (p′, 2ζ)-biased generator of output length n · t, for some well chosen parameters
p′, ζ, n and t. The seed is of length r + t, where r = log(p′/ζ), and output blocks of size t can be computed in
O(log(p′)) field operations over GF[2t]. Firstly, the seed of G should be the first source X, of length n1, so we require
n1 = t+ r. Secondly, the number of output bits should be at least m · 2n2 , implying n · t ≥ m · 2n2 . A natural choice
in Construction 1 is to use the second source Y to select the output block (that is, to choose α ∈ A). The extractor
output then corresponds to a subset of a single block, making it efficient to compute. This implies choosing n = 2n2 ,
leaving us with the choice of r and t such that the constraints (i) n1 = t+ r, (ii) t ≥ m, and (iii) 2t ≥ max{2n2 , 2r}
are satisfied. Substituting (i) into (iii), we get t ≥ max{n2, n1− t}, which implies t ≥ n1/2 and hence r ≤ n1/2. Since
r is proportional to log(1/ζ), the best choice is to make r as large as possible (to keep the bias ζ small), resulting in
the symmetric construction r = t = n1/2. This finally implies n1/2 = log(p′/ζ), hence ζ = p′2−n1/2, leaving p′ as a
free variable which is a power of 2, i.e., p′ = 2l for some positive integer l to be specified later. Note that p′ must
satisfy p′ ≤ n · t = (n1/2)2

n2 , hence l ≤ n2 + log(n1/2). Moreover, constraint (ii) implies n1/2 ≥ m, and (iii) further
implies n1/2 ≥ n2. We summarize this parameter matching as a Lemma:

Lemma 5 (Efficient Raz’s extractor construction). Let n1 and n2 be positive integers, where n1 is even and n2 ≤
n1/2. Define N = (n1/2)2

n2 . Then for any positive integers k1, k2,m, l, p and γ > 0 such that m ≤ n1/2, l ≤
n2 + log(n1/2), p ≤ 2l/m, p is even and any

γ ≥ 2(n1−k1)/p ·
[
(2ζ)1/p + p · 2−k2/2

]
, (16)

where ζ = 2l−n1/2, we have the following:

(i) The generator of Construction 1 viewed as a function G : {0, 1}n1 → {0, 1}N is a (p′, 2ζ)-biased generator with
p′ = 2l.

(ii) Consider the output of G as 2n2 blocks of size n1/2 bits, and let G(X)(i,y) denote bit i ∈ {0, ...,m − 1} of
block y ∈ {0, 1}n2 . Then the function Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m defined by Ext(x, y)i = G(x)(i,y) is a
(n1, k1, n2, k2,m, ϵ = 2m/2γ) two-source extractor, and a strong (in either input) (n1, k

′
1, n2, k

′
2,m, γ′) two-source

extractor, where

k′1 = k1 +m/2 + 2 + log(1/γ),

k′2 = k1 +m/2 + 2 + log(1/γ),

γ′ = γ · 2m/2+1.

(17)

(iii) Given x ∈ {0, 1}n1 and y ∈ {0, 1}n2 , Ext(x, y) can be computed with computation time O(n1 log(n1) log(p
′)).

The proof of the above Lemma can be found in Appendix B 1. We now present a new version of [6, Theorem 1], giving
an explicit Raz extractor with improved parameters that can be implemented in O(n1(log n1)

2) computation time.

7

Theorem 1 (Explicit and Efficient Raz Extractor). Let n1, k1, n2, k2,m be positive integers, 0 < δ < 1/2 and
0.25 < λ < (δk2/16− 1), such that n2 ≤ n1/2 and

k1 ≥
(
1

2
+ δ

)
n1 + 2 log(n1) , (18)

k2 ≥ max
[
3.2 log

(8n1

k2

)
, 40
]
, (19)

m ≤ 1

λ

(δk2
16

− 1
)
. (20)

Then there exists an explicit (n1, k1, n2, k2,m, ϵ ≤ 2(1−4λ)m/2−1) two-source extractor, and an explicit strong (in either
input) (n1, k

′
1, n2, k

′
2,m, ϵ′ ≤ 2(1−4λ)m/2) two-source extractor, that can both be computed in O(n1 log(n1)

2) time, with

k′1 = k1 + 3(m+ 1) ,

k′2 = k2 + 3(m+ 1) .
(21)

The proof of the above theorem can be found in Appendix B 2.
Selecting λ = 1 in Theorem 1 (for the case δk2/16 − 1 > 1) recovers an equivalent constraint on both the output

length (20) and the error of Raz’s original extractor from [6, Lemma 3.6], recalled here as Lemma 3. For this choice
of λ, our requirements on k1 and k2 are strictly weaker than those in Lemma 3 for any valid set of parameters
n1, k1, n2, k2 and m satisfying n2 ≤ n1/2 and k2 ≥ 8/(1 − k1/n1). The first restriction arises because an efficient
construction does not exist if n1 > n2/2 and the second restriction ensures that 3.2 log(8n1/k2) ≤ 4 log(n1 − k1), a
condition that is almost always satisfied unless k1 → n1.

Other works have also introduced improved analytic versions of Raz’s extractor. In [17], the authors present an
explicit, strong, and quantum-proof version of Raz’s extractor. We compare this construction to those presented in
this work in Section IV. In [29, Section 5.2], the authors propose a collision-resistant variant of Raz’s extractor, with
strictly worse parameters than [6, Lemma 3.6], and therefore generally performs worse than ours (as discussed above).
Notably, the proof techniques from [29] can be applied to our Theorem 1 to obtain an improved collision-resistant
extractor, with better parameters and implementable in quasi-linear time.

3. Making Raz’s extractor quantum-proof in the Markov model

Using Theorem 1, we now apply Lemma 1 to obtain a quantum-proof version of the efficient Raz extractor with
improved parameters.

Corollary 1 (Efficient quantum-proof Raz extractor). Let n1, n2, k1, k2,m be positive integers, 0 < δ < 1/2 and
0.75 < λ < (δk2/16− 1), such that n2 ≤ n1/2 and

k1 ≥
(
1

2
+ δ

)
n1 + 2 log(n1) + 1 , (22)

k2 ≥ max
[
3.2 log

(8n1

k2

)
, 40
]
, (23)

m ≤ 1

λ

(δk2
16

− 1
)
. (24)

Then there exists an explicit (n1, k
′
1, n2, k

′
2,m, ϵ ≤

√
3 2(3/4−λ)m−1) strong (in either input) two-source extractor

quantum-proof in the Markov model, which can be computed in O(n1 log(n1)
2) time, where

k′1 = k1 + (2λ+ 5/2)m+ 3 ,

k′2 = k1 + (2λ+ 5/2)m+ 3 .
(25)

Note that we could also apply Lemma 1 directly to the efficient strong Raz extractor in Lemma 5. The resulting
parameters are less constrained than those in Corollary 1, as we retain flexibility in choosing p and p′. These parameters
can be optimized for a given problem, and this functionality is included in our parameter calculation module (see
Section IV for details). We summarize this construction below:

8

Corollary 2. Let N = m · 2n2 . Let G0, ..., GN−1 be 0-1 random variables ζ-biased for linear tests of size p′ that
can be constructed using n1 random bits. Define Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m by Ext(x, y)i = G(x)(i,y).
Then, for any even integer p ≤ p′/m and any k1, k2, the function Ext is a strong (in either input) quantum-proof
(n1, k

′
1, n2, k

′
2,m, 23m/4

√
3γ/2) two-source extractor in the Markov model, for any γ ≥ 2(n1−k1)/p ·

[
ζ1/p + p · 2−k2/2

]
and k′1 = k1 + 1 + 2 log(1/γ), k′2 = k2 + 1 + 2 log(1/γ).

While we have made the extractor quantum-proof in the Markov model, other models are also worth considering. For
instance, in the model of [44], where side information is generated via a specific “leaking operation”, Raz’s extractor
is known to be secure.

A crucial step in the proof of Raz’s extractor is the application of the classical XOR lemma [45], which extends
Raz’s 1-bit extractor to an m-bit extractor. An alternative approach to making Raz’s extractor quantum-proof would
be to obtain a quantum-proof 1-bit extractor (e.g., using generic tools such as those in [37, 46]) and then apply a
classical-quantum XOR lemma [47]. This would generally yield a different set of parameters than those obtained
by applying the generic approach (cf. Lemma 1) to make the m-bit extractor quantum-proof in the Markov model.
However, since the existing cq-XOR lemma [47] is not as tight as its classical counterpart, we did not observe an
improvement over the Markov model. Nevertheless, if a tighter cq-XOR lemma were proven, it could lead to better
quantum-proof parameters. We refer the reader to Appendix C for a more detailed discussion.

4. Concatenation with a seeded extractor

It is possible to increase the output length of Raz’s extractor by using it in conjunction with a strong seeded
extractor. Specifically, using Raz’s strong extractor to generate mRAZ bits with error ϵRAZ, and feeding this output
into a seeded extractor, it is possible to re-extract from one of the original inputs. To enable re-extraction, it is
important that the Raz extractor is strong (in the input used for re-extraction) and for mRAZ to be sufficiently long.
If a strong seeded extractor is used, the output of the two-source extractor can be concatenated with the seeded
extractor output, further increasing the output length. In the case of our improved construction, the logical choice is
to re-extract from the first source (since k1 ≥ k2 is always satisfied), which we summarize in the following remark.

Remark 1. A strong Raz (n1, k1, n2, k2,mRAZ, ϵRAZ) two-source extractor and a strong (n1, k1, d, d,mS, ϵS) seeded
extractor can be composed to obtain a (n1, k1, n2, k2,mRAZ +mS, ϵRAZ + ϵS) two-source extractor if mRAZ ≥ d.

For the proof, see e.g. [37, Lemma 38].
A useful concatenation for our improved Raz’s extractor is with the strong (n1, k1, d, d,mS = (c− 1)d, ϵS =

√
c− 1 ·

2−d(1+c(k1/n1−1))/2) seeded extractor, where c is an integer such that c ≤ ⌊ 1
1−k1/n1

⌋, presented by Hayashi and
Tsurumaru in [4]. Notably, this extractor can be implemented in quasi-linear computation time (as detailed in [17,
App D.2]) and has a non-vanishing output length when c > 1, i.e., when k1/n1 > 0.5, which is already a requirement
of Raz’s extractor. These facts, along with the fact that the output length scales as 1

1−k1/n1
rather than the seed

length, makes the Hayashi-Tsurumaru extractor a good choice for the composition. For example, if n1/k1 > 0.5 we
can always select c = 2 and thus obtain an additional d = mRAZ output bits (i.e., doubling the output length).

Another extractor to consider is Trevisan’s [2], which only requires a seed length of O(log(n1)) asymptotically (i.e.,
logarithmic in the length of the first source). An implementation of Trevisan’s extractor was presented in [5, 48], giving
a strong (n1, k1, d, d,mS = k1+4 log(ϵS)−4 log(mS)−6, ϵS) seeded randomness extractor. Whilst the logarithmic seed
length is a desirable property for composing with Raz’s extractor, the drawback is that the length of n1 needed to
benefit from this asymptotic claim is typically substantial (except when the output length is very small). Moreover, the
best-known implementations of Trevisan’s extractor have a computation time of at least O(n2

1 poly(log n1)), rendering
them impractical for many applications. However, recent work by Doron and Ribeiro [49] proposes near-linear time
constructions that, if implemented, could mitigate this bottleneck.

Both of the above compositions can be made quantum-proof by replacing only Raz’s extractor with a quantum-proof
version, as the extractors of Hayashi-Tsurumaru and Trevisan are quantum-proof without requiring any parameter
changes [50, 51].

C. Code implementation

We implement the Raz extractor in the Cryptomite library [5], following the technique described in [52, Sec-
tion 7.3.1]. This technique reduces finite field operations in GF[2n1/2] to polynomial convolutions in Zw[x]/(x

L − 1)
for w,L > n1, followed by the reduction by an irreducible polynomial of GF[2n1/2]. These polynomial convolutions
can be performed efficiently using the number-theoretic transform (NTT), and this transform is most efficient when

9

Algorithm 1 Raz Extractor.
Require: n1 where GF[2n1/2] has a known irreducible polynomial P
Require: p′ where p′ ≤ (n1/2)2

n2 and log(p′) is a positive integer
Require: x ∈ {0, 1}n1 ; y ∈ {0, 1}n2 ;n1 ≥ 2 · n2;m ≤ n1/2

function Extract(x, y, m)
x1 ← x[0 : n1/2]
x2 ← x[n1/2 : n1]

δ ← Conv(x1, y) ▷ δ0 = αβ20

ζ ← δ + 1 ▷ ζ0 = 1 + αβ20

for j ∈ [1, . . . , log(p′)− 1] do
δ ← Conv(δcur, δj) ▷ δcur = αβ2j

ζ ← Conv(ζ, δcur + 1) ▷ ζj = ζj−1 · (1 + αβ2j)
end for
return Conv(ζ, x2)[0 : m]

end function

function Conv(a, b)
return InvNTT(NTT(a)⊙NTT(b)) mod P

end function

the number of coefficients is a power of two; as such we perform convolutions using w = 232 and L = 2⌈log(n1)⌉

corresponding to the smallest suitable power of two and using 32-bit unsigned integer coefficients.
The main limitation of this technique is the need for an irreducible polynomial over the field GF[2n1/2], which

can be time-consuming to find for large fields and is not generally known in advance. The Great Trinomial Hunt
[53] has identified irreducible trinomials for large fields GF[2s] where 2s − 1 is a Mersenne prime by exploiting the
ability to efficiently test irreducibility when the factorization of 2s − 1 is known, and exhaustively testing all possible
trinomials for irreducibility. These are the largest fields for which irreducible polynomials are known, and so currently
our technique is limited to n1/2 ≤ 74, 207, 281, i.e. n1 ≈ 1.5 · 108, for which an irreducible trinomial is known.

The general procedure is shown in Algorithm 1, where NTT() and InvNTT() implicitly pad the input with zeroes to
the appropriate length, and ⊙ denotes element-wise multiplication. The internal loop is well suited to parallelization,
as ζ for iteration j can be computed in parallel with δcur for iteration j + 1. Furthermore, the two NTT() calls
performed inside Conv() can be computed in parallel.

The code for our implementation and numerical parameter calculation module is available in the Cryptomite library
(installable using terminal command pip install cryptomite or at https://github.com/CQCL/cryptomite).

IV. ANALYSIS OF THE IMPROVED RAZ’S EXTRACTOR

We now analyze the performance of our efficient Raz extractor and showcase it against alternative constructions.
Specifically, we analyze the maximal output length m and the minimal possible entropy rate of the second source
α2, given an extractor error ϵ, a first source (n1, k1) and a length n2 of the second source. In our analysis, we do
not compare the quantum-proof versions as all relevant works derive parameters using the same method (from [37]),
making such additional comparison redundant. For each optimization, we optimize over p′ and p in Lemma 5 and
all other parameters are fixed to correspond to regimes of interest. Some parameters are inherently constrained by
our construction, such as n2 ≤ n1/2.3 Whether an efficient implementation of Raz’s extractor exists for n2 > n1/2
remains an open question. Throughout the analysis, we also compare the performance when using our numerical
optimization of parameters to the analytical version given in Theorem 1 and the original Raz extractor in Lemma 3.
When relevant, we also compare with other implementations from the literature.

Remark 2. Whilst our approach using numerical optimization is tailored to the efficient extractor in this work, it could
equally be applied to the original version in Lemma 2. Figs. 1 and 2 show that our numerical parameter calculation
leads to significantly better performance than the analytical theorems, and after a straightforward modification,

3 We note that our calculations indicate that the optimal choice is n2 = n1/2.

https://github.com/CQCL/cryptomite

10

one could also see the same benefits using Lemma 2. Moreover, the original construction has weaker constraints
(for example, p′ is not restricted to be a power of two) and has a different expression for the error. The resulting
performance will therefore at least match the one of our construction. Crucially though, the focus of this work is to
provide a two-source extractor which can be implemented efficiently (in quasi-linear computation time), which is not
achievable with the original Raz and other existing construction.

A. Maximizing the output length

To make comparisons, we fix the first source, (n1, k1) = (104, 0.8× 104), the length of the second source n2 = n1/2,
and set the extractor error to ϵ = 2−16. We then vary α2 ∈ (0, 1] (recall that k2 = α2n2) and maximize the output
length m. In our numerical approach to parameter estimation, this optimization is performed over p and p′ satisfying
the constraints in Lemma 5. We consider both the weak and strong extractor constructions, and compare to our
analytic values in Theorem 1 with an optimized and fixed value of λ, as well as to the original Raz parameters in
Lemma 3. Our results are shown in Fig. 1.

0.0 0.2 0.4 0.6 0.8 1.0
Source 2 min-entropy rate, 2

0

2

4

6

8

10

12

Ou
tp

ut
 le

ng
th

 (l
og

 sc
al

e)
, l

og
2
(m

)

Raz05
This work, optimized
This work, = 1
This work (numeric)

0.0 0.2 0.4 0.6 0.8 1.0
Source 2 min-entropy rate, 2

0

2

4

6

8

10

12

Ou
tp

ut
 le

ng
th

 (l
og

 sc
al

e)
, l

og
2
(m

)

Raz05
Foreman23
This work, = 1
This work (numeric)

FIG. 1: Comparison of maximum output lengths for different constructions of Raz’s extractor, across different min-entropy
rates of the second source, α2, with the extractor error ϵ ≤ 2−16. We fix n1 = 104, k1 = 0.8 × 104 and n2 = n1/2. The
left-hand side shows the weak extractor comparisons, while the right-hand side shows the strong comparisons. The comparison
includes analytical (solid/dotted lines) and numerical optimization (dashed lines). Specifically, “This work, λ optimized” and
“This work, λ = 1” correspond to Theorem 1, while “This work (numeric)” corresponds to our numerical parameter calculation
module using the default settings. The legend labels “Raz05” refers to the Raz extractor(s) from [6] and “Foreman23” refers to
the strong Raz’s extractor in [17].

We observe a significant improvement from our numerical analysis over the analytical theorems. This follows from
the fact that the choice of p and p′ made analytically is often different from that found numerically, especially the
choice of p. In the numerical calculations, we sometimes observe non-monotonic behavior of the maximum output
length m as a function of α2. When this occurs, we correct for it by considering the largest m associated with any
α′
2 < α2, since any (n2, α2n2) source is also a (n2, α

′
2n2) source.

We find that setting λ = 1 in our analytic theorem closely matches the performance of Raz’s original theorem. We
also see that, by optimizing over λ, our analytical theorem outperforms the original. This is because, by varying λ,
we are able to keep the extractor error close to the fixed security parameter, rather than decreasing exponentially
in m, as is the case for Lemma 3. We observe that all analytical theorems require m to be sufficiently large for any
feasible choice of parameters (i.e., no feasible α2 yields a maximum output length smaller than three). This is because
the extractor error in these versions is of the form ≈ 2cm, for some constant c, so a sufficiently long output length is
necessary to achieve any desired error.

In the right-side plot of Fig. 1, we compare our strong analytical version of Raz’s extractor to the improved strong
version presented in [17]. We find that our extractor performs similarly to the alternative in most regimes, but
surpasses it as α2 approaches unity. This is because the output length in [17] plateaus due to the requirement that
k2 < 2(n1 − k1), a constraint not present in our work. Therefore, our construction performs better in this regime.
We note that this is a direct comparison, as we fix the errors to be equal (i.e., they are not a free parameter to be
optimized over).

11

B. Minimizing the entropy rate of the second source

We now consider the minimum entropy rate of the second source, α2, for which a single bit (i.e., m = 1) can be
extracted. We fix the length of the first source n1 = 104, the extractor error to ϵ = 2−16 and vary α1 ∈ (0.5, 1]. Our
numerical approach then minimizes α2 over feasible p and p′. The results are displayed in Fig. 2.

0.5 0.6 0.7 0.8 0.9 1.0
Source 1 min-entropy rate, 1

10 4

10 3

10 2

10 1

100

M
in

im
um

 so
ur

ce
 2

 m
in

-e
nt

ro
py

 ra
te

,
2

Raz05
This work, optimised
This work, = 1
This work (numeric)

1 + 2 = 1

0.5 0.6 0.7 0.8 0.9 1.0
Source 1 min-entropy rate, 1

10 3

10 2

10 1

100

M
in

im
um

 so
ur

ce
 2

 m
in

-e
nt

ro
py

 ra
te

,
2

Raz05
Foreman23
This work, = 1
This work (numeric)

1 + 2 = 1

FIG. 2: Comparison of the smallest min-entropy rate for the second source, α2, for which extraction is possible (i.e. m ≥ 1) at
different min-entropy rates of the first source, α1. We fix n1 = 104, k1 = 0.8× 104 and n2 = n1/2. This is plotted for various
constructions of Raz’s extractor at an error tolerance of ϵ = 2−16. The left-hand side shows the weak extractor comparisons,
while the right-hand side shows the strong comparisons. The comparison includes analytical (solid lines) and numeric (dashed
lines). “This work, λ optimized” and “This work, λ = 1” correspond to Theorem 1, while “This work (numeric)” corresponds
to our numerical parameter calculation module using the default settings. The legend labels “Raz05” refers to the Raz’s
extractor(s) from [6] and “Foreman23” refers to the strong Raz’s extractor in [17]. The dotted line represents the theoretical
limit of other efficient two-source extractors that are not based on Raz’s construction, requiring α1 + α2 > 1.

As with the maximization of the output length, our numerical approach yields a significant improvement over
the analytical theorems. In our numerical approach, we also observe step-wise behavior in the minimum α2 as α1

increases. This occurs because p and p′ must satisfy certain constraints, such as p being even and p′ being a power of
2. We note that all versions can break the barrier α1 +α2 > 1 in the weak case, but in the strong case, Raz’s original
version fails to do so. This is due to the relatively small input lengths n1 = 104, n2 = n1/2 and error requirement
ϵ = 2−16.

In the weak case, we find that our analytic theorem closely matches the performance of Raz’s original theorem,
regardless of whether λ is optimized. Optimizing λ does not improve the outcome and simply recovers the same
curve as when λ = 1. In the strong case, our theorem marginally outperforms that of [17], while both substantially
improve upon Raz’s original theorem. Again, we observe the plateau behavior of [17] as α2 approaches unity, due to
the additional constraint that k2 < 2(n1 − k1).

C. Performance of the code implementation

Recall from Section III C that our technique requires a known irreducible polynomial for the field to compute field
multiplications efficiently. We benchmarked our implementation using field sizes with known irreducible trinomials
from the Great Trinomial Hunt [53], up to the current maximum supported parameter n1/2 = 74, 207, 281. We note
that the runtime is independent of the output length and the choice of n2. Our results are shown in Figure 3. These
timings show that the expected quasi-linear runtime is achieved in practice, with small constant overhead dominating
the runtime for small input lengths n1 ⪅ 103.

12

101 102 103 104 105 106 107 108

Half the length of the first source, n1/2

10 3

10 2

10 1

100

101

102

103

Ti
m

e
(s

)

FIG. 3: Benchmark results for the code implementation on an Apple M4 processor, showing the mean and two standard
deviations over 20 runs.

D. Using Raz’s extractor as a seeded extractor

Another consideration is the performance of our construction as a seeded extractor, that is, when ki = ni for
i ∈ {1, 2}. The only relevant scenario in our case arises when the seed is the second source, i.e., k2 = n2, as it is
the shorter input. This constraint limits its usefulness as a seeded extractor, requiring the weak input to have a
min-entropy rate of at least 0.5. However, we found that in some cases, the required seed length is shorter than
that of other extractors with similar computation time, such as Hayashi-Tsurumaru [4], Toeplitz [3], and Circulant
[5]. Nonetheless, the substantial entropy loss (the difference between the input min-entropy and output length) likely
outweighs any potential advantage compared to these other seeded extractors.

V. DISCUSSION AND CONCLUSION

In this manuscript, we applied efficient techniques for constructing pseudo-random objects to Raz’s two-source
extractor [6]. Specifically, Raz’s extractor depends on generating bitstrings biased for linear tests, and existing
implementations using [40] suffer from a computational time of O(n4), which is impractical. Using a more efficient
algorithm from [42], we implemented Raz’s extractor with a runtime of O(n log2 n). As an additional contribution,
we proved a new explicit theorem with entropy requirements lower than those of the original.

Our work opens a number of interesting research directions. The efficient implementation and accompanying code
can be readily applied to the various use cases of Raz’s extractor. In particular, Raz’s extractor has weaker entropy
requirements on one of its sources than other two-source extractors which have a known efficient implementation [16,
17]. Randomness extractors are already known to be useful as exposure-resilient functions, for randomness extraction
(or conditioning) of the output of noise sources, or to perform privacy amplification in quantum key distribution
(QKD), where two-source extractors enable this under the weakest assumptions. This also implies the possibility
of performing practical randomness amplification and privatization of weaker sources using quantum devices [19].
In [54], we perform randomness amplification of a single weak source that is a weakening of a Santha-Vazirani source
[55] and our efficient Raz extractor construction significantly reduces the entropy requirements, allowing us to obtain
new fundamental bounds. Another direction is to consider the efficient implementation of non-malleable extractors,
of which Raz’s extractor is a common building block. Additionally, our efficient code implementation of the fast
(p′, ζ)-biased generator from [42] may be of independent interest for applications beyond randomness extraction.

In addition to applications, there are aspects of our construction that could be improved. For example, adapting
the algorithm from [42] introduced additional parameter constraints, such as the requirement n2 ≤ n1/2, and further
restricted the choices of free parameters p and p′ when optimizing. It is an open question as to whether an efficient
construction can be found that lifts these constraints, leading to greater versatility and performance. Finally, one
could hope to reduce the penalties incurred by making Raz’s extractor strong and quantum-proof. While we explored
the use of certain classical-quantum XOR lemmas [45, 47], other techniques may yield improved parameters against
quantum side information. For example, one could leverage the collision-resistance property from [29], apply the XOR
lemma from [56], or use the non-modular proof techniques developed there to show that the extractor by Dodis et
al. [16] remains secure with the same parameters as in the classical setting.

13

Acknowledgements

The authors thank Ron Rothblum for sharing the full version of [42], Sean Burton for reviewing the extractor code,
and Kieran Wilkinson and Mafalda Almeida for valuable feedback on the manuscript. LW acknowledges support from
the EPSRC Grant No. EP/SO23607/1.

[1] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication
complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

[2] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879, 2001.
[3] Hugo Krawczyk. LFSR-based hashing and authentication. In Proceedings of the 14th Annual Cryptology Conference

(CRYPTO 94), pages 129–139, 1994.
[4] Masahito Hayashi and Toyohiro Tsurumaru. More efficient privacy amplification with less random seeds via dual universal

hash function. IEEE Transactions on Information Theory, 62(4):2213–2232, 2016.
[5] Cameron Foreman, Richie Yeung, Alec Edgington, and Florian J Curchod. Cryptomite: A versatile and user-friendly

library of randomness extractors. Quantum, 9:1584, 2025.
[6] Ran Raz. Extractors with weak random seeds. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory

of Computing, STOC ’05, page 11–20, New York, NY, USA, 2005. Association for Computing Machinery.
[7] Jean Bourgain. More on the sum-product phenomenon in prime fields and its applications. International Journal of

Number Theory, 1(01):1–32, 2005.
[8] Anup Rao. Extractors for a constant number of polynomially small min-entropy independent sources. In Proceedings of

the thirty-eighth annual ACM symposium on Theory of computing, pages 497–506, 2006.
[9] Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In 2012 IEEE 53rd Annual Symposium

on Foundations of Computer Science, pages 688–697. IEEE, 2012.
[10] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy. In 2016 IEEE 57th Annual

Symposium on Foundations of Computer Science (FOCS), pages 168–177. IEEE, 2016.
[11] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient functions. In Proceedings of the

forty-eighth annual ACM symposium on Theory of Computing, pages 670–683, 2016.
[12] Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. In 2023 IEEE 64th Annual Symposium

on Foundations of Computer Science (FOCS), pages 1271–1281. IEEE, 2023.
[13] Vipul Goyal, Akshayaram Srinivasan, and Chenzhi Zhu. Multi-source non-malleable extractors and applications. In Annual

International Conference on the Theory and Applications of Cryptographic Techniques, pages 468–497. Springer, 2021.
[14] Valentine Kabanets. Derandomization: A brief overview. Current Trends in Theoretical Computer Science, 1:165–188,

2002.
[15] Eshan Chattopadhyay. Recent advances in randomness extraction. Entropy, 24(7):880, 2022.
[16] Yevgeniy Dodis, Ariel Elbaz, Roberto Oliveira, and Ran Raz. Improved randomness extraction from two independent

sources. In International Workshop on Randomization and Approximation Techniques in Computer Science, pages 334–
344. Springer, 2004.

[17] Cameron Foreman, Sherilyn Wright, Alec Edgington, Mario Berta, and Florian J Curchod. Practical randomness amplifi-
cation and privatisation with implementations on quantum computers. Quantum, 7:969, 2023.

[18] Roger Colbeck. Quantum and Relativistic Protocols For Secure Multi-Party Computation. PhD thesis, University of
Cambridge, 2007. Also available as arXiv:0911.3814.

[19] Roger Colbeck and Renato Renner. Free randomness can be amplified. Nature Physics, 8:450–454, 2012.
[20] Stefano Pironio, Antonio Acin, Nicolas Brunner, Nicolas Gisin, Serge Massar, and Valerio Scarani. Device-independent

quantum key distribution secure against collective attacks. New Journal of Physics, 11(4):045021, 2009.
[21] S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo,

T. A. Manning, and C. Monroe. Random numbers certified by Bell’s theorem. Nature, 464:1021–1024, 2010.
[22] Max Kessler and Rotem Arnon-Friedman. Device-independent randomness amplification and privatization. IEEE Journal

on Selected Areas in Information Theory, 1(2):568–584, 2020.
[23] Fernando GSL Brandão, Ravishankar Ramanathan, Andrzej Grudka, Karol Horodecki, Michał Horodecki, Paweł Horodecki,

Tomasz Szarek, and Hanna Wojewódka. Realistic noise-tolerant randomness amplification using finite number of devices.
Nature communications, 7(1):11345, 2016.

[24] Ravishankar Ramanathan. Finite device-independent extraction of a block min-entropy source against quantum adversaries.
arXiv preprint arXiv:2304.09643, 2023.

[25] Yael Tauman Kalai, Xin Li, and Anup Rao. 2-source extractors under computational assumptions and cryptography with
defective randomness. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 617–626, 2009.

[26] Gil Cohen, Ran Raz, and Gil Segev. Non-malleable extractors with short seeds and applications to privacy amplification.
In 2012 IEEE 27th Conference on Computational Complexity, pages 298–308, 2012.

[27] Gil Cohen. Non-Malleable Extractors - New Tools and Improved Constructions. In Ran Raz, editor, 31st Conference on
Computational Complexity (CCC 2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages
8:1–8:29, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

14

[28] Gil Cohen and Leonard J. Schulman. Extractors for near logarithmic min-entropy. In 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 178–187, 2016.

[29] Divesh Aggarwal, Eldon Chung, and Maciej Obremski. Extractors: Low entropy requirements colliding with non-
malleability. In Annual International Cryptology Conference, pages 580–610. Springer, 2023.

[30] Divesh Aggarwal, Maciej Obremski, João Ribeiro, Mark Simkin, and Luisa Siniscalchi. Privacy amplification with tam-
perable memory via non-malleable two-source extractors. IEEE Transactions on Information Theory, 68(8):5475–5495,
2022.

[31] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 685–698, 2018.

[32] Vipul Goyal, Akshayaram Srinivasan, and Chenzhi Zhu. Multi-source non-malleable extractors and applications. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 468–497. Springer, 2021.

[33] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Nonmalleable extractors and codes, with their many tampered extensions.
SIAM Journal on Computing, 49(5):999–1040, 2020.

[34] Willy Quach, Brent Waters, and Daniel Wichs. Targeted lossy functions and applications. In Advances in Cryptology–
CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,
Proceedings, Part IV 41, pages 424–453. Springer, 2021.

[35] Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. Extracting randomness from extractor-dependent sources. In
Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39, pages 313–342. Springer, 2020.

[36] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. Near-optimal erasure list-decodable codes. In 35th Computational
Complexity Conference (CCC 2020). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2020.

[37] Rotem Arnon Friedman, Christopher Portmann, and Volkher B. Scholz. Quantum-proof multi-source randomness extrac-
tors in the Markov model. In Theory of Quantum Computation, Communication, and Cryptography, 2015.

[38] Mario Berta and Fernando Brandao. Robust randomness generation on quantum computers. Available on Amazon Braket,
2021.

[39] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM Journal on
Computing, 22(4):838–856, 1993.

[40] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple construction of almost k-wise independent random variables. In
Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science, pages 544–553 vol.2, 1990.

[41] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the maximal independent
set problem. Journal of Algorithms, 7(4):567–583, 1986.

[42] Raghu Meka, Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Fast pseudorandomness for independence and load
balancing. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages,
and Programming, pages 859–870, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[43] Ron Rothblum, 2024. Personal communications.
[44] Kai-Min Chung, Xin Li, and Xiaodi Wu. Multi-source randomness extractors against quantum side information, and their

applications. arXiv preprint arXiv:1411.2315, 2014.
[45] Oded Goldreich. Three xor-lemmas - an exposition. In Oded Goldreich, editor, Studies in Complexity and Cryptography.

Miscellanea on the Interplay between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare,
Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan,
Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650 of Lecture Notes in Computer Science, pages
248–272. Springer, 2011.

[46] Robert T. König and Barbara M. Terhal. The bounded-storage model in the presence of a quantum adversary. IEEE
Transactions on Information Theory, 54(2):749–762, February 2008.

[47] Roy Kasher and Julia Kempe. Two-source extractors secure against quantum adversaries. In International Workshop on
Randomization and Approximation Techniques in Computer Science, pages 656–669. Springer, 2010.

[48] Wolfgang Mauerer, Christopher Portmann, and Volkher B Scholz. A modular framework for randomness extraction based
on Trevisan’s construction. arXiv preprint arXiv:1212.0520, 2012.

[49] Dean Doron and João Ribeiro. Nearly-linear time seeded extractors with short seeds. arXiv preprint arXiv:2411.07473,
2024.

[50] Marco Tomamichel, Renato Renner, Christian Schaffner, and Adam Smith. Leftover hashing against quantum side infor-
mation. In Proceedings of the 2010 IEEE Symposium on Information Theory (ISIT10), pages 2703–2707, 2010.

[51] Anindya De, Christopher Portmann, Thomas Vidick, and Renato Renner. Trevisan’s extractor in the presence of quantum
side information. SIAM Journal on Computing, 41:915–940, 2012.

[52] Gilles Van Assche. Quantum cryptography and secret-key distillation. Cambridge University Press, 2006.
[53] Richard P. Brent and Paul Zimmermann. The great trinomial hunt. CoRR, abs/1005.1967, 2010.
[54] Florian J. Curchod, Cameron Foreman, and Mafalda L. Almeida. (in preparation).
[55] Miklos Santha and Umesh V Vazirani. Generating quasi-random sequences from slightly-random sources. In Proceedings

of the 25th IEEE Symposium on Foundations of Computer Science (FOCS-84), pages 434–440, 1984.
[56] Jakob Miller, Martin Sandfuchs, and Carla Ferradini. Improved two-source extractors against quantum side information.

arXiv preprint arXiv:2503.05528, 2025.
[57] Rudolf Lidl and Harald Niederreiter. Finite Fields. Encyclopedia of Mathematics and its Applications. Cambridge Uni-

versity Press, 2 edition, 1996.
[58] Roy Kasher and Julia Kempe. Two-source extractors secure against quantum adversaries. In Approximation, Randomiza-

15

tion, and Combinatorial Optimization, Lecture Notes in Computer Science, pages 656–669, 2010.

Appendix A: Complete proofs for the fast (p′, ζ)-biased generator of reference [42]

We now present the proof of Lemma 4. All results in this section of the appendix were obtained and proved in the
full manuscript of [42]. Following [42, 43], we reproduce the complete proofs for the convenience of the reader.

To begin, we introduce some extra notation and definitions. Let F be a finite field, and let Z and W be vectors in
Fn with entries Zi,Wi ∈ F for i ∈ {0, ..., n − 1}, respectively. A vector Z is p′-sparse if it has p′ non-zero entries.
We denote the inner product over Fn by ⟨Z,W ⟩Fn =

∑n−1
i=0 ZiWi ∈ F, where ZiWi denotes multiplication over F.

We denote UFn as a uniformly distributed random vector in Fn, i.e., pUFn (Z) = |F|−n for all Z in Fn. For the case
F = GF[2], we use the notation ⟨Z,W ⟩bin for ⟨Z,W ⟩GF[2]n and Un for UGF[2]n , respectively (to maintain consistency
with the main text).

Definition 5 (ζ-biased for linear tests of size p′ over F). Let Z be a random vector in Fn. Let p′ ≤ n be a positive
integer and ζ ≥ 0. Z is ζ-biased for linear tests of size p′ over F if, for all non-zero p′-sparse vectors W ∈ Fn, the
variable defined by ZW := ⟨Z,W ⟩Fn satisfies

2 · SD[ZW , UF] ≤ ζ . (A1)

Let X be a bitstring of length r distributed uniformly. A function G : {0, 1}r → Fn is a (p′, ζ)-biased generator
over F if the variable G(X) is ζ-biased for linear tests of size p′ over F. We also restate the construction below for
convenience.

Construction 1 ([42, 43], Section 1.1). Let n and p′ be positive integers that satisfy p′ ≤ n. Let ζ > 0 and F be
a finite field with |F| ≥ max{n, p′/ζ}. Let A,B be arbitrary subsets of F, with |A| = n and |B| = p′/ζ. Define the
generator G : B × F → F|A| as follows: for every α ∈ A,

G(β, ν)α := ν ·
p′−1∑
i=0

(αβ)i , β ∈ B, ν ∈ F . (A2)

Lemma 6 ([42, 43], Section 1.1). G as defined in Construction 1 is a (p′, 2ζ)-biased generator over F according to
Definition 5.

Proof. The generator in Construction 1 maps finite field elements in B × F to a vector in F|A|. Let W be any vector
in F|A| with entries indexed by Wα for α ∈ A. Then, according to Definition 5, we want to show that the random
variable

GW := ⟨W,G(β, ν)⟩F , (A3)

is statistically close to UF. Let λ ∈ F, and define the degree p′ − 1 polynomial over F,

PW (λ) :=

p′−1∑
i=0

(∑
α∈A

Wαα
i

)
λi . (A4)

Then, for every pair of generator inputs β ∈ B and ν ∈ F,

⟨W,G(β, ν)⟩F =
∑
α∈A

WαG(β, ν)α =
∑
α∈A

p′−1∑
i=0

Wα · ν · (αβ)i = ν ·
p′−1∑
i=0

(∑
α∈A

Wαα
i

)
βi = ν · PW (β) . (A5)

Next, we notice that PW is a non-zero polynomial whenever W is p′-sparse. To see this, let τ = {t0, ..., tp′−1} ⊆ A
denote the set of coordinates α for which Wα is non-zero. The coefficients ci ∈ F of PW (λ) can be expressed as the
inner product

ci :=
∑
α∈A

Wαα
i =

∑
α∈τ

Wαα
i =

〈
[Wt0 , ...,Wtp′−1

], [(t0)
i, ..., (tp′−1)

i]
〉
F
, (A6)

16

for i = 0, ..., p′ − 1. The vector [c0, ..., cp′−1] can therefore be expressed as the vector-matrix product

[c0, ..., cp′−1] = [Wt0 , ...,Wtp′−1
]×


1 t0 (t0)

2 · · · (t0)
p′−1

1 t1 (t1)
2 · · · (t1)

p′−1

...
...

...
. . .

...
1 tp′−1 (tp′−1)

2 · · · (tp′−1)
p′−1


︸ ︷︷ ︸

V

, (A7)

The matrix V ∈ F p′×p′
above is a Vandermonde matrix, which is invertible if and only if all {ti}p

′−1
i=0 are distinct.

This condition is satisfied by definition, as they correspond to the indices of W with non-zero entries. Therefore,
[c0, . . . , cp′−1]V

−1 = [Wt0 , . . . ,Wtp′−1
] and, since [Wt0 , . . . ,Wtp′−1

] is non-zero by definition, the vector [c0, . . . , cp′−1]
cannot be the all zero vector.

Consequently, since PW is a non-zero polynomial of degree at most p′−1 over F, it has at most p′−1 roots. Given that
β is chosen uniformly from B, with |B| = p′/ζ, the probability that PW (β) = 0 is at most (p′− 1)/|B| = ζ− ζ/p′ ≤ ζ.
Conditioned on PW (β) ̸= 0, the variable ν · PW (β) is uniformly distributed over F (since ν is chosen uniformly over
F). We therefore have

SD[GW , UF] =
1

2

∑
µ∈F

∣∣∣pGW
(µ)− 1

|F|

∣∣∣ = 1

2

∑
µ∈F

∣∣∣Pr[ν · PW (β) = µ]− 1

|F|

∣∣∣
=

1

2

∑
µ∈F

∣∣∣Pr[PW (β) = 0]Pr[ν · PW (β) = µ|PW (β) = 0]

+ (1− Pr[PW (β) = 0])Pr[ν · PW (β) = µ|PW (β) ̸= 0]− 1

|F|

∣∣∣
=

1

2

∑
µ∈F

∣∣∣Pr[PW (β) = 0]δ0,µ +
(1− Pr[PW (β) = 0])

|F|
− 1

|F|

∣∣∣
=

1

2

∑
µ∈F

∣∣∣Pr[PW (β) = 0]
(
δ0,µ − 1

|F|

)∣∣∣
≤ ζ

2

∣∣∣1− 1

|F|

∣∣∣+ ζ

2

∑
µ∈F :µ̸=0

1

|F|
= ζ(1− 1/|F|) ≤ ζ .

(A8)

For the fourth equality, we used the facts Pr[ν · PW (β) = µ|PW (β) ̸= 0] = 1/|F| and Pr[ν · PW (β) = µ|PW (β) = 0] =
δ0,µ. For the first inequality, we used Pr[PW (β) = 0] ≤ ζ and separated the µ = 0 from the sum. Multiplying both
sides by 2 completes the proof.

Given a bitstring X ∈ {0, 1}m, we define the function LSB : {0, 1}m → {0, 1}, which returns the least significant
bit of X, i.e. if X = X0, ..., Xm−1, LSB(X) = Xm−1. We identify elements of GF[2m] with vectors in GF[2]m in
the natural way4 (and vice-versa) and, for two bitstrings X and Y of length m, X + Y denotes their addition over
GF[2m] (represented as a bitstring). Then, we have that LSB(X + Y) = LSB(X) ⊕ LSB(Y). Moreover, for every
α ∈ GF[2m], define Tα : GF[2]m → GF[2] by Tα(λ) = LSB(α · λ). Note that Tα is linear, and we view the product
α · λ as multiplication over GF[2m]. We have the following:

Lemma 7 ([57], Theorem 2.24). For every α ∈ GF[2m], there exists an α′ ∈ GF[2m] such that Tα′(λ) = ⟨α, λ⟩bin for
all λ ∈ GF[2]m.

Lemma 8 ([42, 43], Section 1.1). Let G : {0, 1}r → GF[2m]n be a (p′, ζ)-biased generator over GF[2m]. Then G
viewed as a function from {0, 1}r → GF[2]m·n is a (p′, ζ)-biased generator over GF[2].

Proof. In the following, given a vector V ∈ GF[2]m·n, we denote its entries by Vj for j ∈ {0, ..., nm− 1}. We can also
view V as n blocks of size m, and we write V̄i, i ∈ {0, ..., n−1} for each block, with V̄i ∈ GF[2]m. In other words, we use
bars to denote blocks of size m, and V̄i is the i-th block of V . Let W ∈ GF[2]m·n be any non-zero p′-sparse vector, and

4 By this, we mean an element Z ∈ GF[2]m is viewed as a bitstring in {0, 1}m, where the i-th bit is identified with coefficient i− 1 of the
polynomial representation of Z.

17

X be a uniformly distributed bitstring over {0, 1}r. We will now show that the variable GW := ⟨W,G(X)⟩bin ∈ GF[2]
is close to U1 in statistical distance.

For every W , consider the block W̄i ∈ GF[2]m. Let W̄ ′
i ∈ GF[2]m be defined such that TW̄ ′

i
(λ) = ⟨W̄i, λ⟩bin for all

λ ∈ GF[2]m, according to Lemma 7. Now, we construct the vector W ′ ∈ GF[2m]n with entries W̄ ′
i . If W is non-zero

and p′-sparse over GF[2], then W ′ is also non-zero and p′-sparse over GF[2]. Given any vector S ∈ GF[2]m·n, we have

⟨W,S⟩bin =

n−1⊕
i=0

⟨W̄i, S̄i⟩bin =

n−1⊕
i=0

LSB
(
W̄ ′

i · S̄i

)
= LSB

(
n−1∑
i=0

W̄ ′
i · S̄i

)
= LSB

(〈
W ′, S

〉
GF[2m]

)
. (A9)

Applying the above to S = G(X), we have

⟨W,G(X)⟩bin = LSB
(〈

W ′, G(X)
〉
GF[2m]

)
. (A10)

Since G is a (p′, ζ)-biased generator over GF[2m], the variable ⟨W ′, S
〉
GF[2m]

for any non-zero p′-sparse vector W ′

is distributed ζ-close to uniform over GF[2m]. Therefore, when viewing ⟨W ′, S
〉
GF[2m]

∈ GF[2]m as an m length
bitstring, every individual bit is distributed ζ-close to uniform over GF[2]. Therefore, ⟨W,G(X)⟩bin is distributed
ζ-close to uniformly over GF[2], proving the claim.

We can now establish Lemma 4.

Lemma 4 ([42, 43], Section 1.1). Let n, ζ and p′ be chosen according to Construction 1 with p′ a positive power of
2. Let t be a positive integer, and suppose r := log(p′/ζ) is a positive integer, such that 2t ≥ max{n, 2r}. Then the
generator of Construction 1 viewed as a function G : {0, 1}r+t → {0, 1}n·t is a (p′, 2ζ)-biased generator. Moreover,
given any seed (β, ν) ∈ GF[2r]×GF[2t] and an index j ∈ {0, ..., n− 1}, the jth block (of t bits) can be computed using
O(log(p′)) field operations over GF[2t].

Proof. Based on Lemma 6, we know G : B×F → F|A| is a (p′, 2ζ)-biased generator over F, for well chosen F, A,B, p′, n
and ζ according to Construction 1. Let us choose F = GF[2t], B = GF[2r] with r = log(p′/ζ), and |A| = n. Then
G : GF[2r] × GF[2t] → GF[2t]n is a (p′, 2ζ)-biased generator over GF[2t] when the condition |F| ≥ max{|A|, |B|} is
satisfied, which translates to 2t ≥ max{n, 2r}. Now, viewing G as a function G : {0, 1}r+t → GF[2]n·t ≡ {0, 1}n·t, we
can apply Lemma 8 to show G is (p′, 2ζ)-biased over GF[2].

We now establish the claim of computation time. Let Z̃ = {2l : l ∈ Z≥0} and define f : F × Z̃ → F by
f(λ, p′) :=

∑p′−1
i=0 λi. Observe that

f(λ, p′) =

p′−1∑
i=0

λi = (1 + λ)(1 + λ2 + λ4 + ...+ λp′−2) = (1 + λ)

p′/2−1∑
i=0

(λ2)i = (1 + λ)f(λ2, p′/2) . (A11)

Writing p′ = 2l for a positive integer l, we have f(λ, 2l) = (1 + λ)f(λ2, 2l−1), and applying this procedure l times, we
arrive at

f(λ, p′) =

l−1∏
j=0

(1 + λ2j)f(λ2l , 1) =

l−1∏
j=0

(1 + λ2j) . (A12)

For α ∈ A, β ∈ B and ν ∈ F, we can write

G(β, ν)α = ν ·
p′−1∑
i=0

(αβ)i = ν · f(αβ, p′) = ν ·
l−1∏
j=0

(1 + (αβ)2
j

) . (A13)

The above element of F, viewed as a string of t bits, can be computed in O(log(p′)) finite field operations over
F = GF[2t]. This completes the proof.

Appendix B: Proofs for the new construction of Raz’s extractor

1. Proof of Lemma 5

Lemma 5. Let n1 and n2 be positive integers, where n1 is even and n2 ≤ n1/2. Define N = (n1/2)2
n2 . Then for

any positive integers k1, k2,m, l, p and γ > 0 such that m ≤ n1/2, l ≤ n2 + log(n1/2), p ≤ 2l/m, p is even and any

γ ≥ 2(n1−k1)/p ·
[
(2ζ)1/p + p · 2−k2/2

]
, (B1)

18

where ζ = 2l−n1/2, we have the following:

(i) The generator of Construction 1 viewed as a function G : {0, 1}n1 → {0, 1}N is a (p′, 2ζ)-biased generator with
p′ = 2l.

(ii) Consider the output of G as 2n2 blocks of size n1/2 bits, and let G(X)(i,y) denote bit i ∈ {0, ...,m − 1} of
block y ∈ {0, 1}n2 . Then the function Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m defined by Ext(x, y)i = G(x)(i,y) is a
(n1, k1, n2, k2,m, ϵ = 2m/2γ) two-source extractor, and a strong (in either input) (n1, k1, n

′
2, k

′
2,m, γ′) two-source

extractor, where

k′1 = k1 +m/2 + 2 + log(1/γ),

k′2 = k1 +m/2 + 2 + log(1/γ),

γ′ = γ · 2m/2+1.

(B2)

(iii) Given x ∈ {0, 1}n1 and y ∈ {0, 1}n2 , Ext(x, y) can be computed with computation time O(n1 log(n1) log(p
′)).

Proof. Part (i): Choose the following parameters for Lemma 4:

t = n1/2, n = 2n2 . (B3)

Since ζ = p′2−n1/2, r = log(p′/ζ) = n1/2. We then have the finite field F is given by F = GF[2t] = GF[2n1/2], and the
two subsets are given by A = GF[n] = GF[2n2] and B = GF[2r] = GF[2n1/2]. The condition 2t ≥ max{n, 2r} reads
2n1/2 ≥ max{2n2 , 2n1/2}, which is satisfied by the constraint n1/2 ≥ n2. We can therefore apply Lemma 4 to obtain
a generator for n · t = (n1/2)2

n2 binary random variables 2p′2n1/2-biased for linear tests of size p′, provided p′ ≤ N ,
which is satisfied since l ≤ n2 + log(n1/2). Note this sequence is generated using t+ r = n1 random bits.

Part (ii): We use the first n1/2 bits of X = x to select βx ∈ B = GF[2n1/2], and the remaining n1/2 bits to select
νx ∈ F = GF[2n1/2]. We can then define 2n2 blocks, via arbitrary choice of α ∈ A ⊂ GF[2n1/2], with |A| = 2n2 , and
associate the finite field elements G(βx, νx)α ∈ F = GF[2n1/2], from Eq. (14). We denote its binary form

Gy(x) = G(x)(y,0), ..., G(x)(y,n1/2−1) ∈ {0, 1}n1/2 , (B4)

where we exchanged the label α with a bitstring y ∈ {0, 1}n2 ,5 and exchanged the label (βx, γx) with x. By part
(i), the set {G(X)(y,i)}y,i constitutes (n1/2)2

n2 ≥ m 2n2 binary random variables 2ζ-biased for linear tests of size p′,
which can be constructed using n1 random bits. The claim is then a corollary of Lemma 2. Note that only m 2n2

variables constructed from n1 bits are required for Lemma 2, and the proof holds identically when we have access to
N > m 2n2 bits since, given a string of N bits ζ-biased for linear tests of size p′, any sub-string of length < N inherits
the same property by definition.

Part (iii): For a given x ∈ {0, 1}n1 and y ∈ {0, 1}n2 , computation of the output Ext(x, y) =
Ext(x, y)0, ...,Ext(x, y)m−1 corresponds to computing the single block Gy(x) and taking the first m bits (since
m ≤ n1/2). The claim then follows from the efficient properties of the generator G in Lemma 4.

2. Proof of Theorem 1

Theorem 1. Let n1, k1, n2, k2,m be positive integers, 0 < δ < 1/2 and 0.25 < λ < (δk2/16− 1), such that n2 ≤ n1/2
and

k1 ≥
(
1

2
+ δ

)
n1 + 2 log(n1) + 1 , (B5)

k2 ≥ max
[
3.2 log

(8n1

k2

)
, 40
]
, (B6)

m ≤ 1

λ

(δk2
16

− 1
)
. (B7)

5 This assignment can be done using any bijection between the 2n2 elements in A and strings y ∈ {0, 1}n2 .

19

Then there exists an explicit (n1, k1, n2, k2,m, ϵ ≤ 2(1−4λ)m/2−1) two-source extractor that can be computed in
O(n1 log(n1)

2) time, and an explicit strong (n1, k
′
1, n2, k

′
2,m, ϵ′ ≤ 2(1−4λ)m/2) two-source extractor that can be com-

puted in O(n1 log(n1)
2) time, with

k′1 = k1 + 3(m+ 1) ,

k′2 = k2 + 3(m+ 1) .
(B8)

Proof. Our proof follows the overall structure of Raz’s [6] proof of Theorem 1, incorporating several improvements
to achieve better parameters. We choose N = (n1/2)2

n2 , p′ = 2l where l =
⌊
log
(
m(n1 − k1)

)⌋
and ζ = 2l−n1/2.

Therefore, log(p′) = O(log(n1)) and p′ ≤ m(n1 − k1). Next, define r := log(p′/ζ) = n1/2 and t := n1/2. Hence, by
Lemma 4, we have that G0, . . . , GN−1 binary random variables that are 2ζ-biased for linear tests of size p′ can be
computed from n1 random bits, with any constant multiple of n1/2 being computable with time O(n1 log(n1)

2). For
some even integer p ≤ p′, we define

log(γ1) =
1

p

(
n1 − k1 + log(2ζ)

)
, (B9)

log(γ2) = (n1 − k1)/p+ log(p)− k2/2 , (B10)

and

γ1 + γ2 = 2(n1−k1)/p ·
[
(2ζ)1/p + p · 2−k2/2

]
. (B11)

We now consider two cases.
Case 1: k2 < 4(n1 − k1). Set p to the smallest even integer larger than 8(n1 − k1)/k2. Then,

8(n1 − k1)/k2 ≤ p ≤ 8n1/k2 . (B12)

Next, by inserting ζ = p′2−n1/2 = 2l−n1/2 and l = ⌊logm(n1 − k1)⌋, we get

− log(γ1) =
−1

p
(n1 − k1 + 1 + l − n1/2)

=
1

p

(
k1 − n1/2−

⌊
log
(
m(n1 − k1)

)⌋
)− 1

)
.

(B13)

To lower bound the above, we use the largest value of p from Eq. (B12), since Eq. (B5) implies that k1 − n1

2 −⌊
log
(
m(n1 − k1)

)⌋
− 1 ≥ 0. This follows from the fact that

k1 −
n1

2
−
⌊
log
(
m(n1 − k1)

)⌋
− 1 > k1 −

n1

2
− log

(k2
λ32

(n1 − k1)
)
− 1

> k1 −
n1

2
− log

(k2
8
(n1 − k1)

)
− 1

> k1 −
n1

2
− 2 log(n1)− 1 ≥ 0 ,

(B14)

where the first inequality uses Eq. (B7) followed by the bound δ < 1/2, the second follows from the bound λ > 1/4,
the third uses k2(n1 − k1) < n2

1, and the last follows from (B5) and the fact that δ > 0. Therefore

− log(γ1) =
1

p

(
k1 −

n1

2
−
⌊
log
(
m(n1 − k1)

)⌋
− 1
)

(B15)

≥ k2
8n1

(
k1 −

n1

2
−
⌊
log
(
m(n1 − k1)

)⌋
− 1
)

(B16)

≥ k2
8n1

(
k1 −

n1

2
− 2 log(n1)− 1

)
(B17)

≥ k2
8n1

δn1 (B18)

≥ 2(λm+ 1) , (B19)

20

where the penultimate inequality uses the bound on k1 from Eq. (B5) and the final inequality uses the bound on m
from Eq. (B7). Next, we bound γ2 using the restrictions on p in Eq. (B12),

− log(γ2) =
k1 − n1

p
− log(p) +

k2
2

(B20)

≥ k2(k1 − n1)

8(n1 − k1)
− log

(8n1

k2

)
+

k2
2

(B21)

=
3k2
8

− log
(8n1

k2

)
. (B22)

Noting that log(8n1/k2) ≤ 5k2/16 by (B6) and δ < 1/2,

3k2
8

− log
(8n1

k2

)
≥ 3k2

8
− 5k2

16
>

3k2
8

− 3− δ

8
k2 =

k2δ

8
≥ 2(λm+ 1), (B23)

where the final inequality comes from Eq. (B7). Therefore, combining the bounds on γ1 and γ2, we get that

γ1 + γ2 ≤ 2−2λm−2 + 2−2λm−2 = 2−2λm−1 . (B24)

Case 2: k2 ≥ 4(n1 − k1). Set p = 2. We find

− log(γ1) =
1

p

(
k1 −

n1

2
−
⌊
log
(
m(n1 − k1)

)⌋
− 1
)

(B25)

=
1

2

(
k1 −

n1

2
−
⌊
log
(
m(n1 − k1)

)⌋
− 1
)

(B26)

≥ k2
8n1

(
k1 −

n1

2
−
⌊
log
(
m(n1 − k1)

)⌋
− 1
)

(B27)

≥ k2
8n1

δn1 (B28)

≥ 2(λm+ 1) , (B29)

where the first inequality follows from the constraint k2 ≤ n2 ≤ n1/2, and the remainder follows the steps in Case 1.
Now, we consider γ2:

− log(γ2) =
k1 − n1

p
− log(p) +

k2
2

=
k1 − n1

2
− log(2) +

k2
2

=
k1 − n1

2
+

k2
2

− 1

≥ 3k2
8

− 1

≥ 2(λm+ 1) ,

(B30)

where the penultimate inequality comes from the fact that the Case 2 condition implies n1−k1 ≤ k2/4, so (k1−n1)/2+
k2/2− 1 ≥ −k2/8 + k2/2− 1 = 3k2/8− 1. The final inequality comes from the fact that 2(λm+ 1) ≤ δk2

8 ≤ 3k2

8 − 1,
where we used (B7) followed by (B6). Therefore, combining the bounds on γ1 and γ2, we get that

γ1 + γ2 ≤ 2−2λm−2 + 2−2λm−2 = 2−2λm−1 . (B31)

By Lemma 5, we now recover an (n1, k1, n2, k2,m, ϵ = 2m/2γ ≤ 2m/22−2λm−1 = 2(1−4λ)m/2−1) two-source extractor
with computation time O(n1 log(n1) log(p

′)) = O(n1 log(n1)
2), and a strong (n1, k

′
1, n2, k

′
2,m, ϵ′ ≤ 2(1−4λ)m/2) two-

source extractor, where

k′1 = k1 + 3(m+ 1) , (B32)
k′2 = k2 + 3(m+ 1) , (B33)

with the same computation time, concluding the proof.

21

Appendix C: Quantum-proofing with the classical-quantum XOR lemma

Informally, the classical XOR lemma [45] states that, given m binary random variables X = X0, ..., Xm−1, the
statistical distance SD[X,Um] is bounded by the maximum bias, MB[X], up to a factor of 2m/2, i.e. SD[X,Um] ≤
2m/2−1MB[X]. The maximum bias quantifies the uncertainty of sums of certain bit positions of X, MB[X] =
2maxτ SD[Xτ , U1], where τ is any non-empty sub-set of {0, ...,m− 1} and Xτ =

⊕
i∈τ Xi. To extract many bits, Raz

shows that the 1-bit extractor defined in [6, Lemma 3.3] implies a bound on the maximum bias of the m-bit extractor
output, MB[Ext(X,Y)], from which the XOR lemma yields a bound on the uniformity of the full extractor output,
SD[Ext(X,Y), Um], with a penalty factor 2m/2. One route to making the Raz extractor quantum-proof would be to
take Raz’s strong 1-bit extractor, and obtain a strong, quantum-proof 1-bit extractor via a general reduction such
as the Markov [37] or bounded storage model [46]. Then using a classical-quantum (cq) XOR lemma [47], an m-bit
quantum-proof extractor could be obtained analogously to the original proof.

This proof structure will, in general, give a different set of final parameters to those obtained in Corollary 1, where
the Markov model was applied to the m-bit Raz extractor directly. Specifically, the additional extractor error incurred
by applying the Markov model scales exponentially in the output size m (cf. Lemma 1), and only applying this to
the 1-bit extractor may be less penalizing. However, for the cq-XOR lemma presented in [47] we could not find
an improvement; this is due to the fact that the cq version is not tight compared to its classical counter part, and
contributes an additional factor of 2m/2 to the error (i.e., SD[X,Um] ≤ 2m−1MB[X]). This is enough to diminish any
potential advantage from this alternative proof structure. On the other hand, if a cq-XOR lemma was proven with
the same penalty as the classical version, an improvement in parameters would be possible.

Formally, given a random string of m bits X0, ..., Xm−1, let τ ⊆ {0, ...,m − 1} be a non-empty subset of indices,
and define the binary random variables Xτ =

⊕
i∈τ Xi. The maximum bias of X is given by

MB[X] := 2 ·max
τ ̸=∅

SD[Xτ , U1]. (C1)

Then the classical XOR lemma is the following result:

Lemma 9. Let X0, ..., Xm−1 be m binary random variables. Then

SD[X,Um] ≤ 2m/2

2
MB[X]. (C2)

For proof see [45]. This relationship is established by relating SD and MB to the l1 and l∞ norms, respectively, on
the space of probability distributions in R2m , and applying relevant norm inequalities. The quantum case is defined
analogously: consider the cq-state

ρXE =
∑

x∈{0,1}m

pX(x)|x⟩⟨x| ⊗ ρxE . (C3)

Define, for µ ∈ {0, 1},

Πτ
µ :=

∑
y∈{0,1}m

s.t.
⊕

i∈τ yi=µ

|y⟩⟨y|, Kτ
µ := |µ⟩ ⊗Πτ

µ . (C4)

Note that Kτ†
0 Kτ

0 + Kτ†
1 Kτ

1 = Πτ
0 + Πτ

1 = 1X , hence {Kτ
µ}µ form a set of Kraus operators for every non-empty τ .

Applying this channel to ρXE yields

1∑
µ=0

(Kτ
µ ⊗ 1E)ρXE(K

τ
µ ⊗ 1E)

† =

1∑
µ=0

|µ⟩⟨µ| ⊗

(∑
x∈{0,1}m

s.t.
⊕

i∈τ xi=µ

pX(x)|x⟩⟨x| ⊗ ρxE

)
. (C5)

Taking the partial trace over X, and labeling the entire channel (including identity on E) Λτ , we define

ρXτE := Λτ [ρXE] =

1∑
µ=0

|µ⟩⟨µ| ⊗

(∑
x∈{0,1}m

s.t.
⊕

i∈τ xi=µ

pX(x)ρxE

)
. (C6)

22

This allows us to define the maximum bias of ρXE with respect to E (slightly neglecting notation by using the same
label as in the classical case),

MB[ρXE] := max
τ ̸=∅

∥ρXτE − ω2 ⊗ ρE∥1 , (C7)

where the maximum is taken over all non-empty subsets τ . The aim is to bound TD[ρXE , ωm ⊗ ρE] by MB[ρXE]; we
interpret such a bound as a classical-quantum version of the XOR lemma. Notably, a cq-XOR lemma of this type
was proven by Kasher and Kempe [58]:

Lemma 10 ([58], Lemma 10). Let ρXE be an arbitrary cq-state, and d = dim[HE]. Then

TD[ρXE , ωm ⊗ ρE] ≤ 2min{m,d}/2
√∑

τ ̸=∅

(
TD[ρXτE , ω2 ⊗ ρE]

)2
. (C8)

Lemma 10 can be used to quantum-proof Raz’s extractor in the following way. Recall Raz’s strong, 1-bit extractor,
obtained by setting m = 1 in Lemma 2.

Lemma 11 ([6]). Let N = 2n2 . Let G0, ..., GN−1 be 0-1 random variables ζ-biased for linear tests of size p′ that can
be constructed using n1 random bits. Define Ext : {0, 1}n1 × {0, 1}n2 → {0, 1} by Ext(x, y) = G(x)y. Then, for any
even integer p ≤ p′ and any k1, k2, the function Ext is an (n1, k

′
1, n2, k

′
2, 1, γ 2

3/2) strong (in either source) two-source
extractor for any γ ≥ 2(n1−k1)/p ·

[
ζ1/p + p · 2−k2/2

]
and k′1 = k1 + 5/2 + log(1/γ), k′2 = k2 + 5/2 + log(1/γ).

Applying Lemma 1, we obtain a strong 1-bit two-source extractor that is quantum-proof in the Markov model,

Corollary 3. Let N = 2n2 . Let G0, ..., GN−1 be 0-1 random variables ζ-biased for linear tests of size p′ that can be
constructed using n1 random bits. Define Ext : {0, 1}n1 ×{0, 1}n2 → {0, 1} by Ext(x, y) = G(x)y. Then, for any even
integer p ≤ p′ and any k1, k2, the function Ext is a quantum-proof (n1, k1, n

′
2, k

′
2, 1,

√
3
√
2γ) two-source extractor in

the Markov model, for any γ ≥ 2(n1−k1)/p ·
[
ζ1/p + p · 2−k2/2

]
and k′1 = k1 +1+ 2 log(1/γ), k′2 = k2 +1+ 2 log(1/γ).

Combining with Lemma 10, we arrive at the following:

Lemma 12. Let N = m · 2n2 . Let G0, ..., GN−1 be 0-1 random variables ζ-biased for linear tests of size p′ that
can be constructed using n1 random bits. Define Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m by Ext(x, y)i = G(x)(i,y).
Then, for any even integer p ≤ p′/m and any k1, k2, the function Ext is a strong (in either input) quantum-proof
(n1, k1, n

′
2, k

′
2,m, 2m

√
3
√
2γ) two-source extractor in the Markov model, with γ ≥ 2(n1−k1)/p ·

[
ζ1/p + p · 2−k2/2

]
and

k′1 = k1 + 1 + 2 log(1/γ), k′2 = k2 + 1 + 2 log(1/γ).

Proof. First, we reproduce the proof in [6, Lemma 3.3]. For every non-empty τ ∈ {0, ...,m − 1}, define Extτ :
{0, 1}n1 × {0, 1}n2 → {0, 1}, by

Extτ (x, y) =
⊕
i∈τ

Exti(x, y) =
⊕
i∈τ

Z(i,y)(x) . (C9)

For a fixed τ , note that the set of variables
{
Zy|τ :=

⊕
i∈τ Z(i,y) : y ∈ {0, 1}n2} is ζ-biased for linear tests of size

p′/m. This follows from the fact that, for any non-empty Y ⊂ {0, 1}n2 satisfying |Y| ≤ p′/m, define

ZY :=
⊕
y∈Y

Zy|τ =
⊕
y∈Y

⊕
i∈τ

Z(i,y) . (C10)

Note that |Y| · |τ | = p′|τ |/m ≤ p′, implying ZY must be ζ-close to uniform, since {Z(i,y)}i,y are ζ-biased for linear tests
of size p′. Therefore, for every non-empty τ , the variables {Extτ (x, y)}y∈{0,1}n2 = {Zy|τ (x)}y∈{0,1}n2 are ζ-biased for
linear tests of size p′/m. By Corollary 3 the function Extτ (x, y) = Zy|τ (x) is an (n1, k1, n

′
2, k

′
2, 1, ϵ

′ =
√

3γ/2) strong
(in either input) 1-bit extractor, quantum-proof in the Markov model from Corollary 3. Choosing the extractor to be
strong in the first source, this implies

TD
[
ρExtτ (X,Y)XE , ω2 ⊗ ρXE

]
≤ ϵ′ (C11)

for all non-empty τ . Notice that

ρExtτ (X,Y)XE = Λτ [ρExt(X,Y)XE] , (C12)

and Eq. (C11) implies MB[ρExt(X,Y)XE] ≤ 2ϵ′. We can directly apply Lemma 10 to obtain

TD[ρExt(X,Y)XE , ωm ⊗ ρXE] ≤ ϵ′ · 2m . (C13)

23

Notice that the error increases by a factor of 2m, compared to 2m/2 in the classical case. Alternatively, we could
apply the Markov model directly to the original m-bit extractor, resulting in the parameters of Corollary 2, restated
below:

Corollary 2. Let N = m ·2n2 . Let G0, ..., GN−1 be 0-1 random variables ζ-biased for linear tests of size p′ that can be
constructed using n1 random bits. Define Ext : {0, 1}n1 ×{0, 1}n2 → {0, 1}m by Ext(x, y)i = G(x)(i,y). Then, for any
even integer p ≤ p′/m and any k1, k2, the function Ext is a strong (in either input) (n1, k

′
1, n2, k

′
2,m, 23m/4

√
3γ/2)

two-source extractor quantum-proof in the Markov model, with γ ≥ 2(n1−k1)/p ·
[
ζ1/p + p · 2−k2/2

]
and k′1 = k1 + 1 +

2 log(1/γ), k′2 = k2 + 1 + 2 log(1/γ).
Comparing the parameters, we have

Lemma 12 (CQ−XOR lemma) : ϵ = 2m
√

3
√
2γ, k′i = ki + 1 + 2 log(1/γ), (C14)

Corollary 2 (Markov model directly) : ϵ = 23m/4
√
3γ/2, k′i = ki + 1 + 2 log(1/γ). (C15)

On the other hand, a tight CQ-XOR lemma would result in

(Tight CQ−XOR lemma) : ϵ = 2m/2

√
3
√
2γ, k′i = ki + 1 + 2 log(1/γ), (C16)

which would give an improvement by decreasing the error exponent from 3m/4 to m/2.

	Introduction
	Background
	Classical random variables
	Two-source extractors
	Two-source extractors in the quantum setting with Markov sources

	Improved Raz extractor
	The original construction
	New construction with improved computation time
	The fast (p',)-biased generator of reference Meka14,comms
	Application to Raz's two-source extractor
	Making Raz's extractor quantum-proof in the Markov model
	Concatenation with a seeded extractor

	Code implementation

	Analysis of the Improved Raz's extractor
	Maximizing the output length
	Minimizing the entropy rate of the second source
	Performance of the code implementation
	Using Raz's extractor as a seeded extractor

	Discussion and Conclusion
	Acknowledgements

	References
	Complete proofs for the fast (p',)-biased generator of reference Meka14
	Proofs for the new construction of Raz's extractor
	Proof of lem:newRaz1
	Proof of thm:newRaz

	Quantum-proofing with the classical-quantum XOR lemma

