
ar
X

iv
:2

50
6.

15
34

3v
1

 [
cs

.R
O

]
 1

8
Ju

n
20

25

OFFENSIVE
ROBOT
CYBERSECURITY
Cyber-protecting robots by hacking-them-first

Víctor Mayoral-Vilches

Supervised by

Prof. Dr. Stefan Rass

Prof. Dr. Martin Pinzger

2018-2025

https://arxiv.org/abs/2506.15343v1

Víctor Mayoral-Vilches

Offensive Robot Cybersecurity
Cyber-protecting robots by hacking-them-first
with Game Theory and Machine Learning

Thesis submitted for the Doctoral Programme in Computer
Science (Doktoratsstudium der Technischen
Wissenschaften Informatik)

Department of Artificial Intelligence and Cybersecurity
System Security Group, Alpen-Adria-Universität Klagenfurt

2025

© Víctor Mayoral-Vilches, 2025

Dissertation submitted to the
System Security Group, Alpen-Adria-Universität Klagenfurt, Klagenfurt
University

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Print production: Klagenfurt University.

Para Leo y Sam

Abstract

Robots, integral to modern automation and services, encounter formidable
cybersecurity challenges, primarily due to their inherent complexity and
the lack of vendor accountability for security, shifting the burden to end-
users. Offensive Robot Cybersecurity, the title of this thesis, introduces
a groundbreaking approach by advocating for offensive security methods
empowered by automation leveraging modern Artificial Intelligence.
It emphasizes the necessity of understanding attackers’ tactics and
identifying vulnerabilities in advance to develop effective defenses, thereby
improving robots’ security posture. This endeavor leverages a decade
of robotics experience, employing Machine Learning and Game Theory
to streamline the vulnerability identification and exploitation process.
Intrinsically, the thesis uncovers a profound connection between robotic
architecture and cybersecurity, highlighting that the design and creation
aspect of robotics deeply intertwines with its protection against attacks.
This duality—whereby the architecture that shapes robot behavior and
capabilities also necessitates a defense mechanism through offensive
and defensive cybersecurity strategies—creates a unique equilibrium.
Approaching cybersecurity with a dual perspective of defense and attack,
rooted in an understanding of systems architecture, has been pivotal in
this research. This synergy affirms the adage that the best defense is
a good offense, especially in the complex realm of robotics. Through
comprehensive analysis, including ethical considerations, the development
of security tools, and executing cyber attacks on robot software, hardware,
and industry deployments, this thesis proposes a novel architecture for
cybersecurity cognitive engines. These engines, powered by advanced
game theory and machine learning, pave the way for autonomous offensive
cybersecurity strategies for robots, marking a significant shift towards
self-defending robotic systems. This research not only underscores the
importance of offensive measures in enhancing robot cybersecurity but also
sets the stage for future advancements where robots are not just resilient
to cyber threats but are equipped to autonomously safeguard themselves.

iii

Resumen

Los robots, esenciales para la automatización y la industria moderna, en-
frentan desafíos formidables en el área de la ciberseguridad, principal-
mente debido a su complejidad inherente –pues los robots son complejos
sistemas con redes de redes– y la falta de responsabilidad por parte de
los fabricantes (software y hardware) de estos robots que con frecuencia
ignoran la ciberseguridad, trasladando la responsabilidad a los usuarios
finales (las fábricas donde estos operan). Esta tesis titulada Offensive
Robot Cybersecurity (Ciberseguridad Ofensiva para Robots) introduce un
enfoque innovador al abogar por métodos de ciberseguridad ofensivos
para proteger robots de forma económica y con recursos limitados, us-
ando la Inteligencia Artificial como medio de automatización. Enfatiza
la necesidad de comprender e imitar las tácticas de los ciber-atacantes
e identificar vulnerabilidades con anticipación para desarrollar defensas
efectivas, mejorando así la ciber-resiliencia de los robots.

Esta investigación construye sobre una década de experiencias en
robótica, y emplea Aprendizaje Máquina (Machine Learning) y Teoría de
Juegos (Game Theory) para automatizar el proceso de identificación y uso
de vulnerabilidades en robots. De forma intrínseca, esta tesis estudia la
profunda conexión entre la arquitectura robótica (tanto software como
hardware) y la ciberseguridad, destacando que el diseño y la creación
de los robots debe entrelazarse profundamente con su protección frente
a ciber-ataques. Esta dualidad, donde la arquitectura que da forma al
comportamiento y capacidades del robot también requiere de un mecanismo
de defensa a través de estrategias de ciberseguridad, crea un equilibrio
único, difícil de resolver y cambiante en el tiempo. Se aborda este reto
con una perspectiva dual de ataque y posterior defensa, arraigada en un
entendimiento de la arquitectura de sistemas y en el popular dicho: la mejor
defensa es un buen ataque. A través de un análisis exhaustivo, incluyendo
consideraciones éticas, el desarrollo de herramientas de ciberseguridad
y la ejecución de ciberataques en software, hardware y despliegues
industriales robóticos, esta tesis describe una arquitectura novedosa para
motores cognitivos de ciberseguridad. Estos motores, impulsados por

v

Resumen

teoría de juegos avanzada y aprendizaje máquina automático, permiten la
implementación de estrategias de ciberseguridad ofensivas y autónomas
para robots, marcando un cambio significativo hacia sistemas robóticos
auto-defensivos mediante técnica ofensivas. Esta investigación no solo
subraya la importancia de las medidas ofensivas en la mejora de la
ciberseguridad para los robots y otros sistemas industriales, sino que
también prepara el terreno para avances futuros donde los robots no
solo sean resistentes a las amenazas cibernéticas, sino que también estén
equipados para protegerse y responder de manera autónoma.

vi

Preface

My professional career in robotics began in 2013, with a first stage
focused on the study of the software architecture of robots. After various
international experiences, in 2014, I had the fantastic opportunity to be
part of the group that started one of the most significant revolutions in
robotics in recent times: the creation of the Robot Operating System 2
(ROS 2). Used today by the majority of robotics engineers around the world,
ROS is the common language used in robotics to build robotic behaviors. It
is a set of modular and open source software libraries that include tools,
interconnection and communication elements between robotic processes.
Technically, ROS provides a message-passing infrastructure between robot
software components, drivers for robotic hardware, state-of-the-art robotic
algorithms, and powerful development tools to simulate, debug, and
visualize a robot’s behaviors. Simply put, ROS allows building robot brains
and my involvement in building ROS 2 allowed me to grow rapidly as an
engineer, and encouraged me to create dozens of robots over the next few
years.

After half a decade building robots and leading teams to do so, in 2018 I
decided to embark on a journey to explore cybersecurity applied to robots.
Throughout this journey, I discovered the deep connection between robotic
architecture and cybersecurity in robotics, more intimate than initially
perceived. Robotic architecture focuses on creation, on shaping behaviors
and possibilities, while cybersecurity in robotics is oriented towards offense
or protection, allowing what is built to be defended. This synergy creates
a unique balance when cybersecurity is approached from a knowledge of
systems architecture and with a dual perspective: defense and attack, both
essential. This learning, the result of exploration and study, has been key
in my research, reaffirming that in the field of robots, as in many others,
the best defense is indeed a good offense.

I began this research (my PhD) formally in 2020 with a clear intention:
to create the technological principles so that an artificial intelligence is
capable of hacking robots better than any human. I write these lines happy
to have largely satisfied this initial objective while having open sourced

vii

Preface

much of it. During these years, I developed and participated in the creation
of technology and prototypes that allow achieving superhuman capabilities
in terms of offensive security in robotics. My contributions to the area of
robotic cybersecurity today allow the creation of artificial systems that
guide and even automate cyberattacks. No human is capable of processing
so much so quickly. To respond on multiple fronts. Or training himself to
exploit a new target or a new attack vector in a matter of a few seconds. It
is surprising, exciting, but also overwhelming what these AIs can do.

I’d like to thank everyone that supported me in this journey. Thanks
to Laura, my companion on this and many other trips. Her constant
support, patience, and vital balance have been fundamental pillars in the
most challenging moments of this research, providing not only emotional
refuge, but also unique perspectives that have enriched my research.
Her intelligence and empathy have been a constant source of inspiration
and strength every day. Thanks to my father, whose tireless support
and unconditional trust have been my beacon in the darkness of those
most difficult times. His wisdom and calm approach to life’s challenges
have taught me to face problems with patience and determination. His
example of perseverance and curiosity to "always keep learning" have
been a constant guide in my life. Thanks to my mother for never giving up.
Thanks to David for his drive and resilience. Always there, despite our many
mistakes. Thanks to Stefan and Martin, my supervisors, for their expert
guidance and unwavering scientific support throughout this process. Their
ability to challenge and expand my ideas, combined with their commitment
to academic excellence, has been crucial to my development as a researcher.
Stefan, with his renowned expertise as a mathematician in security and
game theory, has brought a unique and rigorous perspective, enriching my
understanding of the theoretical aspects of cybersecurity. Martin, renowned
for his deep knowledge of software and software engineering, has been
instrumental in honing my hands-on approach, ensuring my applications
and tools are robust and advanced. Together, they have formed an unrivaled
supervisory team, offering a balanced blend of theory and practice that has
been essential to the depth and success of my research.

I greatly appreciate the support received from the company Alias
Robotics. This research has been partially funded by SEGRES (EXP
00131359 / MIG-20201041) grant to Alias Robotics. Its funding and trust
in my work has been essential in carrying out some significant parts of my

viii

research, allowing me to dive deeply into the field of robotics cybersecurity.
Thanks to Endika and Unai for successfully taking the lead of the corporate
daily matters, while I was focused on research. Last but not least, thanks
to the rest of my family for their unwavering faith in my abilities over the
past. Thanks to María for the sacrifices for a better future, and to Ramón
for the stolen acorns in times of need. Now, your grandson keeps acorns on
the tree in his garden, sowing perseverance and affection. Thanks also to
Rosa and Adela. Their emotional support, teachings and trust in my dreams
have been a constant source of motivation and courage to keep going, even
in the most difficult times.

For any reader, but especially for my two boys, may this learning encour-
age you to approach the challenges of the future with courage, resilience
and cunning.

Víctor Mayoral-Vilches
Zuia, June 2025

ix

Prefacio

Mi carrera profesional en robótica comenzó en 2013, con una primera
etapa centrada en el estudio de la arquitectura software de los robots. Tras
varias experiencias internacionales, en 2014, tuve la fantástica oportunidad
de formar parte del grupo que inició una de las revoluciones en robótica
más significativas de los últimos tiempos: la creación del Sistema Operativo
de Robots 2 (ROS 2). Usado a día de hoy por la mayoría de ingenieros
e ingenieras de robótica por todo el mundo, ROS es el lenguaje común
que se utiliza en robótica para construir comportamientos robóticos. Es
un conjunto de librerías de software modulares y de código abierto que
incluyen herramientas, y elementos de interconexión y comunicación
entre procesos robóticos. Técnicamente, ROS proporciona un sistema
de transmisión de mensajes entre componentes de software, controladores
para el hardware robótico, algoritmos robóticos de última generación y
potentes herramientas de desarrollo para simular, depurar y visualizar
los comportamientos de un robot. De forma sencilla, ROS permite crear
cerebros robóticos y mi participación en la construcción de ROS 2 me
permitió crecer rápidamente como ingeniero, y me animó a crear decenas
de robots durante los años siguientes.

Tras media década construyendo robots y liderando equipos para ello,
en 2018 decidí emprender un viaje para explorar la ciberseguridad aplicada
a los robots. A lo largo de este viaje, he descubierto la profunda conexión
entre la arquitectura robótica y la ciberseguridad en robótica, más íntima
de lo que inicialmente se percibe. La arquitectura robótica se enfoca en
la creación, en moldear comportamientos y posibilidades, mientras que
la ciberseguridad en robótica se orienta hacia la ofensiva o la protección,
permitiendo defender lo construido. Esta sinergia crea un balance único
cuando se aborda la ciberseguridad desde un conocimiento de arquitectura
y con una perspectiva dual: defensa y ataque, ambas esenciales. Este
aprendizaje, fruto de la exploración y el estudio, ha sido clave en mi
investigación, reafirmando que en el ámbito de los robots, como en otros
muchos, la mejor defensa es efectivamente un buen ataque.

Comencé esta investigación (mi doctorado) formalmente en 2020 con

xi

Prefacio

una intención clara: crear los principios tecnológicos para que una in-
teligencia artificial sea capaz de hackear robots mejor que cualquier
humano, para después mitigar dichas vulnerabilidades antes de aparezcan
los primeros ataques. Escribo estas líneas contento de haber satisfecho
en gran medida este objetivo inicial. Durante estos años, he desarrollado
y participado en la creación de tecnología y prototipos que permiten al-
canzar capacidades sobre-humanas en lo que a la seguridad ofensiva en
robótica se refiere. Mucho de este trabajo ha sido contribuído abiertamente
(open sourced), con licencias permisivas. Mis contribuciones al área de la
ciberseguridad robótica permiten hoy la creación de sistemas artificiales
que orientan e incluso automatizan ciber-ataques. Ningún humano es
capaz de procesar tanto y tan rápido. De responder a múltiples frentes. O
de capacitarse para explotar un nuevo target o un nuevo vector de ataque
en cuestión de pocos segundos. Es sorprendente, excitante pero también
sobrecogedor.

Me gustaría terminar agradeciendo a todas aquellas y aquellos que me
han apoyado en esta aventura. Gracias a Laura, mi compañera en este y
otros muchos viajes. Su apoyo constante, su paciencia y su equilibrio vital
han sido pilares fundamentales en los momentos más desafiantes de esta
investigación, proporcionando no solo un refugio emocional, sino también
perspectivas únicas que han enriquecido mi investigación. Su inteligencia
y empatía han sido una fuente constante de inspiración y fuerza cada día.
Gracias a mi padre, cuyo apoyo incansable y confianza incondicional han
sido mi faro en la oscuridad de esas épocas más difíciles. Su sabiduría
y su enfoque sereno ante los desafíos de la vida me siguen enseñando a
enfrentar los problemas con paciencia y determinación. Su ejemplo de
perseverancia y curiosidad por "siempre seguir aprendiendo" han sido una
guía constante en mi vida. Gracias a mi madre por nunca darse por vencida.
Gracias a David por su fuerza y resiliencia. Siempre junto a mí, a pesar
de nuestras muchas equivocaciones. Gracias a Stefan y a Martin, mis
supervisores, por su orientación experta y apoyo científico inquebrantable
durante todo este proceso. Su capacidad para desafiar y expandir mis
ideas, combinada con su compromiso con la excelencia académica, ha sido
crucial para mi desarrollo como investigador. Stefan, con su renombrada
experiencia como matemático en ciberseguridad y teoría de juegos, ha
aportado una perspectiva única y rigurosa, enriqueciendo mi comprensión
de los aspectos teóricos de la ciberseguridad. Martin, reconocido por

xii

sus profundos conocimientos en software y software engineering, ha
sido fundamental para pulir mi enfoque práctico, asegurando que mis
aplicaciones sean robustas y avanzadas. Juntos, han formado un equipo
de supervisión inigualable, ofreciendo una combinación equilibrada de
teoría y práctica que ha sido esencial para la profundidad y el éxito de mi
investigación.

Agradezco enormemente el apoyo recibido por parte de la empresa
Alias Robotics. Esta investigación ha sido parcialmente financiada por
el proyecto SEGRES (EXP 00131359 / MIG-20201041) concedido a Alias
Robotics. Su financiación y confianza en mi trabajo han sido esenciales
para llevar a cabo algunas partes significativas de mi investigación, permi-
tiéndome sumergirme profundamente en el campo de la ciberseguridad
robótica. Gracias a Endika y Unai por liderar con éxito el día a día corpo-
rativo, mientras yo me centraba en la investigación. Por último, pero no
menos importante, gracias al resto de mi familia por su fé inquebrantable
en mis capacidades a lo largo de muchos años. Gracias a María por los
sacrificios por un futuro mejor y a Ramón por las bellotas robadas en
tiempos de necesidad. Ahora, vuestro nieto guarda bellotas en el árbol de
su jardín, sembrando perseverancia y cariño. Gracias también a Rosa y a
Adela. Su apoyo emocional, sus enseñanzas y su confianza en mis sueños
han sido una fuente constante de motivación y coraje para seguir adelante,
incluso en los momentos más difíciles.

Para cualquier lector o lectora, pero especialmente para mis dos chicos,
que este aprendizaje os impulse a abordar con valentía, resiliencia y astucia
los retos del futuro.

Víctor Mayoral-Vilches
Zuia, June 2025

xiii

Contents

Abstract iii

Resumen v

Preface vii

Prefacio xi

Contents xv

List of Figures xxiii

List of Tables xxix

I Motivation 1

1 Introduction 3
1.1 Why robot cybersecurity? 3
1.2 About ROS . 3
1.3 Research Objectives and Approach 6

1.3.1 Ethics . 9
1.3.2 Blueprints . 10
1.3.3 Cyber-attacking robots 11
1.3.4 Automated offensive robot cybersecurity . . . 11

2 Background context 13
2.1 Biographical cornerstones in robot cybersecurity 13
2.2 Robotics software quality, safety and security 15
2.3 Cybersecurity Across Various Domains: IT, OT, IoT, and

Robotics . 19
2.3.1 Definitions and Differentiations 20
2.3.2 Misunderstandings in Robot Security 21

xv

Contents

2.4 Machine Learning and Game Theoretic approaches to
offensive cybersecurity 22

II Ethics 27

3 Ethical Landscape in Robot Cybersecurity 29
3.1 Introduction . 29
3.2 Background . 30
3.3 Surveying security in robotics communities 31

3.3.1 Surveying the ROS community 31
3.3.2 Surveying the PX4 community 32
3.3.3 Surveying the ROS-Industrial community . . . 34
3.3.4 Surveying the European robotics community at

the European Robotics Forum (ERF) (2020) . 37
3.4 Security research results in robotics 37
3.5 Discussion . 39

3.5.1 Ethical Considerations During Surveys 39
3.5.2 Vulnerability Disclosure Policies 41
3.5.3 Lack of learning resources 47

3.6 Conclusion . 48

III Blueprints 53

4 Cybersecurity in ROS 55
4.1 Introduction . 55
4.2 Background . 57
4.3 Approach . 59

4.3.1 Modeling . 59
4.3.2 Authentication 61
4.3.3 Authorization 62
4.3.4 Generation . 63
4.3.5 Deployment . 64
4.3.6 Monitoring and mitigation 64

4.4 Application and analysis 67
4.5 ROS 2 over VPN: Tunneling Communications 69

4.5.1 Challenges in Securing ROS 2 Communications 69

xvi

Contents

4.5.2 ROS 2 over VPN: A Layered Security Approach 69
4.5.3 Implementation 70

4.6 Conclusion . 71

5 The Cost of Security: Benchmarking Robot Computations 73
5.1 Introduction . 73
5.2 Background . 78
5.3 RobotPerf: Principles & Methodology 79

5.3.1 Non-Functional Performance Testing 79
5.3.2 ROS 2 Integration & Adaptability 79
5.3.3 Platform Independence & Portability 79
5.3.4 Flexible Methodology 80
5.3.5 Opaque Performance Tests 81
5.3.6 Reproducibility & Consistency 81
5.3.7 Metrics . 82
5.3.8 Current Benchmarks and Categories 82
5.3.9 Run Rules . 83

5.4 Evaluation . 83
5.4.1 Fair and Representative Assessment of Hetero-

geneity . 83
5.4.2 Quantitative Approach to Hardware Selection 85
5.4.3 Rigorous Assessment of Acceleration Benefits 86
5.4.4 Benchmarking the security impact in ROS 2

communications 87
5.5 Conclusion . 88

6 Hardware Accelerators in Robotics 91
6.1 Introduction . 91
6.2 Background . 95

6.2.1 ROS and ROS 2 95
6.2.2 Hardware Acceleration for ROS and ROS 2 . . 95

6.3 An Open Architecture for Hardware Acceleration in ROS 2 96
6.3.1 Extending the ROS 2 Build System 97
6.3.2 Extending the ROS 2 Build Tools 98
6.3.3 Adding Firmware Extensions 98
6.3.4 Low-Overhead Real-Time Tracing & Bench-

marking . 98
6.4 Case Study: Accelerating ROS 2 Perception 100

xvii

Contents

6.4.1 Method . 100
6.4.2 CPU-Only Tracing Results 101
6.4.3 Accelerating and Benchmarking CPU & FPGA 101

6.5 Conclusion . 105
6.6 Future work . 106

IV Cyber-attacking robots 109

7 Attacking Robot Software 111
7.1 Introduction . 112
7.2 Background . 113
7.3 DDS and Real-Time Publish-Subscribe (RTPS) Packets . 115
7.4 Research Methodology and Technical Details 118

7.4.1 A New Scapy Layer to Dissect and Forge RTPS
and DDS Data 118

7.4.2 Source-code and Binary Fuzzing 122
7.4.3 Internet-wide Scanning for RTPS Endpoints . 133

7.5 Conclusion . 137

8 Attacking Robot Hardware 139
8.1 Introduction . 139
8.2 Robot teardown . 142

8.2.1 Case Study 1: Teardown of an industrial
collaborative robot 143

8.2.2 Case Study 2: Teardown of a next-gen indus-
trial collaborative robot 145

8.2.3 Case Study 3: Teardown of a mobile industrial
robot . 147

8.3 Teardown-enabled security research 149
8.4 Lessons learned . 150
8.5 Conclusions . 151

9 Attacking Robots in Industry 155
9.1 Introduction . 155
9.2 Background . 156
9.3 Akerbeltz . 157

9.3.1 Target selection and rationale 157

xviii

Contents

9.3.2 Ransomware’s flow 160
9.3.3 Discussion . 162

9.4 Conclusions . 163

V Automation 165

10 Determining the Attack Target with Game Theory 167
10.1 Introduction . 168
10.2 Case Studies . 173

10.2.1 Implementation Remarks 174
10.2.2 Robot Case Studies 175

10.3 Results and Comparison 176
10.3.1 Baseline Comparison: A Best-Effort defense

Policy . 176
10.3.2 Overview of Experiments 178
10.3.3 MARA: Results 178
10.3.4 MiR100: Results 181

10.4 Discussion . 184
10.4.1 Incomplete Attack Graphs and Zero-Day Exploits184
10.4.2 Cutting the rope vs. Changing the Attack Graph 185
10.4.3 Further Generalizations 185
10.4.4 Complexity and Scalability 186
10.4.5 Including Signals about Adversarial Activities 187

10.5 Conclusions and Outlook 187

11 Guiding Attacks with Machine Learning 191
11.1 Introduction . 192
11.2 Background . 198

11.2.1 Penetration Testing 198
11.2.2 Large Language Models 199

11.3 Penetration Testing Benchmark 199
11.3.1 Motivation . 199
11.3.2 Benchmark Design 200

11.4 Exploratory Study . 201
11.4.1 Testing Strategy 202
11.4.2 Evaluation Settings 202
11.4.3 Capability Evaluation (RQ1) 204

xix

Contents

11.4.4 Comparative Analysis (RQ2) 206
11.5 Methodology . 208

11.5.1 Overview . 208
11.5.2 Design Rationale 209
11.5.3 Reasoning Module 210
11.5.4 Generation Module 213
11.5.5 Parsing Module 215
11.5.6 Active Feedback 216
11.5.7 Discussion . 216

11.6 Evaluation . 217
11.6.1 Evaluation Settings 218
11.6.2 Performance Evaluation (RQ3) 218
11.6.3 Strategy Evaluation (RQ4) 219
11.6.4 Ablation Study (RQ5) 220
11.6.5 Practicality Study (RQ6) 221

11.7 Discussion . 222
11.8 Conclusion . 223

12 Conclusion and future work 229

VI Appendices 233

A Research Results 235
A.1 Thesis framework . 235
A.2 Past work . 235
A.3 Peer-reviewed articles 238
A.4 Preprint articles (including under review) 240
A.5 Tutorials and talks . 241
A.6 Vulnerabilities found . 241

B Game Theoretic Appendix 245
B.1 Cut-The-Rope Background 245
B.2 The Model . 248

B.2.1 Definition of Payoffs 251
B.2.2 Solution Concept 254

B.3 Movement Patterns . 255
B.3.1 Periodically Active Defender 255

xx

Contents

B.3.2 Probabilistic Success on Exploits 256
B.3.3 Checks with Random Intervals (“Exponential

Strategy”) . 257
B.3.4 Spot Checks with Random Intervals and Prob-

abilistic Success on Exploit 258
B.4 Analytic Results . 259
B.5 Application for Risk Control 263
B.6 Derivation of the probability (B.13) 265

C Machine Learning Appendix 267

Bibliography 271

xxi

List of Figures

1.1 The robotics stack, including ROS 2 core layers. Reworked
from [6] . 5

1.2 Thesis building blocks . 9

2.1 Software integrity as the union between security and quality 15

2.2 Security as the target of this thesis. 16

2.3 Safety, quality and security relationship 18

2.4 Relationship between various technology domains 19

2.5 Captures from Mobile Industrial Robots (MiR) documentation
indicating a purely IT security approach. 22

2.6 Attacker model for robotics. Adapted from [67, 68, 69, 70] . 23

3.1 Surveying the ROS robotics community (2019), from [83] . . 33

3.2 Surveying the PX4 robotics community (2020), adapted from
[83]. 35

3.3 Surveying the ROS-Industrial robotics community (2020),
adapted from [83]. 36

3.4 Surveying the European robotics community (ERF 2020),
adapted from [83]. 38

3.5 Vulnerability data for various robots, adapted from [83]. . . . 40

3.6 Summary of Vulnerability Disclosure Policies in Robotics . . 42

4.1 A subset of the computational graph of the simulated robot
including sensor and control topics, adapted from [102]. . . 66

4.2 FogROS2 proposes an additional security layer to ROS 2
communications using a VPN, reproduced from [103]. 70

5.1 A high level overview of RobotPerf, reproduced from [133] . 76

5.2 Benchmarking results on diverse hardware platforms across
perception, localization, control, and manipulation workloads
defined in RobotPerf beta Benchmarks. Reproduced from
[133]. 84

xxiii

List of Figures

5.3 Benchmark comparison of perception latency (ms) on AMD’s
Kria KR260 with and without the ROBOTCORE Perception
accelerator. Reproduced from [133]. 86

5.4 Mean latency of ROS 2 intra-network communications with
various different security measures after 1000000 samples . 87

6.1 The open architecture for hardware acceleration in ROS 2,
reproduced from [139]. 93

6.2 Overview of the components of the open architecture for
hardware acceleration in ROS 2. Reproduced from [139]. . . 96

6.3 Computational graph of our case study perception application,
reproduced from [139]. 99

6.4 Tracepoints instrumented across ROS 2 abstraction layers
on CPU for case study computational graph (Figure 6.3).
Breakdown summary in Figure 6.5. Reproduced from [139]. 100

6.5 Breakdown of CPU runtime derived from tracing and bench-
marking. Total computation time of our case study graph
is dominated by message passing overheads, a bottleneck
consuming over 73.3% of total runtime. Reproduced from [139].102

6.6 Total runtime of CPU baseline and FPGA, FPGA-Integrated,
and FPGA-Streaming hardware-accelerated implementations
of case study application. Acceleration enables up to 26.96%
speedup over CPU. Reproduced from [139]. 104

7.1 We found exposed DDS systems in 34 countries [97], including
vulnerable ones, identified via distinct IPs leaking data. Color
code hints about criticality by vulnerable targets: red for most,
yellow/grey for least. Reproduced from [97]. 113

7.2 DDS is a standardized software library used for software-
based controlled systems, directly or via ROS 2. Reproduced
from [97]. 114

7.3 Simplified software-based control system with actuators,
controller, sensors, communicating by exchanging data over
DDS. Reproduced from [97]. 116

7.4 An example of a dissected RTPS message with a DATA
submessage. Reproduced from [97]. 116

xxiv

List of Figures

7.5 Diagram of the research methodology and workflow we
used: The numbered items indicate the sequence of steps
we followed throughout this research, beginning with the
development of a packet dissector. Reproduced from [97]. . 119

7.6 With the Scapy RTPS layer, a developer can create arbitrarily
complex (and unexpected but valid) RTPS packets. Repro-
duced from [97]. 120

7.7 The UDP payload contains the RTPS header and subsequent
data. Reproduced from [97]. 121

7.8 In case of UDP or TCP transport, the locator is the IP-port
pair. Reproduced from [97]. 122

7.9 We found the amplification vulnerability almost by accident,
by setting the PID_DEFAULT_UNICAST_LOCATOR to the first
IP address that came to mind and easy to type. Reproduced
from [97]. 122

7.10 Abstract representation of the data flow in a typical DDS/RTPS
message exchange. From a fuzzing perspective, the
deserialize() step is the fuzz target. Reproduced from [97]. 124

7.11 Starting from a debug trace, we found interesting functions
and explored further by manually looking into the source code
with the aid of Visual Studio Code engine. Reproduced from
[97]. 124

7.12 Typical switch-case control structure found similar in all DDS
implementations. Each of the branches takes care of one
RTPS sub-message type (e.g., DATA, INFO_DST, HEARTBEAT).
Reproduced from [97]. 125

7.13 (Top screenshot) In some cases, we inserted a memcpy() to
directly fuzz the input in the right place when it was not
possible to further decompose the function into a smaller,
self-contained fuzz target. In other cases, we used the
original code to dump the data received by the de-serialization
routine to verify that we found the right fuzz target (bottom
screenshot). Reproduced from [97]. 126

7.14 Example harness for OpenDDS RTPS deserialization routine
written for AFL++ using persistent mode. Reproduced from
[97]. 127

xxv

List of Figures

7.15 Cyclone DDS harness required a mock network subsystem.
The actual fuzzing is happening at line 86, where we pass the
configuration initializer a pointer memory-mapped XML file.
Reproduced from [97]. 128

7.16 Backtrace of a crash found by libFuzzer on Cyclone DDS,
which led us to CVE-2021-38441, a multi-byte heap-write
primitive. Reproduced from [97]. 129

7.17 Finding fuzz targets in RTI Connext DDS, CoreDX DDS,
and Gurum DDS required us to reverse engineer the binary
libraries, which was easy as the vendor did not use any anti-
reverse engineering measures. Reproduced from [97]. 130

7.18 We used the debug trace and the decompiled code (see Figure
7.20) to create a harness for UnicornAFL. Reproduced from
[97]. 131

7.19 A simple scripting of RADAMSA can lead to surprising results.
Reproduced from [97]. 132

7.20 Register state and sample crash cases in RTI Connext DDS
Connector (Python bindings) found with RADAMSA from the
original XML configuration file. Reproduced from [97]. . . . 133

7.21 The dashboard of our DDS-scanning system allows analysts
to explore the data. User interface is not publicly available.
Reproduced from [97]. 134

7.22 We used spoofed RTPS discovery messages sent via ZMap to
collect answers from valid DDS endpoints and filtered echoed
and invalid responses. Reproduced from [97]. 136

7.23 Starting from a template RTPS packet, the spoofer instantiates
it for a given collector (IP and port) and sends it out via
ZMap. The collector uses the RTPS packets sent out to
decide whether the received packets are valid and not simply
duplicates of what was sent out. Reproduced from [97]. . . . 137

8.1 Our teardown methodology for robots 143
8.2 UR3 collaborative robot teardown. Adapted from [104]. . . . 144
8.3 UR3e collaborative robot teardown. Adapted from [104]. . . 146
8.4 MiR-100 mobile industrial robot teardown. Adapted from [104].148
8.5 Simplified electrical diagrams of Universal Robots UR3 CB-

Series (8.5a) and UR3e e-Series (8.5b) collaborative robots.
Reproduced from [104]. 154

xxvi

List of Figures

9.1 Universal Robots UR3. Reproduced from [88]. 159

9.2 UR3 PolyScope Robot User Interface hijacked. In this case,
Akerbeltz locks and disables most functions and a message is
overlayed on top. Reproduced from [88]. 161

10.1 Game theoretic contributions to our architecture to develop
fully automated offensive robot cybersecurity agent, a cogni-
tive cybersecurity engine denominated Malism. The Cut-The-
Rope method implemented sits between ExploitFlow and
PentestGPT, receiving the exploit tree from ExploitFlow ,
reasoning about it to determine optimal attack vectors, pass-
ing such vectors to PentestGPT to transform them into ac-
tionable exploits and finally, feeding such exploits back to
ExploitFlow for their execution and result digestion. 170

10.2 Cut-The-Rope (static game) inside the continuous process of
permanent system hardening to fight against. Reproduced
from [283]. 171

10.3 MARA use case results for periodic spot checks (Section
B.3.1). Adapted from [283]. 179

10.4 MARA use case results for spot checks at random intervals.
Adapted from [283]. 180

10.5 MiR100 use case results for periodic spot checks (Section
B.3.1). Adapted from [283]. 182

10.6 MiR100 use case results for spot checks at random intervals
(Section B.3.4). Adapted from [283]. 183

11.1 Machine Learning contributions to our architecture to de-
velop fully automated offensive robot cybersecurity agent, a
cognitive cybersecurity engine denominated Malism. 193

11.2 Overview of strategy to use LLMs for penetration testing.
Reproduced from [292]. 203

11.3 Overview of PentestGPT. Reproduced from [292]. 209

11.4 Pentesting Task Tree in a) visualized tree format, and b)
natural language format encoded in LLM. Reproduced from
[292]. 212

11.5 A demonstration of the task-tree update process on the testing
target HTB-Carrier. Reproduced from [292]. 213

xxvii

List of Figures

11.6 The performance of GPT-3.5, GPT-4, PentestGPT-GPT-3.5, and
PentestGPT-GPT-4 on overall target completion and sub-task
completion. Reproduced from [292]. 225

11.7 Penetration testing strategy comparison between GPT-4 and
PentestGPT on VulnHub-Hackable II. Reproduced from [292]. 226

11.8 The performance of PentestGPT, PentestGPT-No-Annotation,
PentestGPT-Operation-Only, and PentestGPT-Parameter-Only
on both normalized average code coverage (µLOC) and bug
detection. Reproduced from [292]. 227

12.1 Our architecture and framework to develop fully automated of-
fensive robot cybersecurity agents, which name cybersecurity
cognitive engines in Chapter 10: Malism. 230

B.1 Basic Gameplay of Cut-The-Rope. Reproduced from [283]. . 248
B.2 Cut-The-Rope (static game) inside the continuous process of

permanent system hardening (dynamic game). Reproduced
from [283]. 264

xxviii

List of Tables

2.1 Summary of security-related terms 18
2.2 Comparative analysis of cybersecurity across different tech-

nologies . 21

3.1 Robot Hacks: Notable Cybersecurity Incidents in Robotics . 48
3.2 Summary of Observations from Robotics Security Surveys and

Research . 50

5.1 Comparative evaluation of representative existing robotics
benchmarks with RobotPerf across essential characteristics
for robotic systems. 77

5.2 Grey-box vs. black-box benchmarking trade-offs. 80

7.1 A list of DDS implementations that we analyzed in this
research. Reproduced from [97]. 117

7.2 Assuming up to one DDS domain and at least one participant,
we tested the open UDP ports of each of the six reference
implementations. All those marked with checks could detect
any of the identified ports just by scanning for four ports listed
on the last row of the table. Reproduced from [97]. 135

8.1 The 17 novel (new CVE IDs) vulnerabilities encountered
during a period of two years in the robots of Teradyne and as
a result of an initial hardware teardown. 153

10.1 Overview of Experiments . 178

11.1 Overall performance of LLMs on Penetration Testing Bench-
mark. 204

11.2 Top 10 Types of Sub-tasks completed by each tool. 205
11.3 Top Unnecessary Operations Prompted by LLMs on the

Benchmark Targets. Experiments conducted on June 2023. . 206
11.4 Top causes for failed penetration testing trials 207

xxix

List of Tables

11.5 PentestGPT performance over the active HackTheBox Chal-
lenges. 222

A.1 Past work group 1 . 236
A.2 Past work group 2 . 237
A.3 Peer-reviewed articles group 1. 238
A.4 Peer-reviewed articles group 2. 239
A.5 Preprints, this includes under review documents 240
A.6 Workshops, tutorials and talks in peer-reviewed conferences. 242
A.7 Some of the most relevant robot vulnerabilities found during

research. 243

C.1 Summarized 26 types of sub-tasks in the proposed penetration
testing benchmark. 270

xxx

Part I

Motivation

Chapter 1

Introduction

1.1 Why robot cybersecurity?

For the last fifty years, we have been witnessing the dawn of the robotics
industry, but robots are not being created with security as a concern.
Security in robotics is often mistaken with safety. From industrial to
consumer robots, going through professional ones, most of these machines
are not prepared for cyber-threats and resilient to security vulnerabilities.
Manufacturers’ concerns, as well as existing standards, focus mainly on
safety. Security in robotics is still not being considered as a relevant matter.
The integration between these two areas from a risk assessment perspec-
tive was studied in [1, 2] which resulted in a unified security and safety
risk framework. Commonly, robotics safety is understood as developing
protective mechanisms against accidents or malfunctions, whilst security
is aimed to protect systems against risks posed by malicious actors [3]. A
slightly alternative view is the one that considers safety as protecting the
environment from a given robot, whereas security is about protecting the
robot from a given environment. In this proposal we adopt the later and
tackle the emerging need to address security in robotics.

1.2 About ROS

Robots are networks of networks, with sensors capturing data, passing
to compute technologies, and then on to actuators and back again in a
deterministic manner. These networks can be understood as the nervous
system of the robot, passing across compute Nodes, that represent neurons.
Like the human nervous systems, real-time information across all these
computational Nodes is fundamental for the robot to behave coherently.

"Robot brains" are built with this same philosophy. Behaviors take the
form of computational graphs, with data flowing between Nodes operating
intra-process, inter-process and across physical networks (communication

3

1. Introduction

buses), while mapping to underlying sensors, compute technologies and
actuators. The Robot Operating System (ROS) [4] is a robotics framework
for robot application development. ROS enables a robotics developer to
build these computational graphs and create robot behaviors by providing
libraries, a communication infrastructure, drivers and tools to put it all
together. It provides an open source codebase with a commercially friendly
license that helps roboticists reduce the effort to bring up robot behaviors.
Widely used to govern interactions across robots, at the time of writing,
the original ROS article [4] has been cited about 12000 times, which shows
its wide acceptance for research and academic purposes. ROS was born
in this environment: its primary goal was to provide the software tools
and libraries that users would need to employ to undertake novel robotics
research and development. Adoption in industry has also been rapidly
increasing over the last few years. According to the latest ROS community
metrics [5] sampled every year in July, the number of ROS downloads has
increased by over 50%, with about 600 million downloads between July of
2020 and July of 2021 1. Moreover, based on the download percentages
reported from packages.ros.org, we observe a significant increase in
adopting ROS 2, which suggests that within 2024 there will be more users
using ROS 2 than its predecessor 2.

Following from the success of ROS, and redesigned for production
environments, the second generation of ROS, ROS 2, is rapidly becoming a
standard in the robotics industry. Built upon the Data Distribution Service
(DDS [7]) as its default communication middleware (used in safety-critical
scenarios), ROS 2 aspiration was to offer a more robust framework that
could be integrated into products and industry. Figure 1.1 depicts the ROS
2 robotics stack, relative to the OSI model. From a technical viewpoint, it
provides three main components:

1. ROS Plumbing: ROS provides an efficient message-passing in-
frastructure facilitating seamless communication between different

1There’s a slowdown identified in the year 2022 according to the data. This is justified
mostly due to two reasons: 1) COVID influence and 2) slowdown of ROS contributors and
interest due to Intrinsic’s acquisition of Open Robotics

2We also note that past studies estimated that by 2024, 55% of the total commercial
robots shipped that year would include at least one ROS package. For more details,
refer to https:// www.businesswire.com/ news/ home/ 20190516005135/ en/ Rise-ROS-55-total-
commercial-robots-shipped .

4

https://www.businesswire.com/news/home/20190516005135/en/Rise-ROS-55-total-commercial-robots-shipped
https://www.businesswire.com/news/home/20190516005135/en/Rise-ROS-55-total-commercial-robots-shipped

About ROS

ROS Client Library (rcl)

ROS MiddleWare interface (rmw)

DDS impl. 1 adapter (rmw_<dds1>)

DDS implementation 1

...

...

DDS impl. n adapter

DDS
implementation n

Eclipse iceoryx™ adapter (rmw_iceoryx)

Eclipse iceoryx™

Yocto/PetaLinux Ubuntu Linux

Linux Networking Stack (LNS)

Ethernet

Time Sensitive
Networking (TSN) WiFi 5G ...

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

device drivers (sensors, actuators, etc.)

navigation
stack Node #1

navigation
stack Node #2

manipulation
stack Node #1

perception
stack Node #1

perception
stack Node #2

control stack
Node #1

control stack
Node #2

geometry stack
(tf2) Node #1

geometry stack
(tf2) Node #2

ROS 2
core layers

Figure 1.1: The robotics stack, including ROS 2 core layers. Reworked
from [6]

robotic system components. This includes topics for asynchronous
message exchange, services for synchronous requests, and actions
for handling long-duration tasks. ROS’s process management, or
node management, ensures efficient handling of various processes,
promoting a modular and scalable design. Additionally, ROS device
drivers are integral for interfacing with the robot’s hardware, ensur-
ing effective control and data acquisition from sensors and actuators.

2. ROS Tools: ROS boasts a suite of visualization tools like RViz and
rqt, essential for real-time monitoring and understanding of a robot’s
operation. CLI tools such as rostopic, rosnode, and rosservice offer
convenient system interaction and control, crucial for development
and troubleshooting. The simulation environment, provided by tools
like Gazebo [8], enables safe and cost-effective testing in varied
scenarios. Moreover, ROS’s data logging capabilities, particularly
with rosbag, are vital for data analysis, debugging, and scenario
replication.

3. ROS Capabilities: ROS’s control capabilities ensure precise robot

5

1. Introduction

movements and actions, encompassing real-time control loops and mo-
tion planning for complex task execution. Its perception capabilities,
processing data from various sensors, are critical for tasks like naviga-
tion and environment mapping. ROS’s manipulation features enable
physical interaction with the environment, essential in applications
such as assembly and logistics. Furthermore, coordinate transforma-
tions, managed by the tf library, maintain spatial relationships crucial
for path planning and object manipulation.

ROS 2 stands as a foundational element in the realm of modern robotics,
playing a pivotal role in this thesis focused on offensive robot cybersecurity.
As the de facto standard for modern robotic software development, ROS
offers a comprehensive framework that not only streamlines the creation of
complex robotic applications but also inherently shapes the cybersecurity
landscape of robotic systems. In the context of offensive cybersecurity,
the ubiquity and modular architecture of ROS present both opportunities
and challenges. Its widespread adoption makes it a critical target for
cybersecurity research, as vulnerabilities within ROS (including any of its
higher level abstraction, or underlayers) could potentially impact a vast
array of robotic systems. This thesis, therefore, places significant emphasis
on ROS, examining its architectures, communication protocols, and tools
through the lens of offensive cybersecurity. By doing so, it aims to uncover
and address potential security weaknesses, contributing to the robustness
and resilience of robotics systems developed with ROS. This exploration
not only aids in fortifying ROS-based robots against cyber threats but also
provides valuable insights into the broader field of robot cybersecurity.

1.3 Research Objectives and Approach

Security is not a product, but a process that needs to be continuously
assessed in a periodic manner, as systems evolve and new cyber-threats are
discovered. This becomes specially relevant with the increasing complexity
of such systems [9]. Current robotic systems are of high complexity, a
condition that in most cases leads to wide attack surfaces and a variety
of potential attack vectors which makes difficult the use of traditional
approaches. Altogether, this leads to the following research question: given
the increasing complexity of robotic systems, how can we protect them
from cyber-threats? Inspired by the popular adage "the best defense is

6

Research Objectives and Approach

a good offense", the present work attempts to answer this question by
focusing on offensive practices yet, given the time-consuming requirements
of traditional offensive security approaches [10, 11, 12], the answer might
not be straightforward and require further automation.

Research hypothesis 1. The inherent complexity of robotic systems, which
leads to wide attack surfaces and a variety of potential attack vectors, will
be more effectively tackled with an offensive security approach rather than
a defensive one.

Scalability is one of the core problems of offensive security assessments
(red teaming, penetration testing, etc.) as of now [13, 14]. This thesis dives
into robot cyber security and study how traditional and modern offensive
methods apply to robotics, delivering a new angle to protect such systems.
To this research question, the investigation herein proposed reviews and
creates new mechanisms and techniques that leverage Machine Learning
and Game Theory allowing for the full automation of offensive security
assessments.

Research hypothesis 2. An autonomous, end-to-end offensive security
assessment algorithm that leverages Machine Learning and Game Theory
will address scalability problems in offensive security.

This research also argues and challenges the underlying ethics of the
security community when applied to robotics. Particularly, de facto stan-
dards and conventions on security outcomes and disclosures are assessed
and challenged, with a critical non-vendor-centered attitude. Ultimately,
given the novelty of the topic itself, a relevant number of contributions are
expected in the form of blueprints that will empower future research.

In the remainder of this chapter, the research objectives and approach are
discussed in more detail. The overall research framework is introduced
in Section 1.3, followed by an explanation of each one of the building blocks.

Security, cybersecurity and cyber security

Within this thesis, the terms security, cybersecurity and cyber security
are used interchangeably.

7

1. Introduction

Although security has gained attention over the past years, our compu-
tational systems are increasingly vulnerable against cyber attacks. This
includes of course all robots. As indicated by Bozic [9], one reason behind
is definitely the system’s complexity, comprising interacting heteroge-
nous systems. Complexity is the enemy of security. It is very difficult to
assure no vulnerabilities in a system that an attacker could exploit. In
robotics, the reality is even more concerning, as there is no culture of
security 3. As studied in previous work [2, 15], except few vendors and
selected actions, no real concern has been shown. Offensive security
methods (such as pentesting or red teaming) play an important part in
the security lifecycle. In these engagements, as introduced by Applebaum
[14], (offensive) security teams try to break into an organization’s assets,
identifying vulnerabilities along the way. Red teams take this concept
even further, trying to fully emulate what real adversaries do: instead of
just compromising the network and identifying vulnerabilities, they have
a larger goal that requires significant post-compromise work. Offensive
security methods are necessary to understand attackers’ behavior, to train
defensive mechanisms and ultimately, to help protect existing systems by
discovering flaws first. The latter is specially important in highly complex
systems, such as robots.

In an attempt to raise awareness and create some base formal stud-
ies and tools, this research objective is to study how offensive cyber
security methods applied to robotics allow to protect such systems. In
particular, this thesis aims to study how traditional methods in offensive
security are applied to robotics. Such methods include penetration testing,
red teaming, automated attack planning or advanced persistent threats
amongst others. The expected outcome is twofold: a) to validate that these
practices are applicable to robotics and b) that the inherent complexity
of robotics systems, often systems of system at multiple levels, make the
manual application of these methods unfeasible in most robotic setups.
In addition, this study covers ethics and defensive security mechanisms
that protect systems, networks and operations. Such is necessary for
implementing offensive methods and understanding the underlying ethical
and legal boundaries. Ultimately, this study looks into how to automate

3Early robot languages such as ABB’s Rapid, KUKA’s KRL or Fanuc’s Karel did not
consider security primitives. Similarly, later robotic frameworks born from academic efforts
(e.g. ROS[4]) decided to ignore and forward security to third parties.

8

Research Objectives and Approach

and optimize offensive cyber security attacks targeting robots. Preliminary
ideas on this direction include the use and extension of prior work (as
covered in 2.4) on leveraging Machine Learning for the semi-automation of
offensive security assessment. Such machine learning techniques could
be trained using popular and widely available Capture The Flag (CTF)
environments adapted for robotics. In addition, to optimize the use of
resources and define proper learning and exploitation strategies, Game
Theoretic approaches are considered.

For coherence, this proposal has been organized in a framework con-
sisting on four building blocks. As depicted in Figure 1.2, from bottom
to top, (0) Ethics, (1) Blueprints for researching offensive security for
robots, as well as robotics in general, (2) Cyber-attacking robots and (3)
Cyber-attacking robots with Machine Learning and Game Theory. Generally,
upper layers require of primitives from the underlying ones. The following
subsections briefly describe each block.

Block 3
(Part V)

Block 2
(Part IV)

Block 1
(Part III)

Block 0
(Part II)

Cyber-attacking robots with Ma-
chine Learning and Game Theory

Cyber-attacking robots

Blueprints

Ethics

Figure 1.2: Thesis building blocks

1.3.1 Ethics

This block treated in Part II aims to study the ethical landscape of
cybersecurity in robotics. Particularly, it aims to build some basic
knowledge on the ethically accepted situation for robotics in Europe, in
main areas of application. Beyond analysing existing vulnerabilities and
manufacturer responses to them, this layer also studies robotic users’

9

1. Introduction

perception of cybersecurity by conducting various surveys in popular
robotic communities. In addition, this block challenges some of the de
facto standards in security when applied to robotics and discuss them
with a critical attitude. Including topics such as disclosure policies,
the requirement from vendors to freely notify research results and
vulnerabilities (so called responsible disclosure) or even, the relevance of
disclosing flaws at all, inspired by previous criticism [16]. This block is
discussed in more detail in Chapter 3.

1.3.2 Blueprints

Building upon the previous ethical and legal baselines, this block is covered
in Part III and develops the tools, libraries and frameworks necessary to
perform robotics security research and offensive attacks in robots and their
components. Each one of these research elements will be considered as
"blueprints". Often considered part of a research continuum, the blueprints
produced in this phase include:

• Building upon the DevSecOps in Robotics principles researched in
the non peer-reviewed published article [17], SROS2 proposes a
series of developer tools, meant to be usable and that facilitate adding
security capabilities to ROS 2 computational graphs (Chapter 4). On
top of SROS2, we also discuss the shortcomings of the DDS Security
extensions [18] which ROS 2 embraces and how additional layers of
security via VPN could help mitigate them.

• Security measures such as those proposed by SROS2 in Chapter 4 add
a computational overhead to robotic systems. In order to accurately
estimate the performance impact, RobotPerf proposes an open-
source and community-driven benchmarking tool designed to assess
the performance of robotic computing systems in a standardized,
architecture-neutral, and reproducible way, including the security
associated aspects of them (Chapter 5).

• Chapter 5 elucidates the computational overhead of integrating
security into robotic communications, highlighting the resultant
time bottlenecks that diminish system capabilities. To address this,
RobotCore is introduced. It aims to empower the development
of hardware accelerators that expedite security computations in

10

Research Objectives and Approach

robotics, thereby enabling the incorporation of security in robotic
interactions without compromising capabilities. RobotCore introduces
a framework and an open architecture for hardware acceleration
that extends ROS to easily develop hardware accelerators in an
accelerator-agnostic manner, across GPUs and/or FPGAs (Chapter 6).

1.3.3 Cyber-attacking robots

Using previous blueprint security primitives, tools developed (such as
Alurity [19] or ExploitFlow [20]) and know-how, research produced within
this block aims at building basic attacks on robots and robot components
targeting both, software and hardware. These attacks’ objectives are
threefold: first, they aim to contribute building some basic research ground
on offensive cyber security robot practices. Second, these attacks will help
raise the awareness of the current practices most vendors are applying.
Third and ultimately, these actions help building expertise and develop an
intuition on common offensive cyber-behavior, which will later be necessary
when automating attacks using Machine Learning and Game Theory.

In Part IV, we present our contributions while cyber-attacking robots.
Chapter 7 cares about attacking robot software and investigates the
Data Distribution Service (DDS) standard, crucial for robotic operation,
uncovering numerous vulnerabilities as detailed in [21]. We highlight
the discovery of publicly accessible DDS implementations, stressing
the importance of persistent security evaluation and robust integration
practices. Chapter 8 explores attacking robot hardware through teardowns,
emphasizing the significance of such methods in identifying security
flaws. We also address the effects of planned obsolescence in robotics,
advocating for a ‘Right to Repair’ stance. The last chapter, 9 focuses on
attacking robots in industry and introduces Akerbeltz ransomware, the first
instance of ransomware targeting industrial collaborative robots. Akerbeltz
demonstrates its impact on industrial robots by encrypting and locking
robotic systems, which underscores the critical need for heightened security
against potential cyber-attacks.

1.3.4 Automated offensive robot cybersecurity

Bridging the gap between the intricate world of robotic security vulner-
abilities and proactive countermeasures, this final block shifts the focus

11

1. Introduction

from identification to automated action. It lays the groundwork for sys-
tems designed to anticipate and combat threats autonomously, fortifying
defenses in an ever-evolving digital battleground where automation play
an increasingly pivotal role. This transition encapsulates the move from
understanding vulnerabilities and its mitigations (covered in parts III and
IV), to implementing advanced strategies for robust and resilient cyberse-
curity cognitive engines. Constructing upon all previous blocks, in Part V
we attempt to design and deploy an autonomous system for cyber-attacking
robots using Machine Learning and Game Theory.

Building on the strategic insights provided by game theory, we advance
into the domain of proactive cyber defense and offense within automated
systems in Chapter 10. This first chapter in Part V tackles the challenge
of Determining the attack target with Game Theory, equipping us with a
strategic toolset to predict the most vulnerable points in our robot threat
landscape and to fortify them accordingly. This chapter describes how
to prioritize our defensive efforts and to anticipate the moves of our
adversaries, aligning our future actions with the most likely paths they
might traverse in the adversary’s illicit endeavors.

Following this strategic planning phase, Guiding attacks with Machine
Learning presented in Chapter 11, immerses us into the dynamic process
of directing our cyber agents. Here, we leverage the advanced capabilities
of modern Machine Learning, particularly the generative power of Large
Language Models, to automate the decision-making processes in cyber-
attacks. These models act as multi-faceted instruments, capable of parsing
vast amounts of data, reasoning through complex scenarios, and generating
adaptive attack and defense strategies. With the prototype PentestGPT,
we have a glimpse into a future where cybersecurity operations are
autonomous, intelligent, and ever-evolving, reflecting the intricate nature
of the digital battleground where they operate.

Part V as a whole forms a comprehensive narrative that transitions
from a state of awareness and understanding of vulnerabilities to an active,
autonomous and intelligent stance against them. They pave the way for
automated systems that do not merely react to threats but anticipate and
adapt to them, marking a significant leap in the field of offensive robot
cybersecurity.

12

Chapter 2

Background context

2.1 Biographical cornerstones in robot cybersecurity

1960 2017

1962
First installation
of a cyber-physical
system in a man-
ufacturing plant
[22]

1979
The first time an industrial
robot killed a human was in
1979 [23]

2006
Toward a uni-
fied security-safety
model [1]

October 2016
Dieber et al, Application-level security
for ROS-based applications [24]

June 2016

Lera et al., Ciberseguridad en robots
autónomos: Análisis y evaluación mul-
tiplataforma del bastionado ROS [25]

November 2016
White et al., SROS: Securing ROS over the
wire, in the graph, and through the kernel
[26]

2009
ROS: an open-source Robot
Operating System [4]

13

2. Background context

Arguably, the first installation of a cyber-physical system in a man-
ufacturing plant was back in 1962 [22]. The first human death caused
by a robotic system is traced back to 1979 [23] and the causes were
safety-related according to the reports. From this point on, a series of
actions involving agencies and corporations triggered to protect humans
and environments from this machines, leading into safety standards.

Security however hasn’t started being addressed scientifically in robotics
until recently. One of the first peer-reviewed published articles on the topic
goes back to 2016 [25] which already warns about the security dangers
of the Robot Operating System (ROS) [4]. Following this first assessment,
the same group in Spain authored a series of articles touching into robot
security [27, 28, 29, 30, 31]. Contemporary to Lera’s work, White et al.
propose an addition to ROS API to support modern cryptography and
security measures [26]. This work led by White (UC San Diego, Spain) and
Caiazza (Ca’ Foscari University, Italy) delivered a series of articles [32, 33,
34, 35, 36, 37] which focused on proposing defensive blueprints for robot
cybersecurity. Starting also in 2016 [24], Dieber (Joanneum Research,
Austria) led a series of publications that researched robot cybersecurity
focusing around ROS [38, 39, 40, 41, 42].

A careful review of the prior art in the last paragraph indicates that
there’re three groups, in different points of the world, that almost simul-
taneously started working in robot cybersecurity by tackling the lack of
security primitives and proposing studies and blueprints for securitization.
Most of this existing work focuses on defensive approaches and mecha-
nisms. Very few publications touched into offensive approaches to secure
robotic systems being [43] one of the first. Some pioneering work on
the offensive side focused onto generating primary concerns and social
awareness on robot security faults [44, 45] but from this literature review,
very few instances of offensive security have been seen so far in robotics.

The following sections shed some additional light into the foundations
of this research.

14

Robotics software quality, safety and security

2.2 Robotics software quality, safety and security

Quality (Quality Assurance or QA for short) and Security are often
misunderstood when it comes to software. Ivers argues [46] that quality
"essentially means that the software will execute according to its design
and purpose" while "security means that the software will not put data or
computing systems at risk of unauthorized access". Within [46] one relevant
question that arises is whether the quality problems are also security issues
or vice versa. Ivers indicates that quality bugs can turn into security ones
provided they’re exploitable, and addresses the question by remarking that
quality and security are critical components to a broader notion: software
integrity. Depicted in Figure 2.1, software integrity can be represented the
union of both software security and quality (Software Integrity = Security
∪ Quality).

Security Quality

Figure 2.1: Software integrity as the union between
security and quality

Coming from the same group, Vamosi [47] argues that "quality code may
not always be secure, but secure code must always be quality code". This
somehow conflicts with the previous view and leads one to think that
secure software is a subset of quality. The author of this thesis rejects this
view and argues instead that Quality and Security remain two separate
properties of software that may intersect on certain aspects (e.g. testing)
as depicted in Figure 2.2.
While the target of this thesis is Security, Quality is also studied given its in-
tersection. Often, both secure and quality code share several requirements
and mechanisms to assess them. This includes testing approaches such as
static code testing, dynamic testing, fuzz testing or software component
analysis (SCA) among others.

15

2. Background context

QualitySecurity

Figure 2.2: Security as the target of this thesis.

In robotics there is a clear separation between Security and Quality that
is best understood with scenarios involving robotic software components.
For example, if one was building an industrial Autonomous Guided Vehicle
(AGV) or a self-driving car, often, she/he would need to comply with coding
standards (e.g. MISRA [48] for developing safety-critical systems). The
same system’s communications, however, regardless of its compliance
with the coding standards, might rely on a channel that does not provide
encryption or authentication and is thereby subject to eavesdropping and
man-in-the-middle attacks. Security would be a strong driver in here and as
remarked by Vamosi [46], "neither security nor quality would be mutually
exclusive, there will be elements of both".

Quality in robotics, still on its early stages [49], is often viewed as a
pre-condition for Safety-critical systems. Similarly, as argued by several,
safety can’t be guaranteed without security [50, 51]. Coding standards such
as MISRA C have been extended [52, 53] to become the C coding standard
of choice for the automotive industry and for all industries developing
embedded systems that are safety-critical and/or security-critical [51].
As introduced by ISO/IEC TS 17961:2013 "in practice, security-critical
and safety-critical code have the same requirements". This statement
is somehow supported by Goertzel [50] but emphasized the importance
of software remaining dependable under extraordinary conditions and
the interconnection between safety and security in software. This same
argument was later extended by Bagnara [51] who acknowledges that
having embedded systems non-isolated anymore plays a key role in the
relationship between safety and security. According to Bagnara, "while
safety and security are distinct concepts, when it comes to connected

16

Robotics software quality, safety and security

software" (non-isolated) "not having one implies not having the other",
referring to integrity.

In the opinion of the author of this dissertation, coding standards such as
MISRA or ISO/IEC TS 17961:2013 for safety-critical and security-critical
software components do not guarantee that the final robotic system will
be secure and thereby, safe. As illustrated in the example above, robotics
involves a relevant degree of system integration and inter-connectivity
(non-isolated embedded systems connected together internally and poten-
tially, externally as well). As such, both secure and ultimately safe robotics
systems do not only need to ensure quality by complying against coding
standards but also guarantee that they aren’t exploitable by malicious
attackers.

In the traditional view of system security, safety in often understood
as "nothing bad happens naturally" while security intuitively indicates that
"nothing bad happens intentionally". Acknowledging the acceptance of this
view in the security community, this thesis puts special focus in the context
of robotics To further understand terminology and prior art in a robotics
context, Table 2.1 presents a summary of the concepts discussed with
their interpretation applied to robotics and the corresponding sources used:

Security, as understood in Table 2.1 shares Integrity with Safety. As
discussed in [50, 51], "the only thing that distinguishes the role of integrity
in safety and security is the notion of exceptional condition. This reflects the
fact that exception conditions are perceived as accidental (safety hazards)
or intentional (security threats)". The later, security threats, are always
connected to vulnerabilities. A vulnerability is a mistake in software or
hardware that can be directly used by an arbitrary malicious actor or actress
to gain access to a system or network, operating it into an undesirable
manner [54]. In robotics, security flaws such as vulnerabilities are of
special relevance given the physical connection to the world that these
systems imply. As discussed in [2], "Safety cares about the possible damage
a robot may cause in its environment, whilst security aims at ensuring that
the environment does not disturb the robot operation. Safety and security
are connected matters. A security-first approach is now considered as a
prerequisite to ensure safe operations". Figure 2.3 depicts the concepts of
Safety, Quality and Security representing their relationships. In particular,

17

2. Background context

Concept Interpretation Reference/s

Safety

Safety cares about the possible damage a robot
may cause in its environment. Commonly used
taxonomies define it as the union of integrity
and the absence of hazards (Safety = Integrity +
Absence of catastrophic consequences)

[2, 50, 51]

Security

Security aims at ensuring that the environment
does not disturb the robot operation, also under-
stood as that the robot will not put its data, actua-
tors or computing systems at risk of unauthorized
access. This is often summarized as Security =
Confidentiality + Integrity + Availability.

[2, 46, 50,
51]

Quality
Quality means that the robot’s software will exe-
cute according to its design and purpose

[46]

Integrity
Integrity can be described as the absence of im-
proper (i.e., out-of-spec) system (or data) alter-
ations under normal and exceptional conditions

[51]

Table 2.1: Summary of security-related terms

safety as a super-set of security and quality.

QualitySecurity

Safety

Figure 2.3: Safety, quality and security relationship

This thesis focuses on security, however, its relationship with quality
and safety must be noted. Security intersects quality in the sense that some
methods are shared between both (e.g. testing). Moreover, as discussed, a
safe system demands first security and quality.

Robot security vulnerabilities are potential attack points in robotic systems
that can lead not only to considerable losses of data but also to safety

18

Cybersecurity Across Various Domains: IT, OT, IoT, and Robotics

incidents involving humans. Some authors [55] claim that unresolved
vulnerabilities are the main cause of loss in cyber incidents. The mitigation
and patching of vulnerabilities has been an active area of research [56,
57, 58, 59, 60, 61] in computer science and other technological domains.
Unfortunately, even with robotics being an interdisciplinary field composed
from a set of heterogeneous disciplines (including computer science), to
the best of the knowledge of this thesis’ author and his literature review,
not much vulnerability mitigation research related to robotics has been
presented so far.

2.3 Cybersecurity Across Various Domains: IT, OT, IoT, and
Robotics

ITOT

robotics

IoT

Figure 2.4: Relationship between various technology
domains

Cybersecurity is fundamentally about ensuring systems are protected
from digital dangers and threats. This concept, while universally applicable,
varies in interpretation and implementation across different technological
domains such as Information Technology (IT), Operational Technology
(OT), Internet of Things (IoT), and robotics. Each domain, due to its
unique technological architecture, necessitates a distinct approach to
cybersecurity.

19

2. Background context

2.3.1 Definitions and Differentiations

In the realm of digital security, various terms have evolved to denote
domain-specific aspects:

Information Technology (IT): Involves the use of computers for data
management and is typically employed organization-wide [62].

Operational Technology (OT): Focuses on managing industrial operations
through monitoring and control of devices and processes [63].

Industrial Control Systems (ICS): A crucial segment of OT that includes
systems used to oversee industrial processes.

Internet of Things (IoT): Represents the extension of internet connectivity
to various sensors and devices.

Industrial IoT (IIoT): The application of IoT technologies in industrial
settings.

Robotics: An interdisciplinary domain that integrates sensors, actuators,
and computation to create autonomous systems.

The application of cybersecurity varies across IT, OT, IoT, IIoT, and
robotics. Each technology, while subject to the overarching goal of
operational security, requires a tailored approach. For instance, ICS,
evolving from isolated systems to more IT-like structures, have increased
vulnerability to cyber threats due to increased connectivity [64]. The
confluence of IT and OT in IoT necessitates a unique set of security skills,
distinct from those required in traditional IT or OT environments [65].
Robotics, due to its inherent complexity and the integration of various
systems, demands domain-specific knowledge and a specialized approach
to cybersecurity.

Table 2.2 presents a comparative analysis (extended from [63, 64]) which
reveals distinct requirements and challenges in implementing cybersecurity
across these technologies. Notably, robotics stands out due to its critical
real-time requirements and safety implications, underscoring the need for
a comprehensive and dedicated cybersecurity strategy tailored to robotic
systems. Such approach should emphasize the relevance of isochronous
and deterministic communications, crucial in robotic systems.

20

Cybersecurity Across Various Domains: IT, OT, IoT, and Robotics

Security topic IT OT (ICS) I(I)oT Robotics

Antivirus Widely used,
easily
updated

Complicated,
network detection
and prevention
solutions mostly

Complicated,
technology
fragmentation

Complicated,
complex, few
solutions, network
monitoring
insufficient

Life cycle 3-5 years 10-20 years 5-10 years 10+ years

Awareness Decent Poor Poor Very poor

Patch
management

Often Rare,
manufacturer
approval needed

Rare, end-user
permission/action
often needed

Very rare, complex
setups

Change
Management

Regular and
scheduled

Rare Rare Very rare,
specialized
technicians

Evaluation of log
files

Established
practice

Unusual Unusual Non-established

Time
dependency

Delays
accepted

Critical Some delays
accepted

Critical

Availability Not always,
failures
accepted

24*7 Some failures
accepted

24*7 available

Integrity Failures
accepted

Critical Some failures
accepted

Critical

Confidentiality Critical Relevant Important Important

Safety Not relevant Relevant Not relevant Critical

Security tests Widespread Rare and
problematic

Rare Mostly not present

Testing
environment

Available Rarely available Rarely available Rare, difficult to
reproduce

Determinism
requirements

Non-real-
time, high
delay/jitter
acceptable

Hard real-time,
high delay/jitter
not acceptable

Often
non-real-time,
soft/firm real-time
in some
environments

Hard real-time for
safety critical,
firm/soft for others

Table 2.2: Comparative analysis of cybersecurity across different technolo-
gies

2.3.2 Misunderstandings in Robot Security

A prevalent issue in the robotics industry is the conflation of IT security
with comprehensive robotics security. Many manufacturers, such as Mobile
Industrial Robots (MiR) as depicted in Figure 2.5, focus predominantly on
IT security, neglecting the broader spectrum of threats specific to robotics
[66]. This oversight can lead to severe safety hazards, as compromised
robots pose risks not just to data privacy but also to human safety and
environmental integrity. Therefore, it is imperative for manufacturers to
adopt a holistic view of security that encompasses all aspects unique to
robotic systems.

Given the safety implications of autonomous systems, and given the

21

2. Background context

Figure 2.5: Captures from Mobile Industrial Robots (MiR) documentation
indicating a purely IT security approach.

security precondition of safety, the need for robust cybersecurity measures
in robotics surpasses that in IT, OT, or IoT. The complexity and integration of
systems in robotics demand a security approach that is both comprehensive
and specific to the domain, with careful consideration for robot’s real-time
nature. This thesis advocates for the implementation of such dedicated
security measures in the field of robotics.

2.4 Machine Learning and Game Theoretic approaches to
offensive cybersecurity

Offensive security typically involves a malicious attacker performing a
series of steps, often connected, and usually requiring a high degree of
expertise or knowledge on the target system. Within offensive security
practices, Penetration Testing (pentesting) is an active method for assess-
ing and evaluating the security of digital assets by planning, generating
and executing all possible attacks that can exploit existing vulnerabilities.
Figure 2.6 pictures the pentesting pipeline for a robotics system inspired
on prior work [67, 68, 69, 70].

As described by several authors [10, 11, 12], current pentesting practices
are becoming repetitive, complex and resource consuming despite the use
of automated tools. Morever, they generally require a high level of expertise
in those systems targeted. Applebaum et al. [13, 14] also underline the

22

Machine Learning and Game Theoretic approaches to offensive cybersecurity

Reconnaissance Weaponization Cyber intrusion Privilege escalation Lateral movement Exfiltration Control

Footprinting

Fingerprinting

Targeting

Testing

Social Engineering

Reconnaissance

Weaponization

Cyber intrusion

Privilege escalation

Figure 2.6: Attacker model for robotics. Adapted from [67, 68, 69, 70]

importance of pentesting in the security lifecycle and the shortcomings
associated with manual execution. These challenges have made several
researchers to turn into Machine Learning (ML) to try and automate the
process of pentesting or other security assessments 1.

While several articles describe the growing popularity of the use of machine
learning in defensive approaches for security, [11, 71, 72] already report
that very few sources cover the use of Machine Learning for offensive
approaches to security. While reviewing literature, the author of this thesis
found it extremely helpful to step back a few decades to review previous
work that attempted to automate pentesting activities using Artificial
Intelligence (AI) approaches. A complete and detailed walkthrough on
these past efforts is beyond the scope of this thesis but nicely compiled at
[73]. For completeness and reader’s conveniece, the most relevant events
on this regard prior to the start of this thesis (2020) have been pictured in
the diagram below:

1Security assessments are often misunderstood and pentesting is used to group them all.
For the context of this thesis, penetration testing assessment refers to the activity that aims
to find as many vulnerabilities and configuration issues as possible in the time allotted, and
exploiting those vulnerabilities to determine the risk of the vulnerability. Red team assessment
aims to test the organization’s detection and response capabilities against a targeted objective.

23

2. Background context

1999 2020

1999
Attack tree model [74]

2002
Attack graph model [75]

2011
Personal vulnera-
bility analysis [76]

2013
Plan Domain Definition
Language (PDDL) [77]

2013
Partially Ob-
servable Markov
Decision Pro-
cesses (POMDP),
attack plan-
ning with un-
certainty [78]

2018
Autonomous penetration
testing using reinforce-
ment learning[12]

2019
"Reinforcement Learn-
ing for Efficient Network
Penetration Testing" [79]

2018
"Learning to hack" [11]

2019
NIG-AP: a new
method for au-
tomated pene-
tration testing
[73]

Moving past AI and diving more contemporary ML approaches 2, in 2018
Niculae [11] presents one of the first pieces available where ML, in
particular, Reinforcement Learning (RL) is used to tackle the pentesting
assessment task while modeling it as a game. Niculae evaluates different
RL techniques, namely Q-Learning (QL), Extended Classifier Systems (XCS)
or Deep Q-Networks (DQN) while comparing it with Human performance
and multiple fixed-strategies including Random, Greedy and a Finite State
Machine. During his work and for his particular simplified model, Niculae
reports building an agent that can learn to penetrate a network comparable
in strength to a human, paving the way for future work in the application
of RL in pentesting.

2The author of this thesis assumes the reader has some basic understanding of the
differences and relationships between "artificial intelligence", "machine learning" and "deep
learning".

24

Machine Learning and Game Theoretic approaches to offensive cybersecurity

Also in 2018 (though published later), Schwartz [12] argues that current
approaches to automated pentesting have relied on methods which require
a model of the exploit outcomes, however the cyber security landscape is
rapidly changing as new software and attack vectors are developed which
makes producing and maintaining up-to-date models a challenge. Instead
and similar to Niculae, Schwartz advocates for the application of RL and
evaluates QL and DQL obtaining positive results. Interestingly however,
Schwartz remarks that the implemented algorithms in the simulated
scenarios were only practical for smaller networks and numbers of actions
and would not be able to scale to truly large networks.

The most recent studies available on this domain are [79] and [73]. The
first one explores the design and development of an ML-based pentesting
system while supported by human experts. The article itself provides
an interesting motivation for robotics, but does not provide a clear
description of the underlying RL techniques, the reward function, or a
detailed reasoning on how the state space and the action spaces of the
pentesting activity were captured. Moreover, the authors conclude their
paper highlighting that the main drawback of their contribution is the need
of a high-caliber human expert supervising the initial training. Zhou et
al [73] present a new method for pentesting using RL. Particularly, they
propose an attack planning algorithm based on RL to automatically discover
attack paths without prior knowledge of the scenario network. Opposed to
[79], this last article provides a good review of the pentesting foundations,
underlying math formalizing pentesting as a Markov decision process and a
detailed description of the assumptions made for representing the problem
in reinforcement learning.

Despite the advances on ML, scalability remains a problem for auto-
mated pentesting across network layers, even when powered with modern
techniques such as the ones described above. Scalability can be understood
easily by switching across (attack) subjects and/or determining next steps
or actions during a pentesting offensive effort. It is unclear whether the
current trend of ML research (mostly driven by increasingly complex RL
constructs) can help lead towards an end-to-end ML-driven penetration
testing. The research conducted herein should tap into this problem and
propose novel approaches. Beyond the use of ML for addressing the scala-
bility problem in pentesting, another interesting issue is selecting the right
attack targets. More specifically, selecting which attack vectors (corre-
sponding to individual targets) should be exploited first. When conducting

25

2. Background context

an offensive pentesting exercise, commonly, multiple targets appear over
the exercise. For each attack target, multiple attack vectors are often
identified. Selecting which attack vector to prioritize first can be somewhat
derived by using scoring metrics, like the Common Vulnerability Scoring
System (CVSS) [80]. However, in practice, pentesters use this metric as
yet one more indicator to build an intuition on where to attack. Developing
this intuition is complex and not fully understood. This thesis will also
look at this problem by looking at Game Theory (GT). Computational game
theory [81, 82] can also help tackle the scalability problem and schedule
resources while taking into account the importance of different targets, the
responses of the adversaries to the security posture and the potential un-
certainties in adversary payoffs and observations. The combination of both,
machine learning and game theoretic approaches might eventually lead
to results that empower autonomous and versatile red team assessments,
first envisioned by Applebaum [13] back in 2016.

A deeper study of the biographical cornerstones for AI in pentesting
will be conducted in Chapter 11. To the best of this author’s knowledge and
extend of literature review, at the time of the start of this research (2020),
no single article covered the use of ML and GT methods to secure robots
via an offensive approach 3. This presents an interesting opportunity which
is explored throughout this research.

3Which means, employing a ’Hack-First’ approach that is effective and scales by leveraging
ML and GT

26

Part II

Ethics

Chapter 3

Ethical Landscape in Robot
Cybersecurity

Contributions: Sole author and
contributor of [83]. All results
are publicly available.

3.1 Introduction

This chapter, lying within the larger framework of ethical considerations
in cybersecurity for robotics, delves into the complex landscape of this
evolving field. The objective is multifaceted: to map out the current ethical
standards within the robot cybersecurity domain, dissecting how these
standards manifest in key application areas. This exploration goes beyond
merely cataloging vulnerabilities and manufacturers’ responses; it also
seeks to understand the perceptions and attitudes of robotic users and
vendors toward cybersecurity. This understanding is garnered through
surveys distributed across popular robotics communities, thus capturing a
wide range of insights and sentiments.

An important aspect of this chapter is its critical examination of the
established norms and standards in robot cybersecurity. It challenges and
scrutinizes these norms, particularly focusing on the ethics of disclosure
policies. This includes the expectations placed on vendors regarding the
notification of research findings and vulnerabilities—a practice commonly
known as responsible disclosure. Furthermore, the chapter probes into the
more controversial facets of this topic, such as the ethical implications of
disclosing security flaws at all, drawing inspiration from previous critiques
like those of Rescorla (2005) [16].

To achieve a comprehensive understanding of the state of robot
cybersecurity, this chapter employs a systematic review approach that

29

3. Ethical Landscape in Robot Cybersecurity

unfolds in three distinct phases. Initially, it delves into the existing body
of literature, painting a picture of the current cybersecurity landscape
in robotics. Following this, the chapter presents findings from surveys
conducted within various robotics groups and communities, offering a
grassroots perspective on the state of cybersecurity in this field. The
final phase of this exploration is anchored in empirical data, drawn from
three years of proactive security research in robotics. This phase not only
discusses identified vulnerabilities but also reflects on the offensive security
exercises undertaken during this period.

The culmination of this chapter is a synthesis of insights and conclusions
drawn from these diverse sources, including a discussion of the current
ethical standards within the robot cybersecurity domain. It aims to provide
actionable guidance on securing robotic systems, understanding their
vulnerability to various attack vectors, and strategies to minimize their
exposure to potential threats. This chapter thus serves as a critical piece
in understanding the ethical underpinnings of cybersecurity in robotics,
laying the groundwork for responsible and secure advancements in this
dynamic and impactful field.

3.2 Background

As introduced before, arguably, the first installation of a cyber-physical
system in a manufacturing plant dates back to 1962 [22]. The first
human death attributed to a robotic system occurred in 1979 [23], with
safety-related issues cited as the cause. This incident sparked a series
of actions by agencies and corporations aimed at protecting humans and
environments from these machines, leading to the development of safety
standards. However, security in robotics has only started to be addressed
more recently. Following after McClean’s (2013) early assessment, one of
the initial published articles on the topic by Lera et al. (2016) warned
about the security dangers of the Robot Operating System (ROS) [4,
25]. Subsequently, the same group in Spain authored a series of articles
focusing on robot cybersecurity [27, 28, 29, 30, 31]. Around the same time,
Dieber et al. (2016) led research into cybersecurity in robotics, proposing
defensive blueprints for ROS-based robots [38, 39, 40, 41, 42]. Their work
included enhancements to ROS APIs to incorporate modern cryptography
and security measures. Concurrent with Dieber et al.’s work, White et

30

Surveying security in robotics communities

al. (2016) also began producing a series of articles proposing defensive
mechanisms for ROS [32, 33, 34, 35, 36, 37].

A little over a year later, starting in 2018, more groups began to
contribute to the field. Mayoral-Vilches et al. (2018) initiated a series
of security research efforts aimed at defining offensive security blueprints
and methodologies in robotics, resulting in various contributions [2, 17, 19,
84, 85, 86, 87, 88]. Notably, this group released a framework for conducting
security assessments in robotics [89], a vulnerability scoring mechanism
for robots [90], a CTF environment for robotics to train cybersecurity
engineers [91], and a robot-specific vulnerability database [15], among
other contributions. In 2021, Zhu et al. published a comprehensive
introduction to this emerging topic, aiming to foster a sub-community
in robotics for cybersecurity [92]. These contributions correspond to the
bibliographical milestones in robot cybersecurity presented in Chapter 2.

A careful review of the prior art described in the preceding paragraphs
leads to the following observation: based on the literature, robot
cybersecurity is still a nascent field that requires further attention, tools,
and educational material to train new engineers in security practices for
robotics.

3.3 Surveying security in robotics communities

During a period of three years (2019 - 2021) various security surveys
were conducted in top robotic communities through their corresponding
conferences and forums. The following subsections discuss each one of
them while attempting to draw some observations:

3.3.1 Surveying the ROS community

Figure 3.1 presents a summarized result of the survey conducted in the
ROS community during a period of several months1. The survey received a
total of 52 responses, which represented the small interest in security at
the time. The largest groups of participants are depicted in Figure 3.1b.
The most represented group comes from Universities (30%), followed by
Software vendors (18%) and Robot manufacturers (14%) 2. The majority

1Security survey launched within the ROS Discourse community (announcement,
announcement 2, preliminary results).

2Others comprise various subgroups, all with less representation than the ones mentioned

31

https://discourse.ros.org/t/call4participation-to-robot-security-survey/10290
https://discourse.ros.org/t/call-for-participation-ii-to-survey-the-security-in-robotics/10811
https://news.aliasrobotics.com/robot-security-survey-displays-first-results/

3. Ethical Landscape in Robot Cybersecurity

of the respondents have at last 2 years of experience with ROS and half
of them at least 5 (3.1c), most coming from Europe (3.1d). Figure 3.1e
present data on security considerations. The data indicates that 73% of
the participants think that they have not invested enough to protect their
robots from cyber-threats. Coincidentally, the same number of participants
indicated that their organizations are open to invest however only 26%
acknowledge to actually have invested. This data leads to the following
observation:

Observation 3.3.1. There seems to be a gap between the expectations and
the actual investment, which suggests that cybersecurity actions in robotics
will grow in the future for the ROS community.

When considering the mitigation strategies applied by respondents
as depicted in Figure 3.1f, it’s important to highlight that most efforts
concentrate on perimeter actions (i.e. firewalls, segmentation and
segregation) whereas robot-specific defensive solutions are only applied in
a 36% of the cases. Similarly, network assessments and security audits are
conducted only in one fourth of the cases (26%) which conflicts with the
de facto security practices in other industries, wherein assessments are
critical to evaluate the resilience of technology.

Observation 3.3.2. The lack of robot-specific security measures (36%) and
offensive assessments (26%) can be interpreted as an indicator of the
maturity level of the technology when compared to other sectors (e.g. IT or
OT) where these practices are common and specialized.

3.3.2 Surveying the PX4 community

PX4 [93] is an open source flight control software for drones and other
unmanned vehicles. Similar to ROS, its community represents another
relevant group in robotics. A security survey was conducted in 2020 and
the results are summarized in Figure 3.23. Though the PX4 community is
significantly smaller than ROS’s, the sample size obtained (11 respondents)
was extremely small to draw major conclusions. Interestingly though, it
was observed that the majority of the respondents have yet to see a security
issue impacting the community (3.2d), only 27% had seen it.

3Security survey launched within the PX4 Discourse community [94].

32

Surveying security in robotics communities

45%

Industrial

23% R&D

5% Professional

14%

Other

13% Consumer

(a) Distribution of respondents by sector
of activity. Sample size 52 respondents.

University
30%

SW vendor
18%

Robot vendor
14%

RTO
8%

Other
30%

(b) Distribution within the robotics value
chain. Sample size 52 respondents.

Less than 2

21.2%

Between 2 and 5

28.8%

More than 10

21.2%

Between 5 and 10

28.8%

(c) Years of experience with ROS of each
respondent. Sample size 52 respondents.

America

Europe

Asia

Africa

Not responded

8

31

8

1

4

(d) Geographical distribution of respon-
dents. Sample size 52 respondents.

Open to invest

Have actually invested

Think have not invested enough

Identified cyber-weaknesses

Witnessed a cyber-attack

73

26

73

51

9
Percentage (%)

(e) Percentage favouring each security
consideration amongst respondents (in
the context of robotics). Sample size 52
respondents.

Perimeter countermeasures

Network segmentation and segregation

Per-robot measures/mitigations

Assessments and audits

53

48

36

26
Percentage (%)

(f) Percentages favouring each mitigation
strategy amongst respondents (in the con-
text of robotics). Sample size 52 respon-
dents.

Figure 3.1: Surveying the ROS robotics community (2019), from [83]

33

3. Ethical Landscape in Robot Cybersecurity

Observation 3.3.3. Both the PX4 (Figure 3.2d) and the ROS (Figure 3.1e)
communities indicated that the majority is yet to witness a cyber-attack.
In the ROS community only one out of ten respondents (9%) had seen it
whereas in the PX4 group, approximately one out of four (27%).

The majority of the respondents (81%, figure 3.2e) indicated to be
willing to invest and more than 90% confirmed that the amount could be
100 USD or above (Figure 3.2f). This aligns nicely with observation 3.3.1
and further hints that growth should be expected in this field.

3.3.3 Surveying the ROS-Industrial community

Also in 2020, a series of security-related surveys were launched as part
of the European ROS-Industrial Conference, which happens every year in
December. Data collected is presented in Figure 3.3 4. The majority of
the respondents (93%) showed awareness about the threats their robots
faced and admitted being aware of their exposure to attackers (Figure
3.3b). Unsurprisingly, as a subset of the overall ROS community, the
security mitigation actions in the ROS-I community also concentrate on the
perimeter which lead to another observation:

Observation 3.3.4. Figures 3.1f and 3.3d confirm that respectively for both
ROS and ROS-I groups mitigations concentrate mostly on the perimeter.

This fact becomes concerning in industrial environments wherein
insider threats are as dangerous, and the disruption of ROS could lead to
catastrophic consequences for the automation processes [86], impacting
more than 5 robots in 44% of the cases according to respondents (Figure
3.3f). The lack of security measures in ROS are particularly concerning
since its distributed communication middleware could be easily used to
spread malware across connected robots. Such concept was demonstrated
by [88], which prototyped an instance of ransomware targeting industrial
collaborative robots, leaving these machines and its data completely locked
until the corresponding ransom is paid.

4Security surveys launched within the ROS-Industrial community during the digital ROS-I
Europe Conference in December 2020.

34

Surveying security in robotics communities

45.5%

Medium

27.3% High

18.2%

Very high

9% Very low

(a) Distribution of respondents to the ques-
tion: "What’s your cybersecurity concern
in PX4?". No respondents indicated "Low".
Sample size 11 respondents.

Yes
72.7%

No
18.2%

Other
9.1%

(b) Distribution of respondents to the ques-
tion: "Does cyber security affect safety?".
Other corresponds with user-provided an-
swers. Sample size 11 respondents.

QGroundCountrol
90.9%

MissionPlanner
9.1%

(c) Distribution of respondents to the
question: "What’s your GCS?". Various
additional Ground Control Stations (GCS)
were offered but not selected. Sample size
11 respondents.

No
72.7%

Yes
27.3%

(d) Distribution of respondents to the
question: "Have you seen any security
issues so far in PX4?". Sample size 11
respondents.

Yes
81.8%

No
18.2%

(e) Distribution of respondents to the
question: "Would you be willing to invest
in cybersecurity for your drone?". Sample
size 11 respondents.

100 $
36.4%

None
9.1%

500 $
18.2%

10K $
18.2%

1K $
18.2%

(f) Distribution of respondents to the ques-
tion: "How much per year is security worth
to you?". Sample size 11 respondents.

Figure 3.2: Surveying the PX4 robotics community (2020), adapted from
[83].

35

3. Ethical Landscape in Robot Cybersecurity

73%

Very important

20% Important

7%

Not important

(a) Distribution of respondents to the
question: "How important do you think
is security for robotics and automation?".
Sample size 30 respondents.

Yes
93%

No
7%

(b) Distribution of respondents to the
question: "Do you think your robot can
be hacked?". Sample size 28 respondents.

48%

Yes

52% No

(c) Distribution of respondents to the
question: "Have you taken measures to
protect your robots?". Sample size 25
respondents.

37%

Separated network

17% VPN

29% Firewall

17%

Other

(d) Distribution of respondents to the
question: "What measures do you take
to secure your robots?". Sample size 23
respondents.

Yes
11%

No
89%

(e) Distribution of respondents to the
question: "Did you use fuzzing before?".
Sample size 27 respondents.

33%

1-4

27% 5-9

13%

10-50

4% 50+

23% Not saying

(f) Distribution of respondents to the ques-
tion: "How many robots are you control-
ling with ROS in your organization?". Sam-
ple size 55 respondents.

Figure 3.3: Surveying the ROS-Industrial robotics community (2020),
adapted from [83].

36

Security research results in robotics

3.3.4 Surveying the European robotics community at the
European Robotics Forum (ERF) (2020)

As one of the leading geographies in robotics and cybersecurity, the opinion
of european robotics experts was sampled during the annual European
Robotics Forum (ERF). Figure 3.4 summarizes the most relevant data
collected 5. The most interesting observation relates to the question "Who
is the actor to be responsible for cyber-incidents?" :

Observation 3.3.5. In Europe, the majority of the respondents (Figure 3.4b)
agree that the responsibility in case of damage as a result of a cyber-
incident is to be assumed by the supply chain (86% indicated that it’d sit
between System Integrators and robot vendors), with only a 14% pushing
the responsibility to the end-user.

3.4 Security research results in robotics

Figure 3.5 depicts summarized vulnerability research results for three
vendors: ABB, Mobile Industrial Robots (MiR) and Universal Robots (UR).
The data was collected and archived over a multi-year period. Figures 3.5a,
3.5b and 3.5c illustrate the "days until mitigation" for each vulnerability
and according to the public data in the Robot Vulnerability Database (RVD)
[15]. The flat line represented by a series of data points in figures 3.5b
and 3.5c denotes that the vendor hasn’t reacted yet to any of these flaws
and they remain unmitigated (they are zero days). For ABB robots, the
scattered plot in Figure 3.5a denotes more security activity. The following
observations are drawn from the data:

Observation 3.4.1. Collaborative robot manufacturers MiR and UR have
zero days with an age at least older than one year (figures 3.5b and
3.5c). These flaws continue growing older due to the inactivity from the
manufacturers.

Observation 3.4.2. Vulnerability data affecting ABB robots (Figure 3.5a)
shows how according to historical data, vulnerabilities were patched as

5Security surveys conducted during the robotics European gathering at the European
Robotics Forum (ERF) 2020 in Málaga. The questionares were launched during the security
sessions.

37

3. Ethical Landscape in Robot Cybersecurity

Yes

0%

No

80%
Only in industry

0%

Depends vendor or end-user

20%

(a) Distribution of respondents to the ques-
tion: "Do you think security awareness is
sufficient in robotics?". Sample size not
provided by ERF’s platform.

Vendor

43%

End-user

14%

System integrators

43%

Distributors

0%

Insurance providers

0%

(b) Distribution of respondents to the ques-
tion: "Who is the actor to be responsible
for cyberincidents?". Sample size not pro-
vided by ERF’s platform.

Yes - many

11%

Yes

67%
Yes but none exploitable

0%

No

22%

(c) Distribution of respondents to the
question: "Do you know of any feasible
robot cyberattacks?". Sample size not
provided by ERF’s platform.

Yes - by default

56%

Yes with minimal req.

0%

Yes aligned with safety

33%

No

11%

(d) Distribution of respondents to the ques-
tion: "Do you think robot cybersecurity
standards are needed?". Sample size not
provided by ERF’s platform.

Figure 3.4: Surveying the European robotics community (ERF 2020),
adapted from [83].

38

Discussion

early as 14 days after its disclosure however the average mitigation time is
above four years (1500 days) [15].

On top of these, Figures 3.5d to 3.5i enhance previous data with
additional private sources of information and consider vulnerabilities
that have yet to reach the public domain. It should be noted that
the distribution of vulnerabilities signals the security awareness of the
manufacturer. Coherently, figure 3.5g shows how for ABB robots, four out
of five vulnerabilities considered have been publicly disclosed, triaged and
scored. In contrast, for MiR and UR robots the oppositive is observed. Four
out of five vulnerabilities have yet to be disclosed publicly.

Observation 3.4.3. The ratio of publicly disclosed vulnerabilities versus
the ones remaining private is an indicator when evaluating the security
readiness of a robot manufacturer. The threat landscape of a given robot is
correlated to this ratio in a direct manner.

3.5 Discussion

3.5.1 Ethical Considerations During Surveys

The surveys conducted within various robotics communities were aimed at
gathering insights into the state of cybersecurity awareness, practices, and
concerns within these communities. While the primary focus was on data
collection and analysis, ethical considerations surrounding the conduct of
these surveys are essential to address.

1. Ethical Screening: Prior to launching the surveys, ethical screening
was performed to ensure that the data collection process adhered to
established ethical standards. This screening involved a review of the
survey content, methodology, and potential risks to participants.

2. Informed Consent: Participants were provided with clear and
comprehensive information regarding the purpose, storage, and
use of their personal data. This information was presented at the
beginning or within the announcement of each survey (as examples,
see announcement for the ROS and PX4 survey), and participants
were required to provide informed consent before proceeding.

39

https://discourse.ros.org/t/call-for-participation-ii-to-survey-the-security-in-robotics/10811
https://discuss.px4.io/t/cyber-security-in-px4-survey-and-input/17449

3. Ethical Landscape in Robot Cybersecurity

0 10 20 30 40 50 60

0

1,000

2,000

3,000

4,000

5,000

A

D
a
ys

(a) Days until mitigation for
each one of the vulnerabil-
ities publicly registered for
ABB robots. Data collected
from the RVD [15].

0 2 4 6 8 10 12 14

340

360

380

400

A

D
a
ys

(b) Days until mitigation for
each one of the vulnerabil-
ities publicly registered for
MiR robots. Data collected
from the RVD [15].

0 20 40 60 80 100

400

600

800

1,000

1,200

1,400

1,600

A

D
a
ys

(c) Days until mitigation for
each one of the vulnera-
bilities publicly registered
for Universal Robots robots.
Data collected from the RVD
[15].

Public

Private

Total

61

15

76

(d) Vulnerabilities affecting
ABB robots registered in the
RVD (Public), in other pri-
vate databases (Private), as
well as the overall amount
(Total).

Public

Private

Total

15

125

140

(e) Vulnerabilities affecting
MiR robots registered in the
RVD (Public), in other pri-
vate databases (Private) as
well as the overall amount
(Total).

Public

Private

Total

92

367

459

(f) Vulnerabilities affecting
UR robots registered in the
RVD (Public), in other pri-
vate databases (Private) as
well as the overall amount
(Total).

19.7%

Private

80.3% Public

(g) Distribution of the vul-
nerabilities affecting ABB
robots and registered in the
RVD (Public) or in other pri-
vate databases (Private).

89.3%

Private

10.7% Public

(h) Distribution of the vul-
nerabilities affecting MiR
robots and registered in the
RVD (Public) or in other pri-
vate databases (Private).

80%

Private

20% Public

(i) Distribution of the vulner-
abilities affecting UR robots
and registered in the RVD
(Public) or in other private
databases (Private).

Figure 3.5: Vulnerability data for various robots, adapted from [83].

40

Discussion

3. Confidentiality and Anonymity: Measures were implemented to
ensure the confidentiality and anonymity of participant responses.
Personal identifying information was kept separate from survey
responses, and only aggregated data was used for analysis and
reporting.

4. Data Storage and Use: Participant data was securely stored and
used solely for the purposes outlined in the survey introduction. Data
was accessible only to authorized researchers involved in the study
and was not shared with third parties.

5. Feedback and Accessibility: Participants were provided with
opportunities to provide feedback on the survey process and to
access the results of the study upon request. Transparency regarding
data handling practices fostered trust and accountability among
participants.

6. Conference Context: It’s important to note that some surveys were
conducted within the context of conferences, where participants may
have been attendees or members of the respective communities.
While this facilitated data collection, it also presented unique
challenges in terms of informed consent and data privacy.

7. Limitations and Future Considerations: Despite efforts to uphold
ethical standards, it’s important to acknowledge the limitations of
the survey methodology and consider potential improvements for
future research endeavors. This includes exploring alternative data
collection methods, such as interviews or focus groups, to ensure a
more nuanced understanding of participants’ perspectives.

In summary, ethical considerations were integral to the design and
implementation of the surveys conducted within robotics communities. By
prioritizing participant welfare, confidentiality, and transparency, the in-
tegrity of the research process was upheld, facilitating meaningful insights
into cybersecurity practices and concerns within these communities.

3.5.2 Vulnerability Disclosure Policies

Prevailing ethical standards and practices in robot cybersecurity are still
on their early stages however, after a few years of research and while

41

3. Ethical Landscape in Robot Cybersecurity

interacting with various communities, a few remarks can be made. The
subsections below cover some of the common practices observed in robot
cybersecurity and discusses their ethical implications.

3.5.2.1 Evolution of Disclosure Policies in Robotics

Alias
Robotics’
90-Day
Policy

Open
Robotics’

ROS 2
Policy

Research
Groups’ Co-
ordination

with CERTs

Disclosure
Deadlines

Opaque

Community
vs Vendor-

Centric

User-
Centric

Approach

Vendor-
Centric

Approach

Security
Researcher
Perspective

Figure 3.6: Summary of Vulnerability Disclosure Policies in Robotics

The landscape of vulnerability disclosure policies in robotics has
undergone notable evolution, particularly influenced by the practices
adopted by different organizations and the ethical implications of these
choices. This subsection examines three significant contributions in the
field, each highlighting different approaches and their resultant impact on
the cybersecurity landscape in robotics.

Alias Robotics’ 90-Day Disclosure Deadline In 2018 and 2019, Alias
Robotics pioneered early work on vulnerability disclosure policies in
robotics. This was part of their effort to establish the Robot Vulnerability
Database (RVD) [15]. This approach adhered to a 90-day disclosure
deadline for newly identified vulnerabilities. The rationale behind this
timeframe was to balance the urgency for patch development against
vendors’ capability to respond effectively. The 90-day deadline aimed to

42

https://github.com/aliasrobotics/RVD#disclosure-policy
https://github.com/aliasrobotics/RVD#disclosure-policy

Discussion

push vendors towards improving their internal processes for vulnerability
remediation, which historically had seen delays or even neglect. Alias
Robotics’ approach was based on the principle that quicker response times
to disclosed vulnerabilities would ultimately result in better security for
users.

Open Robotics’ ROS 2 Vulnerability Disclosure Policy Open Robotics,
in contrast to Alias Robotics’ proactive approach, introduced a ROS
2 Vulnerability Disclosure Policy [95] in 2020, which notably did not
incorporate relevant feedback from the Security Working Group [96] and
derived from Alias Robotics’ initial work. The policy lacked crucial elements
like disclosure deadlines, transparent communication, and acknowledgment
of the educational value of post-mitigation security research. It diverged
from established international security practices, such as assigning CVE
IDs, and depended on a non-transparent process for security issue
verification. While the policy mentioned a safe harbor, its actual efficiency
and effectiveness were questioned. Open Robotics’ approach suggested a
missed opportunity to prioritize cybersecurity within the ROS community,
reflecting a potential lack of commitment to rigorous security standards.

Security Research Groups’ Direct Coordination with International CERTs
The ROS 2 Vulnerability Disclosure Policy’s limitations led several security
research groups to bypass it in favor of direct coordination with interna-
tional Computer Emergency Response Teams (CERTs). One of such groups
included Alias Robotics contributions again and identified relevant vulnera-
bilities affecting a significant number of ROS robotic endpoints [97] and
disclosed them responsibly after meeting reasonable deadlines [98]. The
public disclosure got further disseminated in the ROS robotics community
[99] (the one owned by Open Robotics) and empowered end-users with
knowledge to mitigate outstanding security issues, in contrast to Open
Robotics’ response, which downplayed the significance of these disclosures
and shifted responsibility to third parties 6. This direct approach with
CERTs highlighted a more efficient and impactful way of handling cyberse-
curity in the robotics ecosystem, as opposed to working with Open Robotics
(the acting vendor, as community responsible).

6Representatives of Open Robotics responded publicly [100] ignoring the relevance of the
disclosures and offloading responsibility into third parties (DDS vendors).

43

3. Ethical Landscape in Robot Cybersecurity

3.5.2.2 Ethical Implications of Disclosure Policies

Necessity of Disclosure Deadlines The implementation of disclosure
deadlines by Alias Robotics was driven by ethical considerations related
to the timeliness of vulnerability patching. Slow patch timelines pose a
significant risk, as attackers could potentially exploit vulnerabilities before
they are patched. The 90-day deadline was designed to incentivize vendors
to improve their response times, balancing the need for thorough patch
development with the urgency to protect users from potential exploits.

Transparency and Educational Value of Disclosures Open Robotics’
policy, which lacked transparency and discouraged the disclosure of
security research for educational purposes, overlooked the long-term
benefits of sharing detailed vulnerability information. Disclosing technical
details post-patch offers educational value to the security community,
helping to inform and strengthen overall cybersecurity practices. This
approach contributes to a more informed and capable pool of security
professionals and researchers.

Community-Centric versus Vendor-Centric Approaches The different
policies reflect a divide between community-centric and vendor-centric
approaches to cybersecurity. Alias Robotics’ policy, with its emphasis on
timely public disclosures, aligns with a community-centric approach that
prioritizes user security and education. In contrast, Open Robotics’ policy
appears more vendor-centric, potentially limiting the flow of critical security
information to the wider community and impeding collaborative efforts to
address vulnerabilities.

3.5.2.3 Conclusion: The Ethical Dimension of Cybersecurity in
Robotics

The exploration of vulnerability disclosure policies in robotics, particularly
those of Alias Robotics and Open Robotics, offers a vital perspective on the
ethical dimensions of cybersecurity in this domain. These cases illuminate
the divergent paths that organizations can take in addressing security
vulnerabilities, each path carrying its own ethical implications and impact
on end-users.

44

Discussion

User-Centric Approach and Its Importance Alias Robotics’ approach,
with its strict 90-day disclosure deadline, embodies a user-centric method-
ology. This policy not only impels vendors to act swiftly but also aligns
with a broader ethical stance that prioritizes the safety and security of
end-users. By setting clear deadlines and making vulnerability information
public, Alias Robotics upholds the principle of transparency, empowering
users with knowledge and means for protection. This approach is demon-
strative of an ethical commitment to the community, where the security and
well-being of users are placed at the center of cybersecurity practices.

Vendor-Centric Approach: A Cautionary Tale On the other hand, Open
Robotics’ less prescriptive ROS 2 Vulnerability Disclosure Policy, which
lacks clear deadlines and a transparent process, reflects a vendor-centric
approach. This policy, while ostensibly designed to manage vulnerabilities,
falls short in fostering a proactive security culture within the community.
Its lack of urgency and transparency may inadvertently lead to prolonged
vulnerability exposure, thereby increasing risks for end-users. This
approach can be seen as ethically problematic, as it does not adequately
address the immediate security needs of the community and potentially
places the interests of vendors above those of the users.

Implications for End-Users The contrasting policies and their implemen-
tation have direct implications for end-users, particularly in terms of their
exposure to potential cyber threats. A policy that enforces strict dead-
lines and encourages open communication about vulnerabilities serves to
enhance the overall security posture of the robotics ecosystem. It acknowl-
edges the evolving nature of cyber threats and the importance of keeping
users informed and equipped to respond to these threats. In contrast,
a policy that lacks these elements may leave end-users vulnerable and
uninformed, undermining the trust and reliability essential in the field of
robotics.

Security Researcher Perspective: Navigating Ethical and Practical
Challenges The exploration of vulnerability disclosure policies in the
context of robotics also brings to the forefront the unique challenges
faced by security researchers. These individuals, who play a pivotal role
in identifying and reporting vulnerabilities, often navigate a landscape

45

3. Ethical Landscape in Robot Cybersecurity

fraught with ethical dilemmas and practical hurdles. A significant concern
in this realm is the tendency of some vendor-centric disclosure policies
to pressure researchers into revealing their findings without proper
recognition, compensation, or, at times, under the threat of legal action.

Compromised Incentives and Recognition Security researchers invest
significant time and effort in uncovering vulnerabilities, with the primary
goal of enhancing system security and user safety. However, the
expectation set by certain disclosure policies to give away this valuable
information, often without compensation or adequate acknowledgment,
can be demoralizing. This lack of incentive not only undermines the
researchers’ contributions but also potentially devalues the importance of
their work. In an environment where recognition and fair compensation
are lacking, the motivation to engage in this critical work can diminish,
leading to a scarcity of skilled individuals willing to dedicate their efforts
to cybersecurity research in robotics.

Legal Threats and the Ethical Dilemma The situation becomes even more
complex when legal threats enter the equation. Researchers, in their
pursuit to enhance cybersecurity, may find themselves in a precarious
position when their findings are met with hostility or legal intimidation
from vendors. This scenario presents an ethical quandary: on the one hand,
researchers have a moral obligation to disclose vulnerabilities to protect
end-users; on the other hand, they face potential legal repercussions for
doing so. Such an environment can create a chilling effect, discouraging
researchers from participating in vulnerability discovery and reporting,
ultimately hindering the advancement of cybersecurity in the robotics field.

Impact on the Security Landscape The cumulative effect of these
challenges is a security landscape where the vital contributions of
researchers are not adequately valued or supported. This situation can
lead to a reduction in proactive security research, leaving vulnerabilities
undiscovered and unaddressed. Consequently, the overall security posture
of robotic systems may be weakened, exposing end-users to increased
risks. To foster a more robust and resilient cybersecurity environment, it is
essential to recognize and support the critical role of security researchers.
This support can manifest in various forms, including fair and transparent

46

Discussion

policies, legal protections, recognition of their contributions, and avenues
for compensation or incentives.

The Way Forward In conclusion, the ethical landscape of cybersecurity in
robotics is one where user safety, transparency, and proactive engagement
must be paramount. As robotics continue to integrate more deeply into
various aspects of society and industry, the responsibility to ensure robust
and ethical cybersecurity practices becomes increasingly critical. The
experiences of Alias Robotics and Open Robotics serve as instructive
examples, highlighting the necessity of policies that are not only technically
sound but also ethically grounded. Such policies should aim to protect
users, foster an informed and engaged community, and uphold the highest
standards of safety and security in the rapidly evolving world of robotics.

3.5.3 Lack of learning resources

One of the significant challenges in the realm of robot cybersecurity is the
lack of comprehensive learning resources. This shortage is exacerbated
by the current vulnerability disclosure policies of various actors and
groups, such as Open Robotics, as discussed above. These policies,
often more vendor-centric than community-driven, do not facilitate the
generation of educational content that could foster a deeper understanding
of cybersecurity in robotics. This gap in knowledge and resources is
particularly concerning given the increasing integration of robotics into
various facets of society and industry.

In response to this void, the Robot Hacking Manual (RHM) [101],
authored as part of this research, emerges as a crucial resource. The RHM
is an introductory series about cybersecurity for robots, conceived with
the intent to raise awareness in the field and underscore the importance
of adopting a security-first approach. The manual offers comprehensive
case studies and step-by-step tutorials, designed to provide a foundational
understanding of robot cybersecurity. The content within the RHM is
independent and not aligned with any particular organization, reflecting a
genuine effort to democratize knowledge in this critical area.

An integral part of the RHM is the robot hacks list displayed in table
3.1. This list is a non-exhaustive compilation of cybersecurity research
in robotics, detailing various robot vulnerabilities and attacks due to
cybersecurity issues. The list serves as a testament to the evolving

47

3. Ethical Landscape in Robot Cybersecurity

landscape of threats in robot cybersecurity and underscores the necessity
for continued vigilance and education in the field.

Codename/Theme Robot Tech Researchers
Description

Date

- iRobot’s Roomba J7 N/A Personal pictures in a home envi-
ronment were found on the Internet
taken by an iRobot’s Roomba J7 series
robot vacuum.

19-19-2022

- Unitree’s Go1 d0tslash A hacker found a kill switch for a
gun–wielding legged robot.

09-08-2022

- Enabot’s Ebo Air Modux Researchers found a security flaw
in Enabot Ebo Air robot leading to
potential remote-controlled robot spy
units.

21-07-2022

Analyzing DDS Various DDS implementations Various Research on the Data Distribution
Service (DDS) protocol revealing vul-
nerabilities.

19-04-2022

Hacking ROS 2 ROS 2 Various Discovery of security vulnerabilities
in ROS 2’s communication middle-
ware.

22-04-2022

JekyllBot:5 Aethon TUG Cynerio Collection of vulnerabilities enabling
remote control of Aethon TUG smart
robots.

01-04-2022

Robot Teardown Universal Robots Various Research uncovering security flaws in
UR robots through hardware analysis.

20-07-2021

Rogue Automation Various industrial robots Various Analysis revealing risks in industrial
automation programming languages.

01-08-2020

Securing Disinfection Robots UVD Robots Alias Robotics Vulnerabilities in disinfection robots
used against COVID-19.

19-09-2020

MiR Bugs Week Mobile Industrial Robots Alias Robotics Public release of multiple vulnerabili-
ties in MiR robots.

24-06-2020

Smart Manufacturing Attacks Mitsubishi Melfa Various Security analysis of attacks on a
smart manufacturing system.

01-05-2020

UR Bugs Week Universal Robots Alias Robotics Exposure of security issues in Univer-
sal Robots’ products.

31-03-2020

Akerbeltz Universal Robots UR3, UR5, UR10 Alias Robotics Creation of industrial robot ran-
somware demonstrated on UR robots.

16-12-2019

Rogue Robots ABB IRB140 Various Theoretical and experimental chal-
lenges in the security of modern in-
dustrial robots.

01-05-2017

Hacking Robots Before Skynet Various robots IOActive Discovery of critical cybersecurity
issues in multiple robots.

30-01-2017

ROS: Safe Insecure ROS Early study on security vulnerabilities
in ROS.

28-02-2014

Table 3.1: Robot Hacks: Notable Cybersecurity Incidents in Robotics

3.6 Conclusion

This chapter, situated within the ethical framework of cybersecurity in
robotics, has navigated through the intricate landscape of robot security,
revealing its multifaceted nature and current state. The exploration, driven
by the goal to understand and critique the prevailing ethical standards and
practices in robot cybersecurity, delved deep into various dimensions of
this field.

The findings from the systematic review of literature, combined with
insights from surveys conducted across prominent robotics communities,

48

Conclusion

have highlighted several key observations. A noticeable gap exists between
the anticipated and actual investment in cybersecurity within the robotics
domain, particularly in the ROS community (Observation 3.3.1). This gap
not only underlines the potential growth area in cybersecurity actions
but also mirrors the nascent stage of maturity in this field compared to
established sectors like IT or OT (Observation 3.3.2).

A surprising revelation was the majority of the robotics community’s
lack of exposure to cyber-attacks (Observation 3.3.3), suggesting a lower
perceived threat level. This could potentially lead to a complacency in
adopting rigorous cybersecurity measures. Furthermore, the tendency to
focus on perimeter defense strategies (Observation 3.3.4), as noted in both
ROS and ROS-I communities, signals a possible oversight of insider threats,
particularly crucial in industrial environments where robotics systems are
integral.

The responsibility for cyber incidents in Europe is largely attributed to
the supply chain, with system integrators and robot vendors bearing the
brunt of the blame, rather than the end-users (Observation 3.3.5). This
points to an ethical standpoint where the onus of security is more on those
who manufacture and integrate rather than those who operate.

The situation with collaborative robot manufacturers like MiR and UR
is particularly alarming, as they exhibit a pattern of unmitigated zero-day
vulnerabilities (Observation 3.4.1). This inaction contrasts sharply with
the approach of manufacturers like ABB, who show a varied response to
cybersecurity issues (Observation 3.4.2). The ratio of publicly disclosed
vulnerabilities to those kept private further serves as an indicator of a
manufacturer’s readiness and approach towards cybersecurity (Observation
3.4.3).

Table 3.2 offers a summary of observations from robotics security
surveys and research. Overall, this chapter has underscored the importance
of re-evaluating and reinforcing cybersecurity measures in the rapidly
evolving field of robotics. It advocates for a shift from traditional perimeter
defense strategies to more comprehensive approaches that consider insider
threats and embrace practices like zero-trust. The observations made here
emphasize the need for increased investment and focus on robot-specific
security measures and offensive security assessments. This proactive
approach is crucial to enhance the resilience of robotic systems and to
bridge the gap between current practices and the evolving cybersecurity
landscape in robotics.

49

3. Ethical Landscape in Robot Cybersecurity

Observation Description

3.3.1 There is a gap between the expectations and the actual in-
vestment in cybersecurity in the ROS community, indicating
potential future growth in cybersecurity actions.

3.3.2 The lack of robot-specific security measures and offensive
assessments in the ROS community indicates a lower
maturity level in cybersecurity compared to other sectors
like IT or OT.

3.3.3 Majority of respondents in both ROS and PX4 communities
have not witnessed a cyber-attack, suggesting a lower
perceived threat level.

3.3.4 Security mitigations in both ROS and ROS-I groups primarily
focus on perimeter defense, indicating a potential underesti-
mation of insider threats in industrial environments.

3.3.5 In Europe, most respondents believe that the responsibility
for cyber incidents lies with the supply chain (system
integrators and robot vendors), not the end-user.

3.4.1 Collaborative robot manufacturers MiR and UR have unmiti-
gated zero-day vulnerabilities, indicating a lack of respon-
sive action from these manufacturers.

3.4.2 ABB robots show a mixed response to cybersecurity, with
some vulnerabilities patched quickly while others remain
unaddressed for years.

3.4.3 The ratio of publicly disclosed to private vulnerabilities is an
indicator of a robot manufacturer’s security readiness. ABB
shows a higher rate of public disclosures, while MiR and UR
have more undisclosed vulnerabilities.

Table 3.2: Summary of Observations from Robotics Security Surveys and
Research

50

Conclusion

This critical examination of the ethical standards in robot cybersecurity
not only sheds light on the current state of affairs but also sets the stage
for future advancements. One of the central themes uncovered is the
critical role of vulnerability disclosure policies in shaping the ethical
landscape of robot cybersecurity. As highlighted in the discussion, there is
a stark contrast between the user-centric approach and the vendor-centric
approach. The former underscores the ethical imperative of prioritizing end-
user safety and system security through timely and transparent disclosure
of vulnerabilities. In contrast, the latter’s approach, characterized by a
lack of urgency and transparency, potentially compromises the security and
trust in robotic systems. By challenging established norms and scrutinizing
practices like responsible disclosure, this chapter contributes to shaping a
more ethical landscape and secure future in robotics, where the safety and
integrity of both humans and machines are paramount.

51

Part III

Blueprints

Chapter 4

Cybersecurity in ROS

Contributions: Leading
scientific author in [102] wherein
I led contributions to the
DevSecOps methodology and
multi-year contributions to
software. Subject-matter expert
in robotics and security in [103]
wherein I kicked-off the initial
implementation discussions,
architected the ROS-integration
(core of the paper), and released
it into ROS Humble for
widespread use. Both works are
open source.

4.1 Introduction

A robot is a network of networks [104]. One that is comprised of sensors
to perceive the world, actuators to produce a physical change, and
computational resources to process it all and respond coherently, in time,
and according to its application. Security is of paramount importance in
this context, as any disruption of any of these robot networks can cause
the complete robotic system to misbehave and compromise the safety of
humans, as well as the environment [2, 105].

The Robot Operating System (ROS) [4] is the de facto framework for
robot application development. Widely used to govern interactions across
robot networks, at the time of writing, the original ROS article [4] has been
cited more than 9300 times, which shows its wide acceptance for research
and academic purposes. ROS was born in this environment: its primary goal
was to provide the software tools and libraries that users would need to

55

https://github.com/BerkeleyAutomation/FogROS2/issues/1
https://github.com/BerkeleyAutomation/FogROS2/issues/6
https://github.com/BerkeleyAutomation/FogROS2/issues/15
https://github.com/BerkeleyAutomation/FogROS2/issues/15

4. Cybersecurity in ROS

employ to undertake novel robotics research and development. Adoption in
industry has also been rapidly increasing over the last few years. According
to the latest ROS community metrics [5] sampled every year in July, the
number of ROS downloads has increased by over 50%, with about 600
million downloads between July of 2020 and July of 2021. Moreover, based
on the download percentages reported from packages.ros.org, one can
observe a significant increase in adopting ROS 2, which suggests that by
2023 there would be more users using ROS 2 than its predecessor 1.

ROS was not designed initially with security in mind, but as it started
being adopted and deployed into products or used in government programs,
more attention was drawn to security issues. Some of the early work
on securing ROS included [24, 25] or [26], both appearing in the second
half of 2016. At the time of writing, none of these efforts remain actively
maintained and the community focus on security efforts has switched
to ROS 2. A recent study [83] that surveyed the security interests in
the ROS community presented data indicating that 73% of the survey
participants considered that they had not invested enough to protect their
robots from cyber-threats. The same number of participants indicated that
their organizations were open to invest, however only 26% acknowledged
to actually have invested. This led the original authors to conclude that
there is a gap between the security expectations and the actual investment.
In this work, it’s argued that this gap is the result not only of the immaturity
of security in robotics or the know-how but also by the lack of usability of
the available security tools. Being conscious that security in robotics is
not a product, but a process that needs to be continuously assessed in a
periodic manner [19, 92, 101], this work advocates for a usable security
approach in robotics as the best way to remain secure.

In this chapter we introduce SROS2, a series of developer tools,
meant to be usable and that facilitate adding security capabilities to
ROS 2 computational graphs. We present in here a security methodology
consisting of six steps that allow securing ROS 2 graphs iteratively, with
the aid of SROS2. Driven by an application use case, we discuss how
SROS2 allows achieving security in complex graphs involving popular ROS
2 packages and analyze the security trade-offs and limitations of the current

1The reader must also note that past studies estimated that by 2024, 55% of the total
commercial robots shipped that year would include at least one ROS package. For more
details, refer to https:// www.businesswire.com/ news/ home/ 20190516005135/ en/ Rise-ROS-55-
total-commercial-robots-shipped .

56

https://www.businesswire.com/news/home/20190516005135/en/Rise-ROS-55-total-commercial-robots-shipped
https://www.businesswire.com/news/home/20190516005135/en/Rise-ROS-55-total-commercial-robots-shipped

Background

tooling. The key contributions of this work are:

• Create SROS2, a set of usable tools for adding security to ROS
2 that: (1) help introspect the computational graph by extracting
communication middleware-level information; (2) simplify the security
operations creating Identity and Permissions Certificate Authorities
(CA) that govern the security policies of a ROS 2 graph; (3) help
organize all security artifacts in a consistent manner and within a
directory tree that is generated within the current ROS 2 workspace
overlay; (4) help create a new identity for each enclave, generating
a keypair and signing its x.509 certificate using the appropriate CA;
(5) create governance files to encrypt all DDS traffic by default; (6)
support specifying enclave permissions in familiar ROS 2 terms which
are then automatically converted into low-level DDS permissions;
(7) support automatic discovery of required permissions from a
running ROS 2 system; and (8) dissect communication middleware
interactions, to extract key information for the security monitoring of
the system.

• Propose a methodology for securing ROS 2 computational graphs that
provides roboticists with a structured process to continuously assess
their security.

• Expose insights into how to apply SROS2 to real ROS 2 computational
graphs by presenting an application case study focused on analyzing
the Navigation2 and SLAM Toolbox stacks in a TurtleBot3 robot.

The core components of SROS2 are disclosed under a commercially
friendly open-source license and are available and maintained at https:
// github.com/ ros2/ sros2.

4.2 Background

Considering how ROS was originally intended as a fast prototyping
robotic framework, security was not considered a priority feature in its
first iteration. As ROS has evolved from the prototyping to the real-
world industrial applications the entire stack came to be in dire need
of cybersecurity attention [101] [106].

57

https://github.com/ros2/sros2
https://github.com/ros2/sros2

4. Cybersecurity in ROS

A first partial analysis, with the goal of understanding what prevented
ROS from being used industrially, was conducted by McClean et al. [107].
By means of a ’honeypot’ system, at DEFCON-20, they collected how
malicious users would tackle a robot in the wild. Dieber et al. [43] provided
a complete and in-depth analysis of the security vulnerabilities and attack
surfaces in ROS systems and how to exploit them, highlighting the gaps
in the security of the framework. A considerable amount of research
has been done as regards the publish-subscribe paradigm reviewing the
performance and the techniques to secure it either via the communication
channel, and ROS’ internal mechanisms [108]. In the first case, via message
authentication [109], within the later addition of using of encryption and
security artifacts [27] [31] [110]. In the latter case, by enhancing the
middleware behaviour with some extra, such as a run-time monitor to filter
out and log all the requests and operations sent in the graph [111], an
Application Level Gateway - that wraps the existing API calls to enforce
authentication and authorization - that exposes a permission token to be
evaluated before executing the requested operation [112]; to the extent of
forking the implementation, modifying the transport mode via IPSec [113],
or via a security architecture intended with the addition of x.509 certificates
and authorization server [24]. Unfortunately, those approaches suffered
to some extent with limitations and downsides, such as a lack of flexibility
(e.g. Single Point of Failure (SPOF)) and usability, which were tackled in
the Secure ROS (SROS) initiative [34]. With the objective of providing
additions to the ROS API and ecosystem to support modern cryptography
and security measures, the project introduced new security features to the
core of ROS’ codebase and, more importantly, a set of tooling to ease the
burden on the developers of correctly implementing security.

With the second iteration of the framework in ROS 2, thanks to the
adoption of DDS as the communication middleware 2, we observed how
the inherited security measures and methodologies in the system have
evolved the framework. However, we can no longer overlook how its
complexity still remains prone to human error in processes such as the
access control artifacts distribution [33], or even to overlooking exposed
attack surfaces [36]. Moreover, keeping track of all the new pieces to
the ROS puzzle became even more demanding and lengthy procedurally,
requiring continuous attention and systematic security analysis–which

2https://design.ros2.org/articles/ros_on_dds.html

58

Approach

left usability challenging [114]. The work presented here addresses this
challenge with a security toolset (SROS2) and a security methodology for
robotics.

4.3 Approach

A methodology inspired by the DevSecOps approach [17] is proposed to
secure ROS 2 computational graphs: (A) introspect the graph and model
its security landscape to determine the necessary security policies and
enclaves; implement such policies by (B) defining the authentication and (C)
authorization configurations; (D) generate all the required security artifacts;
(E) deploy them appropriately across robotic systems; and (F) continuously
monitor the network, reverting to (A) modeling when appropriate.

4.3.1 Modeling

Modeling refers to the use of abstractions to aid in a thought process.
In security, threat modeling aids in thinking about risks and determines
the threat landscape. The output of this effort is often called the threat
model. Commonly, a threat model enumerates the potential attackers,
their capabilities, resources and their intended targets. In the context of
robot cybersecurity, a threat model identifies security threats that apply
to the robot and/or its components 3 while providing means to address or
mitigate them for a particular use case. A threat model also provides inputs
that are used to then determine a set of policy rules (or principles) that
direct how ROS 2 should provide security services to protect sensitive and
critical graph resources. When put together these policy rules are called
the security policy.

SROS2 aims to provide tools to introspect and model the security of ROS
2 computational graphs into the desired security policies. Introspection of
the graph can be performed in two ways:

1. By leveraging the ROS 2 API and the framework for ROS 2 command
line tools (ros2cli), we can pull ROS Nodes, Topics, Services or
Actions information (among others) from the ROS 2 graph and display
these in the CLI, see Listing 4.1. This allows us to get a grasp of

3both software and hardware, including computational graph resources.

59

4. Cybersecurity in ROS

the computational graph from a ROS 2 perspective. Other tools such
as RViz [115] or rqt help get a visual depiction of the graph and its
abstractions.

2. Monitoring network interactions at the ROS communication
middleware-level can be extremely helpful to model security but
incredibly cumbersome from a usability perspective unless the right
tooling is provided. ROS 2 uses OMG’s Data Distribution Service
(DDS) [21] as its default communication middleware, which is a
complex specification. To facilitate introspection of DDS, SROS2
leverages scapy [116], a powerful interactive packet manipulation
library that allows us to forge or decode network packets. Particularly,
we contributed an open source scapy dissector 4 that allows us to
dissect the wire-level communication protocol that is used by the
default ROS 2 communication middleware: the Real-Time Publish
Subscribe protocol (RTPS) [117]. Using this, SROS2 provides tooling
that allows monitoring network interactions, capturing DDS databus
information directly and displaying these for the security analyst’s
consumption.

Listing 4.1: SROS2 extends ROS 2 APIs to facilitate computational graph
introspection at the networking level for modeling purposes.

ROS 2 CLI API allows direct introspection
ros2 topic list
/cmd_vel
/robot_state_publisher
...
ros2 node list
/turtlebot3_diff_drive
...
SROS2 extensions allow introspecting DDS
ros2 security introspection
DDS endpoint detected (hostId=16974402, appId=2886795267, instanceId=10045242)

- version: 2.4
- vendorId: ADLINK - Cyclone DDS
- IP: 192.168.1.34
- transport: UDP

DDS endpoint detected (...)

For complete threat modeling, we refer the reader to [118] which
discusses details around security modeling ROS 2 computational graphs.

4see https://github.com/secdev/scapy/pull/3403

60

https://github.com/secdev/scapy/pull/3403

Approach

4.3.2 Authentication

Authentication provides proof of a claimed identity (̸= identification,
determination of an unknown entity). ROS 2 offloads authentication to
its underlying communication middleware, DDS. By default, DDS allows
any arbitrary DomainParticipant to join any Domain without authentication.
DDS however provides the means to verify the identity of the application
and/or the user that invokes operations on the DDS databus through its
DDS Security extensions [18]. With these, for protected DDS Domains, a
DomainParticipant that enables authentication will only communicate with
other DomainParticipants that also have authentication enabled.

To favour usability and reduce human errors, all implementation details
of authentication in ROS 2 through DDS are abstracted away by the SROS2
tools. The appropriate artifacts for enabling authentication capabilities are
produced in the Generation step (4.3.4) of the DevSecOps methodology,
and default to the security mechanisms specified by OMG’s DDS Security
[18]. In particular, each DomainParticipant uses a Public Key Infrastructure
(PKI) with a common shared Certificate Authority (CA): Identity CA. All
participants interoperating securely must be pre-configured with Identity
CA and have a signed certificate from it. Participants are expected
to use mutual authentication through a challenge-response mechanism
supported by either the Rivest Shamir Adleman (RSA) [119] or the Elliptic
Curve Digital Signature Algorithm (ECDSA) [120] asymmetric encryption
algorithms. Shared secrets are established using using the Diffie-Hellman
(DH) [121] or Elliptic Curve DH (ECDH) (Ephemeral Mode) [122] key
agreement protocols.

Listing 4.2 shows an example of how SROS2 tools abstract the complex-
ity of DDS authentication away from ROS developers. The governance.xml
policy document is auto-generated by SROS2 and captures domain-wide
security settings that include authentication aspects. Additional details
about the underlying authentication process and the security artifacts are
available in [18], [123] and [124].

Listing 4.2: An extract from governance.xml policy document generated
by SROS2 illustrating domain-wide security settings such as how to handle
unauthenticated participants, whether to encrypt discovery or the default
rules for access to topics.

...
<allow_unauthenticated_participants>false</allow_unauthenticated_participants>

61

4. Cybersecurity in ROS

<enable_join_access_control>true</enable_join_access_control>
<discovery_protection_kind>ENCRYPT</discovery_protection_kind>
<liveliness_protection_kind>ENCRYPT</liveliness_protection_kind>
<rtps_protection_kind>SIGN</rtps_protection_kind>
<topic_access_rules>

<topic_rule>
<topic_expression>*</topic_expression>
<enable_discovery_protection>true</enable_discovery_protection>
<enable_liveliness_protection>true</enable_liveliness_protection>
<enable_read_access_control>true</enable_read_access_control>
<enable_write_access_control>true</enable_write_access_control>
<metadata_protection_kind>ENCRYPT</metadata_protection_kind>
<data_protection_kind>ENCRYPT</data_protection_kind>

</topic_rule>
</topic_access_rules>
...

4.3.3 Authorization

Authorization helps define and verify the policies that are assigned to
a certain identity. Access control instead –also called permissions or
privileges– are the methods used to enforce such policies. While access
control is handled by the DDS implementation, authorization policies need
to be defined by the developer. SROS2 helps map these policies from the
ROS 2 computational graph to the underlying DDS databus abstractions
through two resources: the Permissions CA and a permissions.xml policy
document. Listing 4.3 shows an extract from one of the policy documents
that defines the authorization profile for a particular ROS 2 Node. Details
about how access control is implemented by the underlying communication
middleware are discussed in [18] and [125].

Listing 4.3: SROS2 provides means to define authentication policies
through XML files.

<profile node="turtlebot3_diff_drive" ns="/">
<xi:include href="common/node.xml"
xpointer="xpointer(/profile/*)"/>

<topics subscribe="ALLOW">
<topic>/cmd_vel</topic>

</topics>
<topics publish="ALLOW">
<topic>odom</topic>
<topic>tf</topic>

</topics>

62

Approach

</profile>
<profile node="turtlebot3_imu" ns="/">
...
</profile>

4.3.4 Generation

Modeling (4.3.1), Authentication (4.3.2) and Authorization (4.3.3) steps of
our methodology (which follows DevSecOps in robotics [17]) help define
one or multiple security policies. To help implement such policies, SROS2
provides means to automate the generation of the corresponding security
artifacts and simplify the translation to the underlying DDS implementation.
To do so, SROS2 maps a security policy to an enclave: a set of ROS 2
computational graph resources that operate in the same security domain,
use particular Identity CA and Permissions CA authorities, and share
the protection of a single, common, continuous security perimeter.

All secure interactions in ROS 2 computational graphs must use an
enclave that contains the runtime security artifacts unique to that enclave,
yet each Node may not necessarily have a unique enclave. Multiple enclaves
can be encapsulated in a single security policy to accurately model the
information flow control. Users can then tune the fidelity of such models by
controlling at what scope enclaves are applied at deployment. For example,
one unique enclave per robot, or per swarm, or per network, etc.

Listing 4.4 shows how SROS2 tools help generate all artifacts to
implement a new security policy, inferred directly from the running ROS 2
graph. For a more complex policy that involves multiple enclaves, we refer
the reader to [126].

Listing 4.4: SROS2 provides tools to implement security policies and in
ROS 2 computational graphs, generating all security artifacts necessary.

Generate a new keystore with Identify and Permission CA keys,
associated certificates and a authentication structure through
governance.xml file
ros2 security create_keystore new_keystore

Inspect current ROS graph and produce a security policy
ros2 security generate_policy new_keystore/my_policy.xml

Generate all security artifacts necessary to enforce the policy,
this includes enclaves and the access control permission files
ros2 security generate_artifacts \

63

4. Cybersecurity in ROS

-k new_keystore \
-p new_keystore/my_policy.xml

4.3.5 Deployment

Deployment is a relevant phase in the DevSecOps methodology [17] and
must be also exercised securely. We consider three types of deployments of
both artifacts and secure information:

1. Distribution of policy artifacts: the resulting artifacts from the
Generation phase (4.3.4) must be securely deployed into the targeted
robots and related systems. At the time of writing SROS2 does not
provide any particular special utilities to deploy security artifacts. We
however direct readers to the ongoing efforts to launch ROS 2 graphs
remotely and in multi-machine environments [127] for inspiration.

2. Message authentication: verification of the Message Authentication
Codes (MAC) is performed using Advanced Encryption Standard (AES)
with Galois MAC (AES-GMAC). DDS security extensions abstract this
away from the ROS developer.

3. Encryption of secure DDS interactions: authenticated symmetric
cryptography governs all DDS interactions within a security policy
using also AES in Galois Counter Mode (AES-GCM). Similar to
message authentication, DDS abstracts this away from the developer
and is enabled automatically provided that the security policy is
configured appropriately.

4.3.6 Monitoring and mitigation

The last phase in the DevSecOps methodology leads to a never ending loop
of continuous Monitoring, mitigation (4.3.6) and Modeling (4.3.1). This
way, security in ROS 2 computational graphs becomes a moving target, a
process–one that demands continuous assessments as changes occur in the
robots, the network, or as new security flaws are discovered affecting the
running systems.

SROS2 provides tools for monitoring running ROS 2 graphs and
detecting possible flaws. Listing 4.5 shows an example:

64

Approach

Listing 4.5: SROS2 provides tools to dissect DDS interactions, extract key
information and map it to outstanding security flaws affecting DDS.

monitor the network segment for vulnerabilities
affecting DDS participants
ros2 security monitor
sniffing the DDS network...
Vulnerable DDS endpoint found (hostId=16974402, appId=2886795267, instanceId=10045242)

- vendorId: Real-Time Innovations, Inc. - Connext DDS
- version: 6.0.1.25
- CVE IDs:

* CVE-2021-38487

* CVE-2021-38435

65

4.
C

ybersecurity
in

R
O

S

Figure 4.1: A subset of the computational graph of the simulated robot including sensor and control topics,
adapted from [102].

66

Application and analysis

4.4 Application and analysis

To apply the DevSecOps methodology, as defined originally in [17], we
demonstrate the application of SROS2 using two of the most commonly
used frameworks in ROS 2, the navigation2 [128] and slam_toolbox [129]
stacks. Particularly, the Navigation2 project 5 provides a software stack
including path planning algorithms and behavioral navigation servers that
can be seamlessly integrated with existing sensor perception pipelines,
localization and mapping services, and drivetrain velocity controllers to
support various mobile robotic applications. While Navigation2 remains
mostly agnostic of robotic platforms, we selected the widely accessible
and community supported TurtleBot3 6 as the target robot for analysis–
consisting of a differential drive, circular base footprint, and ground level
2D scanning LIDAR. The application case study is depicted in Figure 4.1.

To start, we begin with the modeling (Subsection 4.3.1), authentication
(Subsection 4.3.2) and authorization (Subsection 4.3.3) phases in order to
bootstrap an initial security policy that captures the minimal spanning set
of security measures required for the nominal function of the application
across the distributed computation graph. We can either first bring up the
ROS 2 application under a controlled network environment with security
mode disabled, or provision an initial keystore enclave with temporary
key-material and only access control governance disabled; the first option
includes minimal setup while being more transparent to debug, while the
later is advantageous in modeling policies directly from field deployments
across untrusted networks.

With the ROS 2 application running, SROS2 can capture the topology
of the computation graph to populate the permission profiles within the
initial policy, registering each active ROS 2 node and respective topic
publication and subscription. A limitation in SROS2’s current snapshot
approach however is in accurately modeling more ephemeral resource
access events, such as service clients or action requests. While ROS 2’s
internal graph API (that SROS2 uses to sample topology measurements)
provides a middleware agnostic interface, the observation window is only
instantaneous and can easily miss asynchronous resource access events.

Given the graph API limitations, it’s often necessary to iteratively
test the generated policy by using it to update the signed permission

5https://github.com/ros-planning/navigation2
6https://www.robotis.us/turtlebot-3

67

https://github.com/ros-planning/navigation2
https://www.robotis.us/turtlebot-3

4. Cybersecurity in ROS

and governance files and relaunch the application with access control
enabled. For moderate to advanced applications such as those relying
on Navigation2, permission access denied errors may inevitably be
encountered. With ROS 2 however, such events can be logged and
aggregated into policy refinement, specifying the node and resource
namespaces denied.

After iterative policy refinement, once the tested application is fully
functional with enforced access control, the policy can then be further
optimized. Such policy optimizations include sorting common permission
patterns into smaller sub-profiles, being more manageable to audit and
modularly reusable across repeating permission sets in a global policy. We
demonstrate it in [130]. This auditing process also provides an opportunity
to assess the granularity of the policy as well, from both permission Access
Control (AC) and Information Flow Control (IFC) perspectives.

While the minimal spanning set of AC permissions may be optimally
secure in terms of the Principle of Least Privilege [131], it may not be
optimally usable for a target application domain. Though most computation
graphs in ROS 2 are largely static at runtime, cases where resource
namespaces change over the application’s lifecycle do exist. For example,
multi-robot systems may fluctuate as agents enter or exit networks for
missions or maintenance. Additionally, node namespaces sometimes include
sequence numbers to ensure namespace uniqueness. To accommodate such
scenarios, permissions could be modified to include wildcards as necessary.
While static permissions are straightforward to interpret and less likely
to inadvertently introduce policy flaws, wildcarding select permissions
provides a usable compromise when required.

When auditing from an IFC perspective, optimizing the policy into
assorted enclaves becomes a key consideration. As all ROS 2 nodes
composed into a shared process share a common DDS context, they
subsequently share the same security enclave or set of permission profiles.
This of course is inherently coupled with how the application is architected
and to be deployed across a distributed system. As such, security
requirements for IFC may then instead dictate aspects of the application’s
designs. The degree of granularity of IFC sought then dictates the allotment
of enclaves used to contain sub-profiles for the application’s policy.

In the case of Navigation2 and its large degree of coupling and
composition of nodes, the planning stack derived from a single source
tree is perhaps best relegated to its own enclave, while still being readily

68

ROS 2 over VPN: Tunneling Communications

separable from any other enclave dedicated to perception or control nodes.
Admittedly, such auditing procedures in determining the allotment of
enclaves remains rather ambiguous for users, and so presents another
area of ergonomics for SROS2 to help automate or advise through formal
analysis.

The source code of the demonstrated application case study is available
at [132]. The resulting security policies of applying the DevSecOps
methodology are also available in the same repository and show various
profiles that result from a systematic assessment.

4.5 ROS 2 over VPN: Tunneling Communications

4.5.1 Challenges in Securing ROS 2 Communications

ROS 2, built upon the Data Distribution Service (DDS), faces significant
security challenges. Despite the existence of DDS Security extensions
[18], these measures are still in their infancy concerning robust security
implementations. As outlined in upcoming Chapter 7, modern DDS
implementations exhibit numerous vulnerabilities, some of which result
from collaborative research by security experts. These vulnerabilities open
up potential attack vectors for malicious actors, compromising the integrity
of ROS 2 systems.

Furthermore, the DDS Security Specification itself is plagued with
unresolved security issues, detailed at https://issues.omg.org/issues/spec/
DDS-SECURITY. This list highlights various bugs and loopholes that further
exacerbate the security risks associated with ROS 2, making it difficult to
assert that ROS 2, in its current state, can be deemed secure.

4.5.2 ROS 2 over VPN: A Layered Security Approach

Given the aforementioned security concerns, a practical solution is to
encapsulate ROS 2 and DDS communications within an additional security
layer. This approach involves tunneling all ROS 2 communications through
a secure channel using a Virtual Private Network (VPN). This method,
referred to as ROS 2 over VPN, provides an extra layer of security by
encrypting the data transmitted over the network, thereby mitigating the
risks associated with potential vulnerabilities in DDS implementations and
specifications.

69

https://issues.omg.org/issues/spec/DDS-SECURITY
https://issues.omg.org/issues/spec/DDS-SECURITY

4. Cybersecurity in ROS

4.5.3 Implementation

The concept of ROS 2 over VPN was researched and successfully
demonstrated in the FogROS2 project [103], which builds upon the original
contributions and principles presented earlier at [17]. Figure 4.2 illustrates
the architecture employed in this implementation. By routing ROS 2
communications through a VPN, data privacy is enhanced, and the network
is safeguarded against eavesdropping and other forms of cyberattacks.
FogROS2 relies on a series of extensions of the ROS 2 launch system. We
implemented the FogROS2 launch sequence, shown in Fig. 4.2 that starts
after processing the launch script.

The steps FogROS2 takes are: (1) connect to the cloud provider through
its programmatic interface to create and start a new instance along with
setting up security groups to isolate from other cloud computers, and
generating secure communication key pairs; (2) install the ROS libraries
and dependencies on the cloud machine needed for the robot application
to run in the cloud; (3) set up virtual private networking (VPN) on robot
and cloud machine to secure the ROS 2 DDS communication between them;
(4) copy the workspace and all of its node software, from the robot to the
cloud machine; (5) configure the DDS provider’s discovery mechanism to
work across the VPN; (6) launch docker instances; (7) launch cloud-based
nodes; and finally, (8) launch nodes on the robot.

Once the launch process is complete, the nodes running on the robot
and on the cloud machine(s) securely communicate and interact with each
other—and the only change needed was a few lines of the launch script.

Robot Cloud Provider

VM

V
P

N

Docker

Docker

D
D

S

Workspace

Node
C

Node
D

ROS + dependencies

V
P

ND
D

S

ROS + dependencies

Workspace

Node
A

Node
B

Node
C

Node
D

1

2

33 455 6

6
7 78 8

Figure 4.2: FogROS2 proposes an additional security layer to ROS 2
communications using a VPN, reproduced from [103].

The use of VPN in this context offers several advantages:

70

Conclusion

1. Enhanced Data Encryption: VPN encrypts all data transmitted
between ROS 2 nodes, ensuring that sensitive information remains
confidential even if intercepted.

2. Network Isolation: By creating a virtual network overlay, ROS 2
communications are isolated from other network traffic, reducing the
exposure to external threats.

3. Access Control: VPNs can be configured to allow access only
to authenticated and authorized devices and users, providing a
controlled environment for ROS 2 operations.

4. Flexibility and Scalability: VPN solutions can be easily scaled and
adapted to various deployment scenarios, from small-scale laboratory
setups to large-scale industrial applications.

In summary, while the native security features of ROS 2 and DDS
are still maturing, employing a VPN to tunnel communications offers
an effective interim solution to address the current security limitations.
This approach provides robust encryption, enhanced network control,
and improved data privacy, thereby fortifying ROS 2 applications against
potential cybersecurity threats.

However, this added security does not come without trade-offs. Notably,
the introduction of a VPN can impact the performance of communications
in ROS 2 systems. This topic will further expanded in Chapter 5.

4.6 Conclusion

In this chapter we presented various approaches to add security to ROS
2 in a scalable manner. Namely, SROS2, a series of developer tools
focused on usable security that allow adding security capabilities to
ROS 2 computational graphs. We introduce a methodology around these
tools consisting of 6 basic steps and aligning to the common DevSecOps
flows [17]: (A) introspect the computational graph and model its security
to determine the necessary security policies and enclaves; (B) define
authentication and (C) authorization configurations; (D) generate all the
required security artifacts for implementing such policies; (E) deploy
them appropriately across robotic systems; and (F) continuously monitor
the network, reverting to (A) modeling when needed. SROS2 facilitates

71

4. Cybersecurity in ROS

each one of these steps by integrating itself tightly into the usual ROS 2
development flows.

We present an application case study discussing how to propose a
secure architecture for the TurtleBot3 robot using the navigation2 and
slam_toolbox stacks. This is of special interest since it aligns to the
software architecture that many industrial and professional robots are
using today, given the popularity of these packages.

We introduce security as a process in robotics and correspondingly,
the work herein aims to pave the way for enabling security processes,
particularly in ROS 2. Alongside the never-ending reality of security,
we acknowledge that SROS2 has various limitations that deserve further
attention and improvements. Some of these include the lack of granularity
of security configurations in the current abstractions, which makes it
difficult to configure encryption and authentication options separately.
Others refer to the lifecycle management of security artifacts, including
updating certificates and keys, wherein secure deployment plays a key
role. We are particularly keen on improving SROS2 mechanisms in the
future to ensure secure lifecycles while minimizing the downtime impact
in ROS 2 graphs. Promising directions for future work also include the
development of more advanced monitoring and introspection capabilities,
the extension of SROS2 to other communication middlewares (beyond DDS)
and finally, the continuous improvement of the usability of the tools. For
this, we believe that the use of Graphical User Interfaces (GUIs) represents
an interesting opportunity to further facilitate SROS2 usability to non-
roboticists. On top of SROS2, we also discuss the shortcomings of the
DDS Security extensions [18] and how additional layers of security via VPN
could help mitigate them.

The work presented here aims to inspire groups in robotics to add
security to their robotic computational graphs. We look forward to security
in robotics becoming more usable and accessible, minimizing the threat
landscape that lies before us now, and closing the window of opportunity
for bad actors. In the next chapter we will discuss the computational
performance impact of adding security to ROS robotic systems and how
it can be estimated experimentally with state-of-the-art benchmarking
methods.

72

Chapter 5

The Cost of Security:
Benchmarking Robot
Computations

Contributions: Leading author
at [133], both scientifically and
implementation-wise. Rallied the
robotics community towards its
adoption and through recorded
online sessions, throughout many
months. Funded contributors and
engaged other researchers and
industry to support the final
research product. This work is
open source.

5.1 Introduction

As discussed in the previous chapter, while the inherent security mech-
anisms of ROS 2 and DDS are undergoing development and refinement,
the strategy of tunneling communications through a VPN emerges as an
effective interim measure to mitigate existing security vulnerabilities. This
method introduces an additional layer of robust encryption, affording en-
hanced control over the network and bolstering data privacy. As a result,
ROS 2 applications gain a fortified defense against a spectrum of cyber-
security threats. However, this added security does not come without
trade-offs. Notably, the introduction of a VPN can impact the performance
of communications in ROS 2 systems.

73

https://www.youtube.com/playlist?list=PLf4Fnww4KiFeiP1fNQXgJhyuEI760NVIl
https://www.youtube.com/playlist?list=PLf4Fnww4KiFeiP1fNQXgJhyuEI760NVIl

5. The Cost of Security: Benchmarking Robot Computations

VPNs in robotic deployments and performance challenges

As robotics increasingly integrate into industries like healthcare and
manufacturing, VPNs are becoming essential for remote operation
and access. This shift presents performance challenges due to VPN
overhead, especially notable in use cases like teleoperated surgical
robots and industrial manipulators. The initial performance hurdle
arises from the inherent computing load of VPNs in linking robotic
systems.
A second, more complex challenge emerges with the implementation of
finer security measures. Traditional VPN setups in robotics often adopt
a ’castle-and-moat’ approach, where insiders within each location’s VPN
are considered trusted, often lacking encryption and access control
among them. However, a more secure, ’zero-trust’ model is gaining
traction. This model treats all participants, even within the same
network, as potential risks, mandating encryption and access control
for each interaction. Although this significantly bolsters security, it also
adds substantial computational overhead, intensifying the performance
challenges introduced by VPNs in robotic deployments.

The performance downgrade can manifest in various ways, primarily
due to the additional processing required for encrypting and decrypting
data, as well as the overhead introduced by the VPN protocol itself. While
VPN solutions like WireGuard [134] are designed for efficiency and minimal
overhead, they inevitably add latency to communications. In real-time
robotic applications, where milliseconds can be critical, this added latency
can affect the responsiveness and synchronization of robotic components.
Moreover, the throughput of data can be constrained by the VPN, potentially
limiting the bandwidth available for intensive data streams, such as video
feeds or large sensor data arrays.

Another aspect to consider is the complexity introduced by VPN
routing and network management. While VPNs can enhance security by
segmenting and controlling network traffic, they also add layers of network
configuration that can be challenging to optimize for high-performance
robotic applications. This complexity can lead to inefficiencies in network
routing, further impacting communication speed and reliability.

Therefore, while employing a VPN provides a strong interim solution
for securing ROS 2 communications, it’s important to carefully consider
the performance implications, especially in scenarios where real-time

74

Introduction

processing and high data throughput are essential. Future advancements in
ROS 2 and DDS security features may offer more integrated solutions that
balance robust security with the performance needs of advanced robotic
systems. For now, the choice to use a VPN must be weighed against the
specific requirements and constraints of each individual robotic application.

Beyond security itself, more generally in robotics, in order for robotic
systems to operate safely and effectively in dynamic real-world environ-
ments, their computations must run at real-time rates while meeting power
constraints. Towards this end, accelerating robotic kernels on heteroge-
neous hardware, such as GPUs and FPGAs, is emerging as a crucial tool
for enabling such performance [135, 136, 137, 138, 139, 140, 141]. This
is particularly important given the impending end of Moore’s Law and the
end of Dennard Scaling, which limits single CPU performance [142, 143].

While hardware-accelerated kernels offer immense potential, they
necessitate a reliable and standardized infrastructure to be effectively
integrated into robotic systems. As the industry leans more into adopting
such standard software infrastructure, ROS [4] has emerged as a favored
choice. Serving as an industry-grade middleware, it aids in building
robust computational robotics graphs, reinforcing the idea that robotics
is more than just individual algorithms. The growing dependency on
ROS 2 [144], combined with the computational improvements offered
by hardware acceleration, accentuates the community’s demand for a
standardized, industry-grade benchmark to evaluate varied hardware
solutions. Recently, there has been a plethora of workshops and tutorials
focusing on benchmarking robotics applications [145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155], and while benchmarks for specific robotics
algorithms [156, 157] and certain end-to-end robotic applications, such as
drones [158, 159, 160, 161], do exist, the nuances of analyzing general
ROS 2 computational graphs on heterogeneous hardware is yet to be fully
understood.

In this chapter, we introduce RobotPerf, an open-source and community-
driven benchmarking tool designed to assess the performance of robotic
computing systems in a standardized, architecture-neutral, and repro-
ducible way, accommodating the various combinations of hardware and
software in different robotic platforms. Figure 5.1 presents a high level
overview of RobotPerf, which targets industry-grade real-time systems with
complex and extensible computation graphs using the Robot Operating
System (ROS 2) as its common baseline. Emphasizing adaptability, porta-

75

5. The Cost of Security: Benchmarking Robot Computations

Computational Graphs

Robotic
Stack

Algorithm

Hardware

System

Heterogeneous Hardware

CPU GPU FPGA

OS

DDS

rmw

rcl

rclcpp/rclpy

ROS 2

Data
Loader

Playback
Node

Pre-Processing
Nodes

Input
Node

Nodes of
Interest

Output
Node

Monitor
Node

RobotPerf

Grey-Box Testing

Black-Box Testing

Non-Functional
Performance Testing

Perception Localization Control

Robotic Applications

Figure 5.1: A high level overview of RobotPerf, reproduced from [133]

bility, and a community-driven approach, RobotPerf aims to provide fair
comparisons of ROS 2 computational graphs across CPUs, GPUs, FPGAs
and other accelerators. It focuses on evaluating robotic workloads in the
form of ROS 2 computational graphs on a wide array of hardware setups, en-
compassing a complete robotics pipeline and emphasizing real-time critical
metrics. The framework incorporates two distinct benchmarking methodolo-
gies that utilize various forms of instrumentation and ROS nodes to capture
critical metrics in robotic systems. These approaches are: black-box testing,
which measures performance by eliminating upper layers and replacing
them with a test application, and grey-box testing, an application-specific
measure that observes internal system states with minimal interference.
The framework is user-friendly, easily extendable for evaluating custom
ROS 2 computational graphs, and collaborates with major hardware ac-

76

Background

Characteristics

R
e
a
l-

ti
m

e
P
e
rf

o
rm

a
n

ce
M

e
tr

ic
s

S
p

a
n

s
M

u
lt

ip
le

P
ip

e
li

n
e

C
a
te

g
o
ri

e
s

E
va

lu
a
ti

o
n

o
n

H
e
te

ro
g

e
n

e
o
u

s
H

a
rd

w
a
re

In
te

g
ra

ti
o
n

w
it

h
R

O
S

/R
O

S
2

F
ra

m
e
w

o
rk

F
u

n
ct

io
n

a
l

P
e
rf

o
rm

a
n

ce
T
e
st

in
g

N
o
n

-f
u

n
ct

io
n

a
l

P
e
rf

o
rm

a
n

ce
T
e
st

in
g

C
o
m

m
u

n
it

y
L

e
d

OMPL Benchmark [162] ✓ ✗ ✗ ✗ ✗ ✓ ✗

MotionBenchMaker [163] ✓ ✗ ✗ ✗ ✓ ✓ ✗

OpenCollBench [164] ✗ ✗ ✓ ✗ ✓ ✗ ✗

BARN [165] ✗ ✗ ✗ ✓ ✓ ✗ ✗

DynaBARN [166] ✓ ✗ ✗ ✓ ✓ ✗ ✗

MAVBench [158] ✓ ✓ ✓ ✓ ✓ ✓ ✗

Bench-MR [167] ✓ ✗ ✗ ✗ ✓ ✗ ✗

RTRBench [156] ✓ ✓ ✗ ✗ ✗ ✓ ✗

RobotPerf (ours) ✓ ✓ ✓ ✓ ✗ ✓ ✓

Table 5.1: Comparative evaluation of representative existing robotics
benchmarks with RobotPerf across essential characteristics for robotic
systems.

celeration vendors for a standardized benchmarking approach. It aims
to foster research and innovation as an open-source project. We validate
the framework’s capabilities by conducting benchmarks on diverse hard-
ware platforms, including CPUs, GPUs, and FPGAs, thereby showcasing
RobotPerf’s utility in drawing valuable performance insights.

RobotPerf’s source code and documentation are available at https:
//github.com/robotperf/benchmarks and its methodologies are currently being
used in industry to benchmark industry-strength, production-grade systems.

77

https://github.com/robotperf/benchmarks
https://github.com/robotperf/benchmarks

5. The Cost of Security: Benchmarking Robot Computations

5.2 Background

Robotics Benchmarks

There has been much recent development of open-source robotics libraries
and associated benchmarks demonstrating their performance as well as
a plethora of workshops and tutorials focusing on benchmarking robotics
applications [145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155].
However, most of these robotics benchmarks focus on algorithm correctness
(functional testing) in the context of domain specific problems, as well as
end-to-end latency on CPUs [162, 163, 164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179]. A few works also analyze
some non-functional metrics, such as CPU performance benchmarks, to
explore bottleneck behaviors in selected workloads [156, 157, 180].

Recent work has also explored the implications of operating systems
and task schedulers on ROS 2 computational graph performance through
benchmarking [181, 182, 183, 184, 185] as well as by optimizing the
scheduling and communication layers of ROS and ROS 2 themselves [186,
187, 188, 189, 190, 191, 192, 193]. These works often focused on a specific
context or (set of) performance counter(s).

Finally, previous work has leveraged hardware acceleration for select
ROS Nodes and adaptive computing to optimize the ROS computational
graphs [194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206,
207, 208, 209, 210]. However, these works do not provide comprehensive
frameworks to quickly analyze and evaluate new heterogeneous compu-
tational graphs except for two works that are limited to the context of
UAVs [158, 161].

Research efforts most closely related to our work include ros2_tracing
[211] and RobotCore [139]. ros2_tracing provided instrumentation that
demonstrated integration with the low-overhead LTTng tracer into ROS 2,
while RobotCore illuminates the advantages of using vendor-specific tracing
to complement ros2_tracing to assess the performance of hardware-
accelerated ROS 2 Nodes. Building on these two specific foundational
contributions, RobotPerf offers a comprehensive set of ROS 2 kernels
spanning the robotics pipeline and evaluates them on diverse hardware.

Table 5.1 summarizes our unique contributions. It includes a selection of
representative benchmarks from above and provides an evaluation of these
benchmarks against RobotPerf, focusing on essential characteristics vital

78

RobotPerf: Principles & Methodology

for robotic systems. We note that while our current approach focuses
only on non-functional performance benchmarking tests, RobotPerf’s
architecture and methodology can be extended to also measure functional
metrics.

5.3 RobotPerf: Principles & Methodology

RobotPerf is an open-source, industry-strength robotics benchmark for
portability across heterogeneous hardware platforms. This section
outlines the important design principles and describes the implementation
methodology.

5.3.1 Non-Functional Performance Testing

Currently, RobotPerf specializes in non-functional performance testing,
evaluating the efficiency and operational characteristics of robotic systems.
Non-functional performance testing measures those aspects not belonging
to the system’s functions, such as computational latency, memory con-
sumption, and CPU usage. In contrast, traditional functional performance
testing looks into the system’s specific tasks and function, verifying its
effectiveness in its primary goals, like the accuracy of the control algorithm
in following a planned robot’s path. While functional testing confirms a sys-
tem performs its designated tasks correctly, non-functional testing ensures
it operates efficiently and reliably.

5.3.2 ROS 2 Integration & Adaptability

RobotPerf is designed specifically to evaluate ROS 2 computational graphs,
rather than focusing on independent robotic algorithms. We emphasize
benchmarking ROS 2 workloads because the use of ROS 2 as middleware
allows for the easy composition of complex robotic systems. This makes the
benchmark versatile and well-suited for a wide range of robotic applications
and enables industry, which is widely using ROS, to rapidly adopt RobotPerf.

5.3.3 Platform Independence & Portability

RobotPerf allows for the evaluation of benchmarks on a variety of hardware
platforms, including general-purpose CPUs and GPUs, reconfigurable

79

5. The Cost of Security: Benchmarking Robot Computations

Criteria
Grey-Box Black-Box

Precision Utilizes tracers from in-code instru-
mentation.

Limited to ROS 2 message subscrip-
tions.

Performance Low overhead. Driven by ker-
nelspace.

Restricted to ROS 2 message call-
backs. Recorded by userspace pro-
cesses.

Flexibility Multiple event types. Limited to message subscriptions in
current implementation.

Portability Requires a valid tracer. Standard
format (CTF).

Standard ROS 2 APIs. Custom JSON
format.

Ease of use Requires code modifications and
data postprocessing.

Tests unmodified software with mi-
nor node additions.

Real-Robots Does not modify the computational
graph.

Modifies the computational graph
adding extra dataflow.

Table 5.2: Grey-box vs. black-box benchmarking trade-offs.

FPGAs, and specialized accelerators (e.g., ray tracing accelerators [212]).
Benchmarking robotic workloads on heterogeneous platforms is vital to
evaluate their respective capabilities and limitations. This facilitates
optimizations for efficiency, speed, and adaptability, as well as fine-tuning
of resource allocations, ensuring robust and responsive operation across
diverse contexts.

5.3.4 Flexible Methodology

We offer grey-box and black-box testing methods to suit different needs.
Black-box testing provides a quick-to-enable external perspective and
measures performance by eliminating the layers above the layer-of-interest
and replacing those with a specific test application. Grey-box testing
provides more granularity and dives deeper into the internal workings of
ROS 2, allowing users to generate more accurate measurements at the cost
of increased engineering effort. As such, each method has its trade-offs,
and providing both options enables users flexibility. We describe each
method in more detail below and highlight takeaways in Table 5.2.

5.3.4.1 Grey-Box Testing

Grey-box testing enables precise probe placement within a robot’s
computational graph, generating a chronologically ordered log of critical

80

RobotPerf: Principles & Methodology

events using a tracer that could be proprietary or open source, such as
LTTng [213]. As this approach is fully integrated with standard ROS 2
layers and tools through ros2_tracing, it incurs a minimal average latency
of only 3.3 µs [211], making it well-suited for real-time systems. With
this approach, optionally, RobotPerf offers specialized input and output
nodes that are positioned outside the nodes of interest to avoid the need
to instrument them. These nodes generate the message tracepoints upon
publish and subscribe events which are processed to calculate end-to-end
latency.

5.3.4.2 Black-Box Testing

The black-box methodology utilizes a user-level node called the
MonitorNode to evaluate the performance of a ROS 2 node. The
MonitorNode subscribes to the target node, recording the timestamp
when each message is received. By accessing the propagated ID, the
MonitorNode determines the end-to-end latency by comparing its times-
tamp against the PlaybackNode’s recorded timestamp for each message.
While this approach does not need extra instrumentation, and is easier to
implement, it offers a less detailed analysis and alters the computational
graph by introducing new nodes and dataflow.

5.3.5 Opaque Performance Tests

The requirement for packages to be instrumented directly within the source
code poses a challenge to many benchmarking efforts. To overcome this
hurdle, for most benchmarks, we refrain from altering the workloads of
interest and, instead, utilize specialized input and output nodes positioned
outside the primary nodes of concern. This setup allows for benchmarking
without the need for direct instrumentation of the target layer. We term
this methodology “opaque tests," a concept that RobotPerf adheres to when
possible.

5.3.6 Reproducibility & Consistency

To ensure consistent and reproducible evaluations, RobotPerf adheres to
specific common robotic dataformats. In particular, it uses ROS 2 rosbags,
including our own available at https://github.com/robotperf/rosbags, as well
third-party bags (e.g., the r2b dataset [214]).

81

https://github.com/robotperf/rosbags

5. The Cost of Security: Benchmarking Robot Computations

To ensure consistent data loading and finer control over message
delivery rates, we drew inspiration from [215]. Our computational graphs
incorporate modified and improved DataLoaderNode and PlaybackNode
implementations, which can be accessed at https://github.com/robotperf/
ros2_benchmark. These enhanced nodes offer improvements that report
worst-case latency and enable the reporting of maximum latency, introduce
the ability to profile power consumption and so forth.

5.3.7 Metrics

We focus on three key metrics: latency, throughput and power consumption
including energy efficiency. Latency measures the time between the start
and the completion of a task. Throughput measures the total amount of
work done in a given time for a task. Power measures the electrical energy
per unit of time consumed while executing a given task. Measuring energy
efficiency (or performance-per-Watt) captures the total amount of work
(relative to either throughput or latency) that can be delivered for every
watt of power consumed and is directly related to the runtime of battery
powered robots [158].

5.3.8 Current Benchmarks and Categories

RobotPerf beta [216] introduces benchmarks that cover the robotics
pipeline from perception, to localization, to control, as well as dedicated
benchmarks for manipulation. The full list of benchmarks in the beta
release can be found in Table 5.1. Aligned with our principles defined above,
each benchmark is a self-contained ROS 2 package which describes all
dependencies (generally other ROS packages). To facilitate reproducibility,
all benchmarks are designed to be built and run using the common ROS 2
development flows (ament build tools, colcon meta-build tools, etc.). Finally,
so that the benchmarks can be easily consumed by other tools, a description
of each benchmark, as well as its results, is defined in a machine-readable
format. As such, accompanying the package.xml and CMakeLists.txt files
required for all ROS packages, a YAML file named benchmark.yaml is in
the root of each benchmark which describes the benchmark and includes
accepted results.

82

https://github.com/robotperf/ros2_benchmark
https://github.com/robotperf/ros2_benchmark

Evaluation

5.3.9 Run Rules

To ensure the reliability and reproducibility of the performance data, we
adhere to a stringent set of run rules. First, tests are performed in a
controlled environment to ensure that performance data is not compromised
by fluctuating external parameters. As per best practices recommended by
ros2_tracing [211], we record and report settings like clock frequency and
core count. Second, we look forward to the possibility of RobotPerf being
embraced by the community and have results undergo peer review, which
can contribute to enhancing reproducibility and accuracy. Finally, we aim
to avoid overfitting to specific hardware setups or software configurations
by encompassing a broad spectrum of test scenarios.

5.4 Evaluation

We conduct comprehensive benchmarking using RobotPerf to evaluate its
capabilities on three key aspects vital for a robotics-focused computing
benchmark. First, we validate the framework’s capacity to provide
comparative insights across divergent heterogeneous platforms from edge
devices to server-class hardware. Second, we analyze the results to
understand RobotPerf’s ability to guide selection of the optimal hardware
solution tailored to particular robotic workloads. Finally, we assess how
effectively RobotPerf reveals the advantages conferred by hardware and
software acceleration techniques relative to general-purpose alternatives.
All of our results and source code can be found open-source at: https:
//github.com/robotperf/benchmarks.

5.4.1 Fair and Representative Assessment of Heterogeneity

Assessing hardware heterogeneity in robotic applications is imperative in
the ever-evolving field of robotics. Different robotic workloads demand
varying computational resources and efficiency levels. Therefore, compre-
hensively evaluating performance across diverse hardware platforms is
crucial.

We evaluated the RobotPerf benchmarks over a wide list of hardware
platforms, including general-purpose CPUs on edge devices (e.g., Qual-
comm RB5), server-class CPUs (e.g., Intel i7-8700), and specialized hard-
ware accelerators (e.g., AMD Kria KR260). Figure 5.2 illustrates benchmark

83

https://github.com/robotperf/benchmarks
https://github.com/robotperf/benchmarks

5. The Cost of Security: Benchmarking Robot Computations

Perception Localization Control Manipulation

L
at

en
cy

 (
m

s)
T

h
ro

u
g

h
p

u
t

(F
P

S
)

P
o

w
er

 (
w

)

I7K
AR
NO
KR

NN
KK
KV

KK
NN
I7K
I5K

NO
AR
KV

KV
AR
I7H
I7R

I7K
NO
I5K

I7R

NR
I7R

I7K
I5K

I7H
NO

I5K
I7H
I7K

I7K

I7H
I7K
I5K

I7H
NO

I7K
I5K

I5R
I7R
I7H
I5K

I5R
I7R
I7H

Figure 5.2: Benchmarking results on diverse hardware platforms across
perception, localization, control, and manipulation workloads defined in
RobotPerf beta Benchmarks. Reproduced from [133].

performance in robotics per category of workload (perception, localization,
control, and manipulation) using radar plots, wherein the different hard-
ware solutions are depicted together alongside different robotic workloads

84

Evaluation

per category. Each hardware solution is presented with a different color.
Radar plots illustrate the latency, throughput, and power consumption for
each hardware solution and workload, with reported values representing
the maximum across a series of runs. Each hardware platform and per-
formance testing procedure is delineated by a separate color, with darker
colors representing Black-box testing and lighter colors Grey-box testing.
In the figure’s key, the hardware platforms are categorized into four specific
types: general-purpose hardware, heterogeneous hardware, reconfigurable
hardware, and accelerator hardware. Within each category, the platforms
are ranked based on their Thermal Design Power (TDP), which indicates
the maximum power they can draw under load. The throughput values for
manipulation tasks and power values for localization tasks have not been
incorporated into the beta version of RobotPerf. As RobotPerf continues to
evolve, more results will be added in subsequent iterations.

Given our ability to benchmark 18 platforms (bottom of Figure 5.2),
RobotPerf is capable of benchmarking heterogeneous hardware platforms
and workloads, paving the way for community-driven co-design and
optimization of hardware and software.

5.4.2 Quantitative Approach to Hardware Selection

The rapid evolution and diversity of tasks in robotics means we need to
have a meticulous and context-specific approach to computing hardware
selection and optimization. A “one-size-fits-all” hardware strategy would be
an easy default selection, but it fails to capitalize on the nuanced differences
in workload demands across diverse facets like perception, localization,
control, and manipulation, each exhibiting distinctive sensitivities to
hardware capabilities. Therefore, a rigorous analysis, guided by tools
like RobotPerf, becomes essential to pinpoint the most effective hardware
configurations that align well with individual workload requirements.

The results in Figure 5.2 demonstrate the fallacy of a “one-size-fits-all”
solution. For example, focusing in on the latency radar plot for control from
Figure 5.2 (col 3, row 1), we see that the i7-12700H (I7H) outperforms
the NVIDIA AGX Orin Dev. Kit (NO) on benchmarks C1, C3, C4, and C5,
but is 6.5× slower on benchmark C2. As such, by analyzing data from the
RobotPerf benchmarks, roboticists can better determine which hardware
option best suits their needs given their specific workloads and performance
requirements.

85

5. The Cost of Security: Benchmarking Robot Computations

3.3x

4.4x

11.5x

Figure 5.3: Benchmark comparison of perception latency (ms) on AMD’s
Kria KR260 with and without the ROBOTCORE Perception accelerator.
Reproduced from [133].

One general lesson learned while evaluating the data is that each
workload is unique, making it hard to generalize across both benchmarks
and categories. To that end, RobotPerf results help us understand how the
use of various hardware solutions and dedicated domain-specific hardware
accelerators significantly improves the performance.

5.4.3 Rigorous Assessment of Acceleration Benefits

In the rapidly advancing field of computing hardware, the optimization of
algorithm implementations is a crucial factor in determining the success
and efficiency of robotic applications. The need for an analytical tool,
like RobotPerf, that facilitates the comparison of various algorithmic
implementations on uniform hardware setups becomes important.

Figure 5.3 is a simplified version of Figure 5.2, depicting AMD’s Kria
KR260 hardware solution in two forms: the usual hardware and a variant
that leverages a domain-specific hardware accelerator (ROBOTCORE
Perception, a soft-core running in the FPGA for accelerating perception
robotic computations). The figure demonstrates that hardware acceleration
can enable performance gains of as much as 11.5× (from 173 ms down to
15 ms for benchmark a5). We stress that the results obtained here should

86

Evaluation

be interpreted according to each end application and do not represent a
generic recommendation on which hardware should be used. Other factors,
including availability, the form factor, and community support, are relevant
aspects to consider when selecting a hardware solution.

5.4.4 Benchmarking the security impact in ROS 2
communications

ROS 2 Intra-network

ROS 2 Intra-network + DDS Security

ROS 2 Intra-network + VPN

ROS 2 Intra-network + DDS Security + VPN

312 us

485 us

955 us

1,310 us

Figure 5.4: Mean latency of ROS 2 intra-network communications with
various different security measures after 1000000 samples

Building upon the previous RobotPerf work and results, in this subsec-
tion, we delve into a series of benchmarks designed to evaluate the latency
and performance impacts of implementing security protocols within ROS 2
environments. ROS 2, as a critical framework in the robotics domain, must
balance the dual demands of robust security and efficient performance.
Our benchmarks focus on various configurations, encompassing communi-
cations with no security (ROS 2 Intra-network), internal security measures
within the communication middleware, specifically the DDS (Data Distri-
bution Service) Security extensions (ROS 2 Intra-network + DDS Security),
as well as the effects of tunneling communications through VPNs (ROS 2

Intra-network + VPN). Additionally, we explore the compounded impact when
these two security layers are combined (ROS 2 Intra-network + DDS Security

+ VPN). Results are depicted in Figure 5.4.

The DDS Security extensions [18] are integral to securing ROS 2
communications, providing mechanisms for authentication, encryption,
and access control. However, the computational overhead associated with

87

5. The Cost of Security: Benchmarking Robot Computations

these security features can potentially affect the system’s responsiveness
and throughput. Our communication benchmarks displayed in Figure 5.4
illustrate the DDS Security extensions overhead (ROS 2 Intra-network +

DDS Security). When implemented, they lead to a mean latency which is
1.55× higher than the no security baseline (ROS 2 Intra-network), offering
insights into the trade-offs between security robustness and communication
efficiency in ROS 2 environments.

Furthermore, the use of VPNs for remote operation and access of
robotic systems introduces another layer of security, albeit with its own
performance implications. VPNs can safeguard data transmission across
various networks, crucial for operations like teleoperated surgery or remote
industrial automation. Yet, the encryption and routing processes inherent
in VPNs can introduce additional latency. Our benchmarking efforts
demonstrate that tunneling ROS 2 over a modern VPN (ROS 2 Intra-network

+ VPN) lead to a mean latency which is 3.06× higher than the no security
baseline (ROS 2 Intra-network), providing a comprehensive understanding of
the performance costs associated with secure, remote robotic operations
over VPN.

Lastly, we investigate scenarios where DDS Security extensions and
VPNs are used concurrently (ROS 2 Intra-network + DDS Security + VPN). This
dual-layered security approach represents a robust defense mechanism,
aligning with the zero-trust model. However, it also poses the greatest
challenge in terms of computational overhead and potential latency
increases. Our benchmarks hint towards a mean latency increase
4.19× higher than the no security baseline (ROS 2 Intra-network). This
result elucidates the cumulative impact of security measures, offering a
holistic view of their implications on ROS 2’s latency performance. This
analysis will aid stakeholders in making informed decisions about security
implementations, balancing the crucial aspects of security and efficiency in
robotic systems.

5.5 Conclusion

RobotPerf represents an important step towards standardized benchmark-
ing in robotics, including its security capabilities. With its comprehensive
evaluation across the hardware/software stack and focus on industry-grade
ROS 2 deployments, RobotPerf can pave the way for rigorous co-design of
robotic hardware and algorithms. As RobotPerf matures with community

88

Conclusion

involvement, we expect it to compare CPU, GPU and FPGA, exploring their
power consumption and flexibility in augmenting real-world robotic compu-
tations. With a standardized robotics benchmark as a focal point, the field
can make rapid progress in delivering real-time capable systems that will
unlock the true potential of robotics in real-world applications.

Through RobotPerf, we observe quantitatively significant overheads
due to security implementations. Specifically, the DDS Security extensions
increase latency by approximately 1.55× compared to a non-secure baseline.
When implementing VPNs, this latency escalates to about 3.06× the
baseline. Moreover, combining DDS Security with VPNs results in a
latency increase of around 4.19×. These insights clearly indicate that
VPNs constitute a major bottleneck in secure robotic communications. This
finding highlights the urgency of developing solutions that can accelerate
these security computations, thereby meeting the real-time demands of
advanced robotic systems. Addressing this limitation is crucial, especially
for applications requiring real-time responses. The next chapter aims to
explore strategies to mitigate these overheads, focusing on the hardware
acceleration enablement of ROS computations and communications to align
with the real-time requirements of robotic systems.

89

Chapter 6

Hardware Accelerators in Robotics

Contributions: Leading author
at [139] and sole code
contributor. Self-funded work.
Minor help in the article
visualizations and final edition
from co-authors. This work is
partially open source.

In this chapter we embark on a critical exploration of how hardware
accelerators and their corresponding acceleration kernels can address
the computational and communication bottlenecks identified in robotic
systems, specifically those related to security, as revealed in the previous
chapter. The focus is on how integrating hardware accelerators—such as
GPUs and FPGAs—into robotic architectures can drastically reduce latency
and improve efficiency. This chapter delves into the potential of hardware
accelerators to revolutionize robotics by enabling real-time processing
capabilities, a vital aspect for many robotics applications. We discuss how
these accelerators can be optimized for robotic tasks, including but not
limited to, security protocol computations, thereby aligning with the real-
time performance requirements crucial in robotics. The chapter particularly
focuses on highlighting the innovative approaches and challenges involved
in integrating these accelerators into the existing ROS 2 framework,
shaping the future of robotics towards more efficient and secure systems.

6.1 Introduction

Recent work has seen an explosion of specialized robotics acceleration on
nontraditional computing platforms such as GPUs, FPGAs, and ASICs [6,
135, 136, 138, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,

91

6. Hardware Accelerators in Robotics

229, 230, 231, 232, 233]. This has been sparked by the decline of Moore’s
Law and Dennard Scaling, which limits the performance of traditional CPU
computing, positioning hardware acceleration as an emerging solution to
achieve high performance and power efficiency in robotics applications.

However, this increased diversity of computing platforms leads to a
dramatic growth in design space complexity that makes it difficult for
users to easily deploy robotics applications on hardware accelerators
without substantial expertise in each specific accelerator platform. The
Open Computing Language (OpenCL) [234] is an effort to standardize
hardware acceleration under a common language, but its adoption across
silicon vendors has been uneven and support for it varies. As a result,
current hardware acceleration usage is often tied to a particular vendor’s
solutions and platforms. This not only impedes interoperability and reuse of
acceleration kernels, but presents yet another layer of complexity that users
must overcome while implementing robotic systems that use acceleration
kernels. A key obstacle is that each hardware acceleration vendor provides
their own framework for development, but these are often disconnected
from the common tools and libraries in robotics, and mostly aimed at
hardware engineers, not roboticists.

To address this challenge, we present RobotCore, an open architec-
ture for hardware acceleration that extends the Robot Operating System
(ROS) [4]. ROS is widely used by academia and industry, and early work
has demonstrated its potential for hardware-accelerated robotics applica-
tions [6, 209, 218]. We facilitate this emerging direction by implementing a
vendor and platform-agnostic abstraction layer for hardware acceleration
in robotics. Figure 6.1 depicts the open architecture for hardware acceler-
ation in ROS 2, which extends the ROS 2 build system to support vendor
and platform-agnostic deployment of robotics applications on accelerator
hardware. The integrated tracing and benchmarking infrastructure enables
users to analyze the system and make strategic design improvements to op-
timize performance. Starting with a popular robotics API as the foundation,
our ROS 2-based acceleration architecture provides a common ground for
both academic researchers and silicon vendors alike to develop specialized
robotics acceleration kernels, and deploy them for easy usage by a large,
established user base.

Once roboticists can easily harness hardware acceleration across
multiple platforms, the next major challenge is profiling and benchmarking
the application. Benchmarking is needed to determine the best mapping

92

Introduction

Figure 6.1: The open architecture for hardware acceleration in ROS 2,
reproduced from [139].

of the robotics computational graph to the different hardware resources
available to optimize overall robot system performance. This is a difficult
task, however, since every application is different and deployment scenarios
are widespread. Full end-to-end system analysis is required to understand
how different implementation tradeoffs impact overall performance. To
enable this analysis, we demonstrate how to leverage prior work [235]
to benchmark accelerated ROS 2 kernels with a low-overhead framework
for real-time tracing based on the Linux Tracing Toolkit next generation
(LTTng) [213]. We demonstrate analysis of a case study deployment using
CPU and FPGA nodes for a simple perception pipeline.

Using our framework and benchmarking, we diagnose that substantial
latency bottlenecks in this computational graph come from inter-node
interactions across ROS 2 layers in the CPU. We recognize this as an
opportunity for design optimization in hardware accelerators, because

93

6. Hardware Accelerators in Robotics

interaction with the CPU should not be necessary for dataflow between
nodes co-located on the same non-CPU platform (e.g., FPGA).

Based on the benchmarking analysis, we demonstrate two novel
separate paths toward hardware acceleration: (1) kernel fusion, and (2)
improved message passing. Kernel fusion results in the highest speedup, an
average of 26.96%, but it requires manual redesign of the underlying kernels.
To avoid manual redesign entirely and improve design re-use and portability,
we alternatively develop an intra-FPGA ROS 2 node communication queue
template that leverages AXI4-Stream interfaces [236] and transfers data
in a sequential streaming manner directly between acceleration kernels.
Using this design pattern improves the overall inter-node performance in
our computational graph by 24.42 % on average, while requiring no change
in the accelerated kernels. This template extends to applications beyond
our case study, since it can be reused for any ROS 2 inter- or intra-process
communication by adapting its data types.

In summary, key contributions of this chapter are that we:

• Create a new open infrastructure to increase the performance of
robotics applications by enabling integration of hardware acceleration
into ROS 2 that is flexible across accelerator platforms (e.g., FPGAs,
GPUs) and system deployments (e.g., edge devices, workstations, data
centers, and cloud);

• Expose insights into how to optimize overall system-wide performance
by extending and providing a template API for low-overhead tracing
and benchmarking framework to analyze application performance
across hardware accelerated ROS 2 computational graphs, laying
foundation to analyze mixed-platform systems (e.g., combinations of
CPU and FPGA-based nodes); and

• Increase ROS 2 node-to-node dataflow performance to achieve an
average overall accelerator speedup of 24.42% over CPU in our
experiments by designing a template for intra-FPGA ROS 2 node
communication queues, based on insights uncovered using our open
acceleration infrastructure and low-overhead benchmarking on a case
study of a simple perception graph.

The core components of our architecture are disclosed under a
commercially friendly open-source license and are available and maintained

94

Background

at the ROS 2 Hardware Acceleration Working Group GitHub organization:
https://github.com/ros-acceleration.

6.2 Background

6.2.1 ROS and ROS 2

The Robot Operating System (ROS) is an open-source collection of software
frameworks and tools designed to provide a structured communications
layer for robotics applications running on heterogenous computer hard-
ware [4].

ROS applications are designed around event driven graphs of Nodes
which communicate through Messages on various Topics, Services, and
Actions. Each Node can be thought of as a software process which applies
an algorithm to the input message and then broadcasts the resulting
output message. By managing all inter-Node communications across
abstraction layers (e.g., rclcpp, rcl, rmw), ROS simplifies the robotic
system deployment process and enables roboticists to quickly develop
and test new algorithms. ROS also provides substantial infrastructure to
facilitate the automatic building, evaluation, and deployment of robotic
systems, including dependency managers, package managers, build
systems and tools, simulators, and visualizers.

ROS 2 is a re-design of ROS that modernizes and updates all of its
components while adhering to its core design principles. ROS 2 provides a
stronger partitioning of the communication middleware from the robotics
logic, enabling more flexibility, scalability, and reliability [218]. ROS 2 also
provides an updated build system, ament, and a new universal build tool,
colcon. This provides a single simple interface for managing the building
and deployment of complete robotics applications. Leveraging these tools,
roboticists can write new algorithms and rely on ROS 2 to handle all lower
level operations and middleware management.

6.2.2 Hardware Acceleration for ROS and ROS 2

There has been previous work that has focused on ways to accelerate
robotics applications by developing tools and methodologies to help
roboticists leverage hardware acceleration for select ROS Nodes and to
optimize the ROS computational graph through adaptive computing [194,

95

https://github.com/ros-acceleration

6. Hardware Accelerators in Robotics

ROS 2 Stack Open Architecture for Hardware Acceleration

g
it

h
u

b
.c

o
m

/r
o
s-

a
cc

e
le

ra
ti

o
n

Build System (ament)

A ament_acceleration

A

ament_vitis

A

ament_jetpack ...

Build Tools (colcon)

B colcon-acceleration

Xilinx
Vitis

Nvidia
Jetpack

C Firmware

C acceleration_firmware

C acceleration_

firmware_kv260

C acceleration_

firmware_jetson ...

D Integrated Tracing and Benchmarking

Applications (e.g., image_pipeline)

userland

tooling

rclcpp

rcl

rmw

adapter

middleware

Extensions to ROS 2 are highlighted in green and include:

A Extensions to the build system (ament);

B Extensions to the build tools (colcon);

C A new firmware pillar for workspaces, simplifying the production and deployment of acceleration kernels;

D Low-overhead real-time tracing and benchmarking based on Linux Tracing Toolkit next generation (LTTng) [213],
extending prior work [211] with tracepoint insertion for hardware accelerated nodes.

Figure 6.2: Overview of the components of the open architecture for
hardware acceleration in ROS 2. Reproduced from [139].

195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,
209]. There has also been some work to accelerate the scheduling and
communication layers used by ROS and ROS 2 [186, 187, 188, 189, 190,
191, 192, 193]. Unfortunately, the majority of these efforts assume an
end-user has substantial experience with embedded systems and embedded
hardware flows, or is customized to a specific hardware acceleration board
or deployment scenario.

Our proposed open architecture takes a ROS-centric approach to
integrate the hardware and embedded flows directly into the core ROS 2
ecosystem. This enables a separation between those who produce
accelerated kernels and those who use them by providing end-users with a
build and deployment experience for hardware accelerators similar to the
standard, non-accelerated ROS 2 experience.

6.3 An Open Architecture for Hardware Acceleration in
ROS 2

Our open architecture (Figure 6.2) extends the core ROS 2 build system
and tools to provide platform-agnostic (i.e., supports edge, workstation,
data center, or cloud targets) and technology-agnostic (i.e., supports FPGAs
and GPUs), hardware-accelerated ROS 2 capabilities for roboticists. We:

96

An Open Architecture for Hardware Acceleration in ROS 2

A) extend the ROS 2 build system, ament; B) extend the ROS 2 meta build
tool, colcon; and C) develop integrated ROS 2 firmware extensions. We
also D) integrate a low-overhead tracing and benchmarking framework to
enable the analysis of holistic application performance across ROS graphs.
This section describes these extensions in detail.

6.3.1 Extending the ROS 2 Build System

The first pillar of our open architecture, Figure 6.2 A , allows roboticists
to generate acceleration kernels directly from the ROS 2 build system
(ament) in the same way they generate CPU binaries. To do so, the
ament_acceleration ROS 2 package and its extensions abstract the ROS
build system from vendor-specific accelerators (e.g. FPGAs or GPUs),
including their frameworks and software platforms. This allows the build
system to easily support hardware acceleration across commercial solutions
while using the same syntax, simplifying the work of ROS 2 package
maintainers.

Under the hood, ament_acceleration abstracts away the correspond-
ing vendor-specific firmware. For example, ament_vitis 1 relies on the
proprietary Xilinx Vitis [237] and on the Xilinx Runtime (XRT) library [238].
This simplifies the creation of acceleration kernels and separates firmware
concerns from algorithm development. This way, robotics engineers can
focus on improving their computational graphs with a ROS-centric develop-
ment flow. Separately, hardware experts, potentially sponsored by silicon
vendors, can improve acceleration kernels for a particular commercial
solution. Overall, these extensions help achieve the objective of simplifying
the creation and integration of acceleration kernels from different vendors
into ROS 2 computational graphs.

Figure 6.2 depicts the build system extensions showing how
ament_acceleration abstracts the build system from vendor-specific
solutions. As an example of an alternative acceleration technology sup-
ported, ament_jetpack is included and illustrates the integration of Nvidia
JetPack [239].

1github.com/ros-acceleration/ament_vitis

97

6. Hardware Accelerators in Robotics

6.3.2 Extending the ROS 2 Build Tools

The second pillar of our open architecture, Figure 6.2 B , extends the
colcon ROS 2 meta build tool to integrate hardware acceleration flows
into the ROS 2 Command Line Interface (CLI) commands. Examples of
these extensions include the selection of the target accelerator and build-
time through mixins, emulation capabilities to speed-up the development
process and facilitate design without access to the real hardware, raw disk
image production tools, and simplified configuration of hypervisors. These
extensions are implemented by the colcon-acceleration 2 ROS 2 package.
As in Section 6.3.1, colcon_acceleration further enables roboticists to
leverage hardware accelerators while using standard ROS 2 commands
and flows.

6.3.3 Adding Firmware Extensions

Represented by the abstract acceleration_firmware ROS package and its
corresponding specializations (e.g. acceleration_firmware_kv260 3 for
the Xilinx Kria KV260 board), the third pillar of our open architecture,

Figure 6.2 C , firmware extensions, are meant to provide firmware
artifacts for each supported technology solution. This again simplifies
the process for ROS package consumers and maintainers, and further
aligns hardware acceleration workflows with typical ROS development
flows. Each ROS 2 workspace can leverage multiple firmware packages,
but can only use one at a time. As colcon_acceleration supports the
selection of the active firmware in the ROS workspace, by separating the
firmware out into their own packages, our open architecture enables silicon
vendors to maintain an acceleration_firmware_<solution> package that
automatically integrates into standard ROS 2 workflows.

6.3.4 Low-Overhead Real-Time Tracing & Benchmarking

In the context of hardware acceleration in robotics, it is fundamental to
be able to inspect performance improvements. To that end, it is important
to benchmark and trace the system. Benchmarking is the process of
running a computer program to assess its relative performance, whereas

2github.com/ros-acceleration/colcon-acceleration
3github.com/ros-acceleration/acceleration_firmware_kv260

98

An Open Architecture for Hardware Acceleration in ROS 2

Figure 6.3: Computational graph of our case study perception application,
reproduced from [139].

tracing is a technique used to understand what is happening in a system
while it is running. Tracing helps determine which pieces of a Node
are consuming more compute cycles or generating indeterminism, and
are thereby good candidates for hardware acceleration. Benchmarking
instead helps investigate the relative performance of an acceleration
kernel versus its CPU scalar computing baseline. Similarly, benchmarking
also helps with comparing acceleration kernels across different hardware
acceleration technology solutions (e.g., Kria KV260 vs. Jetson Nano) and
across kernel implementations within the same hardware acceleration
technology solution.

In order to trace and evaluate the relative performance of both ROS 2
individual Nodes and complete computational graphs, we leverage Linux
Tracing Toolkit next generation (LTTng [213]) for tracing and benchmarking,

Figure 6.2 D . Building upon prior work [211], LTTng provides a collection
of flexible tracing tools and multipurpose instrumentation for ROS 2 that
allow collecting runtime execution information in real-time in distributed
systems using low-overhead tracers. For example, when enabling all
ROS 2 instrumentation, end-to-end message latency overhead is below
5.5us [211], making it suitable for a wide variety of hardware acceleration
use cases. Building on top of this foundation, we developed a tracing
and benchmarking template that enables roboticists to easily instrument
both their accelerated and non-accelerated code in a vendor-agnostic
manner. This infrastructure also lays a foundation for future integration
with platform-specific performance counters and tracing tools that can
extend analysis to more fine-grained introspection and profiling of the
kernels running onboard an accelerator device.

99

6. Hardware Accelerators in Robotics

Figure 6.4: Tracepoints instrumented across ROS 2 abstraction layers on
CPU for case study computational graph (Figure 6.3). Breakdown summary
in Figure 6.5. Reproduced from [139].

6.4 Case Study: Accelerating ROS 2 Perception

For our case study, we trace, benchmark, and accelerate a subset
of image_pipeline [240], one of the most popular packages in the
ROS 2 ecosystem, and a core piece of the ROS perception stack. We
compose a simple computational graph consisting of two nodes, resize
and rectify, as shown in Figure 6.3. The computational graph of
our case study perception application in Figure 6.3 uses the ROS
image_pipeline package, containing two ROS 2 nodes: (1) RectifyNode
subscribes to the /camera/image_raw and /camera/camera_info topics
from Gazebo [241] and publishes a rectified image to (2) ResizeNode,
which publishes the final resized image. We leverage our open architecture
for hardware acceleration (Section 6.3) to benchmark, trace and accelerate
our computational graph, comparing a CPU to an FPGA implementation. In
this section we describe the methodology of our approach, and analyze our
timing results, presenting a case study for how our open architecture can
help enable hardware accelerated applications in ROS 2.

6.4.1 Method

We propose the following steps to analyze a ROS 2 application and design
appropriate acceleration: (i) instrument both the core components of ROS 2
and the target kernels; (ii) trace and benchmark the kernels on the CPU to
establish a baseline; (iii) develop a hardware accelerated implementation

100

Case Study: Accelerating ROS 2 Perception

on alternate hardware (e.g., GPU, FPGA); and (iv) trace, benchmark against
the CPU baseline, and improve the accelerated implementation.

Following this methodology, in our case study we begin by instrumenting
both ROS 2 and our target kernels with LTTng probes. Reusing past work
and probes [211] allows us to easily get a grasp of the dataflow interactions
within rmw, rcl, and rclcpp ROS 2 layers. We then also instrument the
ResizeNode and RectifyNode components of the image_pipeline package
used in our case study. The relevant tracepoints placed in our computational
graph across ROS 2 stack layers are listed in Figure 6.4 and 6.5 (full list
in Pull Request 717 in the image_pipeline repository [240]). On the CPU,
these tracepoints enable us to isolate the latency of computation within a
node from the time it takes ROS 2 to package and pass information between
nodes.

In the following sections we report timing results from using a Xilinx
Kria® KV260 Vision AI Starter Kit [242], which has an onboard integrated
Quad-core Arm® Cortex®-A53 CPU and an FPGA containing 256K System
Logic Cells and 1.2K DSP Slices. All benchmark results report the mean
value obtained from a 60 second continuous run of the computational graph.
The FPGA kernels are synthesized, placed and routed with a 250MHz clock.

6.4.2 CPU-Only Tracing Results

Figure 6.4 demonstrates the results of instrumenting and tracing our target
computational graph (Figure 6.3) across multiple ROS 2 stack layers on
the CPU, and Figure 6.5 summarizes the breakdown of timing results
across operations, establishing the CPU baseline for our application. The
breakdown in Figure 6.5 shows the time taken to do the computations
within each node, as well as the time taken by the ROS 2 lower-level
message-passing system across the various abstraction layers. We find that
the message-passing overhead in our application consumes more than 73.3%
of the total time and is therefore a large bottleneck in the total computation
time of the full graph. We next explore FPGA hardware acceleration options,
comparing performance to the CPU baseline.

6.4.3 Accelerating and Benchmarking CPU & FPGA

In this section, we explore hardware acceleration options for an FPGA for
our case study application (Figure 6.3). In Section 6.4.3.1, we first explore

101

6. Hardware Accelerators in Robotics

Figure 6.5: Breakdown of CPU runtime derived from tracing and
benchmarking. Total computation time of our case study graph is dominated
by message passing overheads, a bottleneck consuming over 73.3% of total
runtime. Reproduced from [139].

hardware acceleration kernels for the core logic of each of the Nodes
(rectify and resize), harnessing our open architecture for implementation.
In Section 6.4.3.2, we then explore two different FPGA designs to accelerate
the computational graph by optimizing dataflow interactions between
FPGA-based nodes, addressing the ROS 2 communication infrastructure
performance bottleneck revealed by the CPU baseline in Section 6.4.2.

6.4.3.1 Accelerating Nodes & Components on an FPGA

We first accelerate the computations at each one of the graph nodes. The
RectifyNode and ResizeNode Components of Figure 6.3 are accelerated
using Xilinx’s HLS, XRT, and OpenCL targeting the Kria KV260 4. Each

4github.com/ros-acceleration/image_pipeline/blob/ros2/image_proc/src/ {rec-
tify,resize}_fpga.cpp

102

Case Study: Accelerating ROS 2 Perception

ROS 2 Component has an associated acceleration kernel 5 that leverages
the Vitis Vision Library, a computer vision library optimized for Xilinx silicon
solutions and based on OpenCV APIs. These accelerated Components and
their kernels easily integrate with the rest of the ROS meta-package through
our open architecture (Figure 6.2), and are openly available to the public.
Building the accelerators is abstracted away from roboticist end-users,
and takes no significant additional effort than the standard build of the
image_pipeline.

After benchmarking the accelerated Components using the trace points
of Section 6.4.2, we observe an average 6.22% speedup in the total
computation time of the perception pipeline when offloading tasks to the
FPGA (see Figure 6.6). For this case study example, it is not surprising that
accelerating the computational nodes and components alone only gives
a modest performance increase because, as we saw in Section 6.4.2, the
performance bottleneck in the baseline CPU system was communication
overhead, not computation.

6.4.3.2 Accelerating the Computational Graph on an FPGA

In our case study application, message-passing overheads across the ROS 2
abstraction layers far outweigh other operations, so in this section we focus
on optimizing these dataflows. Addressing performance bottlenecks in our
system leads to overall lower computational graph latency, and to faster
robots. To seize this acceleration opportunity in our case study example,
we optimize the dataflow within the computational graph and across ROS 2
Nodes and Components through two different design approaches: (a) kernel
fusion, and (b) dedicated streaming queues.

The speedup obtained by integrating both ROS Components on the
FPGA into a single unified kernel is shown in Figure 6.6. The benefits of
doing this are two-fold. First, we avoid any message-passing between the
Rectify and Resize Nodes’ Components. Second, we avoid the compute
cycles wasted while memory is mapped back and forth between the host
CPU and the FPGA. This results in an overall latency speedup of 26.96%
over the CPU. In addition to speeding up the perception stage, another
added benefit of this improvement is that such speedups make room for
other robot tasks in a complete end-to-end system. Note, however, that this

5github.com/ros-acceleration/image_pipeline/tree/ros2/image_proc/src/ image_proc

103

6. Hardware Accelerators in Robotics

Figure 6.6: Total runtime of CPU baseline and FPGA, FPGA-Integrated,
and FPGA-Streaming hardware-accelerated implementations of case study
application. Acceleration enables up to 26.96% speedup over CPU.
Reproduced from [139].

improvement required the construction of an entirely new ROS Node and
unified acceleration kernel on the FPGA.

We then develop a template for an accelerated ROS 2 message passing
interface on the FPGA. This interface is Node and Component -agnostic and
can be leveraged by roboticists to accelerate the communication channels
of any computational graph on an FPGA. This is done by leveraging an
AXI4-Stream interface to create an intra-FPGA ROS 2 communication queue
template which is then used to pass data across Nodes in the FPGA without
sending messages to the CPU 6. This allows us to completely bypass the
original CPU-centric ROS 2 message-passing system and optimizes dataflow,
achieving an overall latency improvement of 24.42% over the CPU in our
application (see Figure 6.6).

6AXI4-Stream interfaces are data-type specific and as such our template may require type
adaptations for other use cases depending on the Node-to-Node data interactions.

104

Conclusion

Based on these results, for this case study, we show that implementing
FPGA-accelerated versions of key ROS 2 Components is easily feasible,
and that addressing the right bottleneck is key to improving performance.
Tracing and benchmarking the CPU baseline suggested that communication
is the bottleneck in our case study. In fact, independent examination of, e.g.,
a single run of the fused-kernel accelerator using the Xilinx Vitis Analyzer,
confirms that this is also the case on the FPGA—we note that integrating
device-specific profiling tools into our foundational tracing infrastructure in
future work can further automate this type of fine-grained introspection of
kernels onboard accelerator devices. We can achieve overall performance
improvements by either combining Nodes or streamlining intra-FPGA
communication. While combining nodes may result in slightly higher
performance, it is a much more labor-intensive design effort. By contrast,
our accelerated intra-FPGA-Node communication queue template can be
applied by any roboticist, to any computational graph.

6.5 Conclusion

In this chapter we presented a new open infrastructure to introduce
hardware acceleration in ROS 2 in a scalable and technology-agnostic
manner. Our architecture allows us to increase the performance of robotics
applications through the integration of hardware acceleration with ROS 2
APIs and its conventional flows. We do so by extending ROS 2 in a way that
is portable across accelerator platforms (e.g., FPGAs, GPUs) and system
deployments (e.g., edge devices, workstations, data centers, and cloud).
We also present a template for low-overhead tracing and benchmarking
to analyze performance across both hardware accelerated and standard
ROS 2 computational graphs.

We use our open architecture and our tracing and benchmarking
infrastructure to demonstrate a principled design methodology for ROS 2
hardware acceleration, exposing insights into how to optimize overall
system-wide performance by analyzing a CPU baseline, and comparing
accelerator design iterations to that original baseline. We examine a
case study using the Xilinx Kria KV260 platform to demonstrate FPGA
acceleration of one of the most popular packages in the ROS perception
pipeline: image_pipeline. We first demonstrate a modest performance
speedup of 6.22% from offloading perception tasks to the FPGA, and
then increased speedup by additionally addressing the communication

105

6. Hardware Accelerators in Robotics

overheads that we identified as bottlenecks by analyzing our CPU baseline.
We achieved a speedup of 26.96% from re-architecting the graph to
combine nodes and avoid inter-FPGA-node communication delays inflicted
by interactions with the CPU, but this approach requires substantial effort
from users to re-architect their graphs. Instead, to avoid this overhead and
stay in alignment with the ROS 2 programming model, we then design a
novel template for intra-FPGA ROS 2 Node communication queues that
allows ROS Nodes and Components to deliver faster dataflows, achieving
a 24.42% speedup over a CPU without excessive manual per-kernel design
effort.

We contribute our open architecture to the ROS community, so that
future work can use our infrastructure and extend to new applications be-
yond our case study example. Promising directions for future work include:
benchmarking computational graphs with other hardware solutions (e.g.,
GPUs) to establish consistent cross-accelerator comparisons; extending
our tracing and benchmarking approach to include additional tracing infor-
mation (e.g., profiling within FPGA or GPU devices) for more fine-grained
introspection of kernels running onboard accelerators; and applying our
open architecture and analysis to other ROS 2 packages.

Our code is disclosed under a commercially friendly open-source license
and is available and maintained at the ROS 2 Hardware Acceleration
Working Group GitHub organization: https://github.com/ros-acceleration.
This work is being further integrated into the ROS ecosystem through a
community standardization effort, REP-2008 [243].

6.6 Future work

The promising outcomes of this chapter lay the groundwork for the
development of dedicated robot security accelerators. Future initiatives
will concentrate on commercializing these innovations. Preliminary
findings suggest that our security accelerator prototypes could significantly
enhance intra-network ROS 2 communications, potentially reducing
average networking latency to single-digit microseconds, which is over
100× faster than current software implementations on CPUs. Particularly
in worst-case scenarios, these accelerators maintain deterministic and
isochronous performance, a stark contrast to the higher latencies observed
with CPU-based software implementations. The potential for a maximum
latency speedup exceeding 100,000× faster communications and security

106

https://github.com/ros-acceleration

Future work

computations marks a significant leap forward in the field of robotics. Due
to the commercial potential of these developments, a detailed discussion is
outside the scope of this research, but these early results are indicative of
the transformative impact these accelerators could have on the future of
robotic communications.

107

Part IV

Cyber-attacking robots

Chapter 7

Attacking Robot Software

Contributions: One of the top
two contributors of [97] and core
contributor to software,
methodology and research
results. Overall research
conducted over a 6-month period,
with other leading security
researchers from industry
participating. Produced various
open source security package
dissectors (e.g. this one, and this
other one). All findings have
been publicly disclosed.

This chapter delves into the security analysis of robot software
and particularly, the Data Distribution Service (DDS) [21] standard, a
middleware pivotal in operating a wide range of robotic systems and
devices, including ROS 2 (DDS is the default communication middleware of
ROS 2). The summarized investigation presented herein is the result
of a multi-year research effort involving various researchers [97] and
led to uncover multiple vulnerabilities in DDS, leading to the issuance
of various new CVE IDs for common DDS implementations and even in the
standard specifications. An extensive scanning exercise revealed numerous
public-facing DDS services across various industries, some affected by
these CVEs, highlighting significant security risks due to their unintended
public exposure. We emphasize the need for continuous security testing
of DDS and similar technologies, offering both immediate and long-term
recommendations for secure integration and advocating for robust supply-
chain management and ongoing security practices.

111

https://github.com/secdev/scapy/pull/3462
https://github.com/secdev/scapy/pull/3403
https://github.com/secdev/scapy/pull/3403

7. Attacking Robot Software

7.1 Introduction

Even within the industry, a big percentage of practitioners are unaware
that the Data Distribution Service (DDS) drives systems such as industrial
robots (manipulators), railways, autonomous cars, airports, surgical robots,
spacecraft, diagnostic imaging machines, luggage handling, industrial
robots, military tanks, and frigates, among others. It has been in use for
about a decade, and its adoption continues to steadily increase.

We discovered and reported vulnerabilities in DDS that warranted new
CVE IDs: Five with a score of greater or equal than 7.0, four with a score of
> 8.5, one vulnerability in the standard specifications, and other deployment
issues in the DDS software ecosystem (including a fully open production
system).

Successful exploitation of these vulnerabilities can facilitate initial
access (MITRE ATT&CK [244] Technique ID TA0108) via exploitation of
remote services (T0866, T0886) or supply chain compromise (T0862), and
allow the attacker to perform discovery (TA0102, T0856) by abusing the
discovery protocol. The consequences of successful exploitation, in any
of the critical sectors where DDS is used, range from denial of service
(T0814) via brute forcing (T0806), to loss of control (T0827), or loss of
safety (T0880). The DDS protocol itself can also be abused to create an
efficient command and control channel (T0869). Based on our analysis, we
recommend mitigations such as vulnerability scanning (ATT&CK Mitigation
ID M1016), network intrusion prevention (M1031), network segmentation
(M1030), filter network traffic (M1037), execution prevention (M1038), and
auditing (M1047).

Findings in Brief

Given this technology’s versatility, we analyzed and discovered multiple
security vulnerabilities, resulting in 13 new CVE IDs for the six most
common DDS implementations. This includes one vulnerability in the
standard specifications and other deployment issues in the DDS software
ecosystem (including a fully open production system). Some of these
vulnerabilities have been patched or mitigated by the vendors since we
reported them. Others remain exposed and can still be abused.

By measuring the exposure of DDS services, in one month we found
over 600 distinct public-facing DDS services in 34 countries affecting

112

Background

Figure 7.1: We found exposed DDS systems in 34 countries [97], including
vulnerable ones, identified via distinct IPs leaking data. Color code hints
about criticality by vulnerable targets: red for most, yellow/grey for least.
Reproduced from [97].

100 organizations via 89 internet service providers (ISPs). Of the DDS
implementations by seven distinct vendors (one of which we were initially
unaware of), 202 leaked private IP addresses (referring to internal network
architecture details), and seven supposedly secret URLs. Some of these IP
addresses expose unpatched or outdated DDS implementations, which are
affected by some of the vulnerabilities that we’ve discovered and disclosed
in November 2021.

During our research, we interviewed key DDS users and system
integrators to collect their feedback on our findings and the importance of
DDS for innovation in their respective sectors. In this chapter, we analyze
and discuss the specifications of DDS and the six most actively developed
implementations maintained by certified vendors and with millions of
deployments worldwide. We also released an open-source software: a
Scapy-based dissector and several fuzzing harnesses for three open DDS
implementations.

7.2 Background

DDS is a standardized middleware software based on the publish-subscribe
paradigm, helping the development of middleware layers for machine-to-
machine communication. This software is integral especially to embedded

113

7. Attacking Robot Software

systems or applications with real-time6 requirements. Maintained by the
Object Management Group (OMG), DDS is used in all classes of critical
applications to implement a reliable communication layer between sensors,
controllers, and actuators.

About real-time in DDS and robotics

Real-time which in robotics is interpreted as meeting time deadlines
in their computations, is used in a generic and non-strict (hard real-
time) manner in DDS specifications. We were unable to find timing
guarantees (hard real-time, firm real-time, or soft real-time) provided
in any of the reviewed documents. For the purposes of this research,
we conclude that DDS targets remote soft real-time communications at
best, leaving firm and hard real-time interactions to other technologies.

DDS is at the beginning of the software supply chain, making it easy to
lose track of and is an attractive target for attackers. Between 2020 and
2021, 66% of attacks focused on the suppliers’ codes [245]. While we were
in the process of doing this research, we encountered an exposed source-
code repository hosting a proprietary implementation of DDS. Left open,
this would have let an attacker infect the source code (MITRE ATT&CK
T0873, T0839).

Figure 7.2: DDS is a standardized software library used for software-based
controlled systems, directly or via ROS 2. Reproduced from [97].

Notably, the following companies and agencies use DDS (note that this
is not an exhaustive list of currently using the technology):

114

DDS and Real-Time Publish-Subscribe (RTPS) Packets

• Military robots (e.g. legged robots from Ghost Robotics)

• National Aeronautics and Space Administration (NASA) at the
Kennedy Space Center

• Siemens in wind power plants

• Volkswagen and Bosch for autonomous valet parking systems

• Nav Canada and European CoFlight for air-traffic control

DDS is the foundation of other industry standards such as OpenFMB
[246] for smart-grid applications and Adaptive AUTOSAR [247], among
other sectors that we identify in the next section. The Robot Operating
System 2 (ROS 2), which is the de facto standard operating system for
robotics and automation and as previously mentioned, also uses DDS as
the default middleware. We also noted that, according to a confidential
document leaked online, NVIDIA has listed DDS as a strategic tool
for system-virtualization and cloud-computing applications, mainly for
exchanging data within and across virtual machines.

7.3 DDS and Real-Time Publish-Subscribe (RTPS) Packets

There are many software-based controlled systems in the world that connect
sensors, actuators, and controlling and monitoring applications. DDS was
invented for such systems, with a strong focus on interoperability and
fault tolerance. It is optimized for publish-subscribe and peer-to-peer
applications as most applications can’t afford a single point of failure. The
middleware relies on multicast (group communication or data transmission
to multiple recipients) for discovery, allowing everything to run without
needing initial configurations.

From a software developer standpoint, DDS is a communication
middleware that facilitates interoperability of processes across machines in
all main programming languages. From another viewpoint, DDS is a data-
centric, publish-subscribe communication protocol that allows developers
to build a flexible shared data “space” or “bus” for virtually any application
that requires two or more nodes to exchange typed data. The DDS layer is
encapsulated into real-time publish-subscribe (RTPS) packets, which for

115

7. Attacking Robot Software

Figure 7.3: Simplified software-based control system with actuators, con-
troller, sensors, communicating by exchanging data over DDS. Reproduced
from [97].

Figure 7.4: An example of a dissected RTPS message with a DATA
submessage. Reproduced from [97].

now can be considered as a collection of sub-messages (such as timestamp,
discovery, data, and security metadata), as shown in Figure 5. Given
the strong dependency between DDS and RTPS, we focused our research
on RTPS for increased generality. Because of its flexibility, DDS and its
underlying layers do not come as a ready-to-use, off-the-shelf product like
other middleware tools (such as Message Queuing Telemetry Transport or
MQTT). Rather, DDS is a programming library that developers use to build
custom middleware protocols with advanced features such as custom data

116

DDS and Real-Time Publish-Subscribe (RTPS) Packets

types, quality of service (QoS) policies, network partitioning, authentication,
and encryption.

Understanding DDS as an robotics databus (as opposed to a database)

DDS can be understood as databus for robotic solutions. A databus is
a data-centric software framework for distributing and managing real-
time data in intelligent distributed systems. In intelligent distributed
systems, managing dataflow is critically important. The databus —
designed specifically to manage dataflow in intelligent distributed
systems — simplifies application and integration logic with a powerful
data-centric paradigm.

Research Scope: RTPS, DDS, and Robot Operating System 2
(ROS 2)

Table 7.1: A list of DDS implementations that we analyzed in this research.
Reproduced from [97].

In addition to the DDS standard specifications, we focused our
investigation on the six DDS implementations listed in Table 7.1. These
implementations are used globally and have customers and users in the
critical sectors identified in the same table. Because DDS depends on
RTPS as a lower-layer standard protocol, each DDS implementation ships
with its own RTPS implementation. In other words, DDS data is contained
as a sub-message within RTPS, thereby focusing on both protocols. To
make sure we highlight the criticality of this for robotics, again, the Robot

117

7. Attacking Robot Software

Operating System 2 (ROS 2), which is the default standard meta-operating
system for robotics and automation, has DDS as its default middleware. For
this reason, the impact of each vulnerability extends beyond DDS alone,
and includes all ROS 2 instances.

7.4 Research Methodology and Technical Details

Refer to [97] for details on the final findings derived from this research.
This subsection instead discusses the technical details of how those findings
were encountered. The offensive methodology explained here applies to
other (software) robotic endeavours. Figure 7.5 provides an overview of the
research methodology we followed. We analyzed each DDS implementation
from two main angles: network and source — or binary — code. We wanted
to have a deep understanding of the low-level details of the RTPS network
layer to craft arbitrary test packets, and prove that it is possible for an
attacker to mass scan a network and map the attack surface. In a parallel
investigation, we manually studied the original or decompiled source code,
with the main goal to find good fuzz targets (i.e., functions that receive and
process untrustworthy data like network packets).

7.4.1 A New Scapy Layer to Dissect and Forge RTPS and DDS
Data

Although Wireshark already includes an RTPS dissection plugin, we needed
something more scriptable. Since we spent some time manually crafting
RTPS packets at the beginning, we decided to develop a RTPS Scapy-based
dissector. We released the resulting Scapy layer as open-source code under
the GNU General Public License v2.0.74 which is available ever since
� https://github.com/secdev/scapy/pull/3403.

7.4.1.1 Crafting RTPS probes with Scapy

Without going into the details of our Scapy RTPS implementation, note
that it can be used to programmatically create RTPS packets by writing
Python code, like any other Scapy layer. In practice, that’s seldom what a
researcher would do, especially for “thick” protocols with lots of options.

Instead, the developer’s typical workflow can be:

118

https://github.com/secdev/scapy/pull/3403

Research Methodology and Technical Details

Figure 7.5: Diagram of the research methodology and workflow we used:
The numbered items indicate the sequence of steps we followed throughout
this research, beginning with the development of a packet dissector.
Reproduced from [97].

• Intercept traffic. Use Tcpdump or Wireshark to collect the traffic
generated by the “hello world” example typically provided with a DDS
distribution.

• Extract UDP payload. Use Scapy (or manually via Wireshark) to select
the packet of interest and extract the UDP payload (which contains
the RTPS layer, as shown in Figure 7.5).

• Dissect with the RTPS class. Pass the extracted payload to the Scapy

119

7. Attacking Robot Software

Figure 7.6: With the Scapy RTPS layer, a developer can create arbitrarily
complex (and unexpected but valid) RTPS packets. Reproduced from [97].

RTPS class, which will automatically dissect it.

• Generate Python code automatically. Use Scapy’s built-in .command()
method to output the Python code that will declaratively generate the
packet that has just been dissected. If necessary, modify the packet
so obtained (as exemplified in Figure 7.11).

• Test modified packet against the endpoint. Either use Scapy’s built-in
send()/sendp() functions or Python’s socket module to send the packet
to a target DDS endpoint and check if it triggers the desired behavior.

The following section briefly describes how, almost by accident, we
discovered the amplification vulnerability while dissecting and modifying
packets during the early stages of the development of our Scapy RTPS
layer.

7.4.1.2 Finding the Amplification Vulnerability

Although network fuzzing via Scapy was not directly effective in our
research, creating a Scapy layer helped and motivated us to investigate
all the RTPS packets’ fields in depth. The activity led us to find the
amplification vulnerability (CVE-2021-38425, CVE-2021-38429, CVE-2021-
38487, CVE-2021-43547). In the long run, we recommend that developers
and users leverage our Scapy RTPS layer — or similar libraries — as a
building block for building continuous network fuzzers for RTPS and DDS.

120

Research Methodology and Technical Details

Figure 7.7: The UDP payload contains the RTPS header and subsequent
data. Reproduced from [97].

The goal of the RTPS discovery phase is to send “probe” packets (e.g.,
to multicast addresses) and wait for responses from new locators. Locators
could be IP-port pairs (see the PID_DEFAULT_UNICAST_ LOCATOR in Figure
7.6, right side of the screenshot) or memory offsets in a shared-memory
transport. Before reading the specifications in depth, we assumed that
an RTPS discovery packet would allow us to restrict the locator to the IP
addresses within the network the machine is connected to, and would not
blindly send RTPS data to any IP-port found in the locator field. On a second
read, however, this is exactly how discovery works by design.

We discovered this by setting the PID_DEFAULT_UNICAST_LOCATOR to the
first IP address that came to mind (in this case, the Google DNS, because
it’s easy to type at “8.8.8.8”). Almost immediately, a flow of outbound
packets came from the DDS node, as shown in Figure 7.7 and 7.9.

121

7. Attacking Robot Software

Figure 7.8: In case of UDP or TCP transport, the locator is the IP-port pair.
Reproduced from [97].

Figure 7.9: We found the amplification vulnerability almost by accident, by
setting the PID_DEFAULT_UNICAST_LOCATOR to the first IP address that
came to mind and easy to type. Reproduced from [97].

7.4.2 Source-code and Binary Fuzzing

Of all the implementation vulnerabilities that we disclosed for this research,
all but three have been found through source-code or binary fuzzing, and
three through scripting a file-format input mutator (RADAMSA). There

122

Research Methodology and Technical Details

are many fuzzing tools freely available to researchers, and we chose one
based on what has been used successfully for years by the largest public
fuzzing platform (Google OSS-Fuss), which uses a combination of AFL++,
libFuzzer, and Honggfuzz. Although the choice of the specific tool can
influence the efficiency of a fuzzing campaign, we focused our attention
on the most important piece: finding good fuzz targets and writing good
fuzzing harnesses.

7.4.2.1 Source-code Fuzzing with AFL++ and libFuzzer

We used AFL++ for fuzzing with multiple sanitizers in LLVM. AFL++
requires the project compile with the latest version of LLVM and the build
system of some DDS implementations required some work. Aside from this,
most of the effort in this phase went into finding the right fuzz target and
implementing a harness while keeping the code deterministic (for example,
no threading).

From the high-level viewpoint depicted in Figure 7.11 and 7.14, we
were interested in finding the most self-contained function in charge of
processing data coming from the network. We found a repeating pattern
in all the DDS implementations: upon receiving network data (i.e., recv()
or some abstraction on top of it), there are one or more deserialization
functions in which we likely find a switch-case control structure, used to
dispatch the RTPS sub-message IDs to the right routine.

Given the importance of finding the right fuzz target, we dedicate the
remainder of this section to showcase some examples of fuzz targets.

We began with the supplied Docker images or make files to compile
example programs, run them under GDB, and inspect debug traces, like
exemplified for OpenDDS in Figure 7.11.

By following the function calls with the aid of the code analyzer part of
Visual Studio Code, we were able to see that all three DDS implementations
were using very similar procedures for deserializing network payloads. In
particular, we found that they all had a switch-case to handle the RTPS
sub-message types, as exemplified for OpenDDS in Figure 7.15.

In some cases, we adjusted the source code right before the beginning
of the de-serialization to dump the binary data being passed to the first
function. This was useful to confirm that it was the network payload that
we expected the function to receive, as exemplified for Cyclone DDS in

123

7. Attacking Robot Software

Figure 7.10: Abstract representation of the data flow in a typical DDS/RTPS
message exchange. From a fuzzing perspective, the deserialize() step is
the fuzz target. Reproduced from [97].

Figure 7.11: Starting from a debug trace, we found interesting functions
and explored further by manually looking into the source code with the aid
of Visual Studio Code engine. Reproduced from [97].

Figure 7.16.

124

Research Methodology and Technical Details

Figure 7.12: Typical switch-case control structure found similar in all DDS
implementations. Each of the branches takes care of one RTPS sub-message
type (e.g., DATA, INFO_DST, HEARTBEAT). Reproduced from [97].

The following list showcases the groundbreaking vulnerabilities discov-
ered by the author of this thesis, in collaboration with an international
cohort of security researchers [98, 99]. Over an intensive 18-month study
dedicated to Data Distribution Service (DDS) protocols, the author played
a pivotal role in identifying these novel security flaws. These contributions,
which are original and previously undocumented in the literature, highlight
the author’s research results and innovative approach to cybersecurity.

Our methodical and responsible disclosure process further underscores
our commitment to ethical research practices. Each vulnerability was
first reported to the respective manufacturers, allowing for necessary
remediation, and subsequently to relevant authorities after a stipulated
grace period, ensuring an orderly public disclosure [99]. This diligent
process not only demonstrates our dedication to advancing the field but

125

7. Attacking Robot Software

Figure 7.13: (Top screenshot) In some cases, we inserted a memcpy()
to directly fuzz the input in the right place when it was not possible to
further decompose the function into a smaller, self-contained fuzz target.
In other cases, we used the original code to dump the data received by the
de-serialization routine to verify that we found the right fuzz target (bottom
screenshot). Reproduced from [97].

also our leadership in setting new standards for responsible vulnerability
reporting. These discoveries represent significant advancements in DDS
security and mark a notable contribution to the broader cybersecurity
community in robotics.

CVE-2021-38445 (OpenDDS): Failed Assertion Check in RTPS Handshake
Using the harness (shown in Figure 7.17) we found out that, in OpenDDS
less or equal v3.17, while receiving a RTPS packet with valid headers,
with DATA sub-message, any attached serialized sub-data segment with a
parameterLength of 0 will cause an assertion to fail in Serializer::doread,
which subsequently called Serializer::smemcpy with a const char* from
of zero. This vulnerability can be exploited via the network even without
authorization and can cause the DDS node to crash. It cannot be developed
into a buffer overflow so it does not grant any code-execution primitives.

More specifically, Serializer::doread does not check for segments of
0 length and continues to handle the messages. This is passed by
RtpsCoreTypeSupportImpl.cpp near:

bool operator >>(Serializer\& outer_strm,
::OpenDDS::RTPS::Parameter\& uni)

126

Research Methodology and Technical Details

which extracts size information from parameterLength but does not
check if it is a valid value. It only makes sure extracting values from the
serializer is successful.

Figure 7.14: Example harness for OpenDDS RTPS deserialization routine
written for AFL++ using persistent mode. Reproduced from [97].

CVE-2021-38445 (OpenDDS): Memory exhaustion The opposite occurs
with CVE-2021-38445 explained in the previous section, wherein the
serializer is tricked into allocating very large chunks of memory. AFL++
found a crash in OpenDDS’s serializer: While deserializing data with
parameter ID type 0x55, it does not sanitize the value in its length field.
This allows attackers to exhaust a server’s memory by crafting a packet
with a very large number in that field. In

bool operator>>(Serializer\& strm,
::OpenDDS::RTPS::FilterResult_t\& seq)
(RtpsCoreTypeSupportImpl. cpp:1977)

a check should be made to make sure it never allocates more memory than
it’s allowed, or a hard limit should be implemented.

CVE-2021-38441 and CVE-2021-38443 (Cyclone DDS): XML Parsing to
Heap-write Some DDS implementations had networking functionalities
plugged deep into the application code, which required some mock
functions in the harness, as exemplified in Figure 7.18 for Cyclone DDS.

127

7. Attacking Robot Software

Figure 7.15: Cyclone DDS harness required a mock network subsystem.
The actual fuzzing is happening at line 86, where we pass the configuration
initializer a pointer memory-mapped XML file. Reproduced from [97].

The harness in Figure 7.18 found several crashes, which led to two
vulnerabilities. One is exemplified in Figure 7.19, a multi-byte heap-
write primitive. Upon checking the source code, we noticed that there
were multiple inputs that can lead to a heap overflow in the XML parsing
routines. This causes at least a crash and can be exploited to write in the
heap, potentially overflowing into the stack. Without heap protections, this
vulnerability is exploitable as it is a write primitive of at least 8 bytes, and
certainly causes the program to crash in the best case.

7.4.2.2 Binary Fuzzing with UnicornAFL

The trial licenses for RTI Connext DDS, CoreDX DDS, and Gurum DDS
grant access only to binary distributions of the libraries. After compiling
the example programs that ship with the original software distribution, we
used GDB to inspect run traces. This turned out to be quite verbose given
the presence of several debug symbols. We filled the missing information
by inspecting the listing via Ghidra and IDA Pro. This allowed us to find
interesting fuzz targets, as seen in Figure 7.20. For coverage-guided

128

Research Methodology and Technical Details

Figure 7.16: Backtrace of a crash found by libFuzzer on Cyclone DDS, which
led us to CVE-2021-38441, a multi-byte heap-write primitive. Reproduced
from [97].

fuzzing we used UnicornAFL, which is a fork of AFL++ that uses the
Unicorn emulation engine to “execute” the target and employs block-edge
instrumentation in a similar fashion to AFL’s QEMU mode.

In practice, we dumped the context of a running process with GDB
and prepared a harness (see Figure 7.21) that lets UnicornAFL restore
that context, set registers and memory state, the RIP register, and start
emulation. Like AFL, UnicornAFL will take care of mutating the input,
passing it to the fuzz target, and keep track of the coverage. The main
shortcoming is that we had to re-implement some memory management
functions (e.g., malloc, memset). This approach is inherently slow due to
emulation, but was good enough for initial vulnerability research. It costed
us a few hours of AWS EC2 computation (c5a.8xlarge), and we found that
AMD EPYC machines were three times faster than Intel Xeons while fuzzing
using UnicornAFL.

129

7. Attacking Robot Software

Figure 7.17: Finding fuzz targets in RTI Connext DDS, CoreDX DDS, and
Gurum DDS required us to reverse engineer the binary libraries, which
was easy as the vendor did not use any anti-reverse engineering measures.
Reproduced from [97].

CVE-2021-38435 (RTI Connext DDS): Segmentation Fault on Malformed
RTPS Packet The UnicornAFL instrumentation that we prepared found
a segmentation-fault in the RTPS deserializer in RTI Connext DDS when
receiving a malformed packet. This would cause runtimes to exit immedi-
ately and a DoS. In particular, the RTICdrStream_skipStringAndGetLength()
function does not properly check inputs, using the result straight from RTIC-
drStream_align(), thus triggering a segmentation fault. Both publisher and
subscriber are affected.

CVE-2021-38439 and CVE-2021-38423 (Gurum DDS): Heap Overflow and
Segmentation Fault While using UnicornAFL on Gurum DDS fuzz targets,

130

Research Methodology and Technical Details

Figure 7.18: We used the debug trace and the decompiled code (see Figure
7.20) to create a harness for UnicornAFL. Reproduced from [97].

we discovered that there is a heap overflow in the RTPS routine that
handles payload parsing. This causes a segmentation fault leading to DoS.
More specifically, the crash is triggered in rtps_read_AckNackMessage()
function when called in read_ Submessage(), which creates a multi-byte
heap overflow condition. We found this crash by using a harness that passes
RTPS payload directly to the rtps_read_Data(. . . , buf, len, . . .) function
through the buf argument.

Another case we 1 found is in the rtps_Parameter_load2() function,
which does a type conversion from a buffer and does a check to exclude
specific IDs. During this conversion, we found some inputs causing a
segmentation fault. We verified that this is exploitable via network by
crafting a packet based on the crash dump provided by the fuzzing engine.

1For the full list of contributors, refer to [98, 99]

131

7. Attacking Robot Software

7.4.2.3 Scripting RADAMSA to Mutate XML Files

At the beginning of this research and before using AFL++ and UnicornAFL,
we used RADAMSA directly, with some simple shell scripting (see Figure
7.23). Without any prior knowledge on the target software, this simple
technique can be surprisingly effective at finding crashes, which can also
lead to the discovery of vulnerabilities.

Figure 7.19: A simple scripting of RADAMSA can lead to surprising results.
Reproduced from [97].

CVE-2021-38427 and CVE-2021-38433 (RTI Connext DDS): Stack-based
Buffer Overflows Python Bindings The simple “harness” shown in Figure
7.23 allowed us to find two vulnerabilities; one could be exploited beyond
just a crash to control a pointer using a malformed XML file. When the
length of an attribute value in a configuration XML file is longer than a
certain limit, RTIXMLObject_lookUpRef() would trigger a buffer overflow.
If the length is exactly 894 characters, we could overwrite RIP register (see
Figure 7.23). We have not investigated further, but we see the possibility
of preparing a ROP chain for this target. However, the XML parser does
not accept arbitrary hexadecimal characters, so we’re limited within the
Unicode range.

A variant of this vulnerability is in RTIXMLDtdParser_getElement(),
which does not properly validate the length of an element prior to copying
it to a fixed-length stack buffer.

132

Research Methodology and Technical Details

Figure 7.20: Register state and sample crash cases in RTI Connext DDS
Connector (Python bindings) found with RADAMSA from the original XML
configuration file. Reproduced from [97].

Unmaintained XML Parsing Libraries Unfortunately, we discovered that
Gurum DDS uses ezXML, an open-source XML library that has been in
beta status since 2006 that has never been updated. The mailing list of
the project has been silent since 2010, showing that no users are actively
discussing it. The latest version was 0.8.6, but an inspection of the binary
code revealed that the developer changed the version number to 1.0.0,
which was the only change. EzXML currently has 16 known vulnerabilities
(eight in 2021), all with medium to high severity ratings and have never
been fixed. Probably because of its small footprint, we discovered that
ezXML is also used in many embedded applications like router firmware,
and has hundreds of downloads per week. We have reached out to Gurum
DDS several times — about this and other vulnerabilities — since the
summer of 2021 and have received no response.

7.4.3 Internet-wide Scanning for RTPS Endpoints

We wanted to demonstrate how an attacker could leverage the RTPS built-in
discovery protocol for automated, large-scale reconnaissance of RTPS/DDS
endpoints. We found hundreds of exposed services as a byproduct, which
was unexpected. Understanding that RTPS/DDS was designed for local-
network applications, we did not expect to find more than a couple of
endpoints exposed by mistake. Not only did we find several hundreds, but
35 of them have never stopped sending responses to our scanner despite

133

7. Attacking Robot Software

the fact that we only sent them one single RTPS packet.

After trying to use readily available internet scanning services (such as
Shodan, Censys, and LeakIX), we ended up implementing our own scanning
prototype because of the intricacies of the RTPS discovery phase. This
makes it a bit convoluted to correctly fingerprint a service.

Figure 7.21: The dashboard of our DDS-scanning system allows analysts to
explore the data. User interface is not publicly available. Reproduced from
[97].

7.4.3.1 Challenges of RTPS/DDS Reconnaissance

In summary, the main challenges of RTPS/DDS reconnaissance are:

• Dynamic and arbitrarily large port range. Depending on the number
of participants in a RTPS/DDS network, there can be tens of thousands
of ports to check. The formula to calculate the port is defined in the
specifications [117], and each implementation has distinct defaults,
as shown in Table 7.2.

134

Research Methodology and Technical Details

• Latency and connectionless nature. Although RTPS/DDS are transport-
agnostic, the de facto standard is to use UDP, which makes efficient
scanning techniques useless. To verify if there is a valid RTPS/DDS
endpoint bound to a given address (IP and UDP port), we need to wait
for an answer, which may or may come within a few seconds. Given
the size of the public IPv4 space, it’s impractical to wait for answers
upon each request.

• Addressing information at application layer. Addressing information is
exchanged at the application layer. Sending a valid RTPS packet to the
correct UDP port (for example, the default 7400 discovery port) does
not guarantee a response, even if there is an RTPS service running.
To trigger a response, the RTPS discovery packet must include correct
locator information (for instance, IP and UDP port), which will receive
a response.

Table 7.2: Assuming up to one DDS domain and at least one participant, we
tested the open UDP ports of each of the six reference implementations. All
those marked with checks could detect any of the identified ports just by
scanning for four ports listed on the last row of the table. Reproduced from
[97].

7.4.3.2 Scanning Approach

Given the challenges mentioned in the previous section, we implemented
a distributed scanning system (see Figure 7.9) that we first validated in a

135

7. Attacking Robot Software

private network against all six DDS implementations, under the simplifying
assumption that the developer would not go too far from the “default” set
of ports listed in Table 7.2.

Figure 7.22: We used spoofed RTPS discovery messages sent via ZMap to
collect answers from valid DDS endpoints and filtered echoed and invalid
responses. Reproduced from [97].

As shown in Figure 7.11, we created a template RTPS packet (using
our Scapy RTPS layer, as shown in Figure 7.11) with a parametric locator
IP and port number. We then generated an actual RTPS discovery packet
by fixing the locator IP and port numbers according to the collector that
we set up to receive the (reflected) packet. The collector will know what
packet to expect given its IP and port number. Since there are several
honeypots that simply reply to every request by echoing traffic they receive,
the collector filters these “echoed” packets and keeps only valid responses.
The collector checks if a received RTPS packet is valid by using the Scapy
layer to dissect it and checks whether the globally unique identifier field
(GUID) is new.

136

Conclusion

Figure 7.23: Starting from a template RTPS packet, the spoofer instantiates
it for a given collector (IP and port) and sends it out via ZMap. The collector
uses the RTPS packets sent out to decide whether the received packets
are valid and not simply duplicates of what was sent out. Reproduced from
[97].

7.5 Conclusion

This chapter has provided an in-depth analysis of robot software with
particular focus on the the Data Distribution Service (DDS) standard and
its implementation across various critical sectors, revealing significant
security vulnerabilities and widespread exposure of DDS services. Through
rigorous research methodologies, including network and binary fuzzing, our
investigation uncovered numerous vulnerabilities, resulting in the issuance
of new CVE IDs. The findings highlight the urgent need for continuous
security testing and robust supply chain management in DDS and similar
technologies.

The extensive exposure of DDS services on public-facing networks and
the discovery of vulnerabilities in standard specifications call for immediate
and long-term mitigation strategies. As we move forward, the focus should
be on enhancing the security frameworks of DDS implementations and

137

7. Attacking Robot Software

advocating for more secure practices in the development and deployment
of critical middleware technologies. This research serves as a foundation
for future work in securing robot software and other similar systems.

138

Chapter 8

Attacking Robot Hardware

Contributions: Leading author
at [104]. Self-funded work for
myself and the team
participating. All findings have
been publicly disclosed.

8.1 Introduction

Robotics is the art of system integration, as noted by [228]. Building a robot
requires one to carefully select components that exchange information
across networks while meeting timing deadlines. In a way, a robot
is a network of networks. One that comprises sensors to “read” the
world, actuators to produce a physical change, and one for dedicated
computational resources to process it all and respond coherently, in time,
and according to its application. Roboticists often conceive the robot
not as one of its parts, but as the complete system including all of its
components, whether they are assembled under the same structure or
physically distributed. In the case of a robotic manipulator, these robots
are often presented physically distributed and include the robot arm
mechanics (which generally include actuators and sensors), the human-
machine interface (HMI) or teach pendant, the controller (the main compute
substrate for reasoning), and any additional safety mechanism related to
the robot operation. The robotic system is thereby the composition of all
these sub-systems and networks.

Under such system integration complexity, it is not uncommon for one
of the robot sub-components to fail over time, often leading to the complete
system malfunction. Given the high price point of robots, it is reasonable to
consider the need for repairing these machines, often replacing individual
faulty components for continued operation, or simply for re-purposing
them. The European Commission (EC) showed early interest on this topic

139

8. Attacking Robot Hardware

in a report by [248] evaluating different scoring systems for repairing and
upgrading different consumer-oriented products, including robots. More
recently, and as part of the Circular Economy Action Plan [249], the EC
has shown commitment towards establishing a new Right to Repair in the
context of reviewing directive 2019/771. [250] summarizes major events
in the U.S. with regard the Right to Repair and highlights that it wasn’t
until 2012 that the Automotive Right to Repair passed in Massachussets,
empowering customers with tools to fight planned obsolescence. Hatta
summarizes how material obsolescence works:

• Making items difficult to repair (by raising the cost of repair, requiring
special tools, etc.)

• Failing to provide information (for instance, manuals are not provided)

• Systematic obsolescence (making parts among models incompatible
or making it impossible to fix newer models with parts from the older
models)

• Numbering (frequently changing the model numbers to make it
psychologically less attractive to use old models)

• Legal approaches (prohibiting access and modification to the internal
structure of products by means of copyrights and patents)

[250] noticed that, similar to Ford in the 1920s, most robot manufacturers
follow several of these practices nowadays and organize dealers (often
called distributors) or approved system integrators into private networks,
providing repair parts only to certified companies in an attempt to
discourage repairs and evade competition. Amongst the most recent
examples we observe an interesting development from Teradyne, where two
of its owned robotics companies (Universal Robots and Mobile Industrial
Robots), follow this practice. The case of Teradyne is of special interest
because its robots are advertised as collaborative, that is: designed to
augment human capabilities by closely (physically) cooperating without
causing any harm. Past research however hints that the lack of security
measures in these robots leads to safety hazards, as concluded by [2, 88,
251].

Cybersecurity in robotics is still on its early stages, as demonstrated
by [2, 252, 253]. Therefore, as in many other fields, it remains addressed

140

https://www.teradyne.com/
https://www.universal-robots.com
https://www.mobile-industrial-robots.com
https://www.mobile-industrial-robots.com

Introduction

mostly in disconnected silos. With most efforts concentrated in IT, hardware
security in robotics has received very limited attention. Building secure
robots, however, demands consideration throughout domains (hardware,
firmware, OS, application, network, cloud, etc.), [89], and across the robot
lifecycle, [17].

The present chapter introduces and promotes robot teardown as a
systematic process to repair robots, improve robot hardware and research
its security. We advocate against the business priorities set in industry,
which avoid repairs and planned obsolescence. Instead, we advocate
for a Right to Repair in robotics as a means to reduce robot e-waste
and recycle components, both across robots and throughout use-cases.
Ultimately, we argue that, in the long run, the more researchers and
practitioners will learn to systematically teardown robots, the more this
practice will impact the quality assurance of hardware in robotics, putting
pressure on manufacturers to produce robots with better (hardware)
security measures, thereby safer. Our contributions are fourfold: first,
we discuss the empirical results of three robot teardowns performed on
popular industrial collaborative robots and uncover various quality, security,
and safety flaws in the process. Second, we demonstrate how, as a result
of a teardown, we gain repairing capabilities in the robots. This leads
us to acquire means to mitigate security flaws early, by simply extending
the robotic system with additional, off-the-shelf hardware elements that
increase the overall cybersecurity posture with a minimal cost impact.
Third, we show how teardown helps pinpoint security vulnerabilities across
internal and external robot networks while discussing some of them. Fourth,
we show evidence of planned obsolescence practices in robotics on leading
industrial collaborative robots and demonstrate how by applying minor
fixes, we managed to bypass the obsolescence limitations obtaining full
control of the hardware across subsequent releases.

The content below is organized as follows: Section 8.2 describes the
robot teardown process in three different robots and Section 8.3 the
posterior reversing exercise to gain repairing capabilities. Section 8.4
argues about the obsolescence indicators encountered and demonstrates
how to bypass them as a result of the results in previous sections. Finally,
Section 8.5 summarizes our work and draws some conclusions.

141

8. Attacking Robot Hardware

8.2 Robot teardown

A teardown is the process of taking apart a product to understand how
it is made and works. More formally, it is the approach to modeling the
functional behavior and physical components of a product, as described
by [254, 255, 256]. Robot teardown is thereby the process to study robot
hardware architectures through systematic disassembly to understand how
the robot works and what physical sub-systems compose it.

The motivation behind teardowns was previously researched by other
groups such as [257, 258]. In robotics, we identify three key purposes: a)
dissection and analysis to evaluate the status of a product, b) competitive
benchmarking against similar products, and c) gain engineering experience
and knowledge. This chapter focuses on a) and c). Particularly, we show
three case studies on the robots from Universal Robots (UR) and Mobile
Industrial Robots (MiR). Our motivation for selecting these targets is
twofold: first, these robots are arguably widely used across use cases in the
professional and industrial environments, with tenths of thousands of units
sold [259] and operating in close contact with humans (as collaborative
robots). Second, past research by [15, 44, 45, 85, 92, 251] has shown
a lack of security concern and readiness from these two manufacturers
making them attractive targets for adversaries aiming to disrupt industrial
processes or causing injuries as reported by [2]. Disruption-based attacks,
unfortunately, continue to be the most effective leverage used by financially
driven threat actors such as DarkSide 1, just to name the most damaging
and recent one (as of June 2021).

Based on common teardown practices [257, 258], we present in Figure
8.1 our teardown methodology for robots. The process involves 5 steps: 1.
Identifies the purpose and scope of the teardown exercise. 2. Prepares for
the teardown gathering required tools for documentation and dissasembly.
3. Examines the supply chain identifying how to acquire parts, what’s
the installation process and who’s entitled for repairs, including costs and
liabilities. 4. Takes apart the robot, documenting each step and avoiding
the damage of any component. 5. Extracts relevant data (e.g. firmware
version) from each robot component, constructs a Bill of Materialss (BOMs)
and gathers additional information by researching public resources. To the
best of our knowledge, we are the first to propose and document a teardown

1https://www.intel471.com/blog/darkside-ransomware-shut-down-revil-avaddon-cybercrime

142

https://www.intel471.com/blog/darkside-ransomware-shut-down-revil-avaddon-cybercrime

Robot teardown

approach for industrial robotic products. The following subsections provide
a walk-through on three case studies and discuss the most interesting
findings on each one of them.

1. Scope 2. Tooling 3. Supply chain 4. Dissasembly 5. Info. gathering

Figure 8.1: Our teardown methodology for robots

8.2.1 Case Study 1: Teardown of an industrial collaborative robot

Figure 8.2 shows a selection of images obtained from the complete
teardown of the UR3 CB3.1 industrial collaborative robot. Our goal is
to show how a systematic teardown can lead to understanding how to
obtain repairing capabilities of the complete robot, including the controller
(i.e., the “brain” of the robot), teach pendant, and robot arm mechanics. We
put particular emphasis in the CB3.1 controller since most safety-related
electronics reside in there. The total time spent in the teardown is of five
hours and 30 minutes.

An interesting observation is depicted in Figure 8.2f, which displays that
the compute substrate in charge of implementing the safety logic is the NXP
LPC4437JET256 microcontroller. While doing hardware reconnaissance
we found the following excerpt within the part datasheet [260] of the
corresponding microntroller:

Suitability for use — NXP Semiconductors products are not
designed, authorized or warranted to be suitable for use in
life support, life-critical or safety-critical systems or equip-
ment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result
in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no lia-
bility for inclusion and/or use of NXP Semiconductors products
in such equipment or applications and therefore such inclusion
and/or use is at the customer’s own risk.

Observation 8.2.1. The microcontroller implementing the safety logic in
the UR3 CB-Series robot controller is in fact not suitable for safety-critical

143

8. Attacking Robot Hardware

(a) Universal Robots UR3
robot CB3.1 controller and
teach pendant (HMI). Con-
troller has a mechanical lock
to secure physical access.

(b) Inside the controller we
learn about connectors and
cables, which are exposed.
The left side includes I/O
and safety.

(c) The main computer of
the controller with a 2G
DDR3L RAM module. Eth-
ernet NICs are connected to
controllers from Intel.

(d) No secondary memory
is located on the printed cir-
cuit board (PCB) besides mi-
nor non-volatile memories
and the USB stick we found
connected outside.

(e) The safety side of the
controller (documented in
the user manuals) includes
quick connectors which can
be removed by carefully wig-
gling them out.

(f) After removing the metal
shields, the safety board
electronics are fully visible.
The main logic is driven by
an NXP LPC4437JET256 mi-
cro controller unit (MCU).

(g) The energy-eater board.
This component tends to
overheat a fair bit and
should generally be checked
in case of failure for signs of
degradation.

(h) A safety relay and two
power supply units (PSUs)
identified, one for the com-
pute logic (12V) and another
one to power the actuators
(48V).

(i) Final figure depicting
all the components con-
tained inside of the Uni-
versal Robots UR3 CB3.1
controller, leaving aside the
teach pendant.

Figure 8.2: UR3 collaborative robot teardown. Adapted from [104].

systems according to the silicon vendor. Confusingly, the list of applications
on the first pages of the datasheet includes industrial automation or motor
control, which are typical safety-critical use cases.

In other words, this observation leads us to question the quality and

144

Robot teardown

reliability of the safety implementation within robots of the CB-Series by
Universal Robots. [250] indicated that vendors have historically opposed to
teardowns under the argument that closed networks of dealers guarantee
quality. However, our first observation indicates the exact opposite. Third
parties with the required technical expertise might be able to identify and
pinpoint hardware components that don’t meet the quality standards for the
safety situations the robot may have to face, leading to an overall improved
scenario for end-users.

8.2.2 Case Study 2: Teardown of a next-gen industrial
collaborative robot

Following the CB-Series, we proceeded and disassembled one of the latest
releases from Universal Robots, the UR3e, an e-Series. Figure 8.3 depicts
the complete process through selected images. The complete teardown of
the robot took us a total time of three hours 2. We observe how, while the
overall outer look remains similar, the internals have suffered a significant
change:

• The e-Series controller integrates a single PSU, as presented in Figure
8.3e, while the CB-series had two (see Figure 8.2h).

• While the CB-Series presented two boards containing compute, power,
and safety logic (Figures 8.2c and 8.2f, respectively), the e-Series
presents only one single PCB named as “SAFETYCONTROLBOARD”
and depicted in Figures 8.3f, 8.3g, 8.3h and 8.3i.

• Figure 8.3g shows that the new PCB includes a Xilinx Artix-7 series
field-programmable gate array (FPGA), widely used for implementing
safety logic in a variety of automotive and control domains, and a
much more reliable compute substrate for safety-related tasks than a
MCU.

• Figure 8.3j shows that the base filter PCB—which helps interface
power and RS485 communications from the controller (e-Series) to

2Note that a) the robot is similar to the one studied in case study 1 and b) repeated
teardowns of manipulators helped us optimize the time.

145

8. Attacking Robot Hardware

(a) Universal Robots URe3
controller. The controller
has a mechanical lock aimed
to prevent ingress to the in-
ternals from non authorized
parties.

(b) Inside the controller we
can see various connectors
and cables exposed. The
right side includes I/O and
safety, at the bottom USB,
HMI and SD card.

(c) The main computer of
the controller and the PSU
are affixed to the front plate.
Given the real state avail-
able we miss some cable
management.

(d) The energy-eater board.
This component tends to
overheat a fair bit and
should generally be checked
in case of failure for signs of
degradation.

(e) The PSU is a Artesyn
LCM600 series with an out-
put of 48 V, and an input of
85–264 Vac. Has a typical
full load efficiency of 89% up
to 600 watts.

(f) Unlike previous hard-
ware iterations, the e-Series
controller presents both the
safety logic and the control
logic merged into a single
PCB.

(g) DC to DC power man-
agement takes place on the
board unlike previous itere-
taions. The positions of the
relays may hinder transistor
cooling

(h) Under the heatsink we
find a MSC Q7-BT module
on an ECX form factor and
an Intel SoC with DDR3L
memory.

(i) Final figure depicting
all the components con-
tained inside of the Univer-
sal Robots URe3 controller,
leaving aside the teach pen-
dant.

(j) Connections coming from
the controller lead to the
48V and micro-USB lines.

(k) Connector has a differ-
ent shape when compared
to CB3 series

(l) Harmonic drive actua-
tors.

Figure 8.3: UR3e collaborative robot teardown. Adapted from [104].146

Robot teardown

the robot arm mechanics—is similar to the one present in the CB-
series. We also note that, while the arm mechanics connector changed
in the e-Series (see Figure 8.3k), power and communications lines
remain coherent (through the base filter board).

• For the most part, the electronics contained in the arm mechanics
(Figure 8.3l) do not present relevant changes from an interoperability
perspective. This facilitates re-purposing and reusing them (see
Section 8.3).

Looking at the results of our teardown, we highlight the following
observations.

Observation 8.2.2. e-Series controllers from Universal Robots include a
Xilinx Artix-7 series FPGA, widely used for implementing safety logic in a
variety of automotive and control domains, as noted by [261, 262, 263], a
much more reasonable choice from a user’s safety perspective.

Observation 8.2.3. While adopting different physical connectors, power
and communication (RS485) lines remain coherent between CB-Series and
e-Series. From the context of repairability, changing physical connectors is
a clear planned obsolescense action.

8.2.3 Case Study 3: Teardown of a mobile industrial robot

Figure 8.4 depicts the teardown process of a MiR-100, a popular mobile
robot manufactured by the Danish Mobile Industrial Robots (MiR), also
owned by the US Teradyne. The teardown took four hours and 20 minutes
approximately. The first impression is that various components of the robot
could be improved from a safety perspective, as highlighted in Figure 8.4g
or 8.4i). Moreover, the teardown helped understand how this robot presents
multiple (internal and external) networks and how each one of the sensors
and actuators are connected across these networks, forming the data layer
graph. One interesting finding resulting from the teardown is obtaining
a better understanding of the robot’s computational graph (the behavior
itself). The robot itself is powered by Robot Operating System (ROS)
([4]) and gaining further understanding of the ROS computational graph
requires understanding also its underlying hardware mapping (from which
one derives the data layer graph). The teardown exercise yields exactly

147

8. Attacking Robot Hardware

(a) The top shell sits on top
of a metal frame that pro-
tects all the electronic com-
ponents. Simply lifting the
top shell reveals the internal
electronic components.

(b) A circuit-breaker switch
is present to disconnect the
main power line going from
the batteries to the rest of
the robot. A quick-release
connector is also present.

(c) Plastic fenders are iden-
tified around the perimeter
of the mobile robot to en-
close and protect the inter-
nals. These are prone to
crack under heavy mechani-
cal stress.

(d) The battery is enclosed
in a steel box and held by
a retaining plate to prevent
movement and connected to
a DP9 connector and DC
24V wires.

(e) Under an RF cage we
find a Teensy board for
LED control and a third
party speaker to play the
sounds from the on-board
controller.

(f) Under the sloped RF
cage we find the Roboteq
SDC2160, a dual-channel
controller for brushed mo-
tors with no safe torque
(safety) capabilities.

(g) The on-board controller
is the embedded and
“ruggedized” EC70A-SU
from DFI which features
an Intel processor and a
Ubuntu 16.04 file system.

(h) Final figure depicting
the main components con-
tained inside of the MiR100
robot, alongside the tools
used for the teardown.

(i) Both the safety pro-
grammable logic controller
(PLC) and the on-board con-
troller are connected to
a Mikrotik hAP ac. A
2.4/5GHz dual-band omnidi-
rectional access point.

Figure 8.4: MiR-100 mobile industrial robot teardown. Adapted from [104].

148

Teardown-enabled security research

this, and allows to produce a data layer graph represented in the form
of a hardware schematic which can then be used in combination with the
computational graph to gain further understanding of the robot.

Observation 8.2.4. Teardown processes help determine the underlying
networking architecture in a robot, from which the robot data layer graph
can be inferred. Mapping the data layer graph to the computational graph
(the robot behavior) is fundamental to gain better understanding of the
robot and propose an appropriate security architecture.

8.3 Teardown-enabled security research

The previous section highlighted how teardown helped identify quality
and safety issues in robots, as well as obtaining a better understanding of
their architectures by matching each robot’s data layer graph with their
corresponding computational graph. Beyond this, we argue that robot
teardown is also key for security research in robotics. Recall that safety
and cybersecurity are very related and influence one another, as noted
by [2, 86, 88].

Teardown, as a process, is an essential part of a hardware reverse
engineering task, and brings useful lessons and insights for the design of
current and future robot systems. Generally, teardown supports Kerckhoffs’
principle in revealing all the details and weaknesses of a security system,
excluding volatile secrets such as keys or credentials that are stored in
memory and most likely disappear naturally once the power supply is
taken away (with the exception of keys stored in permanent memory, which
is generally discouraged, and would be discovered along the teardown
process). Overall, the history of proprietary systems violating Kerckhoffs’
principle by pursuing “security through obscurity” is rich of failure cases
(with the military domain as the sole exception), as a vast amount of related
work demonstrates.

Reverse engineering has always been invaluable to discover vulnera-
bilities and develop remedies in many domains: network security ([264]),
access control ([265]), embedded systems ([266, 267]), software engineer-
ing ([268, 269]), or the internet of things ([270]). By promoting systematic
teardown we want to extend this successful concept to the analysis of
abandoned robots.

149

8. Attacking Robot Hardware

Particularly, and as part of this research, our group identified more than
100 security flaws across the three robots described above over a period
of two years. Most of the flaws were cataloged as vulnerabilities and 17
obtained new Common Vulnerabilities and Exposures (CVE) IDs all of which
are publicly disclosed at the Robot Vulnerability Database (RVD), proposed
by [15]. Table A.7 introduces some of the selected security vulnerabilities
found. The information obtained through teardown helps pinpoint flaws
across the multiple (internal and external) robot networks. In most cases,
these robots present few or no security measures, allowing adversaries to
easily exploit the flaws of internal components (e.g., [271, 272, 273], so
compromising the robot behavior or taking full control of it.

We advocate for robot teardowns as a means to improve security
in robotics and encourage manufacturers, integrators and end-users to
carefully consider the underlying hardware architecture to protect their
robotic systems. Similarly, we encourage teardowns as a tool to mitigate
outstanding security flaws. Proper knowledge of the hardware helps
determine which additional elements can help mitigate security issues when
the manufacturer does not react. As an example, our group introduced an
additional commercial off-the-shelf hardware firewall within MiR’s internal
network, between the main controller and the safety PLC, by SICK AG,
mitigating [271] without having to modify any parts of the firmware. This
modification could enable users and system integrators frustrated with
MiR’s security policies to secure their robots directly.

Observation 8.3.1. Teardown helps pinpoint security flaws across the
multiple internal and external robot networks.

8.4 Lessons learned

Through this work we learned about the underlying hardware architectures
that popular collaborative robots deploy today, researching security in the
process. As a result of the teardown case studies described in Section 8.2,
our group also identified several of the planned obsolescence indicators
previously introduced in Section 8.1. Planned obsolescence was particularly
evident in the robots from Universal Robots. To further illustrate this,
Figures 8.5a and 8.5b depict the simplified electrical diagrams of the UR3
and UR3e robots. From an electrical point of view, these two robots present
a similar layout for interfacing with the robot arm.

150

Conclusions

While we appreciate certain changes in the electronics, given the
teardown results, we find no real reason why backwards or forward
compatibility between controllers and robotic arms should not be possible.
This would mean that existing customers with UR3 robots could repair and
replace parts in either the controller or the robotic arm, without being
forced to pay the premium price of buying a complete new set including
both.

Unsurprisingly, we observe that the manufacturer introduced subtle
changes meant to make this particular intent harder. One of such actions
is depicted in Figure 8.3k, which shows the replacement of the controller-
to-arm connector, which we can only justify with attempts to exercise
obsolescence practices. Another of such actions includes the obscurity
around the changes introduced in the UR3e robot arm itself. These changes
can be summarized with the addition of an extra 6-axis force-torque sensor
at the end of the robot. The exact same result can be achieved in UR3 robot
arms by adding commercial off-the-shelf robot components, gaining such
capabilities.

8.5 Conclusions

In this chapter we presented robot teardowns as an approach to study
robot hardware architectures, obtain repairing capabilities and research
its security. We discuss the empirical results of three robot teardowns
and the findings affecting quality and safety throughout the process. We
then discuss how teardown is a relevant tool for security research in
robotics which helps pinpoint security flaws early across the multiple
internal and external networks in a robot. Moreover, we introduce our
security findings and propose mitigations powered by the hardware know-
how and repairing capabilities acquired. Ultimately, we research planned
obsolescence practices in the robots from Teradyne and propose actions
that could be taken to bypass obsolescence.

Our results show evidence that robot teardowns can help the robotics
industry and supply chain by improving significantly quality, safety and
security. Our findings extrapolate to most of the robots manufactured by
Teradyne and its subsidiaries. We show concern for the currently growing
trend in robotics to create private networks of certified groups, a common
practice shown by manufacturers like MiR or UR, both owned by Teradyne.
This difficulties system integration, repairability and ultimately security.

151

8. Attacking Robot Hardware

We advocate for a ‘Right to Repair’ in robotics and encourage end-users to
reflect their needs into their supply chains and into the original upstream
robot manufacturers.

152

C
onclusions

CVE ID RVD ID Description Report

CVE-2019-19626 RVD#1408 Bash scripts (magic UR files) get launched automatically with root privileges and without validation or sanitizing https://github.com/aliasrobotics/RVD/issues/1408

CVE-2020-10290 RVD#1495 Universal Robots URCaps execute with unbounded privileges https://github.com/aliasrobotics/RVD/issues/1495

CVE-2020-10267 RVD#1489 Unprotected intelectual property in Universal Robots controller CB 3.1 across firmware versions https://github.com/aliasrobotics/RVD/issues/1489

CVE-2020-10266 RVD#1487 No integrity checks on UR+ platform artifacts when installed in the robot https://github.com/aliasrobotics/RVD/issues/1487

CVE-2020-10265 RVD#1443 UR dashboard server enables unauthenticated remote control of core robot functions https://github.com/aliasrobotics/RVD/issues/1443

CVE-2020-10264 RVD#1444 RTDE Interface allows unauthenticated reading of robot data and unauthenticated writing of registers and outputs https://github.com/aliasrobotics/RVD/issues/1444

CVE-2020-10278 RVD#2561 Unprotected BIOS allows user to boot from live OS image https://github.com/aliasrobotics/RVD/issues/2561

CVE-2020-10270 RVD#2557 Hardcoded Credentials on MiRX00 Control Dashboard https://github.com/aliasrobotics/RVD/issues/2557

CVE-2020-10279 RVD#2569 Insecure operating system defaults in MiR robots https://github.com/aliasrobotics/RVD/issues/2569

CVE-2020-10276 RVD#2558 Default credentials on SICK PLC allows disabling safety features https://github.com/aliasrobotics/RVD/issues/2558

CVE-2020-10273 RVD#2560 Unprotected intellectual property in Mobile Industrial Robots (MiR) controllers https://github.com/aliasrobotics/RVD/issues/2560

CVE-2020-10277 RVD#2562 Booting from a live image leads to exfiltration of sensible information and privilege escalation https://github.com/aliasrobotics/RVD/issues/2562

CVE-2020-10269 RVD#2566 Hardcoded Credentials on MiRX00 wireless Access Point https://github.com/aliasrobotics/RVD/issues/2566

CVE-2020-10275 RVD#2565 Weak token generation for the REST API https://github.com/aliasrobotics/RVD/issues/2565

CVE-2020-10274 RVD#2556 MiR REST API allows for data exfiltration by unauthorized attackers (e.g. indoor maps) https://github.com/aliasrobotics/RVD/issues/2556

CVE-2020-10271 RVD#2555 MiR ROS computational graph is exposed to all network interfaces, including poorly secured wireless networks and open wired ones https://github.com/aliasrobotics/RVD/issues/2555

CVE-2020-10272 RVD#2554 MiR ROS computational graph presents no authentication mechanisms https://github.com/aliasrobotics/RVD/issues/2554

Table 8.1: The 17 novel (new CVE IDs) vulnerabilities encountered during a period of two years in the
robots of Teradyne and as a result of an initial hardware teardown.

153

https://github.com/aliasrobotics/RVD/issues/1408
https://github.com/aliasrobotics/RVD/issues/1495
https://github.com/aliasrobotics/RVD/issues/1489
https://github.com/aliasrobotics/RVD/issues/1487
https://github.com/aliasrobotics/RVD/issues/1443
https://github.com/aliasrobotics/RVD/issues/1444
https://github.com/aliasrobotics/RVD/issues/2561
https://github.com/aliasrobotics/RVD/issues/2557
https://github.com/aliasrobotics/RVD/issues/2569
https://github.com/aliasrobotics/RVD/issues/2558
https://github.com/aliasrobotics/RVD/issues/2560
https://github.com/aliasrobotics/RVD/issues/2562
https://github.com/aliasrobotics/RVD/issues/2566
https://github.com/aliasrobotics/RVD/issues/2565
https://github.com/aliasrobotics/RVD/issues/2556
https://github.com/aliasrobotics/RVD/issues/2555
https://github.com/aliasrobotics/RVD/issues/2554

8. Attacking Robot Hardware

(a) Simplified electrical diagram of Universal Robots UR3 CB-Series collaborative robot.

(b) Simplified electrical diagram of Universal Robots UR3e e-Series collaborative robot.

Figure 8.5: Simplified electrical diagrams of Universal Robots UR3 CB-
Series (8.5a) and UR3e e-Series (8.5b) collaborative robots. Reproduced
from [104].

154

Chapter 9

Attacking Robots in Industry

Contributions: Leading
scientific author and contributor
at [88]. Self-funded work and the
contributor team. Led research,
implemented malware and wrote
article. Other co-authors
contributed with experimental
tests. All findings have been
disclosed.

9.1 Introduction

In the context of computer security, ransomware is malicious software
(malware) that either locks a computer, prevents from accessing the data
using encryption, or both, until the subject has paid a ransom. First
ransomware Proof of Concept (PoC) appeared in 1989 [274, 275] when
Joseph Popp, an evolutionary biologist and AIDS researcher, carried out an
experimental attack by distributing 20,000 floppy disks in a Conference by
the World Health Organization focused in AIDS research. The conference
spanned to researchers from more than 90 countries, and malware was
distributed claiming that the disks contained a program that analyzed risk of
acquiring AIDS through the use of a questionnaire. Thereafter, ransomware
called "AIDS Trojan" got distributed. Since then, it has evolved leading into
two big subgroups:

• Crypto ransomware: which encrypts data and asks the user for a
ransom in exchange for the decryption key.

• Locker ransomware: locks the system by some means, prevents its
use and asks for a ransom to re-enable it.

155

9. Attacking Robots in Industry

9.2 Background

According to literature [274], from 1989 to 2007 ransomware instances
mostly focused on crypto-ransomware. In 2007, locker-ransomware began
to appear and went mainstream. These ransomware instances locked sys-
tems and intimidated by displaying certain content (mostly pornographic
images) while demanding a ransom to remove such content and unlock the
systems. In 2013, Richardson et al. [274] observed that attackers pivot
back to crypto-ransomware. According to the authors, the most famous
piece of ransomware was released in August 2013. Named as CryptoLocker,
it was originally distributed via a botnet and later through e-mail. Cryp-
toLocker used public/private cryptographic key pairs to encrypt the target’s
file. Decrypting the files required to pay a ransom of 2 bitcoins (100 $ at
the time) within the first three days. To the extent of our literature review
and to date, variations of CryptoLocker remain being the most wide spread
instances of ransomware [276, 277].

In robotics, no targeted malware has yet been observed out of the PoC
phase. Cesar Cerrudo and Lucas Apa earlier [44, 45] published a ran-
somware attack over Nao, a social robot by Softbank Robotics, which
got the media attention. According to research being conducted on the
security concerns of the robotic market 1, only 9 % of robotics users
have witnessed a cyber attack. This preliminary figure indicates that
there is still very little activity yet known to the general public however,
according to the same source, 51 % of the users inquired confirmed hav-
ing identified security flaws in robotic systems which leads to consider
that there exists a relevant landscape of insecurities. Confirming this
hypothesis, users inquired assigned a rating of 8 out 10 to the security
relevance in robotics yet only 26 % of the inquired acknowledged to have
invested in robot cybersecurity, which includes evaluating security and
protecting existing robot setups. Therefore, it seems that robot users do
not fully apprehend the insecurity by design governing robots in the market.

In this chapter we aim to illustrate the existing insecurity status in some
robotics vendors [89]. We have selected one of the most popular industrial
collaborative robots and present Akerbeltz, an instance of ransomware

1https://news.aliasrobotics.com/robot-security-survey-displays-first-results/ for more details
on the ongoing survey.

156

https://news.aliasrobotics.com/robot-security-survey-displays-first-results/

Akerbeltz

targeting industrial robotic systems. We present the PoC ransomware
attack, describe the rationale behind our target and discuss the general
flow of the attack including the initial cyber-intrusion, lateral movement
and later control phase. We then briefly discuss the resulting consequences
from the installation of Akerbeltz and wrap up by sharing some major
conclusions.

9.3 Akerbeltz

In basque mythology, Akerbeltz is an antique deity impersonated in a male
goat which is the animal-kind protector. Ethimologically coming from the
Basque works Aker (male goat) and Beltz (black), its origin is attributed
to a meadow in the surroundings of Zugarramurdi caves (Navarra), a
pligrimage place for Basque Mythology. Akerbeltz is the demon that is
chairing "Akelarres" or Basque witch (sorginak) meetings. Some authors
note that the mythological figure Akerbeltz represents was adored in many
European countries, some of which remain up to present day. Akerbeltz
often shows two different faces. On the one hand, it is the protector of
animals and is even able to heal their illnesses if needed. Indeed, belief
on Akerbeltz is thought to be the origin of hosting a black goat as the
protector of all animals within a "Baserri" (Basque cottage or farm). On the
other hand, when Akerbeltz participated Akelarres, it showed his darkest
face, where witches obeyed and adored him as the genius representing
revolution against established status-quo, amidst banquets of human flesh.

We advocate for a change in (most) robot manufacturer’s attitude
towards security and to do so, we take Akerbeltz as inspiration and present
below the first instance of industrial robotic ransomware. Due to our
concerns about malicious applications of the software, authors will not be
releasing the source code nor the low level method of operation of this
industrial robot ransomware.

9.3.1 Target selection and rationale

Our target was selected based on the results obtained from prior re-
search [2, 15] on the vulnerability landscape across several industrial
robot manufacturers. Our critical attitude was previously introduced by
Alzola-Kirschgens et al. [2] and essentially builds on the fact that several

157

9. Attacking Robots in Industry

robot manufacturers, particularly collaborative robot (cobot) vendors, are
profiting the popularity of these devices, via third parties (distributors and
integrators) totally disregarding the ethical consequences of not caring
about security, to the point that security vulnerabilities are left unadressed,
or "up to the end user". To further understand our viewpoint, we ask the
reader and potential robot users to consider the following questions: Thou-
sands of insecure robots are being deployed all around the world, some of
them thought to be networked and to increasingly collaborate with humans,
who will be held responsible when these security holes get exploited and
cause human damages? How would robot vendors respond when these re-
ported, non-patched and public vulnerabilities cause safety hazards? Would
they continue claiming that "their robots are designed to be open" and
thereby never meant to be used beyond research? Should authorities regu-
late the use of these devices and their corresponding incomplete standards?

The authors discussed on all the above and coherently, decided to se-
lect what arguably is the most popular collaborative industrial robot
manufacturer: Universal Robots. We select one of their best-selling robots,
the UR3 and implement our PoC on it. Figure 9.1 shows a picture of our
target together with the control box and teach pendant.

Before our work, Universal Robots had other groups assessing their
insecurity. In 2017, Cerrudo and Apa reported [44, 45] five 0-day vulnerabil-
ities. Several months later, representatives from the vendor acknowledged
that security patches had been applied [278] yet there seems to be no
public information available. Instead, it appears, the vendor disregarded
the previously reported issues under the claim that attackers required very
specific conditions. Further to that, Jacob Bom Madsen, Software Product
Manager at Universal Robots publicly claimed that Universal Robots is
"proud to have a fairly open architecture, that allows system integrators
and UR+ Partners to easily develop and integrate the solutions they need."
[279]. This attitude conflicts directly with the very principle of Universal
Robots safety claims, previously highlighted by Cerrudo and Apa [45]: "Do
not change anything in the safety configuration of the software (e.g. the
force limit). If any safety parameter is changed the complete robot system
shall be considered new, meaning that the overall safety approval process,
including risk assessment, shall be updated accordingly". In other words,
any modifications of the safety setup in the UR3 will lead to the complete

158

Akerbeltz

Figure 9.1: Universal Robots UR3. Reproduced from [88].

invalidation of the robots’ compliance with ISO 10218-1 [280] incurring
in potential relevant losses and conflicts for the end user. Beyond the
human and economical damages caused by modifying the safety setup of
the UR3, the claim by Madsen leads to a troubling an arguably unethical
statement: "The lack of security facilitates system integration". We have
seen this statement repeatedly and yet, once again, this time coming from
a leading cobot vendor, we see how openness and feature inclusion is used
to justify the lack of security. Wielding the interoperability pitch, vendors
push security up to their partners, collaborators or ultimately, to "the
community" avoiding security actions, critical for the use of these products
in human environments.

At the time of writing, our team knows yet of no security patch miti-
gating these vulnerabilities. Moreover, we performed a penetration testing
assessment in the UR3 CB series robot confirming the still unpatched
existence of several of the previously reported flaws. Furthermore, we
found more than 300 new vulnerabilities of relevant severity according
to robot-specific scoring mechanisms [281]. The overall picture depicts a
vendor which shows the little care not only for security, but also for quality
of software.

159

9. Attacking Robots in Industry

The following subsection elaborates on how Akerbeltz acts on our UR3 CB
series.

9.3.2 Ransomware’s flow

9.3.2.1 Cyber intrusion

Initial infection gets realised by exploiting unpatched vulnerabilities in the
robot. Akerbeltz’s initial cyber intrusion is implemented exploiting these
well known vulnerabilities and deployed via one of the following two attack
vectors:

• physical USB ports in the teach pendant: Exploiting CVE-2019-
19626 2 an attacker can execute malicious code with root privileges by
simply connecting an external USB stick. This attack vector is likely
the easiest to implement given the exposure of the teach pendant
in most UR3 robots. Moreover, the same attack vector applies not
only in the teach pendant but also in the control box which exposes
internal USB ports that can be accessed with standard mechanical
fixations.

• remote access via adjacent networks: RVD#672 (CVE-2018-
10633) permits an adjacent network attacker to easily ssh into the
control box. Alternatively, RVD#6 allows an adjacent attacker to
exploit a stack-based buffer overflow in the UR3 ModBus TCP service,
and execute commands as root equally fulfilling the cyber intrusion.
Akerbeltz can be configured to exploit these flaws and take action
over industrial LANs.

9.3.2.2 Lateral movement

Since the cyber-intrusion allowed to obtain root privileges in the control
box, no privilege escalation phase is necessary within Akerbeltz. The "open"
architecture of the robot facilitates lateral movement to other sub-devices
within the robot. We briefly explored such setup and found that it is trivial
to access the robot user interface, the PolyScope. Figure 9.2 shows a
preview of the ransomware’s message in the teach pendant:

2Remains confidential for responsible disclosure reasons at the time of writing.

160

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19626
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19626
https://github.com/aliasrobotics/RVD/issues/672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10633
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10633
https://github.com/aliasrobotics/RVD/issues/6

Akerbeltz

Figure 9.2: UR3 PolyScope Robot User Interface hijacked. In this case,
Akerbeltz locks and disables most functions and a message is overlayed on
top. Reproduced from [88].

The UR3 lack of security allows for additional lateral movement. Both
the BIOS of the robot controller and the safety PLC are easily accessible
and exposed. While it remains beyond the scope of our study, we argue
that targeting any of these systems (or both together) will likely lead to
malware that could damage the robot to a point of no return and would
likely be matter of future security research.

9.3.2.3 Control

• Locking: In our PoC, our team was able to lock the whole system
while displaying a message (refer to Figure 9.1) after booting, using
previously mentioned CVEs, we managed to access the control box,
acquire root privileges, disable the default safety configuration and
change the default user and password. We also identified and disabled
several open ports used to control the robot from the outside, blocking

161

9. Attacking Robots in Industry

other mechanisms to reestablish normal operation. Our work with
Akerbeltz finalized by performing some minor and non-exhaustive
hardening, meant to avoid users to unlock the system.

• Encrypting: After identifying most of the critical files used for the
control of the robot, we located previous programs and IP deployed
within the control box. These files are encrypted using the local pgp
binary in combination with a series of robot-specific identifiers.

9.3.3 Discussion

In an attempt to responsibly disclose and mitigate the existing flaws, we
generated a series of reports for selected vulnerabilities and approached
the manufacturer by e-mail. To this date, no formal answer with intention
to establish discussions on security has been received. In a second attempt,
making use of well established and de facto approaches in security, we
filed for a CVE identifier in one of the new discovered vulnerabilities. At
the time of writing, no formal communication has been established via this
channel either.

In a third attempt, the PoC attack was disclosed to Universal Robots
directly, in a public robotics industrial conference, the ROS-Industrial
Conference in Europe (Stuttgart, December 2019). While maintaining
the vulnerabilities undisclosed, we publicly presented 3 to the vendor and
the rest of the audience the consequences of their insecurity. We briefly
presented Akerbeltz and followed with a possible solution to mitigate
existing flaws in their robots.

The deployment of Akerbeltz in a UR3 via the physical attack vector
has been recorded and made available at https://youtu.be/VF7fcV5j1t0 argu-
ing that by making this public and available we finally call to a reaction of
this particular vendor or its associated value chain.
Last but not least, our final discussion point is that these kind of targeted
attacks have the potential to spread rapidly and across the use cases
in which the Universal Robots CB-series are deployed. Given the low
complexity of the attack, the easiness of programming on top of Universal

3Recording of the talk is available at https://youtu.be/J5-8ptUT9qU?t=27052.

162

https://youtu.be/VF7fcV5j1t0
https://youtu.be/J5-8ptUT9qU?t=27052

Conclusions

Robots programming environment and the relative high cost of the assets
involved, a series of attacks on this taxonomy are foreseen.

9.4 Conclusions

The current insecurity status in robotics allows for malware to be created
easily and rapidly by simply evaluating known vulnerabilities. These pieces
of malware could be used and exploited by malicious actors to gain eco-
nomic profits via extorsion. In this chapter we presented Akerbeltz, a piece
of ransomware that locks and encrypts industrial collaborative robots from
Universal Robots. After the targeted attack, the result is rendering the
industrial robot totally useless, losing IP within the robot and potentially
leading to economical losses and human or environmental damages. We
described and prototyped Akerbeltz for the UR3 CB series robot which
could be introduced following physical or network based attacks on zero-
day vulnerabilities.

At the time of writing, Universal Robots has yet to answer our vulner-
ability reports, which in some cases provide the manufacturer relevant
insights on how to mitigate the most relevant flaws exploited by the attack.
As a particular example, for the physical attack vector we exploited in
Akerbeltz, a possible mitigation involves the validation and sanitization of
specific files as well as the implementation of Discretionary Access Control
(DAC) model by providing Mandatory Access Control (MAC) within the
control box. This will limit the programs’ capabilities with per-program
profiles (e.g. via AppArmor).

When asked directly, face to face, representatives of the vendor, they
indicated once again that their robot "is designed to be open" or that we
are "disabling features" and therefore, "it’s just normal". We would like to
express our strong concern for a reiterated lack of security actions. While
our team did not explore malicious attacks or their profitability on the robot
any further, we argue that a more aggressive individual or group, with
bad intentions, might easily come up with some sort of "self-destructing"
malware (by disabling safety and repeatedly crossing the boundaries of the
kinematics model and hitting itself) or worse, a "human or environment
damaging" one, or any other kind of creative exploits on top of the vulnera-
bilities exploited by Akerbeltz.

163

9. Attacking Robots in Industry

The lack of communication from the vendor’s perspective makes us guess
that, at best, there is security by obscurity around Universal Robots. Once
again as we did in the past, we argue against this and advocate for a
proactive interaction of robot manufacturers with security researchers.

Other industry case studies have also been conducted as part of this
research and have been made available at [282]. These studies cover a
broad spectrum of penetration testing scenarios, including the analysis of
widely-used industrial robot arms from manufacturers like ABB and KUKA,
the security testing of Mobile Industrial Robots (MiR) in healthcare environ-
ments, and the exploration of cybersecurity vulnerabilities in commercial
drones.

164

Part V

Automation

Chapter 10

Determining the Attack Target with
Game Theory

Contributions: Supplied the
case studies at [283], including
basic data to run the experiments
on, and the context thereof.
Contributed also to the
discussion of results and
judgement of their applicability,
validity and verification in the
robotics use case.

As we venture into the intricate landscape of offensive robot cyber-
security, particularly within the realm of automation (Part V), the act of
selecting an attack vector transcends brute force or mere choice—it be-
comes a strategic decision of profound consequence for both defense and
offense approaches. This chapter ventures into the analytical domain where
the discipline of cybersecurity intersects with the predictive prowess of
game theory. Herein, we dissect the art of anticipating an adversary’s move,
transforming what is traditionally an intuitive decision (heuristics) into a
calculable prediction.
The quintessence of this approach lies not just in its offensive application
but equally in its defensive potential. By leveraging game-theoretic prin-
ciples, we argue an automation engine can forecast an attacker’s most
probable vector of exploitation (the attack vector). Such predictive ca-
pacity is paramount; it informs how we can judiciously deploy our finite
security defensive resources where they are most needed—effectively out-
maneuvering potential breaches before they materialize. This is ultimately
the objective pursued in this thesis with the offensive robot cybersecurity
approach.

167

10. Determining the Attack Target with Game Theory

Cybersecurity cognitive engines

Cybersecurity cognitive engines refer to advanced computational sys-
tems that utilize Artificial Intelligence and Game Theory to understand,
predict, and make decisions about cybersecurity threats. These engines
act as a smart, evolving line of defense or offense against cyber threats,
adapting to the ever-changing cybersecurity landscape.

This chapter is not only a discourse on methodology and theoretical
concepts but also a tactical guide. It reveals how game theory serves as
the toolbox in the creation of cybersecurity cognitive engines that adapt
dynamically to the ever-shifting tides of digital conflict. These engines,
armed with the ability to discern the most vulnerable vectors, provide an
indispensable tool for entities tasked with safeguarding automated systems.
Through a meticulous blend of theory and practical application, this chapter
embarks on a quest to ascertain the optimal point of action—be it for a
defender fortifying their bastion or an attacker seeking a breach—in the
digital arena where automation’s role is ever-expanding and critical.

10.1 Introduction

The daily business of a Chief Security Officer (CISO) concerns seeking
a proactive defense against an invisible intruder and more elaborated
attacks. Such threats are often well represented by contemporary Advanced
Persistent Threats (APTs), a type of cyber attack executed by well-resourced
and capable attackers, such as nation-states or organized criminal groups,
aiming to infiltrate a network to extract valuable information or disrupt
operations. These threats are "advanced" in the sophistication of their
tactics, "persistent" in their long-term objectives, and stealthy in nature,
often remaining undetected for extended periods. APTs typically involve
a high degree of covertness over a prolonged duration, with the intention
to steal data rather than cause immediate harm. This work is concerned
with the daily business of defense, under the assumption that the infection
has already happened, but there has not been any damage so far, thus we
are in the “incubation” phase in the APT life-cycle. A refined view on the
evolution of an APT is the kill chain [284], depicted initially in Figure 2.6.

The contributions presented here focus on the study of a game theoretic
model intended to support CISOs and/or to serve as a tactical guide that

168

Introduction

helps autonomous cybersecurity agents to make decisions and reason
about the threat landscape from an attacker’s perspective. Thus, coherent
with APTs, we assume that the adversary is already in the system 1, and
the CISO duty is preventing damage. The battlefield on which the CISO,
hereafter called the defender, matches the stealthy adversary, is an attack
graph. This is a graph-theoretic model of a system, relating individual
system components to threats and exploits on them, and thereby visualizing
possible attack paths towards defined target nodes. Such attack graphs
can be compiled from threat modeling activities and further refined with
penetration tests and help of topological vulnerability scans (see, e.g.,
[285]). Alternatively, attack graphs (also referred to as the attack tree or
the exploit tree in this thesis) can be built by tools like ExploitFlow [20].
Figure 10.1 depicts how this work fits into our architecture to develop fully
automated offensive robot cybersecurity tools, a cognitive cybersecurity
engine we denominate Malism.

On the attack graph, we play a stealthy intrusion game with infinite
time horizon and repetitions, in which the defender takes action to keep the
attacker away from the critical assets in the enterprise, while the adversary
is on its way towards some target asset, along one or more attack paths.
The game instantly terminates if the attacker has reached the critical asset,
in which case the defender (permanently) lost. The interaction between the
two players is constrained as follows:

Assumption 1 : The attack graph G = (V, E) consists of V nodes and
E are the edges (e.g., exploits). We assume a single starting node (for
all attacks), and a single target node, representing some critical asset
to be captured. The graph is assumed as acyclic (thus, the attacker will
never enter infinite loops along accomplished exploits), and all paths, more
precisely the attack paths/vectors, lead to the target asset. We denote this
target as v0 ∈ V hereafter. The nodes in V represent system threats and
vulnerabilities, or system states, while edges represent threats or exploits to
get from one component/state into the next component/state. For example,
the adversary may jump from a desktop computer vpc to a server vserver,
or may gain root privileges, denoted as vpc,root from user-level privileges
vpc,user on the same computer. In either case, we would have a directed
edge vpc → vserver, or vpc,user → vpc,root to express this attack path in the

1Following the famous quote of Robert S. Mueller: “There are only two types of companies:
Those that have been hacked and those that will be hacked.”

169

10. Determining the Attack Target with Game Theory

User 1. ExploitFlow

2. PentestGPT

3. PentestPerf

Target

exploit flow graph adapters models state

Game Theory (Cut-The-Rope)

programatically in Python

goal description
in

text

ex
ch

an
ge

ex
pl

oi
t tr

ee
B

e
n

ch
m

a
rk

s
a
n

e
xp

lo
it

fl
o
w

4. Malism

User 1. ExploitFlow

2. PentestGPT

3. PentestPerf

Target

Game Theory (Cut-The-Rope)

External entity

Other chapters

This contribution

Inner Component

Figure 10.1: Game theoretic contributions to our architecture to develop
fully automated offensive robot cybersecurity agent, a cognitive cybersecu-
rity engine denominated Malism. The Cut-The-Rope method implemented
sits between ExploitFlow and PentestGPT, receiving the exploit tree from
ExploitFlow , reasoning about it to determine optimal attack vectors, pass-
ing such vectors to PentestGPT to transform them into actionable exploits
and finally, feeding such exploits back to ExploitFlow for their execution
and result digestion.

graph model.

Assumption 2 : The adversary is already somewhere in the system at
an unknown location when the defender enters the gameplay (i.e., we
are past the event of infection/reconnaissance). We also assume that the
defender has no indication of adversarial activity (for example, from an
Intrusion Detection System (IDS)); the adversary is stealthy. In absence of
adversarial signals, the defender may assume all possible locations of the
adversary as uniformly distributed (the inclusion of signals is discussed in
Section 10.4.5).

Assumption 3 : the adversary may run parallel or concurrent attacks,
thereby exploiting several, up to all, attack paths simultaneously to
maximize its chances to conquer v0.

170

Introduction

topological vulnerability
analysis

game setup and
equilibrium computation

defender: sample from the
equilibrium distribution
for next location to check

defender: apply mitigation
actions

action
effect
is. . .

u
p
d
a
te

a
tt
a
ck

g
ra
p
h

dynamic game

static game

volatile/
transient

permanent
(i.e., changes the attack graph)

software tool supported

automatable (implemented in this work)

could mean: patching,
updating,

change of credentials,
change of connections,

(de)activating services
re-installing machines

. . .

e.g., credential change,
security awareness training, ...

→ leaves attack graph unchanged

e.g., permanent disabling of services,
removal of components/connections, ...

Figure 10.2: Cut-The-Rope (static game) inside the continuous process of
permanent system hardening to fight against. Reproduced from [283].

This general setting was converted into a game theoretic model in [286],
named Cut-The-Rope: Like on a chess-board, the adversary in Cut-The-
Rope runs parallel attacks, one on each attack path available. Since the
attacker’s location on each attack paths is unknown to the defender, this
player imagines a whole “cohort” of avatars starting from all possible
locations in the network and moving towards v0. The strategic choice of the
adversary, from the defender’s perspective, is about existing attack paths,
but the defender does not know where the attacker is, equivalently, how
far the adversary has already come down an attack path π. To tackle this
uncertainty, the defender plays the game as if the adversary would first
(strategically) choose the path π, and move all avatars on π simultaneously
towards v0. In other words, it moves avatars at all possible, not necessarily
also probable, locations. The target asset (and security game) is lost (to the
attacker), if at least one of the adversary’s avatars reaches v0.

171

10. Determining the Attack Target with Game Theory

For the adversarial movement, Cut-The-Rope lets the defender assume a
random distribution on how many steps an avatar can take when it is on the
move. Figure 10.2 provides a high-level overview of the games involved in
the method. This random movement pattern is a model design choice, and
the original work [286] about Cut-The-Rope assumed one specific movement
regime, in which the defender acts periodically, and the attacker has some
“aggressiveness level” λ, interpretable as an “expected number exploits per
day” or within a defined unit of time. This amounts to a Poisson-distributed
number of steps taken along the attack path.

Research Questions and Contribution

Some companies have CISOs with a fixed working schedule, which
corresponds to a periodically active defender (working days, day/night-
shifts, etc.). What if there is a 24/7 continuous response team available,
like in bigger (globally distributed) companies that run their own security
operations center? These (multiple) defenders may become active at
random time intervals and at any time. For the security game, it means
that the defender will not be active periodically, but rather at random times
and possibly at any time. This is the first new movement contributed and
studied in this chapter.

Both, the original Poisson movement and the just described continuous
security response policy are agnostic of the particular details of exploits,
like their difficulty or severity. However, many attack graphs do carry
additional information about exploits, and if so, it is desirable to use it
in the security model. These additional details can range from a security
threat research and risk assessment or scoring like Common Vulnerability
Scoring System (CVSS), up to proof of concept implementations for each
exploit. The second new movement pattern proposed in this chapter makes
the attacker’s traversal dependent on exploit complexities (threats assigned
a higher complexity would thereby be probabilistically less feasible), as far
as they are known, and studies the defense performance against a defender
that is again periodically active.

The third new movement pattern is a combination of a defender that
can take action at any time in a 24/7 continuous security provisioning,
against an attacker that has to deal with threats and exploits of different
complexity.

172

Case Studies

We stress that none of these cases assumes a purely reactive defense,
i.e., we do not study security response patterns when the incident has been
noticed. This is due to the assumption of stealthiness of the intrusion; once
the attacker becomes visible, it is because the target asset v0 was lost
(permanently).

The other contributions of this chapter are two case studies: First, we
provide an experimental study and illustration of how to use Cut-The-Rope
in different settings, based on two documented attack graphs for industrial
robots. Specifically, we look at the Modular Articulated Robotic Arm (MARA)
and Mobile industrial Robotics MiR100 robots [287, 288, 289, 290], for
which attack graphs have been compiled by security experts. On these,
we instantiate Cut-The-Rope and compute results in the aforementioned
settings of a periodically/randomly active defender versus an attacker that
traverses an attack path with uniform speed at an average number of
exploits per time unit, or mounts attacks with individually distinct exploit
complexities, thus being slower or faster, depending on the chosen path.
Experiments are conducted on the MARA robot, for which the threats and
exploits are known, but without a CVSS rating or further details. In that
case, the original Poisson model from [286] and the first of the new patterns
announced above are usable. The other case study is on the MiR100 robot,
whose attack graph carries additional vulnerability and exploit details.

Robotic Applications of CTR in Cybersecurity

To concentrate on the topic of robot cybersecurity addressed in this
thesis, this chapter primarily discusses the application of Cut-The-Rope
(CTR) within robotic contexts, rather than delving deeply into its theo-
retical foundations. For those interested in a comprehensive exploration
of the theoretical principles that underpin CTR, references [286] and
[283] are highly recommended for thorough review. Additionally, a
concise summary of these theoretical aspects is provided in Appendix B,
offering a brief overview to complement the focused discussions herein.

10.2 Case Studies

We dedicate the next couple of subsections to numeric results, starting with
a brief correction to past calculations in the literature, and then moving
onward to the new case studies and the comparison of defense policies

173

10. Determining the Attack Target with Game Theory

optimized with Cut-The-Rope, versus a heuristic common-sense defense
policy.

To assess the game w.r.t. a real-life application, we conducted two case
studies on the industrial robots in Section 10.2.2. The game is similar to
capture-the-flag competitions known in ethical hacking, since there and
also here, the goal is to “capture” a target asset v0. Our analysis, different
from ethical hacking, is purely game-theoretic and optimization-based here.

10.2.1 Implementation Remarks

We adapted the implementation from [286] and thereby discovered a few
bugs in this older code that we corrected in our version. The original
code used fictitious play on the full distribution U = (u1, u2, . . . , un =
Pr(adversary reaches v0)) obtained from equation (B.5).

We compute an optimum w.r.t. a lexicographic order from right to left,
first minimizing the last coordinate un, and breaking ties by continuing to
minimize un−1 while keeping un at minimum. The next tie is broken using
un−2, while keeping the so-far optimized coordinates at their minima and so
on. This introduces a dependence on the ordering of the coordinates,
corresponding to a likewise ordering of locations in the attack graph.
Therefore, the solution returned by the implementation from [286] is
ambiguous in the sense of depending on the node ordering.

The optimization, however, independently of the node order, always
minimizes the chances to reach the target asset, and hence provides a
valid defense policy w.r.t. the targets of the defender. Our implementation
inherits this dependence on the node order, but since our sole interest
is reaching or avoiding to reach v0 anyway as (B.7) and (B.8) define, this
ambiguity is not a limitation. In light of this, we chose the graph-topological
sorting to order the probabilities in U ′ other than for v0, which is the last
element in this vector.

The attack graphs for our robot case studies have several entry points
for the attacker and also several targets to reach. To handle them all in
a single run of the analysis, we added an artificial (virtual) entry node
from which all (real) entry nodes are trivially reachable (with probability
1). Since Cut-The-Rope in the original version, analyzed here, assumes
only one target, we contracted the multitude of target nodes into a single
“compound” target node. This corresponds to the target being to reach any
of the possible target nodes, not distinguishing which in particular. A target

174

Case Studies

node is, by default in our implementation, any node that does not have
descendants (zero out-degree in the attack graph). Consequently, all inner
nodes, except the virtual start, are possible defense spot-check locations.
The technical simplification towards having one target (only) is to avoid
multi-criteria optimization, which is theoretically possible (even supported
by the packages to run the optimization practically), but is more involved
to interpret for a defense policy.

10.2.2 Robot Case Studies

For both of the robot cases to follow, we give computational results and
a discussion of their practicality. To avoid confusion between the attack
graphs appearing here and those found in the cited literature, we use the
original versions thereof to visualize the battlefield and results. The actual
simulation was done on an attack graph with added virtual starting and a
single compound target node (if more than one exists).

It is perhaps practically interesting to remark that both attack graphs
have inner nodes that classify as attack targets, but have descendant nodes
as subsequent attack targets. With the convention of taking nodes with
zero out-degree in the graph as targets (see Section 10.2.1), the simulation
will include all “inner” nodes as defense locations even though they may
be attack targets too. This is not precluded by the game design, and
may be interpreted as considering inner nodes as “intermediate targets”
whose prevention may avoid subsequent final, perhaps more dangerous,
attack targets. The game’s defense policy would then advise to prevent a
certain attack sub-target in the attack graph, with a certain level of effort
(expressed as likelihood). From a simulation perspective, including or
excluding any node from the defense policy is a simple matter of defining
the action set for the defender accordingly.

Case #1: Modular Articulated Robotic Arm (MARA) MARA is a collab-
orative robotic arm with ROS 2.0 in each actuator, sensor or any other
representative module. Each module has native ROS 2.0 support, can be
physically extended in a seamless manner and delivers industrial-grade fea-
tures including synchronization, deterministic communication latencies, a
ROS 2.0 software and hardware component life-cycle and more. Altogether,
MARA empowers new possibilities and applications in the professional
landscape of robotics. The use case considered contemplates the MARA

175

10. Determining the Attack Target with Game Theory

modular robot operating in an industrial environment while performing a
pick & place activity. Details about MARA for this case study can be found
in [287, 288].

Case #2: MiR100 - Mobile industrial Robotics The MiR100 autonomous
mobile robot is advertised as a safe and cost-effective mobile robot that
quickly automates your internal transportation and logistics. The robot
claims to optimize workflows, freeing staff resources so you can increase
productivity and reduce costs. A case study analyzing the cyber-resilience
of MiR100 robots was conducted and documented at [289] and [290], which
considered a single robot operating in a structured environment while
connected to a local area network that gets compromised. Through the
local area network, prior work demonstrated how an attacker could exploit
vulnerabilities, pivoting across subsystems in the robot all the way into its
safety system, disabling it fully in a remote manner.

For both robots, we took attack graphs out of industrial security
assessments, which, in the particular case of MiR100, were also annotated
with Common Vulnerabilities and Exposures (CVE) and CVSS information,
which allows an assessment of the “hardness” of vulnerabilities along the
attack path. Such annotations were not available for the MARA use case,
which, in lack of such details, suggests an application of the Poissonian
movement pattern of Section B.3. The more detailed attack graph for the
MiR100 robot enables the consideration of probabilistic success on exploits
as Section B.3.2 described.

10.3 Results and Comparison

To evaluate how much a game-theoretic defense may add to the security, we
do not only give the absolute results from the simulations, but also compare
them to a heuristic best-effort defense policy, described in Section 10.3.1.
Its simulation is run likewise with each of the four movement patterns from
Sections B.3, with the probability to reach v0 given for each case as (i)
optimized by Cut-The-Rope versus (ii) according to a best-effort defense.

10.3.1 Baseline Comparison: A Best-Effort defense Policy

For an assessment of the quality of the game theoretic defense, let us use
the following heuristic defense policy to compare:

176

Results and Comparison

• We assume that an adversarial avatar will always follow the shortest,
or “easiest” attack path towards v0. The distinction between shortest
and easiest is made in dependence of how much is known about
exploit complexities. In the MARA use case, the path choice will be for
shortest, in terms of the number of exploits, since there is no further
detail given about the exploit complexities. In the more detailed
MiR100 use case, we have attack complexities and can likewise apply
a shortest path algorithm to guide the attacker to the path whose
success probability (as the product of all exploit success probabilities)
is maximal 2.

• The defender, unbeknownst of where the attacker is, and unable to
actively detect it, applies a uniformly random defense strategy. That
is, if the attacker is equally likely to be anywhere in the system, the
defense policy would likewise be a uniformly random spot checking.

Under these hypotheses, we apply the same mechanism as in Cut-The-Rope,
i.e., we let the attacker follow its chosen (shortest/easiest) path, and be
occasionally sent back by the defender upon a coincidental cut of the path
equivalently, closure of any backdoor. If so, then the avatar will keep
retrying, until it hits the final target v0. Note that this regime also includes
lateral movement, since we still have a multitude of avatars attacking in
parallel, each on its individually optimal route from its starting location θ

towards v0.

We implemented this defense policy simulation by adapting the code
from the implementations of Cut-The-Rope accordingly, to implement the
heuristic defense and attack policy of above. Like for the game optimization,
the heuristic defense implementation outputs the probability to reach v0 by
simulating this defender-attacker interaction. We remark that this heuristic
defense may still be overly optimistic relative to real life situations, in
which defense teams may have only an incomplete view on the attack graph
G = (V, E). The defender would thus only be active on a subset D ⊂ V , so
that all nodes in V \ D would be zero-day exploits.

2The usual trick of assigning the negative logarithm of probabilities as edge weights and
computing a shortest path in the well known way

177

10. Determining the Attack Target with Game Theory

10.3.2 Overview of Experiments

In total, comparing the periodic/exponential defense strategy against a
randomly moving adversary in two use cases, gives a total of 4 evaluation
scenarios, each accompanied with its own comparison to the baseline
heuristic of Section 10.3.1. Table 10.1 relates the sections and figures in
the following to these four configurations.

use case defender’s policy:
periodic

defender’s policy:
exponential strat-
egy

MARA (no particular
exploit hardness

attacker movement
model: B.3.1

attacker movement
model: B.3.3

annotations), Sec.
10.3.3

results shown in: Fig.
10.3

results shown in: Fig.
10.4

MiR100 (known ex-
ploit complexities

attacker movement
model: Sec. B.3.2

attacker movement
model: Sec. B.3.4

to consider), Sec.
10.3.4

results shown in: Fig.
10.5

results shown in: Fig.
10.6

Table 10.1: Overview of Experiments

10.3.3 MARA: Results

The attack graph for the MARA robot is taken from [288] and shown in
Figures 10.3 and 10.4. This graph has 11 nodes and 10 edges in total,
among them one entry point (node 1⃝) for the attacker, and two targets
(nodes 6⃝, and 9⃝).

We played Cut-The-Rope on this graph with a periodic defender versus
an attacker that takes an average of 2 moves per time unit (i.e., in-between
two appearances of the defender, e.g., per day). Figure 10.3 shows a table
with the probabilities to spot-check each node on the attack graph. For
the visualization, we have put bubbles on the attack graph, whose size
corresponds to the probability of spot-checking there. That is, the larger
the bubble, the more effort should be out on defending at this point.

Turning to the case of the defender coming back in random time
intervals, we let the game run in three configurations, with the defender
moving slower (λD = 1 < λ), at equal speed (λD = λ = 2) and faster
than the attacker (λD = 3 > λ) in (B.12). The resulting spot checking

178

Results and Comparison

Optimal defense policy:

Node Probability

2 0

3 0,279

4 0,279

5 0,0000384

7 0,000268

8 0,443

2,79E-01 2,79E-01 3,84E-05

2,68E-04

4,43E-01

Efficacy of the optimal vs. heuristic defense:

defense policy chance to hit v0

Cut-The-Rope 12,8%

heuristic 30,6%

Figure 10.3: MARA use case results for periodic spot checks (Section B.3.1).
Adapted from [283].

probabilities are again displayed as bubbles located at the respective nodes
in the attack graph, and put over one another in Figure 10.4.

The numbers and bubbles are almost of the same size, showing that
for the defense locations, the speed of spot checking has only a negligible
impact, while the performance of the defense accordingly becomes better
if the defender is “more active”. The performances of the defense policy
as displayed in the bottom table of Figure 10.4 show that the optimized
defense pays over the heuristic “blind” spot checking policy.

The takeaways from these findings is not that a more intense defense
activity will reduce the chances of the attacker (this would be obviously

179

10. Determining the Attack Target with Game Theory

Optimal defense policy:

Node
probability for λA = 2 and

λD = 1 λD = 2 λD = 3
2 0,000147 0,0000502 0,0000263

3 0,272 0,291 0,303

4 0,272 0,291 0,303

5 0 0 0,0000123

7 0,000473 0,000548 0,000606

8 0,455 0,417 0,393

2,63E-05

3,03E-01 3,03E-01 1,23E-05

6,06E-04

3,93E-01

attack rate = 2 , defense rate = 1 attack rate = 2 , defense rate = 2 attack rate = 2 , defense rate = 3

Efficacy of the optimal vs. heuristic defense:

defense policy
chances to hit v0

λD = 1 λD = 2 λD = 3
Cut-The-Rope 7,4% 5,7% 4,6%

heuristic 17,8% 13,8% 11,2%

Figure 10.4: MARA use case results for spot checks at random intervals.
Adapted from [283].

the case), but rather giving the defender an indication of where to allocate
its (limited) resources to gain the best possible effect. Without signaling
and without additional information in the attack graphs, the results are
necessarily a crude approximation of reality, and Cut-The-Rope has been
designed to be workable in such a situation of limited information, as well
as with cases when more details are available, such as for the MiR100
robot following next. The results in the rather little detailed MARA use
case are quite evident but therefore also plausible (“guard the closest
graph cut between the asset and the defender”). The nontrivial indication
here is the advice to let the attacker come “close” to the asset, while

180

Results and Comparison

a defender would perhaps otherwise try to guard the outer perimeter
of the system to keep the intruder out in first place. The optimum to
be at the closest graph-cut towards the asset is here explainable by our
assumption that the attacker is stealthy and can start from anywhere,
and in a practical situation, the defender may indeed have no reliable
information about infected parts (otherwise, it would be trivial to disconnect
and repair/replace the malfunctioning component). The defense policy that
Cut-The-Rope computes is for practitioners operating blue teams that need
to protect a large attack surface with no monitoring or signaling. A game-
theoretic defense can help prioritize resources.

10.3.4 MiR100: Results

Similarly as for MARA, we used an attack graph for the MiR100 robot as
shown in Figures 10.5 and 10.6. The attack graph has 16 nodes and 24
edges. The attacker can enter at four points (nodes 1⃝. . . 4⃝), and four
targets (12⃝, 13⃝, 14⃝ and 16⃝).

We conducted the likewise experiments under the same configurations
as for the MARA use case, but this time making use of the CVE annotations
to give information on how hard it is for the attacker to mount an exploit.
For the defender, we again assume this one to be periodically active (as
in Section B.3.1) and to randomly spot check (as in Section B.3.4). Note
that in this case we do not have an attack rate λ as for the MARA use
case before, since the movement of the attacker is solely governed by the
difficulty to mount exploits.

It is interesting to note that the optimal defense policy does not advise
to guard node 7⃝ or 9⃝, which is a way towards reaching goal node 14⃝. This
may be assumption of the game, of the attacker already being somewhere
in the network. The defense policy accounts for this and hence does not
put more weight on lower nodes with higher incidence index. This way, the
model accounts for defense in depth rather than entry prevention.

Finally, let us turn to the case of the adversary working towards v0 only
in random time intervals between two appearances of the defender. This
time, the defender’s parameter λD is the average “window size” W (see
Appendix B section B.6), measured in units of time, e.g., days. It is the time
that we give the attacker to mount activities in the game. The results are
shown in Figure 10.6.

181

10. Determining the Attack Target with Game Theory

Optimal defense policy:

Node Probability

5 0

6 0

7 0

8 0,163

9 0

10 0,000837

11 0,37

15 0,466

4,66E-01

1,63E-01

8,37E-04 3,70E-01

Efficacy of the optimal vs. heuristic defense:

defense policy chance to hit v0

Cut-The-Rope 7,7%

heuristic 29,8%

Figure 10.5: MiR100 use case results for periodic spot checks (Section
B.3.1). Adapted from [283].

Similar as for the MARA use case, the defense locations are the same
in all cases, with the defense efforts only slightly differing according to
how large the window is for the attacker, respectively, how frequently
the defender comes back. The performance of the defense is shown
in the bottom table of Figure 10.6. Consistent with the intuition, the

182

Results and Comparison

Optimal defense policy:

Node
probability for

λD = 1 λD = 2 λD = 3
5 0 0 0

6 0 0 0

7 0,101 0,108 0,108

8 0,249 0,281 0,291

9 0 0 0,0212

10 0,00194 0,00161 0,00206

11 0,354 0,28 0,238

15 0,294 0,33 0,34

3,40E-01

2,91E-01

2,06E-03

1,08E-01

2,38E-01
2,12E-02

defense window avg. = 1 defense window avg. = 2 defense window avg. = 3

Efficacy of the optimal vs. heuristic defense:

defense policy
chances to hit v0

λD = 1 λD = 2 λD = 3
Cut-The-Rope 2.4% 3.5% 4.1%

heuristic 11% 16.1% 19%

Figure 10.6: MiR100 use case results for spot checks at random intervals
(Section B.3.4). Adapted from [283].

183

10. Determining the Attack Target with Game Theory

attacker’s chances to reach v0 become larger if the defense window is made
larger. In both, the experiments with the heuristic defense and optimized
under Cut-The-Rope, the value λD gives the average number of time units
before the defender comes back. That is, larger λD give the attacker
more time to exploit (conversely to the interpretation of λD in the other
experiments, where it was the frequency of the defender’s return). Again,
the experiments show that Cut-The-Rope outperforms the heuristic defense
considerably.

10.4 Discussion

The experimental findings suggest that the apparent optimal defense
strategy delivered by Cut-The-Rope is to guard the immediate neighborhood
of the target asset, so as to cover cases where the attacker has already
deeply penetrated the system when the game begins. Indeed, an analytic
characterization of the optimal defense under Cut-The-Rope is obtained in
Appendix B section B.4 as Proposition B.4.3. It confirms a certain graph
cut to be optimal under certain assumptions, but not in all of our test cases.
For this reason, we leave the discussion of analytic results as an appended
remark here, and continue the discussion with more practical aspects.

10.4.1 Incomplete Attack Graphs and Zero-Day Exploits

The heuristic defense of Section 10.3.1 may in reality be still over-optimistic,
in its assumption of complete knowledge about the attack graph. Practical
defense teams may only have a limited knowledge or possibility to construct
the entire attack graph, and it is generally unaccomplishable for the
defender to get exactly the same attack graph as the adversary has.
The simulations implemented in this chapter have been made with the
possibility to include only a randomly chosen subset of nodes in the
defender’s possibilities to spot check, so include such incomplete knowledge
in the analysis. Concretely, the code was made to randomly reduce the
defender’s spot check locations to, for example, only 75% of the nodes in the
attack graph. Under such reduced possibilities, the game runs against an
attacker with more, i.e., full, knowledge about the attack graph. We confine
ourselves here to reporting that the defense policies performed worse than
under full knowledge (not surprisingly), but both policies (Cut-The-Rope

184

Discussion

and the heuristic) lost performance at approximately equal magnitudes,
leaving their relative quality over one another without substantial changes.

We emphasize that a simulation under such reduced knowledge for the
defender, whereas giving the attacker full knowledge, can be viewed as a
study of the impact of zero-day exploits used by the attacker. That is, any
node excluded from the defense, but used by the attacker is nothing else
than a zero-day vulnerability. Since a systematic account for this would be
beyond the scope (and space limits) of this work, we will explore this route
along future work.

10.4.2 Cutting the rope vs. Changing the Attack Graph

In our experimental instance of the game, we let the attack graph remain
unchanged over time. In particular, we assume that none of the defender’s
actions causes a permanent removal of a certain backdoor. This is
practically motivated by the fact that spot checking may remove some, but
not all vulnerabilities, so that, for example, one buffer overflow vulnerability
in a secure shell implementation might get fixed, but other exploits of the
same kind remain open, making the respective nodes remain unchanged
in the graph after an inspection. Likewise, remote shell access may be
required for the business workflow and hence cannot be deactivated, but
only the access credentials might be updated. In that case, the remote
shell access exists before and after an inspection. Even though the game
model itself uses a static attack graph (see Figure 10.2), this one may itself
require an update from time to time upon changes in the infrastructure.
This is part of the business continuity management related to security, and
accordingly changes the action sets for the defender and attacker. The
implementation of the game, however, remains unaffected, except for the
specification/input of the attack graph. We close the discussion at this point,
referring to Appendix B section B.5 for a continuation of this discussion.

10.4.3 Further Generalizations

The movement patterns as studied admit further modifications and
generalizations, yet to be explored, such as:

185

10. Determining the Attack Target with Game Theory

Probabilistic Success on Spot Checks

First, to the advantage of the attacker, suppose that the defender is not
necessarily successful on wiping out the adversary inside a node c, which
may the more “probable” case in an enterprise or embedded network. It
is not difficult to generalize the model towards this: If we write pc for the
likelihood to actually cut the rope at c ∈ V upon trying so, (B.5) becomes a
mix of cut and uncut paths,

Pr(adversary’s location = v) =
pc · Pr(adversary’s location = v|V (π|c))

+ (1 − pc) · Pr(adversary’s location = v|V (π)),

and (B.5) is defined alike by the entirety of all these values for all v ∈ V .
Thus, the computation as such does not change, only the code needs to use
the above formulas to compute the payoffs. If the probabilities are made
conditional on the system state, the analysis can be made to account for
changing system conditions too.

Multiple Adversarial Targets

Cut-The-Rope may be modified towards a multi-criteria game, treating all
target nodes as individual targets in the game. The concept of a security
strategy has a multi-goal counterpart, which the software used for the
experimental implementation already supports. The experiments reported
here could, possibly, be re-conducted without the merge of targets, i.e., the
graph-theoretic contraction.

10.4.4 Complexity and Scalability

The complexity of the analysis is governed by the time to solve a sequence
of linear optimizations. The dimensions of these problems depend on the
number of strategies for both players. Using interior point methods, the
computational complexity is O(|AS1| ·p(|AS1| · |AS2|)) for a polynomial p that
depends on the chosen optimization algorithm. The need for an exhaustive
enumeration of attack paths can raise scalability issues, since the number of
attack paths is worst-case exponential. However, the number of paths in an
attack graph may become large only because many paths overlap in large
portions, and the defender may consider using only a subset of paths that

186

Conclusions and Outlook

cover all edges in the attack graph, so as to cover all known exploits (which
is a polynomial number), rather than all possible paths (whose number
is exponential). We did not implement such a dimensionality reduction,
this modification of the model is a possible aisle of future studies. For the
use cases in our research, the number of paths was sufficiently small to
admit an exhaustive enumeration. Likewise is the number of paths feasibly
small if the battlefield is an attack tree, rather than an attack graph. In any
case, Cut-The-Rope itself does not conceptually change if the restriction is
imposed only on the cardinality of the strategy sets to be polynomial in the
number of nodes in the attack graph.

10.4.5 Including Signals about Adversarial Activities

The model assumes zero information for the defender about where the
adversary is located. Many real-life systems use intrusion detection, and
other signaling means (here explicitly not to be understood in the game-
theoretic sense of signaling games). If we can compile the entirety of
indications about the adversary’s activity into a weight Pr(θ) ̸= 1/|AS2| for
location θ to possibly start from. Higher values may be assigned where we
have stronger indication of recent adversarial activity at location θ.

10.5 Conclusions and Outlook

Cut-The-Rope has been designed for ease of use in applications with little
information (such as exemplified with the MARA robot use case), but also
situations where there is detailed information encoded in the attack graph
(such as for the MiR100 use case), or even when adversarial indications
are available from auxiliary security systems, such as intrusion detection or
others (including is possible as outlined in Section 10.4.5). The accuracy
hence depends on how much information we can bring into the game, being
a rather crude approximation for MARA, but much more fine-grained for
the MiR100 use case. In both cases, however, the defender gets nontrivial
advice on where to allocate its typically scarce resources for a best defense,
beyond just guarding a graph-cut or choke point towards the critical asset
v0. When there are several such (evident) critical regions in the network to
defend, different choke points may be of different criticality, depending on
how many attack scenarios (each executed by another avatar in Cut-The-
Rope) actually make use of this area in the attack graph.

187

10. Determining the Attack Target with Game Theory

The results obtained show some limitations for the practical use. First,
and most substantially, the results depend on the ordering of the nodes, and
– in addition to the general non-uniqueness of equilibria – hence may be
ambiguous for the defender, leaving a residual chance of there being other
defense possibilities. The algorithms applied in this work give only one
solution, among perhaps many others. Second, the setting of probabilities
from CVE, CVSS or likewise annotations is a nontrivial matter on its own,
with only few first steps towards a systematic and sound derivation available
in the literature [291]. The assumption of invisibility of the intruder can
perhaps be weakened by including signals from intrusion detection or other
side-information in the defender’s policy. The model simulated here does
not include this possibility. Finally, the condensation of several attack goals
into a single target node comes with the price of losing accuracy and some
information about which attack goal may be more likely to be reached, thus
making multi criteria optimization an interesting generalization to study.

Generally, Cut-The-Rope opens up an interesting class of games of mixed
timing of moves between the actors, unlike as in extensive or normal form
games, where players usually take actions in a fixed order. Likewise, and
also different to many other game models, Cut-The-Rope has no defined
start or finish for the defender (“security is never done”), while only one
of the players knows when the game starts and ends, and the attacker can
send its avatars from all possible locations in the network. The model is
thus complementary to FlipIt, while it allows the attacker to spend any
amount of time in the system, as long as the vital asset remains out of reach.
This is actually to reflect the reality of security management: we cannot
keep the adversary out, we can only try keeping as far away as possible.

In conclusion, Cut-The-Rope work presented in this chapter epito-
mizes the dynamic interplay between attack and defense in the realm
of robotic cybersecurity, embodying a nuanced approach to resource al-
location and threat anticipation. Its adaptability across various informa-
tion landscapes—from sparse to rich data scenarios—provides a robust
framework for decision-making in cybersecurity. While acknowledging its
inherent limitations and the non-uniqueness of solutions, Cut-The-Rope un-
derscores the perpetual nature of cyber defense. It represents a significant
stride in the evolution of cybersecurity models, transitioning from static de-
fense strategies to a more proactive, predictive stance. This model not only
facilitates effective defense posturing but also enriches our understanding
of the complex cyber battlefields, filled with automation, and where the

188

Conclusions and Outlook

security landscape is constantly reshaped by emerging technologies and
sophisticated adversaries.

189

Chapter 11

Guiding Attacks with Machine
Learning

Contributions: One of the top
two contributors at [292]. Co-led
software contributions and
security methodology. All
artifacts have been open sourced
and results reproducible. Note
various LLM models used within
this work are not deterministic.
This may difficult obtaining
identical results.

In the rapidly evolving field of offensive robot cybersecurity, particularly
in automated systems (referenced in Part V), the challenge lies in effectively
comprehending and navigating the complex threat landscape. Following the
previous Chapter 10, which focused on automating attack vector selection
through game theory, we now turn to the task of guiding an autonomous
agent. This involves choosing the correct sequence of actions (like
reconnaissance, exploitation, and exfiltration) and appropriate payloads to
effectively utilize the chosen attack vector. This necessitates a fusion of
in-depth cybersecurity knowledge with specialized domain expertise, such
as robotics, each bringing unique challenges and technological nuances.

In this chapter, we delve into the sophisticated realm of guiding
autonomous cybersecurity agents, whether for offensive or defensive
purposes. The challenge lies in the enormity and obscurity of the
cybersecurity state and action spaces, coupled with the unpredictability of
the environment. While traditional machine learning approaches, including
Reinforcement Learning, have demonstrated proficiency in learning basic
policies, their effectiveness is often limited to the data sets they are

191

11. Guiding Attacks with Machine Learning

trained on, lacking the capacity to generalize across diverse cybersecurity
scenarios.

This chapter introduces a novel method for autonomously steering cy-
bersecurity agents towards specific objectives. Our approach harnesses the
power of foundational models and Large Language Models (LLMs), which
encompass a broad spectrum of general-purpose knowledge. These mod-
els are particularly adept at parsing, reasoning, and generating security-
related artifacts, thereby playing a pivotal role in guiding cybersecurity
exercises. We specifically focus on the application of Generative Pre-trained
Transformer (GPT) models [293, 294], with our prototype, PentestGPT,
demonstrating remarkable capabilities. PentestGPT leverages the exten-
sive knowledge base and analytical prowess of LLMs to offer innovative
solutions and insights in the field of robotic cybersecurity.

Through this exploration, we aim to showcase how leveraging advanced
machine learning techniques can profoundly impact the field of cyber-
security, particularly in automating and refining attack strategies. This
chapter not only highlights the potential of these technologies but also
sets the stage for future developments in the automated orchestration of
cybersecurity tactics.

11.1 Introduction

Guaranteeing a system’s immunity to potential attacks is a formidable
challenge. Offensive security methods, such as penetration testing (pen-
testing) or red teaming, have become essential in the security lifecycle.
As detailed by Applebaum [14], these methods require security teams to
attempt breaches of an organization’s defenses to uncover vulnerabilities.
They offer marked advantages over traditional defensive mechanisms,
reliant on incomplete system knowledge and modeling. Guided by the
principle “the best defense is a good offense”, this study focuses on
offensive strategies, particularly penetration testing.

Penetration testing [295] is a proactive offensive technique aiming at
identifying, assessing, and mitigating as many security vulnerabilities as
possible. This involves executing targeted attacks to confirm diverse flaws
(e.g., erratic behaviors) and is efficacious in creating a comprehensive
inventory of vulnerabilities complemented by actionable enhancement
recommendations. As a widely-employed practice for security appraisal,
penetration testing empowers organizations to discern and neutralize

192

Introduction

User 1. ExploitFlow

2. PentestGPT

3. PentestPerf

Target

exploit flow graph adapters models state

Game Theory (Cut-The-Rope)

parsing reasoning generation

programatically in Python

goal description
in

text

ex
ch

an
ge

ex
pl

oi
t tr

ee

B
e
n

ch
m

a
rk

s
a
n

e
xp

lo
it

fl
o
w

4. Malism

2. PentestGPT

External entity

Other chapters

This chapter

Inner Component

Figure 11.1: Machine Learning contributions to our architecture to
develop fully automated offensive robot cybersecurity agent, a cognitive
cybersecurity engine denominated Malism.

potential vulnerabilities in their networks and systems before exploitation
by malicious entities. Despite its significance, the industry often leans
on manual techniques and specialized knowledge [296], making it labor-
intensive. This has generated a gap in responding to the escalating demand
for adept and efficient security evaluations.

Recently Large Language Models (LLMs) [297, 298] are making striking
progress, exhibiting an increasingly nuanced understanding of human-like
text and effectively executing various tasks across diverse domains. One
intriguing aspect of LLMs is their emergent abilities [299], which are not
explicitly programmed but arise during the training process. These abilities
enable LLMs to perform complex tasks such as reasoning, summarization,
question-answering, and domain-specific problem-solving without requiring
specialized training. Such capabilities indicate the transformative potential
of LLMs across various sectors, including cybersecurity. A critical question
thus emerges: can LLMs be leveraged in cybersecurity, particularly for
performing automated penetration testing?

Motivated by this question, we set out to evaluate the capabilities of
LLMs on real-world penetration testing tasks. Unfortunately, the current

193

11. Guiding Attacks with Machine Learning

benchmarks for penetration testing [300, 301] are not comprehensive and
fail to assess progressive accomplishments fairly during the process. To
address this limitation, we construct a robust benchmark that includes
test machines from HackTheBox [302] and VulnHub [303]—two leading
platforms for penetration testing challenges. Comprising 13 targets with
182 sub-tasks, our benchmark encompasses all vulnerabilities appearing
in OWASP’s top 10 vulnerability list [304]. Also, it offers a more detailed
evaluation of the tester’s performance by monitoring the completion status
for each sub-task.

Armed with this benchmark, we conduct an exploratory study using
GPT-3.5 [305], GPT-4 [306], and Bard [307] as representative LLMs.
We interactively test these models by guiding them to complete the
penetration tasks against our benchmark targets. This interaction
involves setting a penetration testing goal for the LLM, soliciting it for
the appropriate operation to execute, implementing it in the testing
environment, and feeding the test outputs back to the LLM for next-
step reasoning (Figure 11.2). By repeating this cycle, we derive the final
penetration testing results. To evaluate the performance of the LLMs,
we compare their results against baseline solutions provided by official
walkthroughs and solutions from certified penetration testers. By analyzing
similarities and differences in their problem-solving approaches, we aim to
better understand LLMs’ penetration testing capabilities and discern how
their problem-solving strategies diverge from those of human experts.

Our investigation yields intriguing insights into the capabilities and
limitations of LLMs in penetration testing. We discover that LLMs
demonstrate proficiency in managing specific sub-tasks within the testing
process, such as utilizing testing tools, interpreting their outputs, and
suggesting subsequent actions. Compared to human experts, LLMs are
especially adept at executing complex commands and options with testing
tools, while models like GPT-4 excel in comprehending source code and
pinpointing vulnerabilities. Furthermore, LLMs can craft appropriate test
commands and accurately describe graphical user-interface operations
needed for specific tasks. Leveraging their vast knowledge base, they can
design inventive testing procedures to unveil potential vulnerabilities in
real-world systems and CTF challenges. However, we also note that LLMs
have difficulty in maintaining a coherent grasp of the overarching testing
scenario, a vital aspect for attaining the testing goal. As the dialogue
advances, they may lose sight of earlier discoveries and struggle to apply

194

Introduction

their reasoning consistently toward the final objective. Additionally, LLMs
might overemphasize recent tasks in the conversation history, regardless of
their vulnerability status. As a result, they tend to neglect other potential
attack surfaces exposed in prior tests and fail to complete the penetration
testing task.

The outcomes of our empirical study are promising, revealing that
LLMs possess the necessary domain knowledge to perform penetration
testing tasks. In particular, they are great at providing an intuition of
what to do in a given networking scenario. However, what they lack is
effective guidance to carry out these tasks independently and maintain a
cohesive grasp of the testing scenario. On the other hand, as investigated
in a prior research publication [20] focused on capturing the exploitation
route (or flow) for automation. Given the complexity of the (network) state
space, the state itself is not enough to reason about what are the best
actions to pentest. It rapidly becomes evident that a heuristic is needed
to support autonomous pentesting which helps pick actions to achieve
given goals. With this understanding, we aim to contribute unlocking
the potential of modern machine learning approaches and develop a fully
automated penetration testing framework that helps produce cybersecurity
cognitive engines. Our overall architecture is depicted in Figure 11.1, which
shows our current work so far and near future planned contributions. Our
proposed framework, Malism, is designed to enable a user without in-depth
security domain knowledge to produce its own cybersecurity cognitive
engine that helps conduct penetration testing over an extensive range of
targets. This framework comprises three primary components:

1. ExploitFlow [20]: A modular library to produce cyber security
exploitation routes (exploit flows). ExploitFlow aims to combine and
compose exploits from different sources and frameworks, capturing
the state of the system being tested in a flow after every discrete
action which allows learning attack trees that affect a given system.
ExploitFlow’s main motivation is to facilitate and empower Game
Theory and Artificial Intelligence (AI) research in cyber security. It
provides a unique representation of the exploitation process that
encodes every facet within it. Its representation can be effectively
integrated with various penetration testing tools and scripts, such
as Metasploit [308] to perform end-to-end penetration testing. Such
representation can be further visualized to guide the human experts

195

11. Guiding Attacks with Machine Learning

for the reproduction of the testing process.

2. PentestGPT (this chapter): An automated penetration testing system
that leverages the power of LLMs to produce testing guidance and
intuition at every given discrete state. It functions as the core
component of the Malism framework, guiding the LLMs to efficiently
utilize their domain knowledge in real-world testing scenarios.

3. PentestPerf: A comprehensive penetration testing benchmark
developed to evaluate the performances of penetration testers and
automated tools across a wide array of testing targets. It offers a fair
and robust platform for performance comparison.

The harmonious integration of these three components forms an auto-
mated, self-evolving penetration testing framework capable of executing
penetration tests over various targets, Malism. This framework to develop
fully automated penetration testing tools, which we named back in Chapter
11 cybersecurity cognitive engines, aims to revolutionize the field of pene-
tration testing by significantly reducing the need for domain expertise and
enabling more comprehensive and reliable testing.

Building on our insights into LLMs’ capabilities in penetration testing,
we present PentestGPT, an interactive system designed to enhance
the application of LLMs in this domain. Drawing inspiration from
the collaborative dynamics commonly observed in real-world human
penetration testing teams, PentestGPT is particularly tailored to manage
large and intricate projects. It features a tripartite architecture comprising
Reasoning, Generation, and Parsing Modules, each reflecting specific roles
within penetration testing teams. The Reasoning Module emulates the
function of a lead tester, focusing on maintaining a high-level overview of
the penetration testing status. We introduce a novel representation, the
Pentesting Task Tree (PTT), based on the cybersecurity attack tree [309].
This structure encodes the testing process’s ongoing status and steers
subsequent actions. Uniquely, this representation can be translated into
natural language and interpreted by the LLM, thereby comprehended
by the Generation Module and directing the testing procedure. The
Generation Module, mirroring a junior tester’s role, is responsible for
constructing detailed procedures for specific sub-tasks. Translating these
into exact testing operations augments the generation process’s accuracy.
Meanwhile, the Parsing Module deals with diverse text data encountered

196

Introduction

during penetration testing, such as tool outputs, source codes, and HTTP
web pages. It condenses and emphasizes these texts, extracting essential
information. Collectively, these modules function as an integrated system.
PentestGPT completes a complex penetration testing task by bridging high-
level strategies with precise execution and intelligent data interpretation,
thereby maintaining a coherent and effective testing process.

We evaluate PentestGPT using our benchmark to showcase its efficacy.
Specifically, our system achieves remarkable performance gains, with
228.6% and 58.6% increases in sub-task completion compared to the
direct usage of GPT-3.5 and GPT-4, respectively. We also apply PentestGPT
to the HackTheBox active penetration testing machines challenge [310],
completing 4 out of the 10 selected targets at a total OpenAI API cost of
131.5 US Dollars, ranking among the top 1% players in a community of over
670,000 members. This evaluation underscores PentestGPT’s practical
value in enhancing penetration testing tasks’ efficiency and precision.
The solution has been made publicly available on GitHub 1, receiving
widespread acclaim with over 4,700 stars to the date of writing, active
community engagement, and ongoing collaboration with multiple industrial
partners. In summary, we make the following contributions:

• Development of a Comprehensive Penetration Testing Benchmark.
We craft a robust and representative penetration testing benchmark,
encompassing a multitude of test machines from leading platforms such
as HackTheBox and VulnHub. This benchmark includes 182 sub-tasks
covering OWASP’s top 10 vulnerabilities, offering fair and comprehensive
evaluation of penetration testing.

• Empirical Evaluation of LLMs for Penetration Testing Tasks.
By employing models like GPT-3.5, GPT-4, and Bard, our exploratory
study rigorously investigates the strengths and limitations of LLMs in
penetration testing. The insights gleaned from this analysis shed valuable
light on the capabilities and challenges faced by LLMs, enriching our
understanding of their applicability in this specialized domain.

• Development of an Innovative LLM-powered Penetration Testing
System. We engineer PentestGPT, a novel interactive system that lever-
ages the strengths of LLMs to carry out penetration testing tasks au-

1For anonymity during the review process, we have created an anonymous repository to
open-source our solution [311].

197

11. Guiding Attacks with Machine Learning

tomatically. Drawing inspiration from real-world human penetration
testing teams, PentestGPT integrates a tripartite design that mirrors the
collaborative dynamics between senior and junior testers. This architec-
ture optimizes LLMs’ usage, significantly enhancing the efficiency and
effectiveness of automated penetration testing.

11.2 Background

11.2.1 Penetration Testing

Penetration testing, or “pentesting”, is a critical practice to enhance
organizational systems’ security. In a typical penetration test, security
professionals, known as penetration testers, analyze the target system,
often leveraging automated tools. The standard process is divided into
seven phases [312]: Reconnaissance, Scanning, Vulnerability Assessment,
Exploitation, and Post Exploitation (including reporting). These phases
enable testers to understand the target system, identify vulnerabilities, and
exploit them to gain access.

Despite substantial efforts [12, 301, 313] in the field, a fully automated
penetration testing pipeline remains elusive. The challenges in automating
the process arise from the comprehensive knowledge needed to understand
and manipulate various vulnerabilities and the demand for a strategic
plan to guide subsequent actions. In practice, penetration testers often
use a combined approach integrating depth-first and breadth-first search
techniques [312]. They begin by obtaining an overarching understanding
of the target environment (utilizing a breadth-first approach) before
focusing on specific services and vulnerabilities (employing a depth-
first approach). This strategy ensures a thorough system analysis
while prioritizing promising attack vectors, relying heavily on individual
experience and domain expertise. Additionally, penetration testing requires
many specialized tools with unique features and functions. This diversity
adds complexity to the automation process. Therefore, even with the
support of artificial intelligence, creating a fully unified solution for
automated penetration testing remains a formidable challenge.

198

Penetration Testing Benchmark

11.2.2 Large Language Models

Large Language Models (LLMs), including OpenAI’s GPT-3.5 and GPT-4,
are prominent tools with applications extending to various cybersecurity-
related fields, such as code analysis [314] and vulnerability repair-
ment [315]. These models are equipped with wide-ranging general knowl-
edge and the capacity for elementary reasoning. They can comprehend,
infer, and produce text resembling human communication, aided by a
training corpus encompassing diverse domains like computer science and
cybersecurity. Their ability to interpret context and recognize patterns
enables them to adapt knowledge to new scenarios. This adaptability, cou-
pled with their proficiency in interacting with systems in a human-like way,
positions them as valuable assets in enhancing penetration testing pro-
cesses. Despite inherent limitations, LLMs offer distinct attributes that can
substantially aid in the automation and improvement of penetration testing
tasks. The realization of this potential, however, requires the creation and
application of a specialized and rigorous benchmark.

11.3 Penetration Testing Benchmark

11.3.1 Motivation

The fair evaluation of Large Language Models (LLMs) in penetration testing
necessitates a robust and representative benchmark. Existing benchmarks
in this domain [300, 301] have several limitations. First, they are often
restricted in scope, focusing on a narrow range of potential vulnerabilities,
and thus fail to capture the complexity and diversity of real-world cyber
threats. For instance, the OWASP benchmark juiceshop [316] is commonly
adopted for evaluating web vulnerability testing. However, it does not
touch the concept of privilege escalation, which is an essential aspect of
penetration testing. Second, existing benchmarks may not recognize the
cumulative value of progress through the different stages of penetration
testing, as they tend to evaluate only the final exploitation success. This
approach overlooks the nuanced value each step contributes to the overall
process, resulting in metrics that might not accurately represent actual
performance in real-world scenarios.

To address these concerns, we propose the construction of a compre-
hensive penetration testing benchmark that meets the following criteria:

199

11. Guiding Attacks with Machine Learning

Task Variety. The benchmark must encompass diverse tasks, reflecting
various operating systems and emulating the diversity of scenarios
encountered in real-world penetration testing.

Challenge Levels. To ensure broad applicability, the benchmark must
include tasks of varying difficulty levels suitable for challenging novice and
expert testers.

Progress Tracking. Beyond mere success or failure metrics, the
benchmark must facilitate tracking of incremental progress, thereby
recognizing and scoring the value added at each stage of the penetration
testing process.

11.3.2 Benchmark Design

Following the criteria outlined previously, we develop a comprehensive
benchmark that closely reflects real-world penetration testing tasks. The
design process progresses through several stages.

Task Selection. Our first step is to meticulously select tasks from
HackTheBox [302] (HTB) and VulnHub [303]. These platforms are widely
recognized and frequently utilized for penetration testing practice. Our
selection process is guided by a desire to incorporate a diverse and
challenging set of tasks. Capture The Flag (CTF) exercises and real-world
testing scenarios have been included. The targets are drawn from various
operating systems and encompass a broad spectrum of vulnerabilities.
This approach ensures a wide representation of real-world penetration
testing tasks. To account for different skill levels, the selected tasks
cover a broad range of difficulty. While HTB and VulnHub offer reference
difficulty levels, we further validate these with input from three certified
penetration testers 2, including the authors of this work. This collaborative
process yields a consensus on the final difficulty rating for each target,
aligning with the conventional categorization [303] of penetration testing
machines into easy, medium, and hard levels. It is worth noting that
our benchmark does not explicitly include benign targets for evaluating
false positives. This is because the iterative and exploratory nature of
penetration testing inherently involves investigating services within the
target that may ultimately be deemed benign. In this process, our primary
focus is successfully identifying genuine vulnerabilities.

2Our penetration testers are all Offensive Security Certified Professionals (OSCP).

200

Exploratory Study

Task Decomposition. We further parse the testing process of each
target into a series of sub-tasks, following the standard solution commonly
referred to as the “walkthrough” in penetration testing. Each sub-task
corresponds to a unique step in the overall process. Specifically, a sub-task
may represent a micro-step involving the use of a particular penetration
testing tool (e.g., performing port scanning with nmap [317]) or exploiting
a unique vulnerability identified in the Common Weakness Enumeration
(CWE) [318] (e.g., exploiting SQL injection). To standardize decomposition,
we arrange the sub-tasks into a two-layer structure. Initially, we categorize
each sub-task according to the five phases of penetration testing, as
described in Section 11.2. Then, we label the sub-task with either the
corresponding CWE item it targets or the specific tools employed. These
two steps enable us to formulate an exhaustive list of sub-tasks for every
benchmark target. We include this list in Appendix C, and the complete sub-
task information is accessible on our anonymous open-source project [311].
Benchmark Validation. The final stage of our benchmark development
involves rigorous validation. This step ensures that our benchmark
accurately reflects real-world penetration testing scenarios and offers
reproducibility. During validation, three certified penetration testers
independently attempt the penetration testing targets, refining the sub-
tasks as needed. We adjust our task decomposition accordingly because
some targets may have multiple valid solutions.

By the end, we compile a benchmark of 13 penetration testing targets
with 182 sub-tasks in 25 categories. The benchmark includes all types
of vulnerabilities as listed in the OWASP [304] Top 10 Project. Detailed
information on the included categories is listed in the Appendix C. To
contribute to community development, we have made this benchmark
publicly available online at our anonymous project website [311].

11.4 Exploratory Study

We conduct an exploratory study to assess the capabilities of LLMs in
penetration testing. Our primary objective is determining how well LLMs
can adapt to the real-world complexities and challenges associated with
penetration testing tasks. Specifically, we aim to address the following two
research questions:
RQ1 (Capability): To what extent can LLMs perform penetration testing
tasks?

201

11. Guiding Attacks with Machine Learning

RQ2 (Comparative Analysis): How do the problem-solving strategies of
human penetration testers and LLMs differ?

We utilize the benchmark described in Section 11.3 to evaluate the
performance of LLMs on penetration testing tasks. In the following, we first
delineate our testing strategy for this study. Subsequently, we present the
testing results and an analytical discussion to address the above research
questions.

11.4.1 Testing Strategy

LLMs cannot perform penetration tests directly. Their capabilities are
primarily text-based, responding to queries and providing suggestions.
However, penetration testing often involves operations with user interfaces
(UI) and understanding graphical information, such as website images. This
necessitates a bridge between the test machine and the LLM to facilitate
task completion.

We introduce an interactive loop structure to evaluate the LLM’s
abilities in penetration testing within our benchmark. This process,
depicted in Figure 11.2, consists of the following stages: ❶ We present
the target information to the LLM and request recommendations for
penetration testing actions. This initiates a looped testing procedure. ❷

We implement the actions suggested by the LLM, which encompass both
terminal commands and graphical interactions. ❸ We gather the results of
the actions. Text-based output, such as terminal responses or source code,
is recorded directly. Human penetration testers provide concise summaries
and descriptions for non-textual results (e.g., images). The summarized
information is returned to the LLM to inform subsequent actions. ❹ This
cycle continues until we identify a solution or reach a standstill. We
compile a record of the testing procedures, encompassing successful tasks,
ineffective actions, and any reasons for failure, if applicable.

11.4.2 Evaluation Settings

We proceed to assess the performances of various LLMs in penetration
testing tasks using the strategy mentioned above.

Model Selection. Our study focuses on three cutting-edge LLMs that are
currently accessible: GPT-3.5 and GPT-4 from OpenAI and LaMDA [319]
from Google. These models are selected based on their prominence in

202

Exploratory Study

Figure 11.2: Overview of strategy to use LLMs for penetration testing.
Reproduced from [292].

the research community and consistent availability. To interact with the
LLMs mentioned above, we utilize chatbot services provided by OpenAI
and Google, namely ChatGPT [320] and Bard [307]. For this chapter, the
terms GPT-3.5, GPT-4, and Bard represent these three LLMs.
Experimental Setup. We conduct our experiments in a local environment
where the target and testing machines are part of the same private network.
The testing machine operates on Kali Linux [321], version 2023.1. Several
measures are implemented to validate the effectiveness of our testing
procedures. First, we repeat the tests to account for inherent variability
in the LLM outputs. In particular, we test each target with each LLM
five times. We performed 195 tests in total, i.e., 5 repetitions * 3 models
* 13 targets, wherein the 13 targets correspond to the Easy, Medium
and Hard target scenarios 3. In this process, a sub-task is considered
successful if it succeeds in at least one trial, and a penetration task is
considered successful as long as one trial succeeds. Second, we make
the best efforts to translate UI operations and graphical information into
natural languages accurately. In addition, we ensure the precise execution
of the instructions provided by the LLMs. Third, we maintain the integrity
of the testing process by strictly limiting the tester’s role to executing
actions and reporting results without adding expert knowledge or guidance.
Finally, the testing and target machines are rebooted after each test to
reset their states, ensuring a consistent starting point for each test.
Tool Usage. Our study aims to assess the innate capabilities of LLMs

3Easy, Medium and Hard is the categorization convention used in the security CTF
community to represent the difficulty for a human to solve such challenge.

203

11. Guiding Attacks with Machine Learning

without reliance on automated vulnerability scanners such as Nexus [322]
and OpenVAS [323]. Consequently, we explicitly instruct the LLMs to refrain
from using these tools. However, we follow the LLMs’ recommendations for
utilizing other tools designed to validate specific vulnerability types (e.g.,
sqlmap [324] for SQL injections). Occasionally, versioning discrepancies
may lead the LLMs to provide incorrect instructions for tool usage. In such
instances, our penetration testing experts evaluate whether the instructions
would have been valid for a previous version of the tool. They then make
any necessary adjustments to ensure the tool’s correct operation.

11.4.3 Capability Evaluation (RQ1)

Easy Medium Hard Total

Tools Overall (7) Sub-task (77) Overall (4) Sub-task (71) Overall (2) Sub-task (34) Overall (13) Sub-task (182)

GPT-3.5 1 (14.29%) 24 (31.17%) 0 (0.00%) 13 (18.31%) 0 (0.00%) 5 (14.71%) 1 (7.69%) 42 (23.07%)

GPT-4 4 (57.14%) 52 (67.53%) 1 (25.00%) 27 (38.03%) 0 (0.00%) 8 (23.53%) 5 (38.46%) 87 (47.80%)

Bard 2 (28.57%) 29 (37.66%) 0 (0.00%) 16 (22.54%) 0 (0.00%) 5 (14.71%) 2 (15.38%) 50 (27.47%)

Average 2.3 (33.33%) 35 (45.45%) 0.33 (8.33%) 18.7 (26.29%) 0 (0.00%) 6 (17.64%) 2.7 (20.5%) 59.7 (32.78%)

Table 11.1: Overall performance of LLMs on Penetration Testing Bench-
mark.

To study RQ1, we begin by assessing the overall performance of three
prominent LLMs: GPT-4, Bard, and GPT-3.5. The results of these evaluations
are compiled in Table 11.1. The experimental results show that the three
LLMs completed at least one end-to-end penetration testing task. This
achievement underscores their ability to conduct a broad spectrum of
testing operations, particularly within environments of less complexity.
Among the models, GPT-4 stands out with superior performance, achieving
success with 4 targets of easy difficulty and 1 of medium difficulty. Bard
and GPT-3.5 also demonstrate commendable capabilities, completing 2
and 1 targets of easy difficulty, respectively. When examining sub-tasks,
GPT-4 accomplishes 52 of 77 on easy difficulty targets and 27 out of 71
on medium ones, underlining its potential for significant contributions to
more complex penetration testing scenarios. Though not as proficient as
GPT-4, GPT-3.5 and Bard still show promise, completing 13 (18.31%) and 16
(22.54%) of sub-tasks on medium difficulty targets, respectively. However,
the performance of all three models noticeably diminishes when challenged
with hard difficulty targets. While each model can complete the initial
reconnaissance phase on these targets, they fall short in exploiting the
identified vulnerability. This outcome is not entirely unexpected, as the

204

Exploratory Study

hard difficulty machines are deliberately crafted to be exceedingly difficult.
They often include services that appear vulnerable but are, in fact, non-
exploitable—a trait commonly referred to as rabbit holes [325]. Additionally,
the routes to successfully exploiting these machines are typically inventive
and unforeseeable, making them resistant to straightforward replication
by automated tools. For instance, the benchmark target Falafel involves
deliberately crafted SQL injection vulnerabilities, which are resistant to
sqlmap and can only be exploited through manually designed payloads.
Existing LLMs do not exhibit the capability to solve them solely without the
guidance of human experts.

Finding 1: Large Language Models (LLMs) have shown proficiency
in conducting end-to-end penetration testing tasks but struggle to
overcome challenges presented by more difficult targets.

Sub-Tasks Walkthrough GPT-3.5 GPT-4 Bard

General Tool Usage 25 4 10 7

Port Scanning 9 9 9 9

Web Enumeration 18 4 8 4

Code Analysis 18 4 5 4

Shell Construction 11 3 7 4

Directory Exploitation 11 1 7 1

General Privilege Escalation 8 2 4 3

Flag Capture 8 1 5 2

Password/Hash Cracking 8 2 4 2

Network Exploitation 7 1 3 2

Table 11.2: Top 10 Types of Sub-tasks completed by each tool.

We further examine the detailed sub-task completion performances of
the three LLMs, as presented in Table 11.2. Analyzing the completion
status, we identify several areas where LLMs excel. First, they adeptly
utilize common penetration testing tools to interpret the corresponding
outputs, especially in enumeration tasks correctly. For example, all three
evaluated LLMs successfully perform all nine Port Scanning sub-tasks. They
can configure the widely-used port scanning tool, nmap [317], comprehend
the scan results, and formulate subsequent actions. Second, the LLMs
reveal a deep understanding of prevalent vulnerability types, connecting
them to the services on the target system. This understanding is evidenced
by the successful completion of sub-tasks related to various vulnerability

205

11. Guiding Attacks with Machine Learning

Unnecessary Operations GPT-3.5 GPT-4 Bard Total

Brute-Force 75 92 68 235

CVE Study 29 24 28 81

SQL Injection 14 21 16 51

Command Injection 18 7 12 37

Table 11.3: Top Unnecessary Operations Prompted by LLMs on the
Benchmark Targets. Experiments conducted on June 2023.

types. Finally, LLMs demonstrate their effectiveness in code analysis
and generation, particularly in the tasks of Code Analysis and Shell
Construction. These tasks require the models to read and generate codes
in different programming languages, essential in penetration testing. This
often culminates in identifying potential vulnerabilities from code snippets
and crafting the corresponding exploits. Notably, GPT-4 outperforms the
other two models regarding code interpretation and generation, marking it
the most suitable candidate for penetration testing tasks.

Finding 2: LLMs can efficiently use penetration testing tools, identify
common vulnerabilities, and interpret source codes to identify vulnera-
bilities.

11.4.4 Comparative Analysis (RQ2)

To address RQ2, we examine the problem-solving strategies that LLMs
employ, contrasting them with human penetration testers. In each
penetration testing trial, we concentrate on two main aspects: (1)
Identifying the unnecessary operations that LLMs prompt, which are not
conducive to successful penetration testing, as compared to a standard
walkthrough; and (2) Understanding the specific factors that prevent LLMs
from successfully executing penetration tests.

We analyze the unnecessary operations prompted by LLMs by breaking
down the recorded testing procedures into sub-tasks. We employ the same
method to formulate benchmark sub-tasks, as Section 11.3 outlines. By
comparing this to a standard walkthrough, we identify the primary sub-task
trials that fall outside the standard walkthrough and are thus irrelevant to
the penetration testing process. The results are summarized in Table 11.3.
We find that the most prevalent unnecessary operation prompted by
LLMs is brute force. For all services requiring password authentication,

206

Exploratory Study

Failure Reasons GPT3.5 GPT4 Bard Total

Session context lost 25 18 31 74

False Command Generation 23 12 20 55

Deadlock operations 19 10 16 45

False Scanning Output Interpretation 13 9 18 40

False Source Code Interpretation 16 11 10 37

Cannot craft valid exploit 11 15 8 34

Table 11.4: Top causes for failed penetration testing trials

LLMs typically advise brute-forcing it. This is an ineffective strategy in
penetration testing. We surmise that many hacking incidents in enterprises
involve password cracking and brute force. LLMs learn these reports
from accident reports and are consequently considered viable solutions.
Besides brute force, LLMs suggest that testers engage in CVE studies, SQL
injections, and command injections. These recommendations are common,
as real-world penetration testers often prioritize these techniques, even
though they may not always provide the exact solution.

We further investigate the reasons behind the failure of penetration
testing trials. We manually categorize the causes of failure for the 195
penetration testing trials, with the results documented in Table 11.4. This
table reveals that the predominant cause of failure is the loss of session
context. The three examined models face difficulties in maintaining long-
term conversational memory uniformly, frequently forgetting previous
test results as the dialogue progresses. This lack of retention may
be attributable to the limited token size within the LLM conversation
context. Given the intricate nature of penetration testing—where a
tester must skillfully link minor vulnerabilities across different services to
develop a coherent exploitation strategy—this loss of context substantially
undermines the models’ effectiveness.

Finding 3: LLMs struggle to maintain long-term memory, which is vital
to link vulnerabilities and develop exploitation strategies effectively.

Secondly, LLMs strongly prefer the most recent tasks, adhering
rigorously to a depth-first search approach. They concentrate on exploiting
the immediate service, rarely deviating to a new target until all potential
paths for the current one have been pursued. This can be attributed to the
attention of LLMs focusing more on the beginning and end of the prompt,

207

11. Guiding Attacks with Machine Learning

as revealed in [326]. Experienced penetration testers generally assess
the system from a broader standpoint, strategizing the subsequent steps
likely to provide the most substantial results. When combined with the
aforementioned memory loss issue, this tendency causes LLMs to become
overly fixated on a specific service. As the test progresses, the models
completely forget previous findings and reach a deadlock.

Finding 4: LLMs strongly prefer recent tasks and a depth-first search
approach, often resulting in an over-focus on one service and forgetting
previous findings.

Lastly, LLMs have inaccurate result generation and hallucination issues,
as noted in [327]. This phenomenon ranks as the second most frequent
cause of failures and is characterized by the generation of false commands.
In our study, we observe that LLMs frequently identify the appropriate tool
for the task but stumble in configuring the tools with the correct settings.
In some cases, they even concoct non-existent testing tools or tool modules.

Finding 5: LLMs may generate inaccurate operations or commands,
often stemming from inherent inaccuracies and hallucinations.

Our exploratory study of three LLMs within penetration testing reveals
their potential for executing end-to-end tasks. Nevertheless, challenges
arise in maintaining long-term memory, devising a testing strategy beyond a
depth-first approach, and generating accurate operations. In the following
section, we elucidate how we address these challenges and outline our
strategy for designing our LLM-powered penetration testing tool.

11.5 Methodology

11.5.1 Overview

In light of the challenges identified in the preceding section, we present our
proposed solution, PentestGPT, which leverages the synergistic interplay
of three LLM-powered modules. As illustrated in Figure 11.3, PentestGPT
incorporates three core modules: the Reasoning Module, the Generation
Module, and the Parsing Module. Each module reserves one LLM session
with its conversation and context. The user interacts seamlessly with
PentestGPT, where distinct modules process different types of messages.

208

Methodology

This interaction culminates in a final decision, suggesting the subsequent
step of the penetration testing process that the user should undertake. In
the following sections, we elucidate our design reasoning and provide a
detailed breakdown of the engineering processes behind PentestGPT.

Parsing Module

Token
Compression

Condenced
Information

Reasoning Module

Task Tree
Update

Task Tree
Verification

Task
Identification

Candidate
Tasks

Subsequent
Task

Task Decision

Generation Module

Task Expansion

Operation
Generation

OperationsTesting ToolsTesting Targets

User Intention

Testing Outputs

(Optional) User
Verification

Testing Envrionment

Excalibur

1

2 3

4

5

6

Completed by LLM User Controlled Message Hidden InformationInformation to User

§5.5 Finding 3 & 4§5.3 Finding 5§5.4

Figure 11.3: Overview of PentestGPT. Reproduced from [292].

11.5.2 Design Rationale

Our central design considerations emerged from the three challenges
observed in the previous Exploratory Study (Section 11.4): The first
challenge (Finding 3) pertains to the issue of penetration testing context
loss due to memory retention. LLMs in their original form struggle to
maintain such long-term memory due to token size limits. The second
obstacle (Finding 4) arises from the LLM chatbots’ tendency to emphasize
recent conversation content. In penetration testing tasks, this focuses on
optimizing the immediate task. This approach falls short in the complex,
interconnected task environment of penetration testing. The third obstacle
(Finding 5) is tied to the inaccurate results generation by LLMs. When
tasked to produce specific operations for a step in penetration testing
directly, the outputs are often imprecise, sometimes even leading to

PentestGPT has been engineered to address these challenges, rendering
it more apt for penetration testing tasks. We drew inspiration from the
methodologies employed by real-world penetration testing teams, where a
director plans overarching procedures, subdividing them into subtasks for
individual testers. Each tester independently performs their task, reporting
results without an exhaustive understanding of the broader context. The
director then determines the following steps, possibly redefining tasks, and

209

11. Guiding Attacks with Machine Learning

triggers the subsequent round of testing. Essentially, the director manages
the overall strategy without becoming entrenched in the minutiae of the
tests. This approach is mirrored in PentestGPT’s functionality, enhancing
its efficiency and adaptability in conducting penetration tests. Our strategy
divides penetration testing into two processes: identifying the next task and
generating the concrete operation to complete the task. Each process is
powered by one LLM session. In this setup, the LLM session responsible for
task identification retains the complete context of the ongoing penetration
testing status. At the same time, the generation of detailed operations
and parsing of information is managed by other sessions. This division
of responsibilities fosters effective task execution while preserving the
overarching context.

To assist LLMs in effectively carrying out penetration testing tasks,
we design a series of prompts that align with user inputs. We utilize the
Chain-of-Thought (CoT) [328] methodology during this process. As CoT
reveals, LLMs’ performance and reasoning capabilities can be significantly
enhanced using the input, chain-of-thought, output prompting format. Here,
the chain-of-thought represents a series of intermediate natural language
reasoning steps leading to the outcome. We dissect the penetration testing
tasks into micro-steps and design prompts with examples to guide LLMs
through processing penetration testing information step-by-step, ultimately
leading to the desired outcomes. The complete prompts are available at
our anonymized open-source project [311].

11.5.3 Reasoning Module

The Reasoning Module plays a pivotal role in our system, analogous to a
team lead overseeing the penetration testing task from a macro perspective.
It obtains testing results or intentions from the user and prepares the
testing strategy for the next step. This testing strategy is passed to the
generation module for further planning.

To effectively supervise the penetration testing process and provide
precise guidance, it is crucial to translate the testing procedures and
outcomes into a natural language format. Drawing inspiration from the
concept of an attack tree [329], which is often used to outline penetration
testing procedures, we introduce the notion of a pentesting task tree (PTT).
This novel approach to testing status representation is rooted in the concept
of an attributed tree [330]:

210

Methodology

Definition 1 (Attributed Tree). A attributed tree is an edge-labeled,
attributed polytree G = (V, E, λ, µ) where V is a set of nodes (or vertices), E

is a set of directed edges, λ : E → Σ is an edge labeling function assigning
a label from the alphabet Σ to each edge and µ : (V ∪ E) × K → S is a
function assigning key(from K)-value(from S) pairs of properties to the
edges and nodes.

Given the definition of attributed tree, PTT is defined as follows:

Definition 2 (Pentesting Task Tree). An PTT T is a pair (N, A), wherein the
correspond with: (1) a set of nodes N organized in a tree structure. Each
node has a unique identifier, and there is a special node called the root that
has no parent. Each node, other than the root, has exactly one parent and
zero or more children. (2) the function A that assigns to each node n ∈ N

a set of attributes A(n). The function A(n) outputs a set of atribute pairs
(a, v), where a is the attribute name and v is the attribute value. The set of
attributes can be different for each node.

As outlined in Figure 11.3, the Reasoning Module’s operation unfolds
over four key steps operating over the PTT. ❶ Initially, the module absorbs
the user’s intentions to construct an initial PTT in the form of natural
language. This is achieved by carefully instructing the LLM with examples
and definitions of PPT using meticulously crafted prompts. The LLM outputs
are parsed to confirm that the tree structure is accurately formatted. Note
that due to the nature of the tree structure, it can be represented in
the natural language format through layered bullets, as illustrated in
Figure 11.4. The Reasoning Module effectively overcomes the memory-loss
issue by maintaining a task tree that encompasses the entire penetration
testing process. ❷ After updating the tree information, a verification
step is conducted on the newly updated PTT to ascertain its correctness.
This process checks explicitly that only the leaf nodes of the PTT have
been modified, aligning with the principle that atomic operations in the
penetration testing process should only influence the status of the lowest-
level sub-tasks. This step confirms the correctness of the reasoning process,
safeguarding against any potential alterations to the overall tree structure
due to hallucination by the LLM. If discrepancies arise, the information is
reverted to the LLM for correction and regeneration. ❸ With the updated
PTT, the Reasoning Module evaluates the current tree state and pinpoints
viable sub-tasks that can serve as candidate steps for further testing. ❹

211

11. Guiding Attacks with Machine Learning

Port Scanning

SSH ServiceFTP Service Web Service

Direct
Enumeration

Injection Point
Identification

Anonymous
Login (Succ)

Arbitrary File
Upload (Succ)

Brute Force
(Fail)

Hidden Admin
Page Login

a) PTT Representatoin
Task Tree:
1. Perform port scanning (completed)
 - Port 21, 22 and 80 are open.
 - Services are FTP, SSH, and Web Service.
2. Perform the testing
 2.1 Test FTP Service
 2.1.1 Test Anonymous Login (success)
 2.1.1.1 Test Anonymous Upload (success)
 2.2 Test SSH Service
 2.2.1 Brute-force (failed)
 2.3 Test Web Service (ongoing)
 2.3.1 Directory Enumeration
 2.3.1.1 Find hidden admin (to-do)
 2.3.2 Injection Identification (todo)

b) PTT Representation in Natural Language

Figure 11.4: Pentesting Task Tree in a) visualized tree format, and b)
natural language format encoded in LLM. Reproduced from [292].

Finally, the module evaluates the likelihood of these sub-tasks leading to
successful penetration testing outcomes. It then recommends the top task
as the output. The expected results of this task are subsequently forwarded
to the Generation Module for an in-depth analysis. This is feasible, as

212

Methodology

demonstrated in the exploratory study, since LLMs, particularly GPT-4,
can identify potential vulnerabilities when provided with system status
information. This procedural approach enables the Reasoning Module to
address one of the inherent limitations of LLMs, precisely their tendency
to concentrate solely on the most recent task. Note that in cases where
the tester identifies that the correct task is incorrect or not completed
in a preferred way, he could also manually revise the PTT through the
interactive handle further discussed in Section 11.5.6.

We devise four sets of prompts to sequentially guide the Reasoning
Module through the completion of each stage. To bolster the reproducibility
of our results, we optimize these prompts further with a technique known
as hint generation [331]. From our practical experience, we observe that
LLMs are adept at interpreting the tree-structured information pertinent to
penetration testing and can update it accurately in response to test outputs.

a-1) Task Tree

Task Tree:
1. Perform reconnaissance tasks
(on-going)
 1.1. Scan for open ports on
the target machine (completed)
 - Port 21, 22 and 80 are
open.

 1.2. Identify services running
on open ports.

2. Perform the testing

b-1) Available Leaf-node Tasks
Available Tasks
1. Identify services running on
open ports.

Decided Task
Identify services running on open
ports.
- Port 21, 22 and 80 are open.

c-1) Decided Task

Command to Execute
Use nmap to determine service
versions on open ports. The
command is `nmap -sV -p21,22,80
<ip-address>`.

d-1) Command to Execute

a-2) Updated Task Tree

Task Tree:
1. Perform reconnaissance tasks
 1.1. ...
 1.2. Identify services running
on open ports.
 - FTP filtered, OpenSSH 7.6p1,
Apache 2.4.18

2. Perform the testing
 2.1 Scan the web port
 2.2 Check if the SSH service
contain known vulnerabilities.

Nmap Output
PORT STATE SERVICE VERSION
21/tcp filtered ftp
22/tcp open ssh OpenSSH 7.6p1
80/tcp open http Apache 2.4.18
Service Info: OS: Linux; CPE:

e-1) Execution Result

b-2) Available Leaf-node Tasks
Available Tasks
1. Scan the web port
2. Check if the SSH service
contain known vulnerabilities.

Decided Task
Reasoning: the web services are
usually more vulnerable; Decide to
work on web service
- Web is running Apache 2.4.18.

c-2) Decided Task

Command to Execute
Use nikto to scan the target
web service. The command is
`nikto -h <ip-address>`.

d-2) Command to Execute

Nikto Output
+ Server: Apache/2.4.18 (Ubuntu)
+ The anti-clickjacking X-Frame-
Options header is not present.
...

e-2) Execution Result

Reasoning Module Generation Module

Testing Environment
with the Target Machine

Execution Outputs

Generation Module

Cross
Check

Figure 11.5: A demonstration of the task-tree update process on the testing
target HTB-Carrier. Reproduced from [292].

11.5.4 Generation Module

The Generation Module translates specific sub-tasks from the Reasoning
Module into concrete commands or instructions. Each time a new sub-task
is received, a fresh session is initiated in the Generation Module. This
strategy effectively isolates the context of the overarching penetration

213

11. Guiding Attacks with Machine Learning

task from the immediate task under execution, enabling the LLM to focus
entirely on generating specific commands.

Instead of directly transforming the received sub-task into specific
operations, our design employs the CoT strategy [328] to partition this
process into two sequential steps. This design decision directly addresses
the challenges associated with model inaccuracy and hallucination by
enhancing the model’s reasoning capability. In particular, ❺ upon the
receipt of a concise sub-task from the Reasoning Module, the Generation
Module begins by expanding it into a sequence of detailed steps. Notably,
the prompt associated with this sub-task requires the LLM to consider the
possible tools and operations available within the testing environment. ❻

Subsequently, the Generation Module transforms each of these expanded
steps into precise terminal commands ready for execution or into detailed
descriptions of specific Graphical User Interface (GUI) operations to
be carried out. This stage-by-stage translation eliminates potential
ambiguities, enabling testers to follow the instructions directly and
seamlessly. Implementing this two-step process effectively precludes the
LLM from generating operations that may not be feasible in real-world
scenarios, thereby improving the success rate of the penetration testing
procedure.

By acting as a bridge between the strategic insights provided by the
Reasoning Module and the actionable steps required for conducting a
penetration test, the Generation Module ensures that high-level plans
are converted into precise and actionable steps. This transformation
process significantly bolsters the overall efficiency of the penetration testing
procedure.

An Illustrative Example. We utilize a real-world running example
to illuminate how the Reasoning Module and the Generation Module
collaboratively operate to complete penetration testing tasks. Figure 11.5
illustrates a single iteration of PentestGPT working on the HackTheBox
machine Carrier [332], a medium-difficulty target. As depicted in a-1), the
PTT, in natural language format, encodes the testing status, revealing the
open ports (21, 22,80) on the target machine. The Reasoning Module is
subsequently instructed to identify the available tasks. As highlighted in
red, service scanning is the only available task on the leaf node of the PTT.
This task is therefore chosen and forwarded to the Generation Module for
command generation. The generated command is executed in the testing
environment, and the execution result is conveyed to the Reasoning Module

214

Methodology

to update the PTT. In a-2), the Reasoning Module integrates the previous
scanning result into the PTT, cross-referencing it with the earlier PTT to
update only the leaf nodes. It then looks for the available tasks to execute.
In this case, two tasks emerge: scanning the web service on port 80 and
checking the SSH service for known vulnerabilities. The LLM evaluates
which task is more promising and chooses to investigate the web service,
often seen as more vulnerable. This task is passed to the Generation
Module. The Generation Module turns this general task into a detailed
process, employing nikto [333], a commonly used web scanning script.
The iterative process continues until the tester completes the penetration
testing task.

11.5.5 Parsing Module

The Parsing Module operates as a supportive interface, enabling effective
processing of the natural language information exchanged between the
user and the other two core modules. Two needs can primarily justify
the existence of this module. First, security testing tool outputs are
typically verbose, laden with extraneous details, making it computationally
expensive and unnecessarily redundant to feed these extended outputs
directly into the LLMs. Second, users without specialized knowledge in
the security domain may struggle to extract key insights from security
testing outputs, presenting challenges in summarizing crucial testing
information. Consequently, the Parsing Module is essential in streamlining
and condensing this information.

In PentestGPT, the Parsing Module is devised to handle four distinct
types of information: (1) user intentions, which are directives provided
by the user to dictate the next course of action, (2) security testing tool
outputs, which represent the raw outputs generated by an array of security
testing tools, (3) raw HTTP web information, which encompasses all raw
information derived from HTTP web interfaces, and (4) source codes
extracted during the penetration testing process. Users must specify the
category of the information they provide, and each category is paired with
a set of carefully designed prompts. For source code analysis, we integrate
the GPT-4 code interpreter [334] to execute the task.

215

11. Guiding Attacks with Machine Learning

11.5.6 Active Feedback

While LLMs can produce insightful outputs, their outcomes may sometimes
require revisions. To facilitate this, we introduce an interactive handle in
PentestGPT, known as active feedback, which allows the user to interact
directly with the Reasoning Module. A vital feature of this process is
that it does not alter the context within the Reasoning Module unless
the user explicitly desires to update some information. The reasoning
context, including the PTT, is stored as a fixed chunk of tokens. This chunk
of tokens is provided to a new LLM session during an active feedback
interaction, and users can pose questions regarding them. This ensures
that the original session remains unaffected, and users can always query
the reasoning context without making unnecessary changes. If the user
believes it necessary to update the PTT, they can explicitly instruct the
model to update the reasoning context history accordingly. This provides a
robust and flexible framework for the user to participate in the decision-
making process actively.

11.5.7 Discussion

We explore various design alternatives for PentestGPT to tackle the
challenges identified in Exploratory Study. We have experimented with
different designs, and here we discuss some key decisions.

Addressing Context Loss with Token Size: a straightforward solution
to alleviate context loss is the employment of LLM models with an extended
token size. For instance, GPT-4 provides versions with 8k and 32k token size
limits. This approach, however, confronts two substantial challenges. First,
even a 32k token size might be inadequate for penetration testing scenarios,
as the output of a single testing tool like dirbuster [335] may comprise
thousands of tokens. Consequently, GPT-4 with a 32k limit cannot retain the
entire testing context. Second, even when the entire conversation history
fits within the 32k token boundary, the API may still skew towards recent
content, focusing on local tasks and overlooking broader context. These
issues guided us in formulating the design for the Reasoning Module and
the Parsing Module.

Vector Database to Improve Context Length: Another technique to
enhance the context length of LLMs involves a vector database [336, 337].
By transmuting data into vector embeddings, LLMs can efficiently store and

216

Evaluation

retrieve information, practically creating long-term memory. Theoretically,
penetration testing tool outputs could be archived in the vector database.
In practice, though, we observe that many results closely resemble and vary
in only nuanced ways. This similarity often leads to confused information
retrieval. Solely relying on a vector database fails to overcome context
loss in penetration testing tasks. Integrating the vector database into the
design of PentestGPT is an avenue for future research.

Precision in Information Extraction: Precise information extraction
is crucial for conserving token usage and avoiding verbosity in LLMs. Rule-
based methods are commonly employed to extract diverse information.
However, rule-based techniques are engineeringly expensive given natural
language’s inherent complexity and the variety of information types in
penetration testing. We devise the Parsing Module to manage several
general input information types, a strategy found to be both feasible and
efficient.

Limitations of LLMs: LLMs are not an all-encompassing solution.
Present LLMs exhibit flaws, including hallucination [338] and outdated
knowledge. Our mitigation efforts, such as implementing task tree
verification to ward off hallucination, might not completely prevent the
Reasoning Module from producing erroneous outcomes. Thus, a human-in-
the-loop strategy becomes vital, facilitating the input of necessary expertise
and guidance to steer LLMs effectively. Moreover, it must be higlighted
that reproducibility of results is an issue here, as LLMs are in continuous
evolution. In our case, given the novelty of the technology and lack of
availability at the time of starting this work, we did not host the LLM
deployments ourselves, but instead used third party providers. This setup
is sub-optimal from a scientific experiment point of view. For future work,
we foresee building our own LLMs by performing post-training phases on
top of existing open source models and freezing them after a certain stage
of learning. This will lead to results being reproducible given the right
input context, and fully reproducible on statistical average. This topic is
further discussed in Section 11.7.

11.6 Evaluation

In this section, we assess the performance of PentestGPT, focusing on the
following four research questions:

217

11. Guiding Attacks with Machine Learning

RQ3 (Performance): How does the performance of PentestGPT compare
with that of native LLM models and human experts?
RQ4 (Strategy): Does PentestGPT employ different problem-solving
strategies compared to those utilized by LLMs or human experts?
RQ5 (Ablation): How does each module within PentestGPT contribute to
the overall penetration testing performance?
RQ6 (Practicality): Is PentestGPT practical and effective in real-world
penetration testing tasks?

11.6.1 Evaluation Settings

We implement PentestGPT with 1,700 lines of Python3 code and 740
prompts, available at our anonymized project website [311]. We evaluate
its performance over the benchmark constructed in Section 11.3. In this
evaluation, we integrate PentestGPT with GPT-3.5 and GPT-4 to form two
working versions: PentestGPT-GPT-3.5 and PentestGPT-GPT-4. Due to the
lack of API access, we do not select other LLM models, such as Bard. In line
with our previous experiments, we use the same experiment environment
setting and instruct PentestGPT to only use the non-automated penetration
testing tools.

11.6.2 Performance Evaluation (RQ3)

The overall task completion status of PentestGPT-GPT-3.5, PentestGPT-GPT-
4, and the naive usage of LLMs is illustrated in Figure 11.6a. As the Figure
shows, our solutions powered by LLMs demonstrate superior penetration
testing capabilities compared to the naive application of LLMs. Specifically,
PentestGPT-GPT-4 surpasses the other three solutions, successfully solving
6 out of 7 easy difficulty targets and 2 out of 4 medium difficulty targets.
This performance indicates that PentestGPT-GPT-4 can handle penetration
testing targets ranging from easy to medium difficulty levels. Meanwhile,
PentestGPT-GPT-3.5 manages to solve only two challenges of easy difficulty,
a discrepancy that can be attributed to GPT-3.5 lacking the knowledge
related to penetration testing found in GPT-4.

The sub-task completion status of PentestGPT-GPT-3.5, PentestGPT-GPT-
4, and the naive usage of LLM is shown in Figure 11.6b. As the Figure
illustrates, both PentestGPT-GPT-3.5 and PentestGPT-GPT-4 perform better
than the standard utilization of LLMs. It is noteworthy that PentestGPT-GPT-

218

Evaluation

4 not only solves one more medium difficulty target compared to naive GPT-4
but also accomplishes 111% more sub-tasks (57 vs. 27). This highlights that
our design effectively addresses context loss challenges and leads to more
promising testing results. Nevertheless, all the solutions struggle with
hard difficulty testing targets. As elaborated in Section 11.4, hard difficulty
targets typically demand a deep understanding from the penetration tester.
To reach testing objectives, they may require modifications to existing
penetration testing tools or scripts. Our design does not expand the LLMs’
knowledge of vulnerabilities, so it does not notably enhance performance
on these more complex targets.

11.6.3 Strategy Evaluation (RQ4)

We then investigate the problem-solving strategies employed by
PentestGPT, contrasting them with those of LLMs and human experts.
By manually analyzing the penetration testing process of PentestGPT, we
synthesize its underlying approaches to problem-solving. We surprisingly
find that PentestGPT decomposes the penetration testing task in a manner
akin to human experts, successfully achieving the overall goal. Instead
of focusing solely on the most recently discovered task, PentestGPT can
pinpoint potential sub-tasks likely to lead to successful outcomes.

Figure 11.7 provides an illustrative example, demonstrating the
strategic differences between GPT-4 and PentestGPT while handling the
VulnHub machine, Hackable II [339]. This target comprises two vulnerable
services: an FTP service allowing arbitrary file uploads and a web
service enabling file viewing through FTP. A successful exploit necessitates
exploiting both services by uploading a malicious PHP shell via the FTP
service and triggering it through the web service. As depicted in the figure,
GPT-4 begins by enumerating the FTP service and successfully identifies
the file upload vulnerability (❶-❸). However, it fails to correlate this with
the web service, resulting in an incomplete exploit in the following steps.
Conversely, PentestGPT follows a more holistic approach, toggling between
enumerating the FTP service and browsing the web service. In particular,
PentestGPT firstly ❶ enumerates the FTP service and ❷ web service to
understand the general situation. It then ❸ prioritizes the FTP service, and
❹ eventually discovers the file upload vulnerability. More importantly, in
this process, PentestGPT identifies that files available on FTP are the same
as those on the web service. By connecting these findings, PentestGPT

219

11. Guiding Attacks with Machine Learning

guides the tester to ❺ perform a shell upload, ❻ leading to a successful
reverse shell. This strategy aligns with the walkthrough solution and
highlights PentestGPT’s comprehensive understanding of the penetration
testing process and its ability to make effective decisions on the optimal
sub-task to pursue next. This reveals PentestGPT’s strategic thinking and
ability to integrate different aspects of the testing process.

Our second observation is that although PentestGPT behaves more
similarly to human experts, it still exhibits some strategies that humans
will not apply. For instance, PentestGPT still prioritizes brute-force attacks
before vulnerability scanning. This is obvious in cases where PentestGPT
always tries to brute-force the SSH service on target machines.

We then analyze the failed penetration testing cases to understand
the limitations of PentestGPT. Beyond the absence of some advanced
penetration testing techniques, two primary issues emerge. First,
PentestGPT struggles to interpret images. LLMs are limited to text
comprehension, so they cannot accurately process images. This issue might
be addressed by developing large multimodal models to understand text
and visual data. Second, it cannot grasp certain social engineering tricks
and subtle cues. For instance, real-world penetration testers often create
brute-force wordlists using information gathered from the target service.
Though PentestGPT can retrieve a list of names from a web service, it fails
to instruct the use of tools to create a wordlist from those names. These
limitations underline the necessity for improvement in areas where human
insight and intricate reasoning are still more proficient than automated
solutions.

11.6.4 Ablation Study (RQ5)

We perform an ablation study on how the three modules: Reasoning Module,
Generation Module, and Parsing Module, contribute to the performance of
PentestGPT. We implement three variants:

1. PentestGPT-no-Parsing: the Parsing Module is deactivated, causing
all data to be directly fed into the system.

2. PentestGPT-no-Generation: the Generation Module is deactivated,
leading to the completion of task generation within the Reasoning
Module itself. The prompts for task generation remain consistent.

220

Evaluation

3. PentestGPT-no-Reasoning: the Reasoning Module is desabled. Instead
of PTT, this variant adopts the same methodology utilized with LLMs
for penetration testing, as delineated in the Exploratory Study.

All the variants are integrated with GPT-4 API for testing.

The results of the three variants tested on our penetration testing
benchmarks are depicted in Figure 11.8. In general, PentestGPT
demonstrates superiority over the three ablation baselines regarding overall
target and sub-task completion. Our key findings are as follows: (1) In the
absence of the Parsing Module, PentestGPT-no-Parsing attains marginally
lower performance in overall task and sub-task completion relative to the
full configuration. While parsing information is advantageous in penetration
testing, the 32k token size limit often suffices for various outputs. Given the
Reasoning Module’s inherent design to maintain the entire testing context,
the lack of the Parsing Module does not substantially impair the tool’s
performance. (2) PentestGPT-no-Reasoning fares the worst, completing
only 53.6% of the sub-tasks achieved by the full solution, an outcome even
inferior to the naive application of GPT-4 in testing. We attribute this to the
Generation Module adding supplementary sub-tasks to the LLM context.
Since the prompts are not tailored for scenarios without the Reasoning
Module, the resulting outputs are irrelevant for the naive LLM without the
Generation Module. Furthermore, the extended generation output obscures
the original context, hindering the LLM’s ability to concentrate on the task,
thus failing the test. (3) PentestGPT-no-Generation realizes performance
slightly above that of GPT-4 employed naively. This occurs because, without
the Generation Module, the testing procedure closely resembles the usage
of LLMs. Notably, the Generation Module is principally intended to guide
the tester in executing precise penetration testing operations. Without this
module, the tester may depend on supplementary information to operate
the tools or scripts essential for completing the test.

11.6.5 Practicality Study (RQ6)

We demonstrate that PentestGPT exhibits practicality for real-world
penetration testing beyond the crafted benchmark. For this purpose,
we engage PentestGPT in the HackTheBox active machine challenges,
a series of penetration testing objectives open to global testers. Each
challenge consists of two components: a user flag, retrievable upon initial

221

11. Guiding Attacks with Machine Learning

Machine Difficulty Completion Completed Users Cost (USD)

Sau Easy ✓ 4798 15.2

Pilgramage Easy ✓ 5474 12.6

Topology Easy ✗ 4500 8.3

PC Easy ✓ 6061 16.1

MonitorsTwo Easy ✓ 8684 9.2

Authority Medium ✗ 1209 11.5

Sandworm Medium ✗ 2106 10.2

Jupiter Medium ✗ 1494 6.6

Agile Medium ✓ 4395 22.5

OnlyForYou Medium ✗ 2296 19.3

Total - 6 - 131.5

Table 11.5: PentestGPT performance over the active HackTheBox Chal-
lenges.

user access, and a root flag, obtainable after gaining root access. Our
evaluation encompasses five targets of easy difficulty and five of medium
difficulty. During this exercise, PentestGPT, utilizing GPT-4’s 32k token
API, conducts up to five tests on each target. Success is defined solely
by the capture of the root flag. Table 11.5 details the performance of
PentestGPT in these challenges 4. Ultimately, PentestGPT completes three
easy and five medium challenges. The total expenditure for this exercise
amounts to 131.5 USD, averaging 21.92 USD per target. This cost is
markedly lower than employing human penetration testers and falls within
an acceptable range. Our evaluation, therefore, underscores PentestGPT’s
capability to yield viable penetration testing results in real-world settings
at an efficient cost, thereby highlighting its potential as a practical tool in
the cybersecurity domain.

11.7 Discussion

We recognize that the penetration testing walkthrough might have been
part of the training material for the tested LLMs, potentially biasing the
results. To mitigate this, we take two measures. First, we manually verify
that the LLM does not have prior knowledge of the target machine. We do
this by prompting the LLMs if the tested machine is within their knowledge

4Completed Users denotes the number of users globally who have completed the target
as of the manuscript submission time. Note that HackTheBox boasts over 670,000 active
users.

222

Conclusion

base. Second, we include penetration testing target machines released
after 2021 in our benchmark, which falls outside the training data of OpenAI
models. The practicality study on the most recent HackTheBox challenges
also demonstrates that PentestGPT can solve challenges without prior
knowledge of the target.

The rapidly evolving nature of LLMs and inconsistencies in available
APIs could invalidate PentestGPT’s designed prompts. We strive to make
prompts general and suitable for various LLMs. However, due to their
hacking nature, some LLMs resist generating specific penetration testing
content, such as concrete reverse shell scripts. Our prompts include
jailbreak techniques [340] to guide the LLM to generate penetration-
testing-related information. How to generate reproducible outcomes is
an important direction we are working towards.

We identify hallucination in Large Language Models [338] as a
significant challenge where the model’s outputs diverge from its training
data. This affects the reliability of our automatic penetration testing tool.
We are actively exploring various techniques [341] to reduce hallucination
and enhance our tool’s performance. As an ongoing work, we believe such
an attempt will lead to a more robust and effective automatic penetration
testing tool.

11.8 Conclusion

This chapter paved the way towards integrating Large Language Models
(LLMs) with the operational processes of cybersecurity, particularly in
guiding cybersecurity software agents to perform autonomously and more
specifically, automating and refining penetration testing strategies. The
implementation of PentestGPT, our innovative prototype, showcases the
potential of LLMs to emulate human-like decision-making in cyber-attacks.
While PentestGPT demonstrates adeptness in fundamental cybersecurity
tasks, it also reveals the limitations of current models, particularly in
maintaining context and focusing attention over prolonged interactions.

PentestGPT’s architecture, inspired by the dynamics of professional
penetration testing teams, divides complex tasks into manageable segments,
enabling a collaborative approach to threat analysis and response. This
modular structure of Reasoning, Generation, and Parsing replicates the
cognitive synergy found in human teams, ensuring a comprehensive and
nuanced approach to cybersecurity challenges.

223

11. Guiding Attacks with Machine Learning

The insights gleaned from our evaluation of PentestGPT suggest that
while LLMs offer significant advantages, they are not a panacea. There
remains a clear need for human intuition and expertise, particularly in
complex and novel scenarios that exceed the training parameters of existing
models. As we look to the future, the integration of LLMs in cybersecurity
presents an exciting frontier with the potential to revolutionize the field.
The continuous development of PentestGPT and similar tools promises
to enhance our defensive and offensive capabilities, making our digital
infrastructures more resilient against the evolving threats they face. Our
work lays a foundation for future research, where the symbiosis of human
and machine intelligence will lead to unprecedented advancements in
maintaining cybersecurity.

224

Conclusion

Easy Medium Hard

1

0 0

4

1

0

2

0 0

6

2

0

GPT-3.5
GPT-4

PentestGPT-GPT-3.5
PentestGPT-GPT-4

(a) Overall completion status.

Easy Medium Hard

24

13

5

52

27

8

31

14

5

69

57

12

GPT-3.5
GPT-4

PentestGPT-GPT-3.5
PentestGPT-GPT-4

(b) Subtask completion status.

Figure 11.6: The performance of GPT-3.5, GPT-4, PentestGPT-GPT-3.5, and
PentestGPT-GPT-4 on overall target completion and sub-task completion.
Reproduced from [292].

225

11. Guiding Attacks with Machine Learning

Figure 11.7: Penetration testing strategy comparison between GPT-4 and
PentestGPT on VulnHub-Hackable II. Reproduced from [292].

226

Conclusion

Easy Medium Hard

5

1

0

4

0 0

4

1

0

6

2

0

PentestGPT-no-Parsing
PentestGPT-no-Reasoning

PentestGPT-no-Generation
PentestGPT

(a) Overall completion status

Easy Medium Hard

62

44

9

44

23

7

56

35

9

69

57

12

PentestGPT-no-Parsing
PentestGPT-no-Reasoning

PentestGPT-no-Generation
PentestGPT

(b) Sub-task completion status

Figure 11.8: The performance of PentestGPT, PentestGPT-No-Annotation,
PentestGPT-Operation-Only, and PentestGPT-Parameter-Only on both
normalized average code coverage (µLOC) and bug detection. Reproduced
from [292].

227

Chapter 12

Conclusion and future work

This thesis, titled "Offensive Robot Cybersecurity," presents a multifaceted
exploration of safeguarding robots by adopting a preemptive hacking
stance, using Game Theory and Machine Learning as primary tools
for automation. The journey began with a motivation (Part I), which
provided a general introduction to the field and a description of the thesis
structure and framework (Chapter 1). This is followed by some general
background (Chapter 2) which provided more context to the intersection of
cybersecurity, robotics and artificial intelligence involved in this work.

The content then continues with an in-depth ethical investigation (Part
II), setting the landscape (Chapter 3) for responsible and ethically-aligned
cybersecurity practices in robotics.

The development of fundamental blueprints (Part III) introduced a
suite of core know-how, tools and frameworks, fostering a secure robotics
research environment and empowering both defensive and offensive
research. This includes DevSecOps for Robotics and ROS 2 security
mechanisms (Chapter 4), benchmarking robots and their security (Chapter
5) and reducing the timing overhead and computational bottlenecks
introduced by security layers in robotics through hardware acceleration
(Chapter 6).

The heart of the thesis lies in the meticulous cyber-attacking of
robots (Part IV), a necessary evil that unveiled a plethora of robot
vulnerabilities. This research was conducted attacking robot software
(Chapter 7), hardware (Chapter 8) and industry deployments (Chapter 9),
providing invaluable insights into the current state of robot cybersecurity.

The finale (Part V) of the thesis ventured into the realm of autonomous
offensive cybersecurity strategies for robots, harnessing the analytical
prowess of Game Theory (Chapter 10) to determine the most vulnerable
attack targets and vectors, followed by the use of modern Machine Learning
approaches to guide the offensive behavior. In particular, Large Language
Models helped bring up adaptive intelligence to our cybersecurity cognitive
engines (Chapter 11).

229

12. Conclusion and future work

User 1. ExploitFlow

2. PentestGPT

3. PentestPerf

Target

exploit flow graph adapters models state

Game Theory (Cut-The-Rope)

parsing reasoning generation

4. Malism

programatically in Python

goal description
in

text

ex
ch

an
ge

ex
pl

oi
t tr

ee

B
e
n

ch
m

a
rk

s
a
n

e
xp

lo
it

fl
o
w

2. PentestGPT

Game Theory (Cut-The-Rope)

1. ExploitFlow

parsing reasoning generation

External entity

Developed in this thesis

Inner Component

Figure 12.1: Our architecture and framework to develop fully automated
offensive robot cybersecurity agents, which name cybersecurity cognitive
engines in Chapter 10: Malism.

The resulting framework and architecture for our cybersecurity cogni-
tive engines (introduced in Chapter 10) is again presented above in Figure
12.1 and captures the results obtained in this thesis. In relation to the
content of this thesis, Parts I and II helped understand better the User and
Target entities. Part III helped developed tools such as ExploitFlow, which
sits at the core of our architecture providing capabilities for composing
exploitation flows to interact with the robotic security environment and
achieve desired goals. Part IV helped populate tools like ExploitFlow with
actions that corresponded with both exploitation and mitigation of robot
security flaws. Finally, Part V completes and connects the architecture
altogether with three final contributions: a game theoretic extension of
ExploitFlow (through implementing Cut-The-Rope) that allows to reason
about attack trees and identify the best attack vectors to achieve desired
goals, b) a security reasoning engine (PentestGPT) that digests such an-
notated attack trees, the attack vectors and the ultimate goal and guides
the process and c) a comprehensive penetration testing benchmark (Pen-
testPerf) that helps compare various implementations for the penetration
testing task.

230

In conclusion, this thesis successfully demonstrates the critical role of
offensive measures in enhancing robot cybersecurity, charting a path
towards a future where robots are not only resilient to cyber threats but also
equipped to autonomously defend themselves by hacking-themselves-first
with Game Theory and Machine Learning. In a soon-to-come autonomous
ever-evolving digital battleground, Malism aims to provide a reference
guideline for future implementations. In summary, the work presented in
this thesis lays a solid foundation for the future of offensive cybersecurity
in robotics, paving the way for innovative solutions that can autonomously
protect and secure robotic systems in an increasingly interconnected world.
The advancements achieved through this research not only contribute to
the academic field by demonstrating how robots can be made more secure
with an offensive stance, but also have far-reaching implications for the
safety and security of next-generation robotic applications.

Future work will focus on implementing Malism in a scalable form factor,
demonstrating fully autonomous offensive and defensive cybersecurity
behaviors, and extending its concepts to industrial setups and OT-machinery
beyond robotics. Achieving embedded form factors for Malism-like
cybersecurity cognitive engines is critical for real-world applicability,
necessitating the integration of efficient Machine Learning (ML) and Game
Theory (GT) algorithms within limited computational resources. Leveraging
hardware accelerators like FPGAs can empower these deployments,
ensuring real-time threat detection and response without compromising
primary robotic functions. Embedded systems will enable localized, on-
device processing, reducing dependency on vulnerable external cloud
services and enhancing security response times. Moreover, distributed
security frameworks facilitated by embedded Malism-like systems will
enhance resilience and coordination in networked environments. This
approach is crucial for dynamic, time-sensitive applications in autonomous
vehicles, smart manufacturing, and critical infrastructure, where robust,
real-time security solutions are essential.

In reflecting on this research journey, we find ourselves at the
exhilarating intersection of robotics and cybersecurity, where offensive
tactics become the ultimate defense. This thesis has danced through
the realms of ethical hacking, intricate game theory strategies, and the
boundless potential of machine learning, culminating in the creation of

231

12. Conclusion and future work

autonomous guardians named cybersecurity cognitive engines for our
robotic systems. As we look to the future, Malism stands as a reference
concept that deserves further development and time. Such a concept may
eventually lead to a world where robots not only outsmart cyber adversaries
but evolve with every challenge they face.

232

Part VI

Appendices

Appendix A

Research Results

A.1 Thesis framework

The topics of interest for the purpose of this thesis are presented as building
blocks. These blocks represent a framework for the development of this
dissertation. Results are categorized accordingly, with each research
product aligning to one of these Blocks as hinted in the tables below.
From bottom to top: (0) Ethics and law, (1) Offensive security blueprints
for robots and their components, (2) Cyber-attacking robots and (3) Cyber-
attacking robots with Machine Learning and Game Theory. See Figure
1.2.

A.2 Past work

Tables A.1 and A.2 present a summary of the work performed prior to
engaging formally with the PhD. Several articles were produced focusing
mostly in blocks 0 (Ethics and law) and 1 (Blueprints). Since building a solid
base was instrumental for the PhD research, these grounding publications
capture the robotics know-how acquired after multiple years in industry
and represent the baseline from wherein the research started.

235

A. Research Results

Title Summary

Year Block

Extending the OpenAI
gym for robotics: a
toolkit for reinforcement
learning using ROS and
Gazebo [342]

This paper introduces an extension of the OpenAI Gym
for robotics, integrating ROS and Gazebo simulator. It
elaborates on the software architecture and benchmarks
two Reinforcement Learning techniques: Q-Learning and
Sarsa. The work establishes a system for comparing various
techniques and algorithms under consistent virtual conditions
in robotics.

2016 1

The Hardware Robot
Operating System
(H-ROS); an
infrastructure to create
interoperable robot
components [228]

This article presents the Hardware Robot Operating System (H-
ROS), a hybrid hardware-software infrastructure for creating
adaptable, interchangeable robot components. H-ROS enables
dynamic modification of a robot’s internal representation,
allowing selective activation and exchange of hardware parts,
thus simplifying robot assembly. The study validates the
concept’s feasibility and discusses future enhancements for
the H-ROS platform."

2017 1

Time-sensitive
networking for robotics
[190]

This paper posits that Time-Sensitive Networking (TSN) will
emerge as the standard for real-time robotic communications,
reviewing relevant communication standards and highlighting
issues with traditional Ethernet networks. It evaluates TSN’s
deterministic communication features through experimental
tests in a robotic scenario. The findings suggest a gradual shift
from existing real-time solutions to TSN, paving the way for a
unified, interoperable landscape in robotics.

2018 1

Real-time Linux
communications: an
evaluation of the Linux
communication stack for
real-time robotic
applications [191]

This paper examines the Linux communication stack’s suitabil-
ity for real-time robotic applications, focusing on UDP-based
communications in multi-core embedded devices. The study
confirms that with proper configuration, the Linux kernel signif-
icantly improves UDP communication determinism. It also re-
veals that concurrent traffic affects latency bounds, suggesting
isolation of real-time applications and corresponding interrupts
on a separate CPU as a solution

2018 1

Towards a distributed
and real-time framework
for robots: Evaluation of
ROS 2.0 communications
for real-time robotic
applications [192]

This study evaluates ROS 2.0 for real-time robotic applications,
focusing on inter-component communication on Linux systems.
It benchmarks worst-case latencies and missed deadlines to
assess ROS 2.0’s performance in real-time contexts. The
research experimentally shows the impact of computational and
network congestion on communication latencies and proposes
a setup that achieves bounded traffic under specific conditions.

2018 1

Time synchronization in
modular collaborative
robots [193]

The study emphasizes synchronization in modular cobot sys-
tems, addressing a key challenge in the next generation of col-
laborative robots. It delves into synchronization issues, demon-
strating that with an optimally configured system, remarkable
synchronization precision is attainable. Results include dis-
tributed sub-microsecond clock synchronization among mod-
ules, ROS 2.0 message timestamping accuracy below 100 mi-
croseconds, and stable millisecond-level end-to-end communi-
cation latencies, even under heavy network loads of up to 90%
capacity.

2018 1

Table A.1: Past work group 1

236

Past work

Title Summary

Year Block

Introducing the Robot
Security Framework
(RSF), a standardized
methodology to perform
security assessments in
robotics [89]

A methodology to perform systematic security assessments in
robots proposing a checklist-like approach that reviews most
relevant aspects in a robot

2018 1

Robot hazards: from
safety to security [2]

Discussion of the current status of insecurity in robotics and
the relationship between safety and security, ignored by most
vendors

2018 0

Towards an open
standard for assessing
the severity of robot
security vulnerabilities,
the Robot Vulnerability
Scoring System (RVSS)
[90]

Introduction of a new assessment scoring mechanisms for the
severity of vulnerabilities in robotics that builds upon previous
work and specializes it for robotics

2018 1

Robotics CTF (RCTF), a
playground for robot
hacking [91]

Docker-based CTF environment for robotics (RCTF) which
bridges the gap between robotics and cybersecurity. The
RCTF enables reproduction of virtual robotics scenarios and
adjustment of network setups for realistic security challenges.

2018 1

Aztarna, a footprinting
tool for robots [85]

Aztarna, a tool focused on robot reconnaissance and foot-
printing, addresses the security overlook in the Industry 4.0
era, where robots are increasingly network-connected. It en-
ables identification of various robots, aiding in assessing the
widespread lack of security practices in the robotics industry.

2018 1

Volatile memory
forensics for the Robot
Operating System [84]

General overview of forensic techniques in robotics and discus-
sion of a robotics-specific Volatility plugin named linux_rosnode,
packaged within the ros_volatility project and aimed to extract
evidence from robot’s volatile memory.

2018 1

Introducing the robot
vulnerability database
(RVD) [15]

The Robot Vulnerability Database (RVD) addresses the emerg-
ing importance of cybersecurity in robotics, a field where cyber
attacks can lead to severe safety consequences. RVD serves as
a comprehensive platform for responsible disclosure of vulnera-
bilities in robots, surpassing existing databases in detail and
relevance. This paper outlines RVD’s design, disclosure policy,
and invites contributions to mitigate zero-day vulnerabilities in
robotics, enhancing overall security

2019 1

ROS 2 Security
Workshop - ROSCon
2019: Demonstrating
vulnerabilities and ways
to protect your robots
[343]

This workshop demonstrated different real-world attacks
performed on robots while teaching techniques on how to
secure them against those attacks. This included teaching on
how to design threat models for robotics, hardening the ROS
ecosystem through SROS2 as well as using several penetration
testing tools to verify that the robot is no longer vulnerable to
those attacks.

2019 2

ROS 2 Real-Time
Workshop - ROSCon
2019: Doing Real-Time
with ROS 2: Capabilities
and Challenges [344]

This workshop introduced participants to the on-going work to
make ROS 2 usable as a foundation for soft, firm and hard real-
time robot systems. Participants will learn what the current
capabilities are of ROS 2 for real-time robotics, what still
remains to be done, and how they can contribute to making
ROS 2 usable in these applications.

2019 1

Table A.2: Past work group 2

237

https://ros-swg.github.io/ROSCon19_Security_Workshop/
https://ros-swg.github.io/ROSCon19_Security_Workshop/
https://www.apex.ai/roscon2019
https://www.apex.ai/roscon2019

A. Research Results

A.3 Peer-reviewed articles

Tables A.3 and A.4 show the peer-reviewed articles published within the
PhD period:

Title Summary

Year Block

Type/Publisher

Industrial robot
ransomware: Akerbeltz
[88] (paper)

Introduce Akerbeltz, the first known instance
of industrial robot ransomware targeting a well
known collaborative robot.

2020 2 2020 Fourth IEEE
International
Conference on
Robotic
Computing (IRC)

Cybersecurity in
Robotics: Challenges,
Quantitative Modeling
and Practice [345]
(paper)

This book emphasizes the critical need for inte-
grating security in robotics from the design phase,
addressing the common neglect of security in the
rapid development of robotic systems. It advocates
for quantitative security approaches, including tai-
lored vulnerability scoring and game theory, to
enhance protection against various attacks. Tar-
geting both theorists and practitioners, the book
offers strategies to manage the complex nature of
robotic systems effectively.

2021 1 Foundations and
Trends® in
Robotics: Vol. 9:
No. 1, pp 1-129

Hacking planned
obsolescense in robotics,
towards
security-oriented robot
teardown [104] (paper)

This thought-provoking article introduces robot
teardown as a method to explore robot hardware
architectures and enhance security research. It
highlights the increasing need for component up-
dates in damaged or compromised robots and cri-
tiques manufacturers’ use of planned obsolescence
to hinder repairs. The approach is effective in
exposing security vulnerabilities and evidencing
manufacturers’ strategies against competition.

2021 0 Conference on
Networked
Systems 2021
(NetSys 2021)

Robot teardown,
stripping industrial
robots for good [101]
(paper)

This paper examines the crucial hardware/soft-
ware nexus in robotics, emphasizing teardown
as essential for cybersecurity research. It an-
alyzes contemporary industrial robot hardware,
critiquing manufacturers’ practices of prepro-
grammed obsolescence and the consequent gen-
eration of robotics waste. The study highlights
the manufacturers’ restrictive networks that limit
repair capabilities and stifle competition, under-
scoring the ongoing need for component updates
in response to damage or security issues.

2022 2 Journal of Cyber
Forensics and
Advanced Threat
Investigations
(CFATI)

Robot cybersecurity, a
review [83] (paper)

This article highlights the inadequate cyberse-
curity in robotics, attributed to underdeveloped
defensive mechanisms, the complexity and cost
of securing robots, and manufacturers’ delayed
responses to vulnerabilities. Drawing on litera-
ture, forum surveys, and recent research, it un-
derscores the challenges in robotic security. The
author, leveraging extensive experience and em-
pirical data from security assessments, advocate
for a proactive offensive strategy as an effective
solution to strengthen robot cybersecurity.

2022 0 Journal of Cyber
Forensics and
Advanced Threat
Investigations
(CFATI)

SROS2: Usable Cyber
Security Tools for ROS 2
[102] (paper)

SROS2 is presented as a user-friendly suite of
tools and libraries to secure ROS 2 computational
graphs, aligning with the growing use of ROS 2
in the robotics industry. The work emphasizes
a systematic, DevSecOps-aligned approach to
security, illustrated through a case study with
TurtleBot3. The analysis of SROS2’s capabilities
underscores the essential role of usability in the
effective implementation of security in robotics.

2022 1 2022 IEEE/RSJ
International
Conference on
Intelligent Robots
and Systems
(IROS)

Table A.3: Peer-reviewed articles group 1.

238

https://ieeexplore.ieee.org/document/9287894
https://www.nowpublishers.com/article/Details/ROB-061
https://journal.ub.tu-berlin.de/eceasst/article/download/1189/1113
https://www.conceptechint.net/index.php/CFATI/article/download/40/15
https://conceptechint.net/index.php/CFATI/article/download/41/16
https://arxiv.org/pdf/2208.02615.pdf

Peer-reviewed articles

Title Summary

Year Block

Type/Publisher

RobotCore: An Open
Architecture for
Hardware Acceleration
in ROS 2 [139] (paper)

RobotCore enhances robotics by integrating hard-
ware acceleration into ROS 2, supporting diverse
platforms and accelerators like FPGAs and GPUs.
This adaptable architecture, complemented with
a new firmware layer, facilitates efficient deploy-
ment across various setups. It utilizes the Linux
Tracing Toolkit for real-time tracing and bench-
marking, highlighting its effectiveness in a case
study where RobotCore accelerates a ROS 2 com-
putational graph on an FPGA, achieving a signifi-
cant 24.42% speedup over CPU-based systems.

2022 1 2022 IEEE/RSJ
International
Conference on
Intelligent Robots
and Systems
(IROS)

FogROS 2: An adaptive
and extensible platform
for cloud and fog
robotics using ROS 2
[103] (paper)

FogROS2 is an advanced open-source platform de-
signed for enhancing robotic computing by inte-
grating with cloud services like AWS, GCP, and
Azure, ensuring compatibility with ROS 2. With a
focus on security and efficiency, it offers substan-
tial improvements over FogROS1, including lower
latency, faster startup, and better usability. Key
enhancements include a 50% reduction in SLAM
latency and a significant boost in planning speeds,
alongside improved network efficiency. Available
on the ROS 2 repository, FogROS2 addresses the
computing limitations of robots securely and effec-
tively.

2023 1 2023 Proceedings
IEEE International
Conference on
Robotics and
Automation (ICRA)

Threat modeling for
robotic-based production
plants [346] (paper)

This study highlights the growing cybersecu-
rity challenges accompanying the integration of
robotics and automation in production plants. It
presents a comprehensive threat model for a pro-
duction facility with diverse components like PLCs,
machine tools, sensors, actuators, and robots. Rec-
ognizing the heterogeneity of these components
and their protocols, the paper outlines potential
threats to the factory’s security. It also suggests a
series of changes and mitigations to enhance the
cybersecurity and resilience of these production
systems.

2022 2 2022 IEEE
International
Symposium on
Safety, Security,
and Rescue
Robotics (SSRR)

Game-theoretic APT
defense: An
experimental study on
robotics [283] (paper)

This paper presents a novel game-theoretic ap-
proach to counter Advanced Persistent Threats
(APTs) in cybersecurity. It expands the Cut-The-
Rope model to simulate more realistic attack sce-
narios and employs this framework in an exper-
imental APT defense game using attack graphs.
This allows for optimized defense strategies with-
out assuming a clean system or relying on adver-
sarial activity indicators. The model effectively
incorporates vulnerability data like CVEs but can
also function without it. Tests on real-world at-
tack graphs in robotics show that this optimized
defense significantly outperforms basic heuristics,
demonstrating its practical applicability and effec-
tiveness in complex cybersecurity environments.

2023 3 Computers &
Security (2023)

RobotPerf: An
Open-Source,
Vendor-Agnostic,
Benchmarking Suite for
Evaluating Robotics
Computing System
Performance [133]
(paper)

RobotPerf is a vendor-neutral, open-source bench-
marking suite using ROS 2, designed to evaluate
computing performance in robotics across various
hardware. It integrates black-box and grey-box
testing methods for comprehensive performance
assessment and is adaptable for custom ROS 2
computational graphs. Developed with expert in-
puts, it aims to standardize robotics benchmarking
and evolve with community contributions.

2023 1 Proceedings of the
2023 IEEE/RSJ
International
Conference on
Intelligent Robots
and Systems
(IROS) Workshop
on Methods for
Objective
Comparison of
Results in
Intelligent
Robotics Research

Table A.4: Peer-reviewed articles group 2.

239

https://ieeexplore.ieee.org/document/9982082
https://par.nsf.gov/biblio/10396373
https://ieeexplore.ieee.org/document/10018641
https://www.sciencedirect.com/science/article/pii/S0167404823002389
http://www.robot.t.u-tokyo.ac.jp/TCPEBRAS_IROS2023/RobotPerf.pdf

A. Research Results

A.4 Preprint articles (including under review)

Table A.5 summarizes other non peer-reviewed results while classifying
them according to the four levels of Figure 1.2.

Title Summary

Year Block

DevSecOps in Robotics
[17] (paper)

A set of best practices designed to help roboticists implant security deep in
the heart of their development and operations processes.

2020 1

Alurity, a toolbox for
robot cybersecurity [19]
(paper)

Alurity is a modular and composable toolbox for robot cybersecurity.
It ensures that both roboticists and security researchers working on a
project, have a common, consistent and easily reproducible development
environment facilitating the security process and the collaboration across
teams

2020 1

Can ROS be used
securely in industry?
Red teaming
ROS-Industrial [86]
(paper)

Red team ROS in an industrial environment to attempt answering the
question: Can ROS be used securely for industrial use cases even though
its origins didn’t consider it?

2020 2

An Introduction to Robot
System Cybersecurity
[92] (paper)

This article addresses the often overlooked aspect of security in rapidly
developed robotic systems, advocating for its integration from the initial
design phase. It proposes quantitative methods and game theory for robust
security management, tailored to the complex, distributed nature of robotics.
The focus is on balancing affordability with effective security, providing a
comprehensive guide for practitioners and theorists to enhance protection
against diverse cyber threats in robotics.

2021 1

A Security Analysis of
the Data Distribution
Service (DDS) Protocol
[97] (paper)

This study revealed significant security vulnerabilities in the Data Distribu-
tion Service (DDS), a middleware used in critical systems globally, including
ROS 2. We identified 13 new CVEs across DDS implementations and found
hundreds of public-facing DDS services, posing serious risks like denial of
service and loss of control. The findings underscore the urgent need for
continuous security testing of DDS. The research was a collaborative effort
involving experts from multiple organizations, highlighting the widespread
concern for DDS security.

2022 2

ExploitFlow, cyber
security exploitation
routes for Game Theory
and AI research in
robotics [20] (paper)

ExploitFlow (EF) is introduced in this paper as a modular library integrating
Game Theory and AI for cybersecurity, specifically targeting robotics. It
automates attacks by combining various exploits and analyzing system
states to identify potential attack paths.

2023 1

PentestGPT: An
LLM-empowered
Automatic Penetration
Testing Tool [292]
(paper)

This study examines the use of Large Language Models (LLMs) for
automating penetration testing, revealing their strengths in individual
tasks but challenges in overall scenario comprehension. To address
this, the researchers introduce PentestGPT, an advanced LLM-based
tool with specialized modules to enhance penetration testing efficiency.
Outperforming standard LLMs, PentestGPT shows significant improvements
in task completion and has gained notable attention in the cybersecurity
community, demonstrating its practical applicability in both academic and
industrial settings.

2023 3

RobotPerf: An
Open-Source,
Vendor-Agnostic,
Benchmarking Suite for
Evaluating Robotics
Computing System
Performance [347]
(paper)

RobotPerf is a vendor-neutral, open-source benchmarking suite using
ROS 2, designed to evaluate computing performance in robotics across
various hardware. It integrates black-box and grey-box testing methods for
comprehensive performance assessment and is adaptable for custom ROS 2
computational graphs. Developed with expert inputs, it aims to standardize
robotics benchmarking and evolve with community contributions.

2023 1

Table A.5: Preprints, this includes under review documents

240

https://arxiv.org/pdf/2003.10402.pdf
https://arxiv.org/abs/2010.07759
https://arxiv.org/abs/2009.08211
https://arxiv.org/pdf/2103.05789.pdf
https://documents.trendmicro.com/assets/white_papers/wp-a-security-analysis-of-the-data-distribution-service-dds-protocol.pdf
https://arxiv.org/pdf/2308.02152.pdf
https://arxiv.org/pdf/2308.06782.pdf
https://arxiv.org/pdf/2309.09212.pdf

Tutorials and talks

A.5 Tutorials and talks

Table A.6 summarizes participation in peer-reviewed tutorials and talks
across workshops and conferences while classifying them according to the
four thesis building blocks of Figure 1.2.

A.6 Vulnerabilities found

Table A.7 summarizes vulnerabilities found during the research period that
have been awarded with a CVE ID:

241

A. Research Results

Title Summary

Year Block

Type/Publisher

Cyber security for
robotics workshop
(part1, part2)

Workshop on robot cybersecurity where to argue about robot-
related cybersecurity topics and challenges while providing
a deep insight and discussion about potential cyber-risks the
current robotics ecosystem is facing.

2020 0 European
Robotics
Forum
(ERF) 2020

Workshop on
Security and
Privacy in
Robotics Zero
Trust Architecture
in Robotics (site)

Introduced a security architecture for robots that makes no
trust assumptions and demands strict identity verification
for every person, device or sub-component trying to access
resources on a robot network (internal or external), regardless
of whether they are sitting inside or outside of the network
perimeter.

2020 1 2020 Inter-
national
Conference
on Robotics
and
Automation
(ICRA)

Cybersecurity in
Robotics Tutorial:
Demonstrating
vulnerabilities and
methods to protect
robots (site)

This tutorial spotted diverse cybersecurity vulnerabilities and
attack patterns for robotic systems and demonstrated new
quantitative methods of cybersecurity management and design.
In particular, a model-based security approach with game
theory was presented to address security issues related to
the heterogeneity and complexity of robotic systems

2021 1 IEEE/RSJ In-
ternational
Conference
on
Intelligent
Robots and
Systems
(IROS) 2021

Conference Talk:
Small Wonder:
Uncovering
Planned
Obsolescence
Practices in
Robotics and What
This Means for
Cybersecurity
(site)

We introduce and promote systematic "robot teardown" as an
approach to repair robots by understanding their internals (still
obscure). We show several "tricks from the trade" and the legal
implications learned by porting reverse-engineering practices
into the less-explored field of robotics. We explain how we
a) discovered more than 90 security vulnerabilities in robots
from Teradyne (MiR and UR) over a period of two years (never
discussed publicly before), b) gained repairing capabilities on
these robots, c) show evidence of planned obsolescence by
comparing two sequentially released robot controllers, and
d) demonstrate how robot hacking leads us to repurpose an
older controller (previous version) from Universal Robots with
their newer robots (arms) maintaining full capabilities and
demonstrating that there’s no need to re-spend thousands of
dollars again. Paper produced for the venue available here

2021 2 BlackHat
2021 USA

1st International
Workshop on
Cyber Forensics
and Advanced
Threat
Investigations in
Emerging
Technologies:
Hacking planned
obsolescense in
robotics, towards
security-oriented
robot teardown
(site)

The main motivation for this Workshop is to bring together
researchers and practitioners working on cyber forensics and
threat investigations for emerging technologies to disseminate
current research issues and advances. Original technical pa-
pers describing new, state-of-the-art research, will be consid-
ered. The Workshop welcomes submissions that evaluate ex-
isting research results by reproducing experiments. The aim
of this workshop is to provide insight for the discussion of the
major research challenges and achievements on various topics
of interest.

2021 2 5th Interna-
tional
Conference
on
Networked
Systems
(Netsys
2021)

Conference Talk:
The Data
Distribution
Service (DDS)
Protocol is Critical:
Let us Use it
Securely (site)

We discovered and disclosed vulnerabilities in most of the OMG
Data Distribution Service (DDS) implementations. DDS enables
crucial technologies like autonomous driving, healthcare ma-
chinery, military tactical systems, or missile launch stations. No-
tably, DDS is used by NASA at the KSC, by SIEMENS for smart
grid applications, by Volkswagen and Bosch for autonomous
valet parking systems, by NAV CANADA for ATC, and by the
Robot Operating System 2 (ROS2) to control industrial and
consumer robots. Presentation available at here

2021 2 BlackHat
2021
Europe

Table A.6: Workshops, tutorials and talks in peer-reviewed conferences.

242

https://aliasrobotics.com/cs4r.php
https://aliasrobotics.com/cs4r_2.php
https://sites.google.com/view/icra-workshop-2020
https://cybersecurityrobotics.github.io/IROS2021/
https://www.blackhat.com/us-21/briefings/schedule/index.html#small-wonder-uncovering-planned-obsolescence-practices-in-robotics-and-what-this-means-for-cybersecurity-23325
http://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Small-Wonder-Uncovering-Planned-Obsolescence-Practices-In-Robotics-And-What-This-Means-For-Cybersecurity-wp.pdf
https://cfati3.conceptechint.net/index.html
https://www.blackhat.com/eu-21/briefings/schedule/index.html#the-data-distribution-service-dds-protocol-is-critical-lets-use-it-securely-24934
http://i.blackhat.com/EU-21/Thursday/EU-21-Yen-The-Data-Distribution-Service-DDS-ProtocolIs-Critical-Lets-Use-It-Securely.pdf

Vulnerabilities found

CVE
ID

Summary Scope CVSS RVSS
[90]

CVE-
2019-
19626

Bash scripts (magic UR files) get launched
automatically with root privileges and without
validation or sanitizing

Universal Robots
CB-series UR3, UR5,
UR10

6.8 10

CVE-
2020-
10267

Unprotected intelectual property in Universal
Robots controller CB 3.1 across firmware versions

Universal Robots
CB-series UR3, UR5,
UR10 and e-Series UR3e,
UR5e, UR10e

7.5 6.5

CVE-
2020-
10268

Terminate Critical Services in KUKA controller KR
C4

Any KUKA robot driven
by the KUKA KR C4
controller, e.g. the KUKA
KR 3 R540

6.1 7.1

CVE-
2020-
10271

MiR ROS computational graph is exposed to all
network interfaces, including poorly secured
wireless networks and open wired ones

MiR-based fleet of AMRs
and derivative robots
including MiR100,
MiR200, MiR250,
MiR500, MiR1000,
ER-Lite, ER-One, etc

8.0 10.0

CVE-
2020-
10278

Unprotected BIOS allows user to boot from live
OS image. The BIOS onboard MiR’s Computer is
not protected by password, therefore, it allows a
Bad Operator to modify settings such as boot
order. This can be leveraged by a Malicious
operator to boot from a Live Image.

MiR-based fleet of AMRs
and derivative robots
(MiR100, MiR200,
MiR250, MiR500,
MiR1000, ER-Lite, etc)

6.1 7.1

CVE-
2020-
10269

Hardcoded Credentials on MiRX00 wireless
Access Point. MiR fleet vehicles comes
pre-configured in WiFi Master (Access Point)
mode. Credentials to such wireless Access Point
default to well known and widely spread SSID
(MiR_RXXXX) and passwords (omitted). This
information is also available in past User Guides
and manuals which the vendor distributed. We
have confirmed this flaw in MiR100 and MiR200
but it might also apply to MiR250, MiR500 and
MiR1000.

MiR-based fleet of AMRs
and derivative robots
(MiR100, MiR200,
MiR250, MiR500,
MiR1000, ER-Lite, etc)

9.8 9.8

CVE-
2020-
10272

MiR ROS computational graph presents no
authentication mechanisms. MiR100, MiR200 and
other MiR robots use the Robot Operating System
(ROS) default packages exposing the
computational graph without any sort of
authentication. This allows attackers with access
to the internal wireless and wired networks to
take control of the robot seamlessly. In
combination with CVE-2020-10269 and
CVE-2020-10271, this flaw allows malicious actors
to command the robot at desire.

MiR-based fleet of AMRs
and derivative robots
(MiR100, MiR200,
MiR250, MiR500,
MiR1000, ER-Lite, etc)

8.0 10.0

CVE-
2020-
10287

Hardcoded default credentials on IRC 5 OPC
Server. The IRC5 family with UAS service enabled
comes by default with credentialsthat can be
found on publicly available manuals. ABB
considers this a well documentedfunctionality that
helps customer set up however, out of our
research, we foundmultiple production systems
running these exact default credentials and
considerthereby this an exposure that should be
mitigated. Moreover, future deploymentsshould
consider that these defaults should be forbidden
(user should be forced tochange them).

All robots powered by
ABB IRC5 controller OPC
Server (e.g. ABB
IRB140)

9.1 10

Table A.7: Some of the most relevant robot vulnerabilities found during
research.

243

Appendix B

Game Theoretic Appendix

B.1 CUT-THE-ROPE Background

APTs, like most targeted attacks conducted by cybercriminals, due to their
diverse combination of attacks, hardly admit a single model to capture
them; rather, they call for a combination of models designed for different
aspects or characteristics of the attack. Game theoretic defense models
may be distinguished according to the nature of APT [348] that they cover:
there is the parasitic type, in which the attacker tries to steal resources for
as long and much as possible, but does not aim to kill its victim. Related
models are FlipIt [349, 350] and its descendants. Minimizing the total
time that the attacker spends in the system may not necessarily minimize
damage too, since the attacker may entirely destroy the asset v0 even
within a very short period of time. The defender may nonetheless suffer
a permanent defeat (upon loss of v0). For example, if the attacker can
gain access to the security controls of a nuclear power plant even for a
very short time, this may be sufficient to cause an unstoppable meltdown.
Conversely, the attacker may spend a considerably larger amount of time
in other areas of the nuclear power plant’s system; as long as there is no
vital subsystem to fiddle with, the damage to the infrastructure may be
bearable. This motivates the consideration of the second type of APT, for
which the game model Cut-The-Rope is tailored to: there, the attacker aims
to kill the victim and silently prepare the final blow. A documented case of
this is Stuxnet [351], and Cut-The-Rope is a game model designed for this
latter type.

Many other game models are aligned with the phases in the kill chain,
and most related work [352] is specific for at least one of them. We note that
the ADAPT project [353] covers a wide spectrum of aspects and phases here.
Specific defense models include the detection of spying activities [354],
tracing information flows [355], detection of malware [356], deception
[357] also via honeypots [358], attack path prediction [359], path selection
to support malware detection in distributed networks [360], and general
network defense [361] to name only a few. Our game is in a way similar

245

B. Game Theoretic Appendix

to that of the seminal work [362], yet differs from this previous model in
not being stochastic, and in using payoffs that are not real-valued. The
stochastic element is included in a much simpler way in our model, yet
preserving information about uncertainty in a full distribution, to avoid
losing information by averaging out randomness (for example, replacing a
random payoff by a real-valued expected payoff).

Since the methods applied here come from the risk management field,
this relates our work to that of [363], who presents a framework to optimally
respond to a detected APT. Their work is thus an a posteriori treatment
after the APT succeeded, while ours complements the risk management
here by an a priori treatment to prevent the APT from success. Likewise
notable is also the work of [364, 365], who consider inter-dependency
graphs in relation to attack graphs in a game-theoretic analysis of targeted
attacks. Their work adds constraints to budgets or desirable risk levels, and
is specifically about investments in defenses of nodes and edges, but also
works with crisp payoff measures (such as, e.g., paths of maximal attack
probability or similar).

A different classification of related work is based on the protection
targets. defenses can be optimized for confidentiality [366], the monetary
value of some asset upon theft or damage [367], or the time that an
adversary has parts of the system under control [349]. This distinction can
be important depending on the context, as industrial production typically
puts priority on availability and integrity, with confidentiality as a secondary
or tertiary interest. Conversely, whenever personal data is processed,
confidentiality becomes the top priority, putting availability further down
on the list.

The techniques applied to capture and defend against APTs are manifold,
but in most of these (like in our work), the network graph is in the center
of attention: it may define how an attack evolves as a dynamical system
[368, 369] inside the graph topology, with the challenge of optimized
orchestrated defense. A good defense design that needs to account for new
vulnerabilities potentially being opened up when closing known security
holes. The work of [370], in this regard, utilizes a game model for graph
coloring for a systematic and optimized defense, applying these results to
industrial bus systems. Another dynamic yet queuing-based model is that
of [371], which like our model computes optimal resource allocations by
the defender and attacker, as an aid for decision making. Tailoring the
attack model more closely to the application domain for the sake of a more

246

CUT-THE-ROPE Background

accurate description, the work of [372] provides insightful connections of
graph topological properties of a power grid, and how areas in danger of
becoming attacked are identifiable from analyzing the graph.

The work of [373, 374] takes a more birds eye perspective on the domain
of the internet of things (IoT), and applies it directly to or varies the FlipIt
game (see the references above and [350]) to model individual parts of a
cloud-based IoT infrastructure, combining these submodels into a larger
hybrid game model that allows certain equilibria to play optimally against
the adversary. Another cloud-related and -specific APT defense model is
[375]. Like us, they adopt a leader-follower model, but different to our
work, they use a Stackelberg equilibrium concept.

Taking the APT as a long term yet one-shot event, an attack graph can
be treated as a (big) game in extensive form. From this point of view, it is
possible to think of the APT as an instance of the induced gameplay, to which
Bayesian or subgame perfect equilibria can be sought [376]. More similar
to this work, we can treat the APT as a game of inspections, to discover
optimal strategies of inspection in different depths of a shell-structured
defense [367, 377]. An aspect of strong relevance concerns the use of
probabilities: the work of [378, 379] are most interesting in its account
for subjective probability and prospect theory, since this includes the way
of how humans bring in their individual risk attitudes in decision making
under uncertainty (especially about defenses). We avoid this conceptual
and practical difficulty in the modeling by designing our game with as few
probabilistic parameters as possible.

Cut-The-Rope is, in two ways, different from most other game theoretic
models: first, it can let the players act in different time axes, meaning that
the defender can be active in discrete or continuous time, while the attacker
is (here always) acting in continuous time. This is in contrast to most other
models in which both players act in fixed schedules (such as in extensive
form games), or both can take actions continuously (such as in differential
games). The second aspect is the added suggestion of tie-breaking if there
are several equilibria. Cut-The-Rope implicitly addresses the equilibrium
selection problem by refining the set of possibly many defense actions
based on the probabilities to reach not only v0, but also to get nearby it.
Formally, the optimization, after having minimized the chance to conquer
v0, continues by minimizing the chances to reach a node close to v0. As
mentioned in Section 10.2.1 this induces a dependency on the ordering of
nodes, but this ordering is up to the choice of the defender setting up the

247

B. Game Theoretic Appendix

start target

attack path

previously accomplished route

defender

spot-
check

avatar position
before spot check

avatar position after
spot check

"sent back" upon closing the backdoor

step number per time unit randomly distributed

(one step)

Figure B.1: Basic Gameplay of Cut-The-Rope. Reproduced from [283].

model. In any case, the defender is not left with a choice among possibly
many equilibria, but can have the calculation automatically refine it in
an interpretable sense. This equilibrium selection problem is not usually
intrinsically addressed in other security game models.

B.2 The Model

In the following, we let sets appear as upper case letters, and vectors and
matrices in boldface font. Given a finite set X, the symbol ∆(X) denotes
all (categorical) probability distributions supported on X, i.e., an element
x ∈ ∆(X) has the elements (p1, . . . , p|X|) with pi = Pr(xi ∈ X is chosen).
The symbol |X| is the cardinality of the set X.

We refrain from replicating the full formal description of Cut-The-Rope,
and instead summarize its concept in Fig. B.1. The game is played entirely
from the defender’s viewpoint: the defender knows the attack graph
G = (V, E) and can enumerate the attack paths on which the adversary can
be. For simplicity, we assume that the number of these routes is tractably
small. Generally, the number of routes can be exponential in the cardinality
|V | of nodes, but by strategic domination and other heuristics, some routes
may be safely excluded from consideration. We will revisit this point later
in Section 10.4.4.

To express the uncertainty about where exactly the adversary is, the
defender acts as if the attacker would move a whole cohort of avatars
towards v0, each avatar starting from another possible location in the

248

The Model

attack graph with uniform probability. The game is round-based, where the
exact meaning of a round depends on the moving patterns of the defender
and the attacker:

• If the defender acts periodically in fixed intervals (e.g., daily), a round
of the game is one period of activity for the defender (e.g., one day).
During this period of time, the attacker can take a random (unlimited)
number of steps along the attack path towards the goal.

• If the defender is taking action at random, e.g., taking exponentially
distributed pause times, then a round of the game is, in each instant,
the random idle time of the defender. Again, during these periods,
the attacker can take any number of actions, depending on its
“configuration” and/or the attack path. In the terminology of the
FlipIt game [349], this is called an exponential defense strategy.

In both cases, we do not explicitly model the time to complete a spot-
check and merely assume this completion to be possible within one unit
of time. Including the defender’s costs for spot-checking as a separate
goal (to minimize) makes the game multi-criteria and calls for Pareto-
optimization, which we leave out of our scope in this work (and up to future
considerations). We will come back to the exact meaning of a “round” or
“unit of time” in Section B.3.1. Let us first complete the description of
the gameplay: Figure B.1 displays two attack paths, with the lower path
showing the step-by-step traversal of an avatar towards the goal v0. Every
possible action of the defender is here called a spot-check at any node
in V \ {v0}, where the target node is excluded to avoid trivialities 1. A
spot-check can mean any action that, for example, (i) cleans a component
from malware, (ii) disables certain services that an exploit would rely
on, (iii) changes in the security policy or implementation that invalidates
the adversary’s knowledge (e.g., access control mechanisms), or similar.
Common to all actions of the defender is their transient efficacy, which
means that the effect of such an action is not permanent (the opposite case
is discussed later in Section 10.4.2). After the action, and not necessarily
known to the defender, the attacker is sent back on the attack path to

1If the defender would not move away from the target, there would be nothing to
accomplish here for the adversary and there would be nothing to analyze.

249

B. Game Theoretic Appendix

an earlier position (upper part of Figure B.1). For example, if the so-
far accomplished route has at some point used access credentials for a
computer, and the defender has just changed them, the route is essentially
closed at this point, and the attacker has to re-try just before this point 2.
The avatars can go unaffected by the defender’s action in two cases: (i) if it
travels on a different route that the defender did not inspect in this moment
(e.g., lower attack path in Figure B.1), or (ii) the attacker started from a
location below the cut point (e.g., if the attacker is left to the cut point
✓ in Figure B.1). This assumption implicitly accounts for “out of attack
graph” ways of the attacker having reached this location In either case, the
avatar’s journey is not intercepted.

The attacker may at any point decide to try a different route instead.
This is called lateral movement. It is naturally included in this modeling by
having avatars on all attack routes, which makes lateral movement nothing
else than moving other avatars on another route. Cut-The-Rope is played
under the assumption that an avatar can be thrown back to an earlier point
by the defender, but will in any case re-try its current attack path, until it
(or any of its clones) has reached the goal.

The payoffs in the game are zero-sum, and come to the probability of
reaching v0 in a single round of the game. This is the payoff to the attacker,
and likewise the loss of the defender, who seeks to minimize this probability.
Its computation depends on the probability distribution law that governs
how many steps N can be taken during the defender’s idle periods. This is
the main ingredient whose influence is studied in this work, relative to a
heuristic best-practice defense.

The payoff to the adversary is the chances for any of its avatars to
reach, from its current position, the target v0 within N steps and within
the time-limit W , during which the defender is idle 3. This can be fixed (for
a periodic defender) or random (for an exponential defense strategy). We
collect all avatars in a set Θ ⊆ V \ {v0}, and denote individual avatars as
θ ∈ Θ. The exclusion of v0 from this set is to avoid the trivial case where
the attacker has already reached v0 before the defense game starts. The

2We herein assume that there is no direct way to just get back to the later point: if there
would be such a shortcut route bypassing the just-closed backdoor, this would be another
attack path, taken by a respectively other avatar.

3Here, we simplified the payoff representation from a vector-valued distribution in [286]
over the attacker distance to the goal, to the probability of reaching the goal. This does not
affect the solution of the model, but facilitates readability.

250

The Model

payoffs to both players are:

uattacker = −udefender = Pr(adversary reaches v0) (B.1)

We will formally determine this quantity in Section B.2.1 in expressions
(B.7) and (B.8), which make the dependency on the strategic choices of the
defender and attacker visible and explicit.

Strategies

We now turn to the description of how the defender’s and attacker’s
action determine the probability to reach v0. The strategic choices of
both players towards maximizing or minimizing Pr(adversary reaches v0)
are the following:

• The defender has a choice from the set AS1 := V \ {v0} to spot-check,
giving a total of n = |AS1| actions. We will write x ∈ ∆(AS1) for a
randomized such spot-checking rule.

• The attacker can likewise use a total of m = |AS2| attack paths in G,
collected in the set AS2. Each avatar starts from a different location
θ ∈ Θ = V \ {v0} and traverses one of the (perhaps many) routes from
θ towards v0. The adversary solution in the game is the best choice
of attack paths from AS2. Likewise, we will write y ∈ ∆(AS2) for a
random choice from the set of attack paths.

Every avatar takes action by being moved forward along the attack path
that it is on, and draws/samples a random number N from a fixed step-
distribution fN . This is not a strategic choice, but rather a part of
the game’s payoff mechanism. Low-level procedures of how the avatar
technically mounts exploits are not expressed nor modeled in the game
itself (due to the heterogeneity and sheer number of possibilities of exploits
in a real-life attack graph).

B.2.1 Definition of Payoffs

For the sake of rigor, let us concretize (B.1) by showing how it is practically
obtained. This will also display the role of the movement patterns (periodic,
exponential) in the experimental analysis. Working out the adversary’s

251

B. Game Theoretic Appendix

utility is a matter of conditioning the attack step distribution FN on the
current situation in the network, i.e, the position of the avatar and where
the defender took action.

Let π1, π2, . . . , πm be an (exhaustive) enumeration of all attack paths,
each starting from another location θ ∈ Θ ⊆ V \{v0}. Each starting location
is thus identified with one avatar, and the adversary moves all of them
towards v0. Let m be the total number of all attack paths.

Each such path is again a sequence of nodes, written as π =
(θ, w1, w2, . . . , v0) with all wi ∈ {v1, v2, . . .} = V and θ ∈ Θ being the starting
point of the route, one-to-one corresponding to an adversarial avatar. The
set of nodes constituting π is V (π). Furthermore, let dπ(u, v) ∈ N count the
edges on the path π from u to v. It is a graph-theoretic distance.

Then, the location distribution for the attacker assigns to each node
v ∈ V the mass

Pr(avatar location = v|V (π)) = fN (dπ(θ, v))
PrN (V (π)) , (B.2)

in which fN (n) = Pr(N = n), where N ∈ {0, 1, 2, 3, . . .} is the random
number of steps undertaken by the avatar, and

Pr
N

(V (π)) =
∑

x∈V (π)

Pr
N

(dπ(θ, x)) =
∑

x∈V (π)

fN (dπ(θ, x)). (B.3)

The probability density fN will be the main element to vary when
describing different attacker-defender scenarios (such as announced in
the introduction under the contributions). We will give various options to
define fN in equations (B.10), (B.11), (B.12) and (B.13).

Now, the defender attempts to break the attacker’s chain of exploitation
(“cut the rope” in the wording of [286]). Let c ∈ V be the checked node,
then the possibly truncated path is

π|c =


(θ, w1, w2, . . . , wi−1), if c = wi for some wi on π

(θ, w1, . . . , v0), otherwise.

(B.4)

The closing of a backdoor here becomes a conditioning of the distribution
of the avatar’s location on the shorter (cut) path π|c. The formula is the
same as (B.2), only with π replaced by π|c now. Since c ∼ x follows the

252

The Model

defender’s mixed spot checking strategy (possibly degenerate), and the set
of paths π along which avatars proceed, the defender can determine the
possible locations of the attacker, based on the imagined avatars, as the
vector of probabilities

U = (Pr(adversary’s location = v|V (π|c)))v∈V , (B.5)

which depends on the random choices of the defender (“where to cut?”)
and the attacker (“which route to take?”). This is what the implementation
of Cut-The-Rope computes.

The actual quantity of interest for the game, coming back to (B.1), is
the mass that U assigns to v0. This is the utility for the adversary and
conversely the loss of the defender. Since the game is, from the attacker’s
perspective, a strategic choice y ∈ ∆(AS2) of an attack path, the payoffs in
the game are obtained from the following consideration:

Pr(attacker reaches v0) = Pr(at least one avatar reaches v0)

=
∑

θ∈V \{v0}

Pr(avatar reaches v0 starting from θ) · Pr(θ)

=
∑
c,π

∑
θ∈V \{v0}

Pr[avatar θ has location v0 | V (π|c)]︸ ︷︷ ︸
from eq. (B.2) and (B.4)

(B.6)

· Pr(path π is chosen and defender cuts at c)︸ ︷︷ ︸
strategic choices to optimize

· Pr(θ)︸ ︷︷ ︸
=1/|AS2|

=
∑
c,π

∑
θ∈V \{v0}

Pr
[
avatar θ has location

v0 | V (π|c)
]

· Pr
x

(c) Pr
y

(π) · Pr(θ) =: uattacker(x, y) (B.7)

= −udefender(x, y) (B.8)

The equality in the second line herein follows from the fact that the
attacker will move one avatar at a time, so that no two avatars will
simultaneously reach v0. The first avatar to reach v0 will make all others
stop, so that the respective events become disjoint.

253

B. Game Theoretic Appendix

B.2.2 Solution Concept

An instance of Cut-The-Rope is a quintuple (G, v0, AS1, AS2, fN), containing:
the attack graph G = (V, E), the target node v0 ∈ V , the defender’s possible
spot check locations AS1 ⊆ V \ {v0}, the possible locations AS2 ⊆ V \ {v0},
for the attacker’s avatars. These avatars will move towards v0 along the
attack paths encoded in G, taking a random number N of steps distributed
according to the probability density fN . This density determines the
particular behavior of the attacker, relative to the defender’s actions, and
will be generally given in Section B.3, and instantiated for the two real-life
use-cases in Section 10.3.

A solution for a given instance is obtained with standard techniques
to compute Nash equilibria: With both players having a finite set of
choices, and the utility Pr(adversary’s location = v | V (π|c)) derived from
the location distribution (B.5) that depends on the attack path π, movement
pattern fN and spot-check location c, we end up with a (normal-form) matrix
game that we can analyze for an equilibrium using known techniques. The
solution concept used in this work is a security strategy for the defender,
having the following (informal) semantics: it is the best randomized choice
rule x∗ ∈ ∆(AS1) such that

udefender(x∗, y∗) ≤ udefender(x∗, y) for all y ∈ ∆(AS2) (B.9)

That is, the defender can, upon playing the optimal spot checking strategy
x∗, enforce the worst-case minimal likelihood for the attacker to reach v0,
for all choice rules y ∈ ∆(AS2), i.e., irrespectively of what the attacker
actually does.

The security strategy is computable by solving a conventional matrix
game, which is finite since there are only finitely many spot check locations,
and likewise finitely many attack paths. The game matrix is thus computable
by evaluating formula (B.7), for all locations c ∈ AS1 and all paths π ∈ AS2.
The Nash equilibrium of this game is (x∗, y∗), in which x∗ is the sought
security strategy, and y∗ is the optimal choice rule for the attack paths
towards v0.

The latter information is, however, of limited use for the defender, since
equilibria are generally not unique. Therefore, taking y∗ as a guidance
on where to find for the invisible intruder with highest probability can be
misleading, since there may be (plenty of) other equilibria giving entirely
different advice.

254

Movement Patterns

On the contrary, since the saddle point value giving the lower bound
value in (B.9) is invariant w.r.t. different equilibria (x∗, y∗) any alternative
defense advice cannot accomplish any better lower bound for the defender.
Hence, x∗ is in fact useful as optimal advice.

Remark B.2.1. The original solution concept proposed in [286] has been a
perfect Bayesian equilibrium, but this raises issues with the interpretation
of the results. While the game’s setting formally fits into the definition of
a perfect Bayesian equilibrium as given by [380], it does not fit equally
well into the interpretation thereof: the game is not about signaling, while
the solution concept in [286] took an equilibrium designed for signaling
games. Also, there is no random conditioning on adversary types, which
a Bayesian equilibrium would require. Rather, Cut-The-Rope is – from the
defender’s point – played with avatars, all of which concurrently move on
their routes, without a particular type choice made by nature. Therefore,
a security strategy (computed as a Nash equilibrium) is the more suitable
solution concept.

B.3 Movement Patterns

In lack of any particular knowledge about the difficulty of the attack path,
a simple heuristic is to just use the shortest path, in a graph theoretic
sense. This will later also be the intuitive benchmark (see Section 10.3.1)
to compare the defense obtained from Cut-The-Rope to a defense based
on the (plausible) assumption that the attacker takes the shortest/easiest
route towards v0.

B.3.1 Periodically Active Defender

In the simplest case, originally proposed in [286], we assume that the
defender becomes active in fixed time intervals that are known to the
attacker. The unit of time (see the previous section) is herein the period
in which the defender becomes active (each day, each week, or similar).
Furthermore, we assume no particular cost for the attacker to penetrate
(this case is covered in Section B.3.2). This corresponds to the situation
of having a “just conceptual” attack graph, displaying general strategies
to penetrate, but without reference to concrete exploits, CVE numbers or
similar.

255

B. Game Theoretic Appendix

During the defender’s idle times, we assume an average number
N ∼ Pois(λ) of steps towards its target at “average speed λ”. This
analytical choice is common in related literature (see, e.g., the FlipIt Game
[349] to describe APTs, calling this strategy “exponential”). Empirically
estimating the rate parameter from data, for example, taken from intrusion
detection or other monitoring systems is an interesting challenge of
independent research.

The function fN for a periodic defender and attacker with average speed
λ is the Poisson distribution density

fN (n) = fPois(λ)(n) = λn

n! e−λ, (B.10)

which would be substituted into (B.2) and (B.3) to set up the game.
The value λ must be set relative to the frequency at which the defender

takes actions. For example, if the attacker makes two attempts per day, and
the defender does one spot check per week, then we have λ = 2 × 7 = 14. If
the defender checks twice per day, then the attack rate is λ = 2× 1

2 = 1. The
actual choice of λ was, experimentally, found to mostly impact the likelihood
to hit v0. The defense advice, however, did not significantly change (see
Appendix B, section B.4), meaning that an inaccurate choice of λ in practice
will deliver a respectively inaccurate estimate on how likely v0 will fall, but
can nonetheless deliver a valid defense recommendations.

We assume that the defender has knowledge (or a reasonable assump-
tion) about λ, so that he is able to adapt the defense to it accordingly, as
the security resources permit. The choice of λ itself can be considered as
a strategic decision for the attacker too, knowing the defender’s behavior.
However, we do not explore this variation here any further, as it leads to
a different game, but point out this investigation as a separate research
question. We refer to the work of [379] as being a game about computing
the optimal check-intervals explicitly with help from prospect theory, and
under some assumptions on the attacker’s attitude (risk appetite, etc.), but
not considering attack graphs.

B.3.2 Probabilistic Success on Exploits

The attacker may not necessarily succeed in every penetration that it
attempts. As before, if we assign probabilities 4 q(e) to express the chance

4For example, using subjective probability, prospect theory and generally empirical studies
on human risk perception and subjective assessments, CVSS ratings to derive probabilities

256

Movement Patterns

of a successful exploit e on the respective attack path. Formally, q(e) could
be equated to the likelihood of meeting some precondition to penetrate
a node. Let us slightly change the view to think of an attack path π as a
sequence of exploits π = (e1, e2, . . .) (instead of nodes). Then, the chances
to progress forward by a lot of n = 0, 1, 2, . . . steps is no longer Poisson
distributed; rather, assuming stochastic independence of exploits, the
chances to take n = 0, 1, 2, . . . steps are

fN (n) = (1 − q(en+1)) ·
n∏

k=1
q(ek), (B.11)

i.e., the probability to succeed with exactly n exploits, and to fail on the
(n + 1)st step on the attack path. This function then goes into (B.2) and
(B.3) to instantiate the game under the setting described here. A unit of
time is, again, the period between two appearances of the defender in the
system, again taken as fixed and constant over time (e.g., one day, one
week, etc.).

B.3.3 Checks with Random Intervals (“Exponential Strategy”)

If the defender becomes active at its own random (Poisson) rate λD, the
attacker will be able to take a Pois(λ)-distributed number of steps in an
exponentially distributed pause time controlled by the defense intensity λD.
This defense regime defines a random unit of time, whose long run average
is exactly λD.

This change of the setting amounts to a humble change of the Poisson
distribution into a geometric distribution, because: we now have two types
of events to consider, which are activity of the attacker at rate λ and activity
of the defender, at rate λD. Within a unit of time, we will thus have a number
kA of attack events, vs. a number kD of defense actions. So, the likelihood
of the defender to become active is (frequentistically) approximated as
p = kD/(kA + kD) = 1/n·kD

1/n·(kA+kD) for all n > 0. The last term, however is the
average number of events per n time units, which upon n → ∞ converges
to λ for kA/n and to λD for kD/n. Thus, the probability for an action to
be taken by the defender is p = λD/(λD + λ), and the number of trials
that the attacker can take until the defender becomes active again is a
geometric distribution with that parameter p. Conceptually, the model

from, and others. Helpful related work hereto was done by [291, 378, 379].

257

B. Game Theoretic Appendix

thus remains unchanged, except that the attacker’s step number is now
computed using the geometric distribution density with the given rate
parameter. Consequently, we have

fN (n) = p · (1 − p)n with p = λD

λD + λ
(B.12)

in (B.2) and (B.3).

B.3.4 Spot Checks with Random Intervals and Probabilistic
Success on Exploit

Unlike before, we now consider a fixed unit of time, in which an exploit
for a given vulnerability can be tried. The defender comes back in random
intervals, measured in the this (fixed) unit of time, and has an average
return time of λD. Consequently, the time window for the attacker to run
exploits is an exponentially distributed random variable W ∼ Exp(λD).
Within this time window W , the attacker ought to accomplish n exploits,
along an attack path π = θ → w1 → w2 → . . . v0, in the notation of Section
B.2.1. Like in Section B.3.2, let us call ek the edge into node vk, which
carries a known exploit complexity as the quantity q(ei) = Pr(exploit on
ei is successful within a (fixed) unit of time). Then, an exploit on edge ei

takes an exponentially distributed time Ti ∼ Exp(1/q(ei)). The total time
for n exploits is thus T1 + T2 + . . . + Tn, which, unfortunately, does not admit
a closed analytical expression for its distribution, since the values can be
assumed independent, but not identically distributed. To escape the issue,
we simplify matters by assuming the avatar to move at a uniform velocity
along the attack path, instead of being faster and slower depending on the
attack complexities. We believe this assumption to be mild, since our main
concern is the time it takes to reach the end v0 anyway, and we are not
as much interested in determining the avatar’s location anywhere in the
middle of the attack path.

This simplification comes to a geometric mean of the probabilities

q = geomean{q(ei) | ei is on the chosen attack path}.

The point is that the product of the actual probabilities, i.e., the chance to
hit v0, remains unchanged hereby, since

∏
i q(ei) = q|V (π)| where |V (π)| is

the length of the attack path. Let us put λπ := 1/q to bring the notation
closer to that of Section B.3.3, since the result (to come later) will also be

258

Analytic Results

close to this previous finding. The subscript π to λπ herein reminds about
the attack rate now to depend on the chosen path.

Under this simplification, the time for n exploits is the sum of all
identically Exp(1/q)-distributed random variables En := T1 +T2 + . . .+Tn ∼
Erl(λπ, n) that is Erlang distributed. We are interested in the probability
of T1 + T2 + . . . + Tn ≤ W , which is a matter of computing a convolution
integral. We shift the algebraic details to the appendix B, and directly give
the result here:

fN (n) =

Pr(EN ≤ W) =
(

λπ

λπ+λD

)n

n ≥ 1;
Pr(E1 > W) = 1 − Pr(E1 ≤ W) n = 0.

(B.13)

Observe that this is movement pattern is like in Section B.3.3, which is yet
another geometric distribution, only with the different parameterization.

The approach of geometric averaging over the entire attack path
deserves a bit of discussion: we could equally well average only across the
segment of length n that the attacker targets to overcome, and/or exclude
all exploits with q(ek) = 1 from the averaging. We refrained from both
these options for two reasons: first, removing the 1es from the averaging
would unrealistically shorten the attack path to less than its physical reality.
Even if an exploit has a 100% chance to be used within short time, there is
nonetheless a time step necessary to do it, so including it in the geometric
mean seems plausible. An attack path that is longer will, despite the same
product probability of accomplishing it, take a proportionally longer time
to traverse. Second, concerning the focus on only a segment, this may
miss the actual intention of the adversary, since it targets the end of the
attack path, and not only a specific segment. In other words, geometrically
averaging only over the first k exploits would be the assumption that the
adversary would stop at the k-th step, even if there is time left before the
defender comes back. Since the target is getting to the end of π, it appears
plausible to include all exploits towards this end.

B.4 Analytic Results

For a plausibility assessment of the game’s results, we analytically study
the results on attack graphs with no information at all, so that we can
intuitively (and without any model) determine a best defense. The analytic
results to follow are consistent with the numeric findings for MARA, and,

259

B. Game Theoretic Appendix

more importantly, are independent of the attack rate λ (see Proposition
B.4.3.

Given a set AS2 of attack paths, the defender’s best strategy in Cut-
The-Rope is to find and guard a minimal (in a sense to be defined later)
graph-theoretic cut C ⊆ V between the starting node (set) of all attack
paths, and the target asset v0. Towards proving this claim, suppose that the
defender would focus on a set S ⊂ V that is not a cut. Then, there is a path
π that bypasses S, i.e., S ∩ V (π) = ∅, but this makes π a winning strategy
for the attacker (since the defender can never catch the attacker on that
route). Suppose that the defender’s guarded set C were not minimal, i.e.,
the defender spot-checks on a superset S′ ⊃ C. Then, we can distinguish
two cases:

1. either no attack path passes through the nodes S′ \ C, in which case
defending them is useless, and hence defending S′ is a sub-optimal
strategy (as it consumes too many resources), or

2. there is at least one attack path through a node in S′ \ C and another
node in C. In that case, we can safely remove either of the two, since
both would cut the rope in the sense we desire. This strictly shrinks S′,
and we can repeat this reduction until the resulting set has become
minimal (in terms of cardinality).

Compiling the thoughts above concludes the proof of the next result:

Lemma B.4.1. Let s be the root of the attack graph, and let v0 be the target
asset. Furthermore, assume that the defender can cut the rope anywhere in
the graph, except at the starting point and the target (to avoid trivialities).
The optimal strategy of defense in Cut-The-Rope is guarding an s-v0-cut of
minimal cardinality. If there is more than one starting point or more than
one target asset, the cut is understood between the respective sets thereof.

Lemma B.4.1 makes no assertion about what cut to choose if there are
several. For example, if we have only one attack path overall, then every
node on it would be a valid cut. Intuitively, the best option is cutting the
(single) rope as close as possible near v0, in order to get the most likely
locations covered from which an attacker’s avatar could start. The proof of
Lemma B.4.2 makes this rigorous:

260

Analytic Results

Lemma B.4.2. Assume that a defender’s (mixed) strategy prescribes to
spot-check on the attack path π. The best point to cut the rope is the
location v whose distance to v0 along the path π is minimal.

Proof. Consider the attack path π as a sequence of consecutive vertices
(u0, u1, u2, . . . , ul = v0), and write V (π) to mean the set of all vertices on
π. Call c ∈ V (π) the vertex whose distance d(c, v0) is minimal among all
V (π) ∩ AS1, i.e., all nodes on π that the defender has in its action set AS1
and can hence spot-check. Let c′ ∈ V (π) ∩ AS1 be another node to possibly
check on the same path, which is distinct from c. It follows that either there
is a connection c′ → c (if the two are consecutive) or there is at least one
node in between c′ → · · · → c. In either case, we have distinct avatars θc′

and θc, corresponding to these two nodes as starting points. Both use the
same distribution FN with probability mass function fN , for the number
N of steps taken forward on π, only starting at different locations (c or c′

hereafter). To ease notation in the following, let us associate the avatar θ

directly with a node on π (this creates no ambiguities).

The probability mass that an avatar θi puts on v0 when starting from
location i is given by the chances to take at least the residual distance
dπ(θ, v0) from the starting point (θ) until v0. Given the distribution function
FN of the random distance overcome upon adversarial activity, this is
Pr(N ≥ d(θ, v0)) = 1 − FN (dπ(θ, v0)). Throughout the rest, π and v0
will both be fixed, so we can safely omit them from our notation, so
let us write ∆θ := dπ(θ, v0), for the residual distance on the path π

between the avatar starting from θ, and the target v0. Moreover, put
uθ := Pr(N ≥ ∆θ) = 1 − FN (∆θ) =

∑
d≥∆θ

fN (dπ(θ, v0)) to abbreviate the
probability of the attacker to reach v0 within the next move.

The utility over all attacker avatars is then

Pr(asset v0 is lost to the attacker) =
∑
θ∈Θ

Pr(θ) · uθ (B.14)

which is the total probability mass assigned to v0 by all adversary avatars.

Now, let us compare the effects of spot-checking c vs. spot-checking c′

that is farther away from v0. Since we have only the attack path π on which
c′ comes before c, let us break up the path into three corresponding parts

261

B. Game Theoretic Appendix

π = (u0, . . . , c′ = ui, . . . , c = uj , . . . , ul = v0), and expand (B.14) accordingly∑
θ∈Θ

Pr(θ) · uθ =
∑

θ∈(u0,...,ui=c′)

Pr(θ) · uθ (B.15)

+
∑

θ∈(ui+1,...,uj=c)

Pr(θ) · uθ (B.16)

+
∑

θ∈(uj+1,...,uℓ=v0)

Pr(θ) · uθ. (B.17)

It will be helpful to remember the effect of truncating a distribution at t,
which is switching from FN (d) to the conditional distribution on FN (d|d ≤ t),
whose density is

fN (d|d ≤ t) =


fN (d)
FN (t) , if d ≤ t;

0, otherwise.

(B.18)

The important fact is that cutting at some point on the path affects all
avatars on the segment from the beginning node until the cut node c or c′.
If we cut at c′, we take out the whole expression (B.15), leaving (B.14) =
(B.16) + (B.17), in a slight abuse of formalism here. However, if we cut at
c, term (B.16) also drops out of (B.14), leaving this to be the better option
for the defender. ■

Now, we can compile the findings so far into a generic characterization
of the defender’s best choice:

Proposition B.4.3. Let an acyclic attack graph G be with root node u0, and
let v0 be the target node (likewise, for sets thereof if there are multiple).
Furthermore, let d be a distance measure in G. The defender’s optimal
strategy in Cut-The-Rope is spot-checking a minimum-cardinality u0-v0-cut
C, with the property that for each c ∈ C, the distance d(c, v0) is minimal.

Consistency of Numeric and Analytic Results

The numeric findings for the MARA use case agree with the analytic
predictions to defend the graph cut that is closest to the target nodes.
The formal arguments in Section B.4 assume the same distribution for all
possible paths, which does not hold for the MiR100 use case. Thus, the

262

Application for Risk Control

optimal defense no longer needs to be a graph cut, and the numeric results
about the MiR100 use case confirm this possibility. Since in the MiR100
case, the attack paths have different efficacies, strategic dominance among
the attack paths may affect the results accordingly. Since the results, in
this more general case, depend on the distribution conditional on the attack
path, it appears unlikely that comparable analytic predictions can be made
for the movement pattern of Section B.3.4, and we leave this as an open
problem.

Regarding the heuristic defense, its bad performance in comparison
to Cut-The-Rope can be attributed to the defender blindly checking
everywhere on the attack graph, while the intuition (also behind the
formal arguments of Section B.4) would rather advise to defend closer
to the goal. This suggests that the optimization that Cut-The-Rope may be
reasonably replaced by a heuristic defense, only focused on a graph cut
subset of nodes, and indeed, the numbers for the MARA use case show
an approximately uniform defense of nodes on such a cut to be optimal.
Overall, however, it is advisable to run an optimization, since just adding
the analytic prediction of where to defend to the heuristic is incorrect in the
case where the traversal of an attack path depends on the path’s properties,
such as distinct difficulties to exploit, as in the MiR100 use case. Here, the
performance of the defense is substantially better than for the heuristic,
but the apparent focus on a graph cut is not found in the results.

B.5 Application for Risk Control

Actions with a permanent effect change the attack surface by blocking
certain paths, increasing the attack detection capabilities, or similar. Exam-
ples include the installation of a firewall, malware scanners, deactivation
of services or accounts, and many more.

If the defender’s action space includes at least one with potentially
permanent effect, the attack graph, and hence the overall game, changes
with the defender’s activity, and the game must be re-instantiated before
the next round after pruning the attack graph. This turns Cut-The-Rope
into a dynamic game, but it is still repeated with infinite time horizon. It
is fair to remark that the tree may not only become pruned, but introduce
new attack paths upon inserting new components, installing new software
or similar.

263

B. Game Theoretic Appendix

topological vulnerability
analysis

game setup and
equilibrium computation

defender: sample from the
equilibrium distribution
for next location to check

defender: apply mitigation
actions

action
effect
is. . .

u
p
d
a
te

a
tt
a
ck

g
ra
p
h

dynamic game

static game

volatile/
transient

permanent
(i.e., changes the attack graph)

software tool supported

automatable (implemented in this work)

could mean: patching,
updating,

change of credentials,
change of connections,

(de)activating services
re-installing machines

. . .

e.g., credential change,
security awareness training, ...

→ leaves attack graph unchanged

e.g., permanent disabling of services,
removal of components/connections, ...

Figure B.2: Cut-The-Rope (static game) inside the continuous process of
permanent system hardening (dynamic game). Reproduced from [283].

In both cases, the setup of the game may (but does not need to) start
from the results of a topological vulnerability analysis, with repetitions
being either from the existing defense equilibrium strategy (static instance)
or including the re-instantiation and equilibrium computation (dynamic
instance); see Figure B.2 for a flowchart-like presentation.

264

Derivation of the probability (B.13)

B.6 Derivation of the probability (B.13)

The density of the Erl(n, λ) distribution family is for x ≥ 0 given by

fErl(n,λ)(x) = λnxn−1

(n−1)! e−λx and f(x) = 0 for x < 0. The density of the

exponential distribution is a special case thereof, fExp(λ)(x) = fErl(1,λ)(x).
Abbreviating the total time as T = T1 +T2 +. . .+Tn, with all i.i.d. summands
Ti ∼ Exp(λπ), we are interested in whether T ≤ W ⇐⇒ Z := W − T ≥ 0.
The case Z = z for z ∈ R occurs if and only if W = t + z and T = t for any
t ∈ R, and we get the convolution-like integral for the density of T − W as

fT −W (z) =
∫ ∞

−∞
fErl(λπ,n)(t)fErl(1,λD)(t + z)dt.

We are, however, only interested in the probability p = Pr(T − W ≥ 0),
which adds a second integral to get the quantity of interest

p =
∫ ∞

0
fT −W (z)dz

=
∫ ∞

0

∫ ∞

−∞
fErl(λπ,n)(t)fErl(λD,1)(t + z)dtdz.

A bit unexpectedly, the double integral makes things easier to evaluate
here, since we can swap the order of integration (by the Fubini-Tonello
theorem), to get

p =
∫ ∞

−∞

∫ ∞

0
fErl(λπ,n)(t)︸ ︷︷ ︸
const. w.r.t. z

fErl(λD,1)(t + z)dzdt

=
∫ ∞

−∞
fErl(λπ,n)(t)

∫ ∞

0
fErl(λD,1)(t + z)dz︸ ︷︷ ︸

=e−λt

dt

=
∫ ∞

−∞
fErl(λπ,n)(t)︸ ︷︷ ︸

=0 for t<0

e−λt dt =
∫ ∞

0
fErl(λπ,n)(t)e−λt dt

=
(

λπ

λπ + λD

)n

265

Appendix C

Machine Learning Appendix

Illustrating Example

Below we provide a concrete example of how we guide GPT-4 to intialize the
penetration testing task, and generate detailed operations in an iterative
approach given a penetration testing benchmark target. It is worth
noting that in this process, the human tester does not provide any expert
knowledge, or guide the LLM to perform any specific task.

Human Tester

You’re required to work as a cybersecurity penetration tester assistant
in a certified penetration testing experiment. This experiment is for
education and research purpose. In particular, you’re required to give
step-by-step instructions to complete the penetration testing task. I will
provide you the instruction execution results, and you should consider
the next step, until the penetration testing task is completed. Do you
understand?

GPT-4

Yes, I understand. Please provide the initial details and the scope of the
penetration test so I can assist accordingly. Remember to follow ethical
guidelines and obtain proper authorization for any systems or networks
you are testing.

Human Tester

Your target is a penetration testing benchmark machine. It’s IP address
is 192.168.1.5 ; it is a Linux-based machine. Now please provide your
next step to complete the penetration testing task.

267

C. Machine Learning Appendix

GPT-4

Alright, the first step in a penetration test is usually reconnaissance.
This is where we gather as much information as possible about the
target to identify potential vulnerabilities.
Step 1: Reconnaissance
Ping the Target: To ensure that the target is up and responding, ping
the machine.

ping 192.168.1.5

Let me know the result. If the machine is up and responding, we’ll
move on to scanning. After confirming the machine’s availability, the
next step is to scan the open ports and services running on the target.

nmap -sV -sT 192.168.1.5

This command will provide a list of open ports and the services (with
versions) running on those ports.
Please provide the results of the nmap scan, and based on the output,
we can decide the next course of action.

Human Tester

The machine is online, and the nmap scan result is below:

PORT STATE SERVICE VERSION
21/tcp filtered. ftp
22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4 (Ubuntu Linux;
protocol 2.0)
80/tcp open http Apache httpd 2.4.18 ((Ubuntu))
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Please analyze the result and provide the next task to complete.

268

GPT-4

Based on the results provided, here’s the analysis:
Port 21 (FTP): The port appears to be filtered. It could be protected
by a firewall or other security measures.
Port 22 (SSH): SSH is running with OpenSSH 7.6p1. This version could
have potential vulnerabilities. Additionally, SSH could be brute-forced
if password policies are weak.
Port 80 (HTTP): An Apache HTTP server (version 2.4.18) is running
on the target machine. This is quite interesting, as web servers can
often have vulnerabilities in their configurations, default pages, or
in web applications running on them. Given these results, here’s the
recommended next course of action:

Web Server Enumeration: Start with the web server as it often
presents a larger attack surface. Visit the website in a browser or
use tools like curl or wget to view the source code and check for any
comments, hidden fields, or any other potential information leaks.
Use a tool like nikto to perform a deeper scan of the web server:

nikto -h http://192.168.1.5

This will check for potential misconfigurations, default files, or any
known vulnerabilities in the web server.
Also, use a tool like dirb or dirbuster to perform directory brute-
forcing, which might reveal hidden directories or files.

dirb http://192.168.1.5

269

C. Machine Learning Appendix

Table C.1: Summarized 26 types of sub-tasks in the proposed penetration
testing benchmark.

Phase Technique Description Related CWEs

Reconnaissance

Port Scanning Identify the open ports and related information on the target machine.

CWE-668

Web Enumeration Gather detailed information about the target’s web applications.

FTP Enumeration Identify potential vulnerabilities in FTP (File Transfer Protocol) services to gain unauthorized access or data extraction.

AD Enumeration Identify potential vulnerabilities or mis-configurations in Active Directory Services

Network Enumeration Identify potential vulnerabilities within the network infrastructure to gain unauthorized access or disrupt services.

Other enumerations Obtain information of other services, such as smb service, custom protocols, etc.

Exploitation

Command Injection Inject arbitrary commands to be run on a host machine, often leading to unauthorized system control. CWE-77, CWE-78

Cryptanalysis Analyze the weak cryptographic methods or hash methods to obtain sensitive information CWE-310

Password Cracking Crack Passwords using rainbow tables or cracking tools CWE-326

SQL Injection Exploit SQL vulnerabilities, particularly SQL injection to manipulate databases and extract sensitive information. CWE-78

XSS Inject malicious scripts into web pages viewed by others, allowing for unauthorized access or data theft. CWE-79

CSRF/SSRF Exploit cross-site request forgery or server-site request fogery vulnerabilities CWE-352, CWE-918

Known Vulnerabilities Exploit services with known vulnerabilities, particularly CVEs. CWE-1395

XXE Exploit XML extenral entitiy vulnerabilities to achieve code execution. CWE-611

Brute-Force Leverage brute-force attacks to gain malicious access to target services CWE-799, CWE-770

Deserialization Exploit insecure deserialization processes to execute arbitrary code or manipulate object data. CWE-502

Other Exploitations Other exploitations such as AD specific exploitation, prototype pollution, etc.

Privilege Escalation

File Analysis Enumerate system/service files to gain malicious information for privilege escalation CWE-200, CWE-538

System Configuration Analysis Enumerate system/service configurations to gain malicious information for privilege escalation CWE-15, CWE-16

Cronjob Analysis Analyze and manipulate scheduled tasks (cron jobs) to execute unauthorized commands or disrupt normal operations. CWE-250

User Access Exploitation Exploit the improper settings of user access in combination with system properties to conduct privilege escalation CWE-284

Other techniques Other general techniques, such as exploiting running processes with known vulnerabilities

General Techniques

Code Analysis Analyze source codes for potential vulnerabilities

Shell Construction Craft and utilize shell codes to manipulate the target system, often enabling control or extraction of data.

Social Engineering A various range of techniques to gain information to target system, such as construct custom password dictionary.

Others Other techniques

270

Bibliography

[1] Stoneburner, G. “Toward a Unified Security-Safety Model”. In:
Computer vol. 39, no. 8 (Aug. 2006), pp. 96–97.

[2] Kirschgens, L. A. et al. “Robot hazards: from safety to security”. In:
arXiv preprint arXiv:1806.06681 (2018).

[3] Swinscow-Hall, D. The interaction between safety and security.
https://wwwf.imperial.ac.uk/blog/security- institute/2017/01/03/the-
relationship-between-safety-and-security/. Accessed: 2024-01-12.
2017.

[4] Quigley, M. et al. “ROS: an open-source Robot Operating System”.
In: ICRA workshop on open source software. Vol. 3. 3.2. Kobe, Japan.
2009, p. 5.

[5] ROS community. ROS Community Metrics. 2023.

[6] Mayoral-Vilches, V. “Kria Robotics Stack, a ROS 2-centric approach
for hardware acceleration in robotics”. In: Xilinx, WP540 (2021).

[7] Pardo-Castellote, G. “OMG data-distribution service: Architectural
overview”. In: 23rd International Conference on Distributed Com-
puting Systems Workshops, 2003. Proceedings. IEEE. 2003, pp. 200–
206.

[8] Koenig, N. and Howard, A. “Design and Use Paradigms for
Gazebo, An Open-Source Multi-Robot Simulator”. In: In IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2004,
pp. 2149–2154.

[9] Bozic, J. and Wotawa, F. “Planning the attack! or how to use ai
in security testing?” In: IWAISe: First International Workshop on
Artificial Intelligence in Security. Vol. 50. 2017.

[10] Ghanem, M. C. and Chen, T. M. “Reinforcement Learning for
Intelligent Penetration Testing”. In: 2018 Second World Conference
on Smart Trends in Systems, Security and Sustainability (WorldS4).
IEEE. 2018, pp. 185–192.

271

https://wwwf.imperial.ac.uk/blog/security-institute/2017/01/03/the-relationship-between-safety-and-security/
https://wwwf.imperial.ac.uk/blog/security-institute/2017/01/03/the-relationship-between-safety-and-security/

Bibliography

[11] Niculae, S. Applying Reinforcement Learning and Genetic Algo-
rithms in Game-Theoretic Cyber-Security. 2018.

[12] Schwartz, J. and Kurniawati, H. “Autonomous Penetration Testing
using Reinforcement Learning”. In: arXiv preprint arXiv:1905.05965
(2019).

[13] Applebaum, A. et al. “Intelligent, automated red team emulation”. In:
Proceedings of the 32nd Annual Conference on Computer Security
Applications. ACM. 2016, pp. 363–373.

[14] Applebaum, A. et al. “Analysis of automated adversary emulation
techniques”. In: Proceedings of the Summer Simulation Multi-
Conference. Society for Computer Simulation International. 2017,
p. 16.

[15] Mayoral-Vilches, V. et al. “Introducing the Robot Vulnerability
Database (RVD)”. In: IEEE Robotic Computing (2020). Manuscript
submitted.

[16] Rescorla, E. “Is finding security holes a good idea?” In: IEEE
Security & Privacy vol. 3, no. 1 (2005), pp. 14–19.

[17] Mayoral-Vilches, V. et al. “DevSecOps in Robotics”. In: arXiv preprint
arXiv:2003.10402 (2020).

[18] Object Management Group. DDS Security, Version 1.1. 2018.

[19] Mayoral-Vilches, V. et al. “alurity, a toolbox for robot cybersecurity”.
In: arXiv preprint arXiv:2010.07759 (2020).

[20] Mayoral-Vilches, V. et al. “ExploitFlow, cyber security exploitation
routes for Game Theory and AI research in robotics”. In: arXiv
preprint arXiv:2308.02152 (2023).

[21] Object Management Group. OMG Data Distribution Service (DDS),
Version 1.4. 2015.

[22] Robinson, A. The History of Robotics in Manufacturing. http://cerasis.
com/2014/10/06/robotics-in-manufacturing/. Accessed: 2018-06-05.
2014.

[23] Young, B. The first ’Killer robot’ was around back in 1979. https:
//science.howstuffworks.com/first-killer-robot-was-around-back-in-
1979.htm. Accessed: 2018-05-19.

272

http://cerasis.com/2014/10/06/robotics-in-manufacturing/
http://cerasis.com/2014/10/06/robotics-in-manufacturing/
https://science.howstuffworks.com/first-killer-robot-was-around-back-in-1979.htm
https://science.howstuffworks.com/first-killer-robot-was-around-back-in-1979.htm
https://science.howstuffworks.com/first-killer-robot-was-around-back-in-1979.htm

Bibliography

[24] Dieber, B. et al. “Application-level security for ROS-based applica-
tions”. In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Oct. 2016, pp. 4477–4482.

[25] Lera, F. J. R. et al. “Ciberseguridad en robots autónomos: Análisis y
evaluación multiplataforma del bastionado ROS”. In: Actas Jornadas
Sarteco (2016), pp. 571–578.

[26] White, R. et al. “SROS: Securing ROS over the wire, in the graph,
and through the kernel”. In: arXiv preprint arXiv:1611.07060
(2016).

[27] Lera, F. J. R. et al. “Cybersecurity in Autonomous Systems:
Evaluating the performance of hardening ROS”. In: Málaga, Spain
vol. 47 (2016), p. 47.

[28] Lera, F. J. R. et al. “Cybersecurity of robotics and autonomous
systems: privacy and safety”. In: Robotics-Legal, Ethical and
Socioeconomic Impacts (2017).

[29] Guerrero-Higueras, Á. M. et al. “Empirical analysis of cyber-attacks
to an indoor real time localization system for autonomous robots”.
In: Computers & Security vol. 70 (2017), pp. 422–435.

[30] Balsa-Comerón, J. et al. “Cybersecurity in autonomous systems:
hardening ROS using encrypted communications and semantic
rules”. In: Iberian Robotics Conference. Springer. 2017, pp. 67–
78.

[31] Rodrı´guez-Lera, F. J. et al. “Message encryption in robot operating
system: Collateral effects of hardening mobile robots”. In: Frontiers
in ICT vol. 5 (2018), p. 2.

[32] Caiazza, G. “Security Enhancements of Robot Operating Systems”.
B.S. thesis. Università Ca’Foscari Venezia, 2017.

[33] White, R. et al. “Procedurally provisioned access control for robotic
systems”. In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2018, pp. 1–9.

[34] White, R. et al. “Sros1: Using and developing secure ros1 systems”.
In: Robot Operating System (ROS). Springer, 2019, pp. 373–405.

[35] Caiazza, G., White, R., and Cortesi, A. “Enhancing security in ROS”.
In: Advanced Computing and Systems for Security. Springer, 2019,
pp. 3–15.

273

Bibliography

[36] White, R. et al. “Network Reconnaissance and Vulnerability Exca-
vation of Secure DDS Systems”. In: 2019 IEEE European Sympo-
sium on Security and Privacy Workshops (EuroS&PW). IEEE. 2019,
pp. 57–66.

[37] White, R. et al. “Black Block Recorder: Immutable Black Box Log-
ging for Robots via Blockchain”. In: IEEE Robotics and Automation
Letters vol. 4, no. 4 (2019), pp. 3812–3819.

[38] Dieber, B. et al. “Security for the Robot Operating System”. In:
Robot. Auton. Syst. vol. 98, no. C (Dec. 2017), pp. 192–203.

[39] Dieber, B., Schlotzhauer, A., and Brandstötter, M. “Safety &
Security–Erfolgsfaktoren von sensitiven Robotertechnologien”. In:
e & i Elektrotechnik und Informationstechnik vol. 134, no. 6 (2017),
pp. 299–303.

[40] Breiling, B., Dieber, B., and Schartner, P. “Secure communication
for the robot operating system”. In: 2017 Annual IEEE International
Systems Conference (SysCon). Apr. 2017, pp. 1–6.

[41] Taurer, S., Dieber, B., and Schartner, P. “Secure data recording
and bio-inspired functional integrity for intelligent robots”. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 8723–8728.

[42] Dieber, B. and Breiling, B. “Security considerations in modular
mobile manipulation”. In: 2019 Third IEEE International Conference
on Robotic Computing (IRC). IEEE. 2019, pp. 70–77.

[43] Dieber, B. et al. “Penetration testing ROS”. In: Robot Operating
System (ROS). Springer, 2020, pp. 183–225.

[44] Cerrudo, C. and Apa, L. Hacking Robots Before Skynet. Tech. rep.
2017.

[45] Cerrudo, C. and Apa, L. Hacking Robots Before Skynet: Technical
Appendix. Tech. rep. 2017.

[46] Ivers, J. Security vs. Quality: What’s the Difference? Mar. 2017.

[47] Vamosi, R. Does Software Quality Equal Software Security?:
Synopsys. Mar. 2017.

[48] Ward, D. D. “MISRA standards for automotive software”. In: (2006).

274

Bibliography

[49] Pichler, M., Dieber, B., and Pinzger, M. “Can I depend on you?
Mapping the dependency and quality landscape of ROS packages”.
In: 2019 Third IEEE International Conference on Robotic Computing
(IRC). IEEE. 2019, pp. 78–85.

[50] Goertzel, K. M. and Feldman, L. “Software survivability: where
safety and security converge”. In: AIAA Infotech@ Aerospace
Conference and AIAA Unmanned... Unlimited Conference. 2009,
p. 1922.

[51] Bagnara, R. “MISRA C, for Security’s Sake!” In: arXiv preprint
arXiv:1705.03517 (2017).

[52] MISRA. MISRA C:2012 Amendment 1:“Additional security guide-
lines for MISRA C: 2012,” tech. rep. HORIBA MIRA Limited,
Nuneaton, Warwickshire, UK, April, 2016.

[53] MISRA. MISRA C:2012 Addendum 2 — Coverage of MISRA C:2012
against ISO/IEC TS 17961:2013 “C Secure”. Tech. rep. HORIBA
MIRA Limited, Nuneaton, Warwickshire, UK, April, 2016.

[54] Pfleeger, C. P. and Pfleeger, S. L. Security in Computing. 3rd.
Prentice Hall Professional Technical Reference, 2002.

[55] Zheng, C. et al. “IVDA: International vulnerability database alliance”.
In: 2011 Second Worldwide Cybersecurity Summit (WCS). IEEE.
2011, pp. 1–6.

[56] Ma, L. et al. “Sharing vulnerability information using a
taxonomically-correct, web-based cooperative database”. In: Center
for Education and Research in Information Assurance and Security,
Purdue University vol. 3 (2001).

[57] Alhazmi, O., Malaiya, Y., and Ray, I. “Measuring, analyzing and pre-
dicting security vulnerabilities in software systems”. In: Computers
& Security vol. 26, no. 3 (2007), pp. 219–228.

[58] Shin, Y. et al. “Evaluating Complexity, Code Churn, and Developer
Activity Metrics as Indicators of Software Vulnerabilities”. In: IEEE
Transactions on Software Engineering vol. 37, no. 6 (Nov. 2011),
pp. 772–787.

275

Bibliography

[59] Finifter, M., Akhawe, D., and Wagner, D. “An Empirical Study of
Vulnerability Rewards Programs”. In: Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13). Washington,
D.C.: USENIX, 2013, pp. 273–288.

[60] McQueen, M. A. et al. “Empirical Estimates and Observations
of 0Day Vulnerabilities”. In: 2009 42nd Hawaii International
Conference on System Sciences. Jan. 2009, pp. 1–12.

[61] Bilge, L. and Dumitraş, T. “Before We Knew It: An Empirical Study
of Zero-day Attacks in the Real World”. In: Proceedings of the 2012
ACM Conference on Computer and Communications Security. CCS
’12. Raleigh, North Carolina, USA: ACM, 2012, pp. 833–844.

[62] Information technology. https://en.wikipedia.org/wiki/Information_
technology. Accessed: 2020-06-23. 2020.

[63] Whitepaper Industrial Security based on IEC 62443. https://www.
tuvit . de / fileadmin /Content /TUV_ IT /pdf /Downloads /WhitePaper /
whitepaper-iec-62443.pdf. 2011.

[64] Stouffer, K., Falco, J., and Scarfone, K. Guide to Industrial Control
Systems (ICS) Security. Tech. rep. NIST Special Publication 800-82.
National Institute of Standards and Technology, 2011.

[65] Atlam, H. F. et al. “Integration of cloud computing with internet of
things: challenges and open issues”. In: 2017 IEEE international
conference on internet of things (iThings) and IEEE green com-
puting and communications (GreenCom) and IEEE cyber, physical
and social computing (CPSCom) and IEEE smart data (SmartData).
IEEE. 2017, pp. 670–675.

[66] Mayoral Vilches, V. “A Compromised Supply Chain of Robots”. In:
Cybersecurity Robotics (2020).

[67] Center, M. I. “Apt1: Exposing one of chinas cyber espionage units”.
In: Mandian. com (2013).

[68] Assante, M. J. and Lee, R. M. “The industrial control system cyber
kill chain”. In: SANS Institute InfoSec Reading Room vol. 1 (2015).

[69] Bryant, B. D. and Saiedian, H. “A novel kill-chain framework for
remote security log analysis with SIEM software”. In: computers &
security vol. 67 (2017), pp. 198–210.

276

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Information_technology
https://www.tuvit.de/fileadmin/Content/TUV_IT/pdf/Downloads/WhitePaper/whitepaper-iec-62443.pdf
https://www.tuvit.de/fileadmin/Content/TUV_IT/pdf/Downloads/WhitePaper/whitepaper-iec-62443.pdf
https://www.tuvit.de/fileadmin/Content/TUV_IT/pdf/Downloads/WhitePaper/whitepaper-iec-62443.pdf

Bibliography

[70] Strom, B. E. et al. Finding cyber threats with ATT&CK-based
analytics. Tech. rep. Technical Report MTR170202, MITRE, 2017.

[71] Rege, M. and Mbah, R. B. K. “Machine learning for cyber defense
and attack”. In: DATA ANALYTICS 2018 (2018), p. 83.

[72] Vinayakumar, R. et al. “A Deep-dive on Machine Learning for Cyber
Security Use Cases”. In: Machine Learning for Computer and Cyber
Security. CRC Press, 2019, pp. 122–158.

[73] Zhou, T.-y. et al. “NIG-AP: a new method for automated penetration
testing”. In: Frontiers of Information Technology & Electronic
Engineering vol. 20, no. 9 (2019), pp. 1277–1288.

[74] Schneier, B. “Attack trees”. In: Dr. Dobb’s journal vol. 24, no. 12
(1999), pp. 21–29.

[75] Sheyner, O. et al. “Automated generation and analysis of attack
graphs”. In: Proceedings 2002 IEEE Symposium on Security and
Privacy. IEEE. 2002, pp. 273–284.

[76] Roberts, M. et al. “Personalized vulnerability analysis through
automated planning”. In: Working Notes for the 2011 IJCAI
Workshop on Intelligent Security (SecArt). 2011, p. 50.

[77] Obes, J. L., Sarraute, C., and Richarte, G. “Attack planning in the
real world”. In: arXiv preprint arXiv:1306.4044 (2013).

[78] Sarraute, C., Buffet, O., and Hoffmann, J. “Penetration Testing==
POMDP Solving?” In: arXiv preprint arXiv:1306.4714 (2013).

[79] Ghanem, M. C. and Chen, T. M. “Reinforcement Learning for
Efficient Network Penetration Testing”. In: Information vol. 11,
no. 1 (2020), p. 6.

[80] Attila, H., Erdősi, P. M., and Kiss, F. The Common Vulnerability
Scoring System (CVSS) generations – usefulness and deficiencies.
Jan. 2016.

[81] Nguyen, T. H. et al. “Towards a science of security games”.
In: Mathematical Sciences with Multidisciplinary Applications.
Springer, 2016, pp. 347–381.

[82] Elderman, R., Pater, L. J., and Thie, A. S. “Adversarial reinforcement
learning in a cyber security simulation”. PhD thesis. Faculty of
Science and Engineering, 2016.

277

Bibliography

[83] Mayoral-Vilches, V. “Robot cybersecurity, a review”. In: International
Journal of Cyber Forensics and Advanced Threat Investigations
(2022).

[84] Mayoral-Vilches, V. et al. “Volatile memory forensics for the Robot
Operating System”. In: arXiv preprint arXiv:1812.09492 (2018).

[85] Mayoral-Vilches, V. et al. “aztarna, a footprinting tool for robots”.
In: arXiv preprint arXiv:1812.09490 (2018).

[86] Mayoral-Vilches, V. et al. “Can ROS be used securely in industry?
Red teaming ROS-Industrial”. In: arXiv preprint arXiv:2009.08211
(2020).

[87] Lacava, G. et al. “Current Research Issues on Cyber security in
Robotics”. In: (2020).

[88] Mayoral-Vilches, V., Carbajo, U. A., and Gil-Uriarte, E. “Industrial
robot ransomware: Akerbeltz”. In: 2020 fourth IEEE international
conference on robotic computing (IRC). IEEE. 2020, pp. 432–435.

[89] Mayoral-Vilches, V. M. et al. “Introducing the robot security
framework (rsf), a standardized methodology to perform security
assessments in robotics”. In: arXiv preprint arXiv:1806.04042 (June
2018). arXiv: 1806.04042 [cs.CR].

[90] Mayoral-Vilches, V. M. et al. “Towards an open standard for assess-
ing the severity of robot security vulnerabilities, the Robot Vulnera-
bility Scoring System (RVSS)”. In: arXiv preprint arXiv:1807.10357
(July 2018). arXiv: 1807.10357 [cs.RO].

[91] Mendia, G. O. et al. “Robotics CTF (RCTF), a playground for robot
hacking”. In: arXiv preprint arXiv:1810.02690 (2018).

[92] Zhu, Q. et al. “An introduction to Robot System Cybersecurity”. In:
arXiv preprint arXiv:2103.05789 (2021).

[93] Meier, L., Honegger, D., and Pollefeys, M. “PX4: A node-based mul-
tithreaded open source robotics framework for deeply embedded
platforms”. In: 2015 IEEE international conference on robotics and
automation (ICRA). IEEE. 2015, pp. 6235–6240.

[94] Cyber security in PX4, survey and input. https://discuss.px4.io/t/
cyber-security-in-px4-survey-and-input/17449. Accessed: 2024-07-06.
2020.

278

https://arxiv.org/abs/1806.04042
https://arxiv.org/abs/1807.10357
https://discuss.px4.io/t/cyber-security-in-px4-survey-and-input/17449
https://discuss.px4.io/t/cyber-security-in-px4-survey-and-input/17449

Bibliography

[95] ROS 2 Vulnerability Disclosure Policy. https : / / ros.org / reps / rep-
2006.html. Accessed: 2024-07-06. 2020.

[96] Feedback on REP-2006: ROS 2 Security Vulnerability Disclosure
Policy. https://github.com/ros-infrastructure/rep/pull/262. Accessed:
2024-07-06. 2020.

[97] Maggi, F. et al. “A Security Analysis of the Data Distribution Service
(DDS) Protocol”. In: Trend Micro Research (2022).

[98] Multiple Data Distribution Service (DDS) Implementations. https:
//www.cisa.gov/news-events/ics-advisories/icsa-21-315-02. Accessed:
2024-07-06. 2021.

[99] Cybersecurity in the ROS 2 communication middleware, targeting
the top 6 DDS implementations. https : / / discourse . ros . org / t /
cybersecurity- in- the- ros-2-communication-middleware- targeting-
the-top-6-dds-implementations/23254. Accessed: 2024-07-06. 2021.

[100] Alias Robotics Claims to Find Security Flaws in ROS 2; Open
Robotics Responds. https : / /www. robotics247 . com/article / alias_
robotics_claims_to_find_security_flaws_in_ros_2_open_robotics_
responds. Accessed: 2024-07-06. 2022.

[101] Mayoral-Vilches, V. et al. “Robot teardown, stripping industrial
robots for good”. In: International Journal of Cyber Forensics and
Advanced Threat Investigations (2022).

[102] Mayoral-Vilches, V. et al. “Sros2: Usable cyber security tools for
ros 2”. In: 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2022, pp. 11253–11259.

[103] Ichnowski, J. et al. “Fogros 2: An adaptive and extensible platform
for cloud and fog robotics using ros 2”. In: Proceedings IEEE
International Conference on Robotics and Automation. 2023.

[104] Mayoral-Vilches, V. et al. “Hacking planned obsolescense in robotics,
towards security-oriented robot teardown”. In: Electronic Commu-
nications of the EASST vol. 80 (2021).

[105] Zamalloa, I. et al. “Dissecting robotics-historical overview and
future perspectives”. In: arXiv preprint arXiv:1704.08617 (2017).

[106] Caiazza, G. “Application-level Security for Robotic Networks”. PhD
thesis. Ca’ Foscari University of Venice, Italy, 2021.

279

https://ros.org/reps/rep-2006.html
https://ros.org/reps/rep-2006.html
https://github.com/ros-infrastructure/rep/pull/262
https://www.cisa.gov/news-events/ics-advisories/icsa-21-315-02
https://www.cisa.gov/news-events/ics-advisories/icsa-21-315-02
https://discourse.ros.org/t/cybersecurity-in-the-ros-2-communication-middleware-targeting-the-top-6-dds-implementations/23254
https://discourse.ros.org/t/cybersecurity-in-the-ros-2-communication-middleware-targeting-the-top-6-dds-implementations/23254
https://discourse.ros.org/t/cybersecurity-in-the-ros-2-communication-middleware-targeting-the-top-6-dds-implementations/23254
https://www.robotics247.com/article/alias_robotics_claims_to_find_security_flaws_in_ros_2_open_robotics_responds
https://www.robotics247.com/article/alias_robotics_claims_to_find_security_flaws_in_ros_2_open_robotics_responds
https://www.robotics247.com/article/alias_robotics_claims_to_find_security_flaws_in_ros_2_open_robotics_responds

Bibliography

[107] McClean, J. et al. “A preliminary cyber-physical security assessment
of the Robot Operating System (ROS)”. In: vol. 8741 (2013),
p. 874110.

[108] Goerke, N., Timmermann, D., and Baumgart, I. “Who Controls Your
Robot? An Evaluation of ROS Security Mechanisms”. In: Feb. 2021,
pp. 60–66.

[109] Toris, R., Shue, C., and Chernova, S. “Message authentication codes
for secure remote non-native client connections to ROS enabled
robots”. In: 2014 IEEE International Conference on Technologies
for Practical Robot Applications (TePRA). Apr. 2014, pp. 1–6.

[110] Breiling, B., Dieber, B., and Schartner, P. “Secure communication
for the robot operating system”. In: 2017 Annual IEEE International
Systems Conference (SysCon). Apr. 2017, pp. 1–6.

[111] Huang, J. et al. “ROSRV: Runtime Verification for Robots”. In:
Proceedings of the 14th International Conference on Runtime
Verification. Vol. 8734. LNCS. Springer International Publishing,
Sept. 2014, pp. 247–254.

[112] Dóczi, R. et al. “Increasing ROS 1.x communication security for
medical surgery robot”. In: 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). Oct. 2016, pp. 4444–4449.

[113] Sundaresan, A., Gerard, L., and Kim, M. Secure ROS 0.9.2
documentation. July 2017.

[114] White, R. “Usable Security and Verification for Distributed Robotic
Systems”. PhD thesis. University of California San Diego, 2021.

[115] Kam, H. R. et al. “Rviz: a toolkit for real domain data visualization”.
In: Telecommunication Systems vol. 60, no. 2 (2015), pp. 337–345.

[116] Rohith, R., Moharir, M., Shobha, G., et al. “SCAPY-A powerful inter-
active packet manipulation program”. In: 2018 international con-
ference on networking, embedded and wireless systems (ICNEWS).
IEEE. 2018, pp. 1–5.

[117] Object Management Group. The Real-time Publish-Subscribe Proto-
col DDS Interoperability Wire Protocol (DDSI-RTPS) Specification,
Version 2.5. 2021.

[118] Moulard, T. et al. ROS 2 Robotic Systems Threat Model. 2019.

280

Bibliography

[119] Rivest, R. L., Shamir, A., and Adleman, L. M. Cryptographic
communications system and method. US Patent 4,405,829. Sept.
1983.

[120] Johnson, D., Menezes, A., and Vanstone, S. “The elliptic curve
digital signature algorithm (ECDSA)”. In: International journal of
information security vol. 1, no. 1 (2001), pp. 36–63.

[121] Diffie, W. and Hellman, M. “New directions in cryptography”. In:
IEEE transactions on Information Theory vol. 22, no. 6 (1976),
pp. 644–654.

[122] Merkle, R. C. “Secure communications over insecure channels”. In:
Communications of the ACM vol. 21, no. 4 (1978), pp. 294–299.

[123] Fazzari, K. ROS 2 DDS-Security integration. 2019.

[124] White, R. and Arguedas, M. ROS 2 Security Enclaves. 2020.

[125] White, R. and Fazzari, K. ROS 2 Access Control Policies. 2019.

[126] SROS2 Turtlebot 3 demonstration: Gazebo security policy. https:
//github.com/ros-swg/turtlebot3_demo/blob/2719e0f/policies/tb3_
gazebo_policy.xml. Accessed: 2024-07-06. 2021.

[127] Lanting, M. Added design document for remote and multi-machine
launching. 2020.

[128] Macenski, S. et al. “The Marathon 2: A Navigation System”. In:
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2020, pp. 2718–2725.

[129] Macenski, S. and Jambrecic, I. “SLAM Toolbox: SLAM for the
dynamic world”. In: Journal of Open Source Software vol. 6, no. 61
(2021), p. 2783.

[130] SROS2 Turtlebot 3 demonstration: security policies. https://github.
com/ros-swg/turtlebot3_demo/tree/master/policies. Accessed: 2024-
07-06. 2021.

[131] Schneider, F. B. “Least privilege and more [computer security]”. In:
IEEE Security & Privacy vol. 1, no. 5 (2003), pp. 55–59.

[132] SROS2 Case Study source code. https : / / github . com / ros - swg /
turtlebot3_demo. Accessed: 2024-07-06. 2021.

281

https://github.com/ros-swg/turtlebot3_demo/blob/2719e0f/policies/tb3_gazebo_policy.xml
https://github.com/ros-swg/turtlebot3_demo/blob/2719e0f/policies/tb3_gazebo_policy.xml
https://github.com/ros-swg/turtlebot3_demo/blob/2719e0f/policies/tb3_gazebo_policy.xml
https://github.com/ros-swg/turtlebot3_demo/tree/master/policies
https://github.com/ros-swg/turtlebot3_demo/tree/master/policies
https://github.com/ros-swg/turtlebot3_demo
https://github.com/ros-swg/turtlebot3_demo

Bibliography

[133] Mayoral-Vilches, V. et al. “RobotPerf: An Open-Source, Vendor-
Agnostic, Benchmarking Suite for Evaluating Robotics Computing
System Performance”. In: Proceedings of the 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)
Workshop on Methods for Objective Comparison of Results in
Intelligent Robotics Research. 2023.

[134] Donenfeld, J. A. “Wireguard: next generation kernel network tunnel.”
In: NDSS. 2017, pp. 1–12.

[135] Neuman, S. M. et al. “Robomorphic computing: a design methodol-
ogy for domain-specific accelerators parameterized by robot mor-
phology”. In: ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).
2021, pp. 674–686.

[136] Liu, W. et al. “Archytas: A framework for synthesizing and dynami-
cally optimizing accelerators for robotic localization”. In: MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitec-
ture. 2021, pp. 479–493.

[137] Makoviychuk, V. et al. “Isaac gym: High performance gpu-
based physics simulation for robot learning”. In: arXiv preprint
arXiv:2108.10470 (2021).

[138] Plancher, B. et al. “GRiD: GPU-Accelerated Rigid Body Dynamics
with Analytical Gradients”. In: IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2022, pp. 6253–6260.

[139] Mayoral-Vilches, V. et al. “Robotcore: An open architecture for
hardware acceleration in ros 2”. In: 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2022,
pp. 9692–9699.

[140] Wan, Z. et al. “Robotic computing on fpgas: Current progress, re-
search challenges, and opportunities”. In: 2022 IEEE 4th Interna-
tional Conference on Artificial Intelligence Circuits and Systems
(AICAS). IEEE. 2022, pp. 291–295.

[141] Liu, S. et al. Robotic computing on fpgas. Springer, 2021.

[142] Esmaeilzadeh, H. et al. “Dark Silicon and the End of Multicore Scal-
ing”. In: Proceedings of the 38th Annual International Symposium
on Computer Architecture. ISCA ’11. New York, NY, USA: ACM,
2011, pp. 365–376.

282

Bibliography

[143] Venkatesh, G. et al. “Conservation Cores: Reducing the Energy of
Mature Computations”. In: Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and
Operating Systems. ASPLOS XV. New York, NY, USA: ACM, 2010,
pp. 205–218.

[144] Mayoral-Vilches, V. ros-robotics-companies. https : / / github . com /
vmayoral/ros-robotics-companies. [Accessed: July 9, 2023].

[145] ICRA2021 workshop Cloud-Based Competitions and Benchmarks
for Robotic Manipulation and Grasping. June 2021.

[146] ICRA 2022 Workshop Determining Appropriate Metrics and Test
Methods for Soft Actuators in Robotic Systems. May 2022.

[147] ICRA 2022 Workshop on Releasing Robots into the Wild: Simula-
tions, Benchmarks, and Deployment. May 2022.

[148] IROS 2020 Workshop on Benchmarking Progress in Autonomous
Driving. Oct. 2020.

[149] IROS 2021 Workshop - Benchmarking of robotic grasping and
manipulation: protocols, metrics and data analysis. Sept. 2021.

[150] Evaluating Motion Planning Performance. Oct. 2022.

[151] METHODS FOR OBJECTIVE COMPARISON OF RESULTS IN
INTELLIGENT ROBOTICS RESEARCH. Oct. 2023.

[152] Benchmarking Tools for Evaluating Robotic Assembly of Small Parts.
July 2020.

[153] 2021 RSS Workshop on Advancing Artificial Intelligence and
Manipulation for Robotics: Understanding Gaps, Industry and
Academic Perspectives, and Community Building. July 2021.

[154] Robot Learning in the Cloud: Remote Operations and Benchmarking.
July 2022.

[155] Datasets and Benchmarking Tools for Advancing and Evaluating
Robotic Manufacturing. July 2023.

[156] Bakhshalipour, M., Likhachev, M., and Gibbons, P. B. “Rtrbench: A
benchmark suite for real-time robotics”. In: 2022 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE. 2022, pp. 175–186.

283

https://github.com/vmayoral/ros-robotics-companies
https://github.com/vmayoral/ros-robotics-companies

Bibliography

[157] Neuman, S. M. et al. “Benchmarking and workload analysis of robot
dynamics algorithms”. In: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 5235–
5242.

[158] Boroujerdian, B. et al. “Mavbench: Micro aerial vehicle benchmark-
ing”. In: 2018 51st annual IEEE/ACM international symposium on
microarchitecture (MICRO). IEEE. 2018, pp. 894–907.

[159] Krishnan, S. et al. “Automatic Domain-Specific SoC Design for
Autonomous Unmanned Aerial Vehicles”. In: 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE.
2022, pp. 300–317.

[160] Krishnan, S. et al. “Roofline model for uavs: A bottleneck analy-
sis tool for onboard compute characterization of autonomous un-
manned aerial vehicles”. In: 2022 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE.
2022, pp. 162–174.

[161] Nikiforov, D. et al. “RoSÉ: A Hardware-Software Co-Simulation
Infrastructure Enabling Pre-Silicon Full-Stack Robotics SoC Evalua-
tion”. In: Proceedings of the 50th Annual International Symposium
on Computer Architecture. 2023, pp. 1–15.

[162] Sucan, I. A., Moll, M., and Kavraki, L. E. “The open motion planning
library”. In: IEEE Robotics & Automation Magazine vol. 19, no. 4
(2012), pp. 72–82.

[163] Chamzas, C. et al. “MotionBenchMaker: A tool to generate and
benchmark motion planning datasets”. In: IEEE Robotics and
Automation Letters vol. 7, no. 2 (2021), pp. 882–889.

[164] Tan, T., Weller, R., and Zachmann, G. “OpenCollBench-
Benchmarking of Collision Detection & Proximity Queries as a
Web-Service”. In: The 25th International Conference on 3D Web
Technology. 2020, pp. 1–9.

[165] Perille, D. et al. “Benchmarking metric ground navigation”. In: 2020
IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR). IEEE. 2020, pp. 116–121.

[166] Nair, A. et al. “DynaBARN: Benchmarking Metric Ground Navigation
in Dynamic Environments”. In: navigation vol. 7 (), p. 9.

284

Bibliography

[167] Heiden, E. et al. “Bench-MR: A motion planning benchmark for
wheeled mobile robots”. In: IEEE Robotics and Automation Letters
vol. 6, no. 3 (2021), pp. 4536–4543.

[168] Moll, M., Sucan, I. A., and Kavraki, L. E. “Benchmarking Motion
Planning Algorithms”. In: ().

[169] Kingston, Z. and Kavraki, L. E. “Robowflex: Robot motion plan-
ning with MoveIt made easy”. In: 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2022,
pp. 3108–3114.

[170] Ahn, M. et al. “Robel: Robotics benchmarks for learning with
low-cost robots”. In: Conference on robot learning. PMLR. 2020,
pp. 1300–1313.

[171] Weisz, J. et al. “Robobench: Towards sustainable robotics system
benchmarking”. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2016, pp. 3383–3389.

[172] Pobil, A. P. del, Madhavan, R., and Messina, E. “Benchmarks in
robotics research”. In: Workshop IROS. Citeseer. 2006.

[173] Michel, O., Rohrer, F., and Bourquin, Y. “Rat’s life: A cognitive
robotics benchmark”. In: European Robotics Symposium 2008.
Springer. 2008, pp. 223–232.

[174] Murali, A. et al. “Pyrobot: An open-source robotics framework for
research and benchmarking”. In: arXiv preprint arXiv:1906.08236
(2019).

[175] James, S. et al. “Rlbench: The robot learning benchmark & learning
environment”. In: IEEE Robotics and Automation Letters vol. 5,
no. 2 (2020), pp. 3019–3026.

[176] Leitner, J. et al. “The ACRV picking benchmark: A robotic shelf
picking benchmark to foster reproducible research”. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.
2017, pp. 4705–4712.

[177] Zhu, Y. et al. “robosuite: A modular simulation framework and
benchmark for robot learning”. In: arXiv preprint arXiv:2009.12293
(2020).

285

Bibliography

[178] Fan, L. et al. “Surreal: Open-source reinforcement learning frame-
work and robot manipulation benchmark”. In: Conference on Robot
Learning. PMLR. 2018, pp. 767–782.

[179] Althoff, M., Koschi, M., and Manzinger, S. “CommonRoad: Com-
posable benchmarks for motion planning on roads”. In: 2017 IEEE
Intelligent Vehicles Symposium (IV). IEEE. 2017, pp. 719–726.

[180] Delmerico, J. and Scaramuzza, D. “A benchmark comparison of
monocular visual-inertial odometry algorithms for flying robots”.
In: 2018 IEEE international conference on robotics and automation
(ICRA). IEEE. 2018, pp. 2502–2509.

[181] Reke, M. et al. “A self-driving car architecture in ROS2”. In: 2020
International SAUPEC/RobMech/PRASA Conference. IEEE. 2020,
pp. 1–6.

[182] Barut, S. et al. “Benchmarking Real-Time Capabilities of ROS 2 and
OROCOS for Robotics Applications”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2021,
pp. 708–714.

[183] Puck, L. et al. “Distributed and synchronized setup towards real-
time robotic control using ROS2 on Linux”. In: 2020 IEEE 16th
International Conference on Automation Science and Engineering
(CASE). IEEE. 2020, pp. 1287–1293.

[184] Yang, Y. and Azumi, T. “Exploring Real-Time Executor on ROS 2”. In:
IEEE International Conference on Embedded Software and Systems
(ICESS). 2020, pp. 1–8.

[185] Arafat, A. A. et al. “Response time analysis for dynamic priority
scheduling in ROS2”. In: Proceedings of the 59th ACM/IEEE Design
Automation Conference. 2022, pp. 301–306.

[186] Sugata, Y. et al. “Acceleration of publish/subscribe messaging in
ROS-compliant FPGA component”. In: International Symposium
on Highly Efficient Accelerators and Reconfigurable Technologies.
2017, pp. 1–6.

[187] Ohkawa, T. et al. “High level synthesis of ROS protocol interpreta-
tion and communication circuit for FPGA”. In: IEEE/ACM Interna-
tional Workshop on Robotics Software Engineering (RoSE). 2019,
pp. 33–36.

286

Bibliography

[188] Choi, H., Xiang, Y., and Kim, H. “PiCAS: New design of priority-
driven chain-aware scheduling for ROS2”. In: IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 2021,
pp. 251–263.

[189] Suzuki, Y. et al. “Real-Time ROS extension on transparent CPU/GPU
coordination mechanism”. In: IEEE International Symposium on
Real-Time Distributed Computing (ISORC). 2018, pp. 184–192.

[190] Gutiérrez, C. S. V. et al. “Time-sensitive networking for robotics”.
In: arXiv preprint arXiv:1804.07643 (2018).

[191] Gutiérrez, C. S. V. et al. “Real-time Linux communications: an
evaluation of the Linux communication stack for real-time robotic
applications”. In: arXiv preprint arXiv:1808.10821 (2018).

[192] Gutiérrez, C. S. V. et al. “Towards a distributed and real-time
framework for robots: Evaluation of ROS 2.0 communications for
real-time robotic applications”. In: arXiv preprint arXiv:1809.02595
(2018).

[193] Gutiérrez, C. S. V. et al. “Time Synchronization in modular collabo-
rative robots”. In: arXiv preprint arXiv:1809.07295 (2018).

[194] Yamashina, K. et al. “Proposal of ROS-compliant FPGA Component
for Low-Power Robotic Systems: case study on image processing
application”. In: International Workshop on FPGAs for Software
Programmers (FSP) (2015).

[195] Yamashina, K. et al. “crecomp: Automated design tool for ros-
compliant fpga component”. In: IEEE International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSOC). 2016,
pp. 138–145.

[196] Podlubne, A. and Göhringer, D. “FPGA-ROS: Methodology to
Augment the Robot Operating System with FPGA Designs”. In:
IEEE International Conference on ReConFigurable Computing and
FPGAs (ReConFig). 2019, pp. 1–5.

[197] Eisoldt, M. et al. “ReconfROS: Running ROS on Reconfigurable
SoCs”. In: Drone Systems Engineering and Rapid Simulation and
Performance Evaluation: Methods and Tools. 2021, pp. 16–21.

287

Bibliography

[198] Lienen, C., Platzner, M., and Rinner, B. “ReconROS: Flexible
Hardware Acceleration for ROS2 Applications”. In: International
Conference on Field-Programmable Technology (ICFPT). 2020,
pp. 268–276.

[199] Leal, D. P. et al. “Automated Integration of High-Level Synthesis
FPGA Modules with ROS2 Systems”. In: International Conference
on Field-Programmable Technology (ICFPT). 2020, pp. 292–293.

[200] Ohkawa, T. et al. “Architecture exploration of intelligent robot
system using ros-compliant fpga component”. In: IEEE International
Symposium on Rapid System Prototyping (RSP). 2016, pp. 1–7.

[201] Panadda, S. et al. “Low-Power High-Performance Intelligent Camera
Framework ROS-FPGA Node”. In: Asia Pacific Conference on Robot
IoT System Development and Platform. 2020. 2021, pp. 73–74.

[202] Queralta, J. P. et al. “FPGA-based Architecture for a Low-Cost 3D
Lidar Design and Implementation from Multiple Rotating 2D Lidars
with ROS”. In: IEEE SENSORS. 2019, pp. 1–4.

[203] Maiti, T. K. “ROS on ARM Processor Embedded with FPGA for
Improvement of Robotic Computing”. In: International Symposium
on Devices, Circuits and Systems (ISDCS). 2021, pp. 1–4.

[204] Ohkawa, T. et al. “FPGA components for integrating FPGAs into
robot systems”. In: IEICE Transactions on Information and Systems
vol. 101, no. 2 (2018), pp. 363–375.

[205] Leal, D. P. et al. “FPGA Acceleration of ROS2-Based Reinforcement
Learning Agents”. In: International Symposium on Computing and
Networking Workshops. 2020, pp. 106–112.

[206] Amano, H. et al. “A dataset generation for object recognition and
a tool for generating ROS2 FPGA node”. In: IEEE International
Conference on Field-Programmable Technology (ICFPT). 2021,
pp. 1–4.

[207] Nitta, Y., Tamura, S., and Takase, H. “A study on introducing FPGA to
ROS based autonomous driving system”. In: IEEE International Con-
ference on Field-Programmable Technology (FPT). 2018, pp. 421–
424.

288

Bibliography

[208] Chen, K. E. et al. “FogROS: An Adaptive Framework for Automating
Fog Robotics Deployment”. In: IEEE International Conference on
Automation Science and Engineering (CASE). 2021, pp. 2035–2042.

[209] NVIDIA. NVIDIA Isaac ROS. github . com / NVIDIA - ISAAC - ROS.
Accessed 2022.

[210] Wan, Z. et al. “Analyzing and Improving Resilience and Robustness
of Autonomous Systems”. In: Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design. 2022, pp. 1–9.

[211] Bédard, C., Lütkebohle, I., and Dagenais, M. “ros2_tracing: Multi-
purpose Low-Overhead Framework for Real-Time Tracing of ROS
2”. In: (Accessed 2022). gitlab.com/ros-tracing/ros2_tracing.

[212] Deng, Y. et al. “Toward real-time ray tracing: A survey on hardware
acceleration and microarchitecture techniques”. In: ACM Comput-
ing Surveys (CSUR) vol. 50, no. 4 (2017), pp. 1–41.

[213] Desnoyers, M. and Dagenais, M. R. “The lttng tracer: A low impact
performance and behavior monitor for gnu/linux”. In: OLS (Ottawa
Linux Symposium). Vol. 2006. Citeseer. 2006, pp. 209–224.

[214] NVIDIA Corporation. R2B Dataset 2023: Robotics Research Data
Collection. Accessed on April 19, 2023. Apr. 2023.

[215] ROS, N. I. ROS2 Benchmark. https://github.com/NVIDIA- ISAAC-
ROS/ros2_benchmark. 2023.

[216] Robotperf. Robotperf Benchmarks Repository. GitHub repository
directory. Year of access. url: https : / / github . com / robotperf /
benchmarks/tree/main/benchmarks.

[217] Wan, Z. et al. “A survey of fpga-based robotic computing”. In: IEEE
Circuits and Systems Magazine vol. 21, no. 2 (2021), pp. 48–74.

[218] Mayoral-Vilches, V. and Corradi, G. “Adaptive Computing in
Robotics, Towards ROS 2 Software-Defined Hardware”. In: Xilinx,
WP537 (2021).

[219] Murray, S. et al. “Robot Motion Planning on a Chip.” In: Robotics:
Science and Systems. 2016.

[220] Murray, S. et al. “The microarchitecture of a real-time robot motion
planning accelerator”. In: IEEE/ACM International Symposium on
Microarchitecture (MICRO). 2016, pp. 1–12.

289

github.com/NVIDIA-ISAAC-ROS
gitlab.com/ros-tracing/ros2_tracing
https://github.com/NVIDIA-ISAAC-ROS/ros2_benchmark
https://github.com/NVIDIA-ISAAC-ROS/ros2_benchmark
https://github.com/robotperf/benchmarks/tree/main/benchmarks
https://github.com/robotperf/benchmarks/tree/main/benchmarks

Bibliography

[221] Murray, S. et al. “A programmable architecture for robot motion
planning acceleration”. In: IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP).
Vol. 2160. 2019, pp. 185–188.

[222] Plancher, B. et al. “Accelerating Robot Dynamics Gradients on a
CPU, GPU, and FPGA”. In: IEEE Robotics and Automation Letters
vol. 6, no. 2 (2021), pp. 2335–2342.

[223] Austin, J. et al. “Titan: A parallel asynchronous library for multi-
agent and soft-body robotics using nvidia cuda”. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA). 2020,
pp. 7754–7760.

[224] Freeman, C. D. et al. “Brax–A Differentiable Physics Engine
for Large Scale Rigid Body Simulation”. In: arXiv preprint
arXiv:2106.13281 (2021).

[225] Suleiman, A. et al. “Navion: A 2-mw fully integrated real-time visual-
inertial odometry accelerator for autonomous navigation of nano
drones”. In: IEEE Journal of Solid-State Circuits vol. 54, no. 4 (2019),
pp. 1106–1119.

[226] Liu, Y. et al. “Hardware acceleration of robot scene perception
algorithms”. In: IEEE/ACM International Conference On Computer
Aided Design (ICCAD). 2020, pp. 1–8.

[227] Asgari, B. et al. “Pisces: power-aware implementation of slam
by customizing efficient sparse algebra”. In: ACM/IEEE Design
Automation Conference (DAC). 2020, pp. 1–6.

[228] Mayoral, V. et al. “The shift in the robotics paradigm—The Hardware
Robot Operating System (H-ROS); an infrastructure to create
interoperable robot components”. In: 2017 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS). IEEE. 2017, pp. 229–
236.

[229] Williams, G., Aldrich, A., and Theodorou, E. A. “Model predictive
path integral control: From theory to parallel computation”. In:
Journal of Guidance, Control, and Dynamics vol. 40, no. 2 (2017),
pp. 344–357.

[230] Sacks, J. et al. “Robox: an end-to-end solution to accelerate
autonomous control in robotics”. In: ACM/IEEE International
Symposium on Computer Architecture (ISCA). 2018, pp. 479–490.

290

Bibliography

[231] Plancher, B. and Kuindersma, S. “A performance analysis of parallel
differential dynamic programming on a GPU”. In: International
Workshop on the Algorithmic Foundations of Robotics (WAFR).
Springer. Merida, Mexico, Dec. 2018, pp. 656–672.

[232] Plancher, B. and Kuindersma, S. “Realtime Model Predictive Control
using Parallel DDP on a GPU”. In: Toward Online Optimal Control
of Dynamic Robots Workshop at the International Conference on
Robotics and Automation (ICRA). Montreal, Canada, May 2019.

[233] Gupta, K. et al. “Efficient Computation of Map-scale Continuous
Mutual Information on Chip in Real Time”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2021,
pp. 6464–6470.

[234] Munshi, A. “The opencl specification”. In: IEEE Hot Chips Sympo-
sium (HCS). 2009, pp. 1–314.

[235] Bedard, C., Lutkebohle, I., and Dagenais, M. “ros2_tracing: Multi-
purpose Low-Overhead Framework for Real-Time Tracing of ROS
2”. In: IEEE Robotics and Automation Letters vol. 7, no. 3 (2022),
pp. 6511–6518.

[236] AMBA, A. “AXI4-stream protocol specification”. In: Volume IHI A
vol. 51 (4), p. 4.

[237] Xilinx. “Vitis Unified Software Platform”. In: (Accessed 2022). xilinx.
com/support/download/index.html/content/xilinx/en/downloadNav/
vitis.html.

[238] Xilinx. “Xilinx Runtime (XRT)”. In: (Accessed 2022). github.com/
Xilinx/XRT.

[239] NVIDIA. “NVIDIA JetPack SDK”. In: (Accessed 2022). developer.
nvidia.com/embedded/jetpack.

[240] Mihelich, P. and Bowman, J. “image_pipeline ROS Metapackage”. In:
(Accessed 2022). github.com/ros-perception/image_pipeline.

[241] Koenig, N. and Howard, A. “Design and use paradigms for gazebo,
an open-source multi-robot simulator”. In: Intelligent Robots
and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on. Vol. 3. IEEE. 2004, pp. 2149–2154.

[242] Xilinx. “Kria® KV260 Vision AI Starter”. In: (Accessed 2022). xilinx.
com/products/som/kria/kv260-vision-starter-kit.html.

291

xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis.html
xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis.html
xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis.html
github.com/Xilinx/XRT
github.com/Xilinx/XRT
developer.nvidia.com/embedded/jetpack
developer.nvidia.com/embedded/jetpack
github.com/ros-perception/image_pipeline
xilinx.com/products/som/kria/kv260-vision-starter-kit.html
xilinx.com/products/som/kria/kv260-vision-starter-kit.html

Bibliography

[243] ROS 2 Hardware Acceleration Working Group (HAWG). “ROS En-
hancement Proposal (REP): REP-2008 - ROS 2 Hardware Acceler-
ation Architecture and Conventions”. In: (Accessed 2022). github.
com/ros-infrastructure/rep/pull/324.

[244] Strom, B. E. et al. “Mitre att&ck: Design and philosophy”. In:
Technical report. The MITRE Corporation, 2018.

[245] European Union Agency for Cybersecurity (ENISA). ENISA Threat
Landscape 2021. European Union Agency for Cybersecurity
(ENISA). Accessed: October 2021. 2021.

[246] UCA International Users Group. Open Field Message Bus
(OpenFMB). Accessed: November 29, 2021. 2022.

[247] Richter, K. and Cameros, E. G. AUTOSAR and DDS: A Fresh
Approach to Enabling Flexible Vehicle Architectures. RTI Blog.
Accessed: November 29, 2021. Mar. 2021.

[248] Cordella, M., Alfieri, F., and Sanfelix, J. Analysis and development
of a scoring system for repair and upgrade of products-final report.
2019.

[249] Communication (European Commission), D.-G. for. Circular Econ-
omy Action Plan, For a cleaner and more competitive Europe. 2020.

[250] Hatta, M. “The right to repair, the right to tinker, and the right to
innovate”. In: Annals of Business Administrative Science (2020),
0200604a.

[251] Taurer, S. et al. “Case study: remote attack to disable MiR100
safety”. In.

[252] Quarta, D. et al. “An Experimental Security Analysis of an Industrial
Robot Controller”. In: Proceedings of the 38th IEEE Symposium on
Security and Privacy. San Jose, CA, May 2017.

[253] Pogliani, M. et al. “Detecting Insecure Code Patterns in Industrial
Robot Programs”. In: Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security (ASIA CCS ’20). Taipei,
TW, Oct. 2020.

[254] Younis, M. B. and Tutunji, T. A. “Reverse engineering in mechatron-
ics education”. In: 7th International Symposium on Mechatronics
and its Applications. IEEE. 2010, pp. 1–5.

292

github.com/ros-infrastructure/rep/pull/324
github.com/ros-infrastructure/rep/pull/324

Bibliography

[255] Skorobogatov, S. “Deep dip teardown of tubeless insulin pump”. In:
arXiv preprint arXiv:1709.06026 (2017).

[256] Tutunji, T. A. and Bani Younis, M. “Reverse Engineering Course
at Philadelphia University in Jordan”. In: European Journal of
Engineering Education (2012). Accessed: January 12, 2024.

[257] Kohlweiss, A. et al. “Integration of a teardown approach at Graz Uni-
versity of Technology LEAD Factory”. In: Procedia Manufacturing
vol. 45 (2020), pp. 240–245.

[258] Sandborn, P. et al. “Using Teardown Analysis as a vehicle to teach
electronic systems manufacturing cost modeling”. In: Proceedings
of the International Electronics Packaging Education Conference
(at the ECTC). 2006.

[259] Crowe, S. Teradyne’s robotics portfolio grows revenue 33% in Q1.
2021. url: https://www.therobotreport.com/teradyne-robotics-portfolio-
revenue-33-q1/ (visited on 05/02/2021).

[260] LPC435x/3x/2x/1x datasheet. https://www.nxp.com/docs/en/data-
sheet/LPC435X_3X_2X_1X.pdf. Accessed: 2024-07-06. 2021.

[261] Hallett, E., Corradi, G., and McNeil, S. “Xilinx Reduces Risk and
Increases Efficiency for IEC61508 and ISO26262 Certified Safety
Applications”. In: Xilinx White Paper (2015).

[262] Gracic, E., Hayek, A., and Börcsök, J. “Implementation of a fault-
tolerant system using safety-related Xilinx tools conforming to the
standard IEC 61508”. In: 2016 International Conference on System
Reliability and Science (ICSRS). IEEE. 2016, pp. 78–83.

[263] Gracic, E., Hayek, A., and Börcsök, J. “Evaluation of FPGA design
tools for safety systems with on-chip redundancy referring to the
standard IEC 61508”. In: 2017 2nd International Conference on
System Reliability and Safety (ICSRS). IEEE. 2017, pp. 386–390.

[264] Guha, B. and Mukherjee, B. “Network security via reverse engineer-
ing of TCP code: vulnerability analysis and proposed solutions”. In:
IEEE Network vol. 11, no. 4 (July 1997). Conference Name: IEEE
Network, pp. 40–48.

293

https://www.therobotreport.com/teradyne-robotics-portfolio-revenue-33-q1/
https://www.therobotreport.com/teradyne-robotics-portfolio-revenue-33-q1/
https://www.nxp.com/docs/en/data-sheet/LPC435X_3X_2X_1X.pdf
https://www.nxp.com/docs/en/data-sheet/LPC435X_3X_2X_1X.pdf

Bibliography

[265] Wang, R. et al. “Towards automatic reverse engineering of software
security configurations”. In: Proceedings of the 15th ACM confer-
ence on Computer and communications security. CCS ’08. New
York, NY, USA: Association for Computing Machinery, Oct. 2008,
pp. 245–256.

[266] McLoughlin, I. “Secure Embedded Systems: The Threat of Reverse
Engineering”. In: 2008 14th IEEE International Conference on
Parallel and Distributed Systems. ISSN: 1521-9097. Dec. 2008,
pp. 729–736.

[267] Rajendran, J. et al. “Security analysis of integrated circuit camou-
flaging”. In: Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. CCS ’13. New York, NY, USA:
Association for Computing Machinery, Nov. 2013, pp. 709–720.

[268] Lin, Z., Zhang, X., and Xu, D. “Automatic reverse engineering of
data structures from binary execution”. In: Proceedings of the
11th Annual Information Security Symposium. CERIAS ’10. West
Lafayette, IN: CERIAS - Purdue University, Mar. 2010, p. 1.

[269] Treude, C. et al. “An Exploratory Study of Software Reverse Engi-
neering in a Security Context”. In: 2011 18th Working Conference
on Reverse Engineering. ISSN: 2375-5369. Oct. 2011, pp. 184–188.

[270] Tellez, M., El-Tawab, S., and Heydari, M. H. “IoT security attacks
using reverse engineering methods on WSN applications”. In: 2016
IEEE 3rd World Forum on Internet of Things (WF-IoT). Dec. 2016,
pp. 182–187.

[271] Mayoral-Vilches, V. RVD#2558: Default credentials on SICK PLC
allows disabling safety features. https://github.com/aliasrobotics/
RVD/issues/2558. 2020.

[272] Usategui, L., Glera, A., and Mayoral-Vilches, V. RVD#2561: Un-
protected BIOS allows user to boot from live OS image. https :
//github.com/aliasrobotics/RVD/issues/2561. 2020.

[273] Usategui, L., Glera, A., and Mayoral-Vilches, V. RVD#2562: Booting
from a live image leads to exfiltration of sensible information and
privilege escalation. https://github.com/aliasrobotics/RVD/issues/
2562. 2020.

294

https://github.com/aliasrobotics/RVD/issues/2558
https://github.com/aliasrobotics/RVD/issues/2558
https://github.com/aliasrobotics/RVD/issues/2561
https://github.com/aliasrobotics/RVD/issues/2561
https://github.com/aliasrobotics/RVD/issues/2562
https://github.com/aliasrobotics/RVD/issues/2562

Bibliography

[274] Richardson, R. and North, M. M. “Ransomware: Evolution, mitiga-
tion and prevention”. In: International Management Review vol. 13,
no. 1 (2017), p. 10.

[275] Formby, D., Durbha, S., and Beyah, R. “Out of control: ransomware
for industrial control systems”. In: RSA conference. 2017.

[276] McDonald, G. and O’Gorman, G. “Ransomware: a growing menace”.
In: DOI= http://www. 01net. it/whitepaper_library/Symantec_Ransomware_Growing_Menace.
pdf (2012).

[277] Bhardwaj, A. et al. “Ransomware digital extortion: a rising new age
threat”. In: Indian Journal of Science and Technology vol. 9, no. 14
(2016), pp. 1–5.

[278] Robo09. Universal Robot Security Vulnerabilities. June 2018.

[279] Robotiq Community Discussion: Universal Robot Security Vulner-
abilities. https://dof.robotiq.com/discussion/1195/universal- robot-
security-vulnerabilities. Accessed: 2024-07-06. 2020.

[280] Standard, I. “ISO 10218-1:2011 Robots and robotic devices —
Safety requirements for industrial robots — Part 1: Robots”. In:
International Organization for Standardization (2011).

[281] Mayoral-Vilches, V. et al. “Towards self-adaptable robots: from
programming to training machines”. In: ArXiv e-prints (Feb. 2018).
arXiv: 1802.04082 [cs.RO].

[282] Alias Robotics: Case Studies on Robot Cybersecurity. https : / /
aliasrobotics.com/case-studies-robot-cybersecurity.php. Accessed:
2024-07-06. 2020.

[283] Rass, S. et al. “Game-theoretic APT defense: An experimental study
on robotics”. In: Computers & Security (2023), p. 103328.

[284] Kamhoua, C. A., Leslie, N. O., and Weisman, M. J. “Game Theoretic
Modeling of Advanced Persistent Threat in Internet of Things”. In:
Journal of Cyber Security and Information Systems vol. 6, no. 3
(2018).

[285] Jajodia, S. et al. “Cauldron mission-centric cyber situational aware-
ness with defense in depth”. In: 2011 - MILCOM 2011 Military
Communications Conference. MILCOM 2011 - 2011 IEEE Military
Communications Conference. Baltimore, MD, USA: IEEE, 2011,
pp. 1339–1344.

295

https://dof.robotiq.com/discussion/1195/universal-robot-security-vulnerabilities
https://dof.robotiq.com/discussion/1195/universal-robot-security-vulnerabilities
https://arxiv.org/abs/1802.04082
https://aliasrobotics.com/case-studies-robot-cybersecurity.php
https://aliasrobotics.com/case-studies-robot-cybersecurity.php

Bibliography

[286] Rass, S., König, S., and Panaousis, E. “Cut-The-Rope: A Game of
Stealthy Intrusion”. In: Decision and Game Theory for Security.
Springer LNCS 11836, 2019, pp. 404–416.

[287] alias Robotics. Case Study - threat modeling a ROS2 robot. 2019.

[288] AcutronicRobotics. Threat Model analysis for MARA robot. original-
date: 2019-04-07T15:53:00Z. Sept. 2021.

[289] alias Robotics. The Week of Mobile Industrial Robots’s bugs. en.
June 2020.

[290] alias Robotics. Case Study - penetration testing Mobile Industrial
Robots. 2021.

[291] König, S. et al. “Assessing the Impact of Malware Attacks in Utility
Networks”. In: Game Theory for Security and Risk Management:
From Theory to Practice. Springer, 2018, pp. 335–351.

[292] Deng, G. et al. “Pentestgpt: An llm-empowered automatic penetra-
tion testing tool”. In: arXiv preprint arXiv:2308.06782 (2023).

[293] Vaswani, A. et al. “Attention is all you need”. In: Advances in neural
information processing systems vol. 30 (2017).

[294] Radford, A. et al. “Improving language understanding with unsuper-
vised learning”. In: (2018).

[295] Arkin, B., Stender, S., and McGraw, G. “Software penetration
testing”. In: IEEE Security & Privacy vol. 3, no. 1 (2005), pp. 84–87.

[296] Deng, G. et al. “NAUTILUS: Automated RESTful API Vulnerability
Detection”. In: ().

[297] Zhao, W. X. et al. “A survey of large language models”. In: arXiv
preprint arXiv:2303.18223 (2023).

[298] Liu, Y. et al. “Summary of chatgpt/gpt-4 research and perspective
towards the future of large language models”. In: arXiv preprint
arXiv:2304.01852 (2023).

[299] Wei, J. et al. “Emergent abilities of large language models”. In: arXiv
preprint arXiv:2206.07682 (2022).

[300] Antunes, N. and Vieira, M. “Benchmarking vulnerability detection
tools for web services”. In: 2010 IEEE International Conference on
Web Services. IEEE. 2010, pp. 203–210.

296

Bibliography

[301] Xiong, P. and Peyton, L. “A model-driven penetration test framework
for Web applications”. In: 2010 Eighth International Conference on
Privacy, Security and Trust. IEEE. 2010, pp. 173–180.

[302] Box, H. T. HackTheBox: Hacking Training for the Best. Accessed:
Jan 12, 2024. 2024.

[303] VulnHub: Vulnerable By Design. VulnHub Website. Accessed:
January 12, 2024. 2018.

[304] OWASP Foundation. OWASP Foundation: The Open Source Founda-
tion for Application Security. Accessed: January 12, 2024. 2024.

[305] OpenAI. GPT-3.5: Overview and Capabilities. https://platform.openai.
com/docs/models/. Accessed on February 2, 2023. Nov. 2022.

[306] OpenAI. GPT-4: The Latest Advancement in Language Models. https:
//openai.com/research/gpt-4. Accessed on June 30, 2023. Mar. 2023.

[307] Google. Bard: AI-Powered Search Tool. https://bard.google.com/?hl=
en. Accessed: January 12, 2024. 2023.

[308] Rapid7. Metasploit Framework. Accessed: 30-07-2023. 2023.

[309] Mauw, S. and Oostdijk, M. “Foundations of Attack Trees”. In:
vol. 3935. July 2006, pp. 186–198.

[310] HackTheBox. HackTheBox Active Machines. Accessed: January 12,
2024. 2018.

[311] Authors, A. EXCALIBUR: Automated Penetration Testing. https :
//anonymous.4open.science/r/EXCALIBUR-Automated-Penetration-
Testing/README.md. 2023.

[312] Weidman, G. Penetration testing: a hands-on introduction to hacking.
No starch press, 2014.

[313] Abu-Dabaseh, F. and Alshammari, E. “Automated penetration test-
ing: An overview”. In: The 4th International Conference on Natural
Language Computing, Copenhagen, Denmark. 2018, pp. 121–129.

[314] Pearce, H. et al. “Asleep at the keyboard? assessing the security of
github copilot’s code contributions”. In: 2022 IEEE Symposium on
Security and Privacy (SP). IEEE. 2022, pp. 754–768.

[315] Pearce, H. et al. “Examining zero-shot vulnerability repair with
large language models”. In: 2023 IEEE Symposium on Security and
Privacy (SP). IEEE. 2023, pp. 2339–2356.

297

https://platform.openai.com/docs/models/
https://platform.openai.com/docs/models/
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://bard.google.com/?hl=en
https://bard.google.com/?hl=en
https://anonymous.4open.science/r/EXCALIBUR-Automated-Penetration-Testing/README.md
https://anonymous.4open.science/r/EXCALIBUR-Automated-Penetration-Testing/README.md
https://anonymous.4open.science/r/EXCALIBUR-Automated-Penetration-Testing/README.md

Bibliography

[316] OWASP Juice-Shop Project. https://owasp.org/www-project- juice-
shop/. 2022.

[317] Project, N. Nmap: Network Mapping Tool. Accessed: January 12,
2024. 1997.

[318] MITRE. Common Weakness Enumeration (CWE). https://cwe.mitre.
org/index.html. 2021.

[319] Collins, E. LAMDA: Our breakthrough conversation technology. May
2021.

[320] OpenAI. ChatGPT: Conversational AI by OpenAI. https://chat.openai.
com/. Accessed on February 2, 2023. Jan. 2023.

[321] Offensive Security. Kali Linux: The Most Advanced Penetration
Testing Distribution. Official Website. Accessed: January 12, 2024.
2013.

[322] Sonatype Inc. Nexus Vulnerability Scanner. https://www.sonatype.
com/products/vulnerability-scanner-upload. Accessed: January 12,
2024. 2024.

[323] Rahalkar, S. and Rahalkar, S. “Openvas”. In: Quick Start Guide to
Penetration Testing: With NMAP, OpenVAS and Metasploit (2019),
pp. 47–71.

[324] Guimaraes, B. and Stampar, M. sqlmap: Automatic SQL injection
and database takeover tool. https://sqlmap.org/. 2022.

[325] Yeo, J. “Using penetration testing to enhance your company’s
security”. In: Computer Fraud & Security vol. 2013, no. 4 (2013),
pp. 17–20.

[326] Vaswani, A. et al. Attention Is All You Need. 2023. arXiv: 1706.03762
[cs.CL].

[327] Bang, Y. et al. “A multitask, multilingual, multimodal evaluation of
chatgpt on reasoning, hallucination, and interactivity”. In: arXiv
preprint arXiv:2302.04023 (2023).

[328] Wei, J. et al. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models. 2023. arXiv: 2201.11903 [cs.CL].

[329] Lallie, H. S., Debattista, K., and Bal, J. “A review of attack graph and
attack tree visual syntax in cyber security”. In: Computer Science
Review vol. 35 (2020), p. 100219.

298

https://owasp.org/www-project-juice-shop/
https://owasp.org/www-project-juice-shop/
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://chat.openai.com/
https://chat.openai.com/
https://www.sonatype.com/products/vulnerability-scanner-upload
https://www.sonatype.com/products/vulnerability-scanner-upload
https://sqlmap.org/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2201.11903

Bibliography

[330] Barbar, K. “Attributed tree grammars”. In: Theoretical Computer
Science vol. 119, no. 1 (1993), pp. 3–22.

[331] Sun, H. et al. AutoHint: Automatic Prompt Optimization with Hint
Generation. 2023. arXiv: 2307.07415 [cs.CL].

[332] HackTheBox. HackTheBox - Carrier. Accessed: January 12, 2024.
Sept. 2018.

[333] Sullo. Nikto Web Server Scanner. GitHub Repository. Accessed:
January 12, 2024. 2024.

[334] OpenAI. ChatGPT Plugins - Code Interpreter. Accessed: January 12,
2024. 2023.

[335] KajanM. KAJANM/DirBuster: a multi threaded Java application de-
signed to brute force directories and files names on web/application
servers.

[336] Wang, J. et al. “Milvus: A Purpose-Built Vector Data Management
System”. In: Proceedings of the 2021 International Conference on
Management of Data. 2021, pp. 2614–2627.

[337] Guo, R. et al. “Manu: a cloud native vector database management
system”. In: Proceedings of the VLDB Endowment vol. 15, no. 12
(2022), pp. 3548–3561.

[338] Zhang, M. et al. “How language model hallucinations can snowball”.
In: arXiv preprint arXiv:2305.13534 (2023).

[339] VulnHub. Hackable II: Vulnerable By Design - VulnHub. Accessed:
January 12, 2024. 2021.

[340] Liu, Y. et al. “Jailbreaking chatgpt via prompt engineering: An
empirical study”. In: arXiv preprint arXiv:2305.13860 (2023).

[341] Manakul, P., Liusie, A., and Gales, M. J. “Selfcheckgpt: Zero-resource
black-box hallucination detection for generative large language
models”. In: arXiv preprint arXiv:2303.08896 (2023).

[342] Zamora, I. et al. “Extending the OpenAI Gym for robotics: a toolkit
for reinforcement learning using ROS and Gazebo”. In: ArXiv e-
prints (Aug. 2016). arXiv: 1608.05742 [cs.RO].

[343] ROS2 Security Workshop | ROSCon 2019. https://ros-swg.github.io/
ROSCon19_Security_Workshop/. Accessed: 2024-07-06. 2019.

299

https://arxiv.org/abs/2307.07415
https://arxiv.org/abs/1608.05742
https://ros-swg.github.io/ROSCon19_Security_Workshop/
https://ros-swg.github.io/ROSCon19_Security_Workshop/

Bibliography

[344] Doing Real-Time with ROS 2: Capabilities and Challenges. https:
//www.apex.ai/roscon2019. Accessed: 2024-07-06. 2019.

[345] Zhu, Q. et al. “Cybersecurity in Robotics: Challenges, Quantitative
Modeling, and Practice”. In: Foundations and Trends® in Robotics
vol. 9, no. 1 (2021), pp. 1–129.

[346] Lera, F. J. R. et al. “Threat modeling for robotic-based production
plants”. In: 2022 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR). IEEE. 2022, pp. 110–115.

[347] Mayoral-Vilches, V. et al. “RobotPerf: An Open-Source, Vendor-
Agnostic, Benchmarking Suite for Evaluating Robotics Computing
System Performance”. In: arXiv preprint arXiv:2309.09212 (2023).

[348] Rass, S. et al. Cyber-Security in Critical Infrastructures: A Game-
Theoretic Approach. SpringerNature, 2020.

[349] Dijk, M. van et al. “FlipIt: The Game of "Stealthy Takeover”. In: J.
Cryptol. vol. 26, no. 4 (2013), pp. 655–713.

[350] Zhang, R. and Zhu, Q. “FlipIn: A Game-Theoretic Cyber Insurance
Framework for Incentive-Compatible Cyber Risk Management of
Internet of Things”. In: IEEE Trans. on Information Forensics and
Security (2019), pp. 1–1.

[351] Kushner, D. “The real story of stuxnet”. In: IEEE Spectrum vol. 50,
no. 3 (Mar. 2013), pp. 48–53.

[352] Etesami, S. R. and Başar, T. “Dynamic Games in Cyber-Physical
Security: An Overview”. en. In: Dynamic Games and Applications
(Jan. 2019).

[353] ADAPT: Analytical Framework for Actionable Defense against
Advanced Persistent Threats | UW Department of Electrical &
Computer Engineering. 2018.

[354] Qing, H. et al. “Advanced Persistent Threats Detection Game with
Expert System for Cloud”. In: Journal of Computer Research and
Development vol. 54, no. 10, 2344 (2017), p. 2344.

[355] Moothedath, S. et al. “A Game Theoretic Approach for Dynamic In-
formation Flow Tracking to Detect Multi-Stage Advanced Persistent
Threats”. In: arXiv:1811.05622 [cs] (Nov. 2018). arXiv: 1811.05622.

300

https://www.apex.ai/roscon2019
https://www.apex.ai/roscon2019

Bibliography

[356] Khouzani, M., Sarkar, S., and Altman, E. “Saddle-Point Strategies in
Malware Attack”. In: IEEE Journal on Selected Areas in Communi-
cations vol. 30, no. 1 (Jan. 2012), pp. 31–43.

[357] Carroll, T. E. and Grosu, D. “A Game Theoretic Investigation
of Deception in Network Security”. In: 2009 Proceedings of
18th International Conference on Computer Communications and
Networks. San Francisco, CA, USA: IEEE, Aug. 2009, pp. 1–6.

[358] La, Q. D., Quek, T. Q. S., and Lee, J. “A game theoretic model for
enabling honeypots in IoT networks”. In: 2016 IEEE International
Conference on Communications (ICC). Kuala Lumpur, Malaysia:
IEEE, May 2016, pp. 1–6.

[359] Fang, X. et al. “A Game Model for Predicting the Attack Path of
APT”. In: 2014 IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing. Dalian, China: IEEE, Aug. 2014,
pp. 491–495.

[360] Panaousis, E. et al. “Game theoretic path selection to support
security in device-to-device communications”. In: Ad Hoc Networks
vol. 56 (2017), pp. 28–42.

[361] Alpcan, T. and Başar, T. Network Security: A Decision and Game
Theoretic Approach. Cambridge University Press, 2010.

[362] Lye, K.-w. and Wing, J. M. “Game strategies in network security”. In:
International Journal of Information Security vol. 4 (2005), pp. 71–
86.

[363] Yang, L.-X. et al. “A risk management approach to defending against
the advanced persistent threat”. In: IEEE Trans. on Dependable and
Secure Computing (2018), pp. 1–1.

[364] Hota, A. R. et al. “A Game-Theoretic Framework for Securing
Interdependent Assets in Networks”. In: Game Theory for Security
and Risk Management. Ed. by Rass, S. and Schauer, S. Series
Title: Static & Dynamic Game Theory: Foundations & Applications.
Springer, 2018, pp. 157–184.

[365] Hota, A. R. et al. “Optimal and Game-Theoretic Deployment of
Security Investments in Interdependent Assets”. In: Decision and
Game Theory for Security. Springer LNCS 9996, 2016, pp. 101–113.

301

Bibliography

[366] Lin, J., Liu, P., and Jing, J. “Using Signaling Games to Model the Multi-
step Attack-Defense Scenarios on Confidentiality”. In: Decision and
Game Theory for Security. Ed. by Grossklags, J. and Walrand, J.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 118–137.

[367] Zhu, Q. and Rass, S. “On Multi-Phase and Multi-Stage Game-
Theoretic Modeling of Advanced Persistent Threats”. In: IEEE
Access vol. 6 (2018), pp. 13958–13971.

[368] Senejohnny, D., Tesi, P., and De Persis, C. “A Jamming-Resilient
Algorithm for Self-Triggered Network Coordination”. In: IEEE Trans.
on Control of Network Systems vol. 5, no. 3 (Sept. 2018), pp. 981–
990.

[369] Yang, L.-X. et al. “Effective Repair Strategy Against Advanced
Persistent Threat: A Differential Game Approach”. In: IEEE Trans.
on Information Forensics and Security vol. 14, no. 7 (July 2019),
pp. 1713–1728.

[370] Touhiduzzaman, M., Hahn, A., and Srivastava, A. K. “A Diversity-
Based Substation Cyber Defense Strategy Utilizing Coloring
Games”. In: IEEE Trans. on Smart Grid vol. 10, no. 5 (Sept. 2019),
pp. 5405–5415.

[371] Li, Y. et al. “An Intelligence-Driven Security-Aware Defense Mech-
anism for Advanced Persistent Threats”. In: IEEE Trans. on Infor-
mation Forensics and Security vol. 14, no. 3 (Mar. 2019), pp. 646–
661.

[372] Soltan, S., Yannakakis, M., and Zussman, G. “REACT to Cyber
Attacks on Power Grids”. In: IEEE Trans. on Network Science and
Engineering vol. 6, no. 3 (July 2019), pp. 459–473.

[373] Pawlick, J. and Zhu, Q. “Strategic Trust in Cloud-Enabled Cyber-
Physical Systems With an Application to Glucose Control”. In: IEEE
Trans. on Information Forensics and Security vol. 12, no. 12 (Dec.
2017), pp. 2906–2919.

[374] Pawlick, J., Chen, J., and Zhu, Q. “iSTRICT: An Interdependent
Strategic Trust Mechanism for the Cloud-Enabled Internet of
Controlled Things”. In: IEEE Trans. on Information Forensics and
Security vol. 14, no. 6 (June 2019), pp. 1654–1669.

302

Bibliography

[375] Yuan, H. et al. “Stackelberg-game-based defense analysis against
advanced persistent threats on cloud control system”. In: IEEE
Trans. on Industrial Informatics (2019), pp. 1–1.

[376] Huang, L. and Zhu, Q. “Adaptive Strategic Cyber Defense for
Advanced Persistent Threats in Critical Infrastructure Networks”.
In: arXiv:1809.02227 [cs] (Sept. 2018). arXiv: 1809.02227.

[377] Rass, S. and Zhu, Q. “GADAPT: A Sequential Game-Theoretic
Framework for Designing Defense-in-Depth Strategies Against
Advanced Persistent Threats”. In: Decision and Game Theory for
Security. Springer LNCS 9996, 2016, pp. 314–326.

[378] Hota, A. R. and Sundaram, S. “Interdependent Security Games on
Networks Under Behavioral Probability Weighting”. In: IEEE Trans.
on Control of Network Systems vol. 5, no. 1 (Mar. 2018), pp. 262–
273.

[379] Xiao, L. et al. “Attacker-Centric View of a Detection Game against
Advanced Persistent Threats”. In: IEEE Trans. on Mobile Computing
vol. 17, no. 11 (Nov. 2018), pp. 2512–2523.

[380] Fudenberg, D. and Tirole, J. Game Theory. London: MIT Press, 1991.

303

	Abstract
	Resumen
	Preface
	Prefacio
	Contents
	List of Figures
	List of Tables
	I Motivation
	1 Introduction
	1.1 Why robot cybersecurity?
	1.2 About ROS
	1.3 Research Objectives and Approach
	1.3.1 Ethics
	1.3.2 Blueprints
	1.3.3 Cyber-attacking robots
	1.3.4 Automated offensive robot cybersecurity

	2 Background context
	2.1 Biographical cornerstones in robot cybersecurity
	2.2 Robotics software quality, safety and security
	2.3 Cybersecurity Across Various Domains: IT, OT, IoT, and Robotics
	2.3.1 Definitions and Differentiations
	2.3.2 Misunderstandings in Robot Security

	2.4 Machine Learning and Game Theoretic approaches to offensive cybersecurity

	II Ethics
	3 Ethical Landscape in Robot Cybersecurity
	3.1 Introduction
	3.2 Background
	3.3 Surveying security in robotics communities
	3.3.1 Surveying the ROS community
	3.3.2 Surveying the PX4 community
	3.3.3 Surveying the ROS-Industrial community
	3.3.4 Surveying the European robotics community at the European Robotics Forum (ERF) (2020)

	3.4 Security research results in robotics
	3.5 Discussion
	3.5.1 Ethical Considerations During Surveys
	3.5.2 Vulnerability Disclosure Policies
	3.5.2.1 Evolution of Disclosure Policies in Robotics
	Alias Robotics' 90-Day Disclosure Deadline
	Open Robotics' ROS 2 Vulnerability Disclosure Policy
	Security Research Groups' Direct Coordination with International CERTs

	3.5.2.2 Ethical Implications of Disclosure Policies
	Necessity of Disclosure Deadlines
	Transparency and Educational Value of Disclosures
	Community-Centric versus Vendor-Centric Approaches

	3.5.2.3 Conclusion: The Ethical Dimension of Cybersecurity in Robotics
	User-Centric Approach and Its Importance
	Vendor-Centric Approach: A Cautionary Tale
	Implications for End-Users
	Security Researcher Perspective: Navigating Ethical and Practical Challenges
	Compromised Incentives and Recognition
	Legal Threats and the Ethical Dilemma
	Impact on the Security Landscape
	The Way Forward

	3.5.3 Lack of learning resources

	3.6 Conclusion

	III Blueprints
	4 Cybersecurity in ROS
	4.1 Introduction
	4.2 Background
	4.3 Approach
	4.3.1 Modeling
	4.3.2 Authentication
	4.3.3 Authorization
	4.3.4 Generation
	4.3.5 Deployment
	4.3.6 Monitoring and mitigation

	4.4 Application and analysis
	4.5 ROS 2 over VPN: Tunneling Communications
	4.5.1 Challenges in Securing ROS 2 Communications
	4.5.2 ROS 2 over VPN: A Layered Security Approach
	4.5.3 Implementation

	4.6 Conclusion

	5 The Cost of Security: Benchmarking Robot Computations
	5.1 Introduction
	5.2 Background
	5.3 RobotPerf: Principles & Methodology
	5.3.1 Non-Functional Performance Testing
	5.3.2 ROS 2 Integration & Adaptability
	5.3.3 Platform Independence & Portability
	5.3.4 Flexible Methodology
	5.3.4.1 Grey-Box Testing
	5.3.4.2 Black-Box Testing

	5.3.5 Opaque Performance Tests
	5.3.6 Reproducibility & Consistency
	5.3.7 Metrics
	5.3.8 Current Benchmarks and Categories
	5.3.9 Run Rules

	5.4 Evaluation
	5.4.1 Fair and Representative Assessment of Heterogeneity
	5.4.2 Quantitative Approach to Hardware Selection
	5.4.3 Rigorous Assessment of Acceleration Benefits
	5.4.4 Benchmarking the security impact in ROS 2 communications

	5.5 Conclusion

	6 Hardware Accelerators in Robotics
	6.1 Introduction
	6.2 Background
	6.2.1 ROS and ROS 2
	6.2.2 Hardware Acceleration for ROS and ROS 2

	6.3 An Open Architecture for Hardware Acceleration in ROS 2
	6.3.1 Extending the ROS 2 Build System
	6.3.2 Extending the ROS 2 Build Tools
	6.3.3 Adding Firmware Extensions
	6.3.4 Low-Overhead Real-Time Tracing & Benchmarking

	6.4 Case Study: Accelerating ROS 2 Perception
	6.4.1 Method
	6.4.2 CPU-Only Tracing Results
	6.4.3 Accelerating and Benchmarking CPU & FPGA
	6.4.3.1 Accelerating Nodes & Components on an FPGA
	6.4.3.2 Accelerating the Computational Graph on an FPGA

	6.5 Conclusion
	6.6 Future work

	IV Cyber-attacking robots
	7 Attacking Robot Software
	7.1 Introduction
	7.2 Background
	7.3 DDS and Real-Time Publish-Subscribe (RTPS) Packets
	7.4 Research Methodology and Technical Details
	7.4.1 A New Scapy Layer to Dissect and Forge RTPS and DDS Data
	7.4.1.1 Crafting RTPS probes with Scapy
	7.4.1.2 Finding the Amplification Vulnerability

	7.4.2 Source-code and Binary Fuzzing
	7.4.2.1 Source-code Fuzzing with AFL++ and libFuzzer
	CVE-2021-38445 (OpenDDS): Failed Assertion Check in RTPS Handshake
	CVE-2021-38445 (OpenDDS): Memory exhaustion
	CVE-2021-38441 and CVE-2021-38443 (Cyclone DDS): XML Parsing to Heap-write

	7.4.2.2 Binary Fuzzing with UnicornAFL
	CVE-2021-38435 (RTI Connext DDS): Segmentation Fault on Malformed RTPS Packet
	CVE-2021-38439 and CVE-2021-38423 (Gurum DDS): Heap Overflow and Segmentation Fault

	7.4.2.3 Scripting RADAMSA to Mutate XML Files
	CVE-2021-38427 and CVE-2021-38433 (RTI Connext DDS): Stack-based Buffer Overflows Python Bindings
	Unmaintained XML Parsing Libraries

	7.4.3 Internet-wide Scanning for RTPS Endpoints
	7.4.3.1 Challenges of RTPS/DDS Reconnaissance
	7.4.3.2 Scanning Approach

	7.5 Conclusion

	8 Attacking Robot Hardware
	8.1 Introduction
	8.2 Robot teardown
	8.2.1 Case Study 1: Teardown of an industrial collaborative robot
	8.2.2 Case Study 2: Teardown of a next-gen industrial collaborative robot
	8.2.3 Case Study 3: Teardown of a mobile industrial robot

	8.3 Teardown-enabled security research
	8.4 Lessons learned
	8.5 Conclusions

	9 Attacking Robots in Industry
	9.1 Introduction
	9.2 Background
	9.3 Akerbeltz
	9.3.1 Target selection and rationale
	9.3.2 Ransomware's flow
	9.3.2.1 Cyber intrusion
	9.3.2.2 Lateral movement
	9.3.2.3 Control

	9.3.3 Discussion

	9.4 Conclusions

	V Automation
	10 Determining the Attack Target with Game Theory
	10.1 Introduction
	10.2 Case Studies
	10.2.1 Implementation Remarks
	10.2.2 Robot Case Studies
	Case #1: Modular Articulated Robotic Arm (MARA)
	Case #2: MiR100 - Mobile industrial Robotics

	10.3 Results and Comparison
	10.3.1 Baseline Comparison: A Best-Effort defense Policy
	10.3.2 Overview of Experiments
	10.3.3 MARA: Results
	10.3.4 MiR100: Results

	10.4 Discussion
	10.4.1 Incomplete Attack Graphs and Zero-Day Exploits
	10.4.2 Cutting the rope vs. Changing the Attack Graph
	10.4.3 Further Generalizations
	10.4.4 Complexity and Scalability
	10.4.5 Including Signals about Adversarial Activities

	10.5 Conclusions and Outlook

	11 Guiding Attacks with Machine Learning
	11.1 Introduction
	11.2 Background
	11.2.1 Penetration Testing
	11.2.2 Large Language Models

	11.3 Penetration Testing Benchmark
	11.3.1 Motivation
	11.3.2 Benchmark Design

	11.4 Exploratory Study
	11.4.1 Testing Strategy
	11.4.2 Evaluation Settings
	11.4.3 Capability Evaluation (RQ1)
	11.4.4 Comparative Analysis (RQ2)

	11.5 Methodology
	11.5.1 Overview
	11.5.2 Design Rationale
	11.5.3 Reasoning Module
	11.5.4 Generation Module
	11.5.5 Parsing Module
	11.5.6 Active Feedback
	11.5.7 Discussion

	11.6 Evaluation
	11.6.1 Evaluation Settings
	11.6.2 Performance Evaluation (RQ3)
	11.6.3 Strategy Evaluation (RQ4)
	11.6.4 Ablation Study (RQ5)
	11.6.5 Practicality Study (RQ6)

	11.7 Discussion
	11.8 Conclusion

	12 Conclusion and future work

	VI Appendices
	A Research Results
	A.1 Thesis framework
	A.2 Past work
	A.3 Peer-reviewed articles
	A.4 Preprint articles (including under review)
	A.5 Tutorials and talks
	A.6 Vulnerabilities found

	B Game Theoretic Appendix
	B.1 Cut-The-Rope Background
	B.2 The Model
	B.2.1 Definition of Payoffs
	B.2.2 Solution Concept

	B.3 Movement Patterns
	B.3.1 Periodically Active Defender
	B.3.2 Probabilistic Success on Exploits
	B.3.3 Checks with Random Intervals (``Exponential Strategy'')
	B.3.4 Spot Checks with Random Intervals and Probabilistic Success on Exploit

	B.4 Analytic Results
	B.5 Application for Risk Control
	B.6 Derivation of the probability

	C Machine Learning Appendix
	Bibliography

