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Abstract. Lending protocols are one of the main applications of Decentralized Finance
(DeFi), enabling crypto-assets loan markets with a total value estimated in the tens of billions
of dollars. Unlike traditional lending systems, these protocols operate without relying on
trusted authorities or off-chain enforcement mechanisms. To achieve key economic goals
such as stability of the loan market, they devise instead trustless on-chain mechanisms, such
as rewarding liquidators who repay the loans of under-collateralized borrowers by awarding
them part of the borrower’s collateral. The complexity of these incentive mechanisms,
combined with their entanglement in low-level implementation details, makes it challenging
to precisely assess the structural and economic properties of lending protocols, as well as
to analyze user strategies and attacks. Crucially, since participation is open to anyone, any
weaknesses in the incentive mechanism may give rise to unintended emergent behaviours,
or even enable adversarial strategies aimed at making profits to the detriment of legit users,
or at undermining the stability of the protocol. In this work, we propose a formal model of
lending protocols that captures the essential features of mainstream platforms, enabling us
to identify and prove key properties related to their economic and strategic dynamics.

1. Introduction

Decentralized Finance (DeFi) refers to a collection of interoperable protocols run on permis-
sionless blockchains that replicate traditional financial services without relying on centralized
intermediaries. In this setting, lending protocols have established loan markets of crypto-
assets that collectively manage tens of billions of dollars in value: as of June 2025, two of
the main lending platforms, Aave and Compound, hold respectively ∼$25B and ∼$3B worth
of crypto-assets [aav25a, com25a].

At an abstract level, lending protocols can be seen as state transition systems, where the
system state keeps track of the credit and debit positions — abstractly modelled through
tokens — associated with each user. Such system is partitioned into two components: the
user wallets, which represent the tokens freely available for user disposal, and lending pools,
which record the tokens available for lending as well as the outstanding credit and debit
positions. For example, lending can be modelled as a transfer of tokens from the user’s wallet
to the lending pool, together with a contextual minting of credit tokens that represent the
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user’s claim. Dually, borrowing can be modelled as a transfer of tokens from the lending pool
to the user’s wallet, along with the minting of debt tokens that record the user’s obligation.

A key distinguishing feature of decentralized lending protocols, compared to traditional
lending systems, is the absence of off-chain enforcement mechanisms to prevent loan defaults.
Instead, lending protocols rely entirely on on-chain mechanisms to incentivize, one the
one hand, lenders to provide liquidity, and, on the other hand, borrowers to repay their
loans. As in traditional finance, borrowing in decentralized lending protocols requires users
to provide a collateral, and debts accrue interests over time. However, unlike traditional
finance, decentralized lending protocols are open to all users, who can freely participate
as liquidity providers — gaining from interests accrued on debts — and as liquidators, by
repaying (part of) an under-collateralized loan in exchange for a discounted amount of the
seized collateral. Another key difference is that all protocol parameters, such as the interest
rate function, collateral and token prices, are algorithmically determined by smart contracts.

This openness, combined with the inherent complexity of the emergent behaviour
resulting from interactions between users and lending pools, makes them an attractive target
for adversaries. By exploiting weaknesses in their economic incentive mechanisms, adversaries
can devise sophisticated attack strategies to extract undue profits, harm legitimate users,
and, more broadly, undermine the stability of the protocol. Since real-world implementations
of lending protocols are too complex for effective formal analysis, we need at least an abstract
model of their behavior that can faithfully analyse such strategic aspects. Such model and
analysis should offer relevant insights about the following research questions:

RQ1: What structural properties and invariants are enjoyed by lending pools?

RQ2: What is the economic effect of each individual interaction with a lending pool?

RQ3: Which strategies can be followed by rational users anticipating a forthcoming action?

RQ4: Which attacks are possible for adversaries with a large amount of capital?

Contributions. This paper proposes a formal analysis of lending protocols, focussing on
the properties that arise through the interaction between users and lending pools. To this
purpose, we introduce a new operational model that captures the state machine behavior of
lending protocols by synthesizing the common features of leading implementations such as
Aave and Compound.

More specifically, our contributions can be summarized as follows:

(1) A formal model of lending protocols that precisely captures their behavior as transitions
in a state machine. Our model encompasses all typical interactions between users and
lending pools, along with key economic features such as collateralization, exchange rates,
token prices, and interest accruals (Section 2).

(2) An analysis of the fundamental structural properties of lending protocols, in the form
of invariants on the machine states. (Section 3). In particular, we prove in Lemma 3.4
that exchange rates are preserved by all actions except interest accruals — which always
increase them — and for the corner case where all the credits of a token are redeemed.
Another crucial invariant is given by Theorem 3.6, which establishes that the total net
worth of all users is preserved by all actions except price updates.
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(3) An analysis of the economic effects of individual interactions with a lending protocol,
both in terms of the change to the users’ net worth (i.e., their gain) and collateralization
(Section 4). In particular, Lemma 4.1 measures the gain of actions performed by users:
it shows that the only action that affects a user’s gain is the liquidation, which yields
a positive gain for the liquidator and an equivalent loss for the liquidated borrower.
Lemma 4.2 quantifies the effect of price updates on the users’ net worth: it shows that
users with lots of debts in a given token type would benefit from a price decrease, while
those with lots of credits would suffer losses. Lemma 4.3 shows that a dual situation
occurs for interest accruals. Lemma 4.4 measures the impact of user actions on the
health factor. More specifically, Lemma 4.6 compares the effectiveness of adding more
collateral versus repaying debts in order to increase one’s health factor.

(4) An analysis of strategic users — those who aim at increasing their gain by leveraging
partial knowledge of forthcoming actions in the lending protocol (Section 5). In particular,
we investigate the strategies such users should follow when they anticipate future events
such as liquidations (Theorem 5.1), price updates (Theorem 5.2 and Lemma 5.3), and
interest accruals (Theorem 5.4). For liquidations and price updates, we show that a user
can always front-run the impending action with their own transaction in order to achieve
a higher gain. For interest accruals, instead, we show that — except in the simple case
where the interest rate function is constant — there is no simple front-running strategy
that guarantees a higher gain.

(5) An analysis of attacks to lending protocols, where adversaries use their capital to
temporarily manipulate token prices or their utilization to obtain an advantage in
further interactions with a lending pool (Section 6). More specifically, Theorem 6.1
shows an attack in which an adversary manipulates prices in order to borrow more tokens
than what they should be allowed to. Theorem 6.2 shows another price manipulation
attack, where the adversary causes other users to become under-collateralized and profits
from their subsequent liquidation. In the other attacks, the adversary manipulates the
utilization of some token — roughly defined as the ratio between the total debt in that
token and its overall supply — to induce a variation in the interest rate applied to debts
in that token. This variation is then exploited by the adversary in order to make a profit.
Theorem 6.3 shows an attack where an adversary deposits tokens just before an interest
accrual, in order to induce a decrease in the utilization, and so pay less interests on their
debts. Theorem 6.4 shows instead an attack where the adversary borrows tokens before
an interest accrual, in order to induce an increase in the utilization, and so benefit from
a higher appreciation of their credits.

We discuss some limitations of our work in Section 7, related work in Section 8, and draw
conclusions in Section 9. We include detailed proofs of our results in Appendix A to D.

2. Lending Protocols

We introduce a formal model of lending protocols, encompassing the common features
implemented by the main lending platforms, and abstracting away some features that
are inessential to understand their underlying economic mechanism. We discuss these
abstractions and the limitations they induce in Section 7.
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Table 1. Summary of notation.

A, B Users XRΛ(T) Exchange rate
T, Tc, Td Token type (base,credit,debit) Sω(T), SΛ(Tc), SΛ(Td) Token supply
ω, ω′ Wallet states WΓ(A) Net worth of A in Γ
Λ, Λ′ LP states HΓ(A) Health factor of A in Γ
π, π′ Price functions gA(Γ, X) Gain of A upon firing X
X, X′ Transactions Tliq Liquidation threshold
Γ, Γ′ Blockchain states Rliq Liquidation reward

2.1. Blockchain model.

Users and tokens. We assume a denumerable set of addresses A, ranged over by A, A′ , . . ..
Each user can participate in a lending protocol by using one or more addresses, which
serve as pseudonyms for that user. Hereafter, at the cost of a little ambiguity we will often
identify users with their addresses. We also assume a denumerable set of base token types T,
ranged over by T, T′ , . . .. The notation v: T stands for v units of token type T, where v is
a nonnegative real number (v ∈ R+

0 ). When users deposit tokens of type T into a lending
pool, they receive in return a receipt of the deposit, which we model as credit tokens Tc.
Dually, when users borrow tokens from a LP, we represent their debt as debit tokens Td.
We denote the universes of credit and debit tokens as Tc and Td, respectively.

Wallets. We model the users’ wallets as a function that associates each base token type
and each address to the token balance directly available to the user. Formally:

ω : (T × A) → R+
0

Note that ω(T, A) ranges over a continuous domain. While this differs from concrete
lending protocol implementations, where token balances are discrete, our model abstracts
them as nonnegative real numbers, thereby avoiding the need to account for rounding in
balance-related operations. Hereafter, we use v, v′, . . . to range over R+

0 .

Lending pools. A lending pool (in short, LP) is intuitively formed by three components:
• a map from base token types to the balance of their reserves in the pool;
• a map from addresses to their associated credit tokens;
• a map from addresses to their associated debit tokens.
For notational convenience, rather than modelling a LP as a triple of functions, we model it
as a function with domain the disjoint union of the domains of the three maps:

Λ : (T ⊎ (Tc × A) ⊎ (Td × A)) → R+
0

where we assume that Λ has finite support. We now introduce some notation to manipulate
LPs. We denote by {x 7→ y} a partial function mapping x to y. Pointwise summation of
functions is denoted by + and

∑
. When f is defined on x but g is not, then (f +g)(x) = f(x).

For example, if Λ maps each element of its domain to 0, then Λ + {T 7→ 2} is the function
that is equal to Λ in all points but T, where it takes value 2.
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Prices. A price oracle is a function associating a strictly positive price to each base token:
π : T → R+

We use the previously introduced notation to describe price updates as well: for example,
π + {T 7→ 0.1} denotes the price function that coincides with π for all token types except
for T, whose price is increased by 0.1.

Blockchain states. A blockchain state defines all the components that are needed to
represent the interactions between users and LPs. Formally, we render a blockchain state as
a triple Γ = (ω, Λ, π) containing the users’ wallets ω, the LP state Λ, and a price oracle π.

2.2. Basic economic definitions.

Token supply. Given a wallet state ω and a base token type T, we denote by Sω(T) the
number of units of T in ω. We refer to Sω(T) as the supply of T in ω. Similarly, given a LP
state Λ, we denote by SΛ(Tc) and SΛ(Td) the supply of a credit token Tc and of a debit
token Td, respectively. Formally:

Sω(T) =
∑
A

ω(T, A) SΛ(Tc) =
∑
A

Λ(Tc, A) SΛ(Td) =
∑
A

Λ(Td, A) (2.1)

Exchange rate. The exchange rate of a token type T in a LP state Λ represents the share
of deposited units of T (i.e., reserves plus debts) over the units of the associated credit
tokens. Formally, we define the exchange rate XRΛ(T) as:

XRΛ(T) =


Λ(T) + SΛ(Td)

SΛ(Tc) if SΛ(Tc) ̸= 0

1 otherwise
(2.2)

The intuition, which will be more clear once we define the rules for depositing and redeeming
tokens, is to define the price π(Tc) of a credit token type Tc in Λ as:

π(Tc) = XRΛ(T) · π(T) (2.3)
Then, when a user deposits v: T into a LP, they will receive in exchange an amount vc: Tc

such that v · π(T) = vc · π(Tc). We will also see in Lemma 3.4 that the exchange rate
increases upon interest accruals. Since this leads to a proportional increase of the price of
credit tokens as per (2.3), users have a direct incentive to providing liquidity to the LP.
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Net worth. We define the value of tokens in A’s wallet as the sum of the amounts of the
tokens in ω(·, A) weighted by their price:

Wω,π(A) =
∑
T

ω(T, A) · π(T) (2.4)

The value of A’s credits in a LP is the sum of the amounts of all the credit tokens owned by
A weighted by their price:

W c
Λ,π(A) =

∑
T∈T

Λ(Tc, A) · XRΛ(T) · π(T) (2.5)

Similarly, the value of A’s debts in a LP is the sum of the amount of A’s debit tokens
weighted by the price of the underlying base token:

W d
Λ,π(A) =

∑
T∈T

Λ(Td, A) · π(T) (2.6)

We then define the net worth of A in a blockchain state Γ = (ω, Λ, π) as the value of base
tokens in A’s wallet, plus the value of credits in the LP, minus the value of A’s debt:

WΓ(A) = Wω,π(A) + W c
Λ,π(A) − W d

Λ,π(A) (2.7)
We will show in Theorem 3.6 a fundamental preservation property, i.e. the net worth is

preserved by all LP actions (except for price updates).
In certain cases, it will be useful to refer to the net worth of a user restricted to a specific

base token type T. We will write WΓ(A) |T to denote the quantity obtained by removing
from WΓ(A) all the expressions that do not mention T, i.e.:

WΓ(A) |T =
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· π(T) (2.8)

Of course, the overall net worth of A is given by the sum of her restricted net worth
over all the base token types:

WΓ(A) =
∑
T∈T

WΓ(A) |T (2.9)

Net position. The net worth WΓ(A) does not perfectly reflect the financial position of
A. On the one hand, A may have tokens deposited in a LP that she cannot redeem due
to insufficient liquidity in the LP: as a result, her disposable wealth is lower than her net
worth. On the other hand, A may owe debts to the LP without the LP being able to enforce
their repayment: in this case, her disposable wealth is actually higher than her net worth.
This situation arises when A has more debts than credits, i.e. her net position is negative.
Formally, we define the net position of A as:

W c−d
Λ,π (A) = W c

Λ,π(A) − W d
Λ,π(A) = WΓ(A) − Wω,π(A) (2.10)

A negative net position represents the amount of debts that a user can default, i.e. that the
LP cannot be guaranteed to recover.
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Collateralization and health factor. Collateralization is a measure of a user’s ability to
repay their debts, defined as the ratio between the values of the user’s credits and debts:

CΛ,π(A) =


W c

Λ,π(A)
W d

Λ,π(A)
if W d

Λ,π(A) > 0

+∞ otherwise
(2.11)

The idea is that credit tokens are not directly transferable by users, but rather are kept by
the LP as a guarantee in case a borrower fails to repay her debt. As we will see, LPs allow
users to borrow only if they are over-collateralized, featuring an incentive mechanism for
borrowers to keep their debt sufficiently collateralized over time. More specifically, borrowers
must maintain their collateralization above a given value 1/Tliq ≥ 1 in order to avoid that
their credit tokens are seized and distributed to other users in exchange for repaying their
debt. The value Tliq < 1 is a protocol parameter, called liquidation threshold.

The requirement that a user A has sufficient collateralization can be equivalently
expressed by requiring that their health factor HΛ,π(A) is at least 1, where:

HΛ,π(A) = CΛ,π(A) · Tliq (2.12)

Interest rates. As in traditional finance, loans in lending protocols accrue interest over
time. We keep our model parametric with respect to interest rates, by introducing a function
IΛ(T), which depends only on the LP state Λ and the token type T. Coherently to actual
lending protocols [GWPK20], we assume that interest rates are strictly positive, and that
the interest rate for a token T depends solely on the total reserves, credits, and debits
denominated in T, independently of their distribution across user addresses. Formally, we
require the interest rate function to respect the following constraints, for all T:

IΛ(T) > 0 Λ ∼T Λ′ =⇒ IΛ(T) = IΛ′(T) (2.13)
where we define the relation ∼T between two LP states as:

Λ ∼T Λ′ ≜ Λ(T) = Λ′(T) ∧ SΛ(Tc) = SΛ′(Tc) ∧ SΛ(Td) = SΛ′(Td)
Although most of our results do not depend on the actual choice for of the interest

rate function, in examples and in some specific results (e.g., Theorems 5.4, 6.3, and 6.4)
we will consider a concrete instantiation, inspired by actual lending protocols such as Aave
and Compound. There, the interest rate for a token T in a LP state Λ is a function of the
utilization of T, which measures the fraction of units of T currently lent to users. Formally,
the utilization of T in Λ is defined as 0 when SΛ(Td) = 0, and otherwise:

UΛ(T) = SΛ(Td)
Λ(T) + SΛ(Td)

(2.14)

We then define the linear utilization interest rate as a linear function of the token utilization:
IΛ(T) = α · UΛ(T) + β where α ≥ 0, β > 0 (2.15)

The idea is that if a token T is under-utilized, i.e. there are many available reserves in
the LP compared to the debts in T, then the interest rate for T should be low, in order
to incentivize users to borrow it. Instead, if a token is over-utilized, i.e. there are many
debts in T compared to the available reserves, a higher interest rate discourages additional
loans [GWPK20].
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Table 2. Transactions.

A: dep(v: T) A deposits v units of T, receiving back units of credit token Tc

A: bor(v: T) A borrows v units of T
A: rep(v: T) A repays v units on A’s debt in T
A: rdm(v: Tc) A redeems v units of Tc, receiving back units of T
A: liq(B, v: T0, T1

c) A repays v units of B’s debt in T0, seizing units of T1
c from B

int All loans accrue interests
px(δ: T) Price of tokens T is increased/decreased by δ

2.3. Semantics. We formalise the interaction between users and LPs as a labelled transition
system between blockchain states. Labels X , X′ , . . . represent transactions, which define the
actions performed by users and by the environment. Transactions have the form displayed
in Table 2. In the rest of the section we present the rules that define the state transitions.
An extended example of the application of these rules follows in Section 2.4.

The rules below define state transitions of the form Γ X−→ Γ′. When such a transition
exists, we say that X is enabled in Γ. We extend this relation to sequences of transactions:
for an empty sequence ε we have Γ ε−→ Γ, and for a sequence X = XY made of a head X
and a tail Y we define:

Γ X−→ Γ′ iff Γ X−→ Γ′′ and Γ′′ Y−→ Γ′

We say that a blockchain state Γ0 is initial when its LP state has no reserves, no credit
tokens, and no debit tokens. We then say that a state Γ is reachable when there exists some
initial Γ0 and some sequence of transactions X such that Γ0

X−→ Γ.

Deposit. Any user A can deposit v units of a base token type T by performing the
transaction A: dep(v: T). For each deposit of T, the LP mints vc units of the credit token Tc.
The amount vc is computed in such a way that the value in credit tokens obtained by A is
equal to the value of the deposited base tokens, i.e., according to (2.3), vc · π(Tc) = v · π(T).

ω(T, A) ≥ v > 0 vc = v/XRΛ (T) Λ′ = Λ + {T 7→ v} + {(Tc, A) 7→ vc}

(ω, Λ, π) A:dep(v:T)−−−−−−−→ (ω − {(T, A) 7→ v}, Λ′, π)
[Dep]

The premise ω(T, A) ≥ v ensures that A’s wallet contains at least v units of T. In
the new blockchain state, the wallet state ω − {(T, A) 7→ v} records that v: T have been
subtracted from A’s wallet. In the premises, vc is the amount of credit tokens assigned to A
upon the deposit. In the new LP state Λ′, the reserves of T are increased by v units, and the
credits of A are increased by vc units. We refer to users holding credit tokens as creditors.

Borrow. Any user can borrow units of a base token type T from an LP, provided that the
LP has sufficient reserves of T, and that the user has enough collateral. In the rule premises,
this is rendered by requiring that the borrower’s health factor is at least 1 after the action.

Λ(T) ≥ v > 0 Λ′ = Λ − {T 7→ v} + {(Td, A) 7→ v}) HΛ′,π(A) ≥ 1

(ω, Λ, π) A:bor(v:T)−−−−−−→ (ω + {(T, A) 7→ v}, Λ′, π)
[Bor]
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In the new blockchain state, v: T are added to A’s wallet and removed from the LP
reserves. Furthermore, the LP records v: Td additional debit tokens for the borrower A.

Repay. Any user with a loan in tokens T can repay it (in part or as whole) by paying
base tokens T to the LP. In exchange, the LP cancels part of the users’ debt, by removing a
number of debit tokens Td equivalent to the number of base tokens paid to the LP.

ω(T, A) ≥ v > 0 Λ(Td, A) ≥ v Λ′ = Λ + {T 7→ v} − {(Td, A) 7→ v}

(ω, Λ, π) A:rep(v:T)−−−−−−→ (ω − {(T, A) 7→ v}, Λ′, π)
[Rep]

Redeem. Any debt-free user can redeem credit tokens Tc for an equal value of the
underlying base tokens, provided that enough reserves of T are available in the LP. As in
the deposit rule, the number v of units of the base token is computed in such a way to have
vc · π(Tc) = v · π(T), according to (2.3). Any user with non-zero debts can redeem credit
tokens as long as it remains over-collateralized. This constraint does not apply to users
without loans, as credit tokens are not used as collateral.

Λ(Tc, A) ≥ vc > 0 v = vc · XRΛ(T) Λ(T) ≥ v

Λ′ = Λ − {T 7→ v} − {(Tc, A) 7→ vc} HΛ′,π(A) ≥ 1

(ω, Λ, π) A:rdm(vc:Tc)−−−−−−−−→ (ω + {(T, A) 7→ v}, Λ′, π)
[Rdm]

The premise Λ(Tc, A) ≥ vc requires that A has at least the amount of credit tokens
that they want to redeem. The premise Λ(T) ≥ v requires that the LP has enough reserves
of base tokens T to give in return. The premise HΛ′,π(A) ≥ 1 requires that A remains
over-collateralized after the action.

Interest Accrual. Interest accrual models the application of interest to loans. The action
applies an interest to each loan, updating the debt of all users with a non-zero debt.

Λ′ = Λ +
∑

T,A Λ(Td, A) · IΛ(T)

(ω, Λ, π) int−→ (ω, Λ′, π)
[Int]

Formally, for each base token type T, the number of debit tokens Td of each A is
increased by Λ(Td, A) · IΛ(T), which is strictly greter than zero by (2.13). Note that this
action may either increase or decreases the health factor of users with debts, since both
W d(A) and W c(A) increase upon the action. Unlike the previous actions, the label int omits
the name of the address who signs the transaction. This is because interest accruals are
meant to be triggered in a time-dependent fashion, e.g. once for each block.
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Liquidation. When the health factor of a borrower B is below 1, any other user A with
sufficient tokens can liquidate part of B’s loan, in return for a discounted amount of credit
tokens seized from B. The maximum seizable amount is bounded by B’s balance of the
credit token and by the ex-post health factor of B, which cannot exceed 1 after the action.
The protocol parameter Rliq > 1 represents the reward factor, which implies that the value
of tokens obtained by the liquidator A is greater than the value of B’s debt repaid.

ω(T0, A) ≥ v0 > 0 Λ(Td
0, B) ≥ v0 vc

1 = v0
XRΛ (T1) · π(T0)

π(T1) · Rliq Λ(Tc
1, B) ≥ vc

1

Λ′ = Λ + {T0 7→ v0} + {(Tc
1, A) 7→ vc

1} − {(Tc
1, B) 7→ vc

1} − {(Td
0, B) 7→ v0}

A ̸= B HΛ,π(B) < 1 HΛ′,π(B) ≤ 1

(ω, Λ, π) A:liq(B,v0:T0,Tc
1)

−−−−−−−−−−−→ (ω − {(T0, A) 7→ v0}, Λ′, π)
[Liq]

Note that the amount vc
1 of credit tokens received by A is computed in such a way to

equal the value of repaid debt, multiplied by the reward factor. That is, according to (2.3):
vc

1 · π(Tc
1) = vc

1 · XRΛ(T1) · π(T1) = v0 · π(T0) · Rliq > v0 · π(T0)

Price updates. The price of any base token can be increased/decreased by an amount
δ ∈ R \ {0}, provided that the new price is still strictly positive:

π(T) + δ > 0

(ω, Λ, π) px(δ:T)−−−−−→ (ω, Λ, π + {T 7→ δ})
[Px]

Similarly to int, also the transition label px(δ: T) is not linked to any address. This is
because while in other actions the address in the label is the transaction signer, in a price
update transaction we assume that the action can be performed only by a special user,
acting as a price oracle.

Token swap. The actions considered so far fully characterise the behaviour of lending
protocols. However, in order to be able to analyse the economic impact of strategies where
users can also interact with the environment, we extend our transition system with an
additional swap action, allowing users to exchange base tokens of type T0 with a price-
equivalent amount of tokens of another type T1:

ω(T0, A) ≥ v > 0 ω′ = ω − {(T0, A) 7→ v} + {(T1, A) 7→ v · π(T0)
π(T1)}

(ω, Λ, π) A:swp(v:T0,T1)−−−−−−−−−→ (ω′, Λ, π)
[Swp]

In practice, swap actions can be executed through centralized or decentralized exchange
services. For example, Automated Market Makers (AMMs) are decentralized protocols that
allow users to swap between two token types at an algorithmically determined exchange rate,
and also serve as decentralized price oracles [AC20,BCL22]. In real-world settings, token
swaps — especially when involving large amounts — typically result in price adjustments.
For example, a large sale of a token is usually accompanied by a decrease of its price (e.g.,
in AMMs this price update is applied automatically as part of the swap action). In our [Swp]
transition we assume that token prices are preserved: when necessary, we can still represent
a price-updating swap action as an atomic sequence of [Swp] and [Px].
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2.4. An example. We now illustrate our semantics through a simple example involving
users A and B. We display their interactions in Figure 1, using an alternative representation
of blockchain states for readability. Namely, we write a blockchain state as:

A1[w1] | · · · | An[wn] | [v1: T1, · · · , vk: Tk] | π

In this representation, a term Ai[wi] includes the tokens of all kinds (base, credit, and
debit) associated to Ai, while the term [v1: T1, · · · , vk: Tk] describes the reserves of base
tokens deposited in the LP. So, for example, the blockchain state (ω, Λ, π) where:

ω = {(T0, A) 7→ 1} Λ = {T0 7→ 2, T1 7→ 3, (Tc
0, A) 7→ 4, (Tc

1, B) 7→ 5, (Td
0, B) 7→ 6}

would be represented in our sugared syntax as follows:
A[1: T0, 4: Tc

0] | B[5: Tc
1, 6: Td

0] | [2: T0, 3: T1] | π

We now discuss the state transitions in Figure 1. In the initial blockchain state, A
has 100 units of T0, B has 50 units of T1, the LP has no reserves, and the price of both
token types is 1. We assume that the protocol parameters are as follows: the liquidation
threshold is Tliq = 2/3, the liquidation reward is Rliq = 1.1, and the interest rate function
is utility-based and has parameters α = 0 and β = 0.12, meaning that there is a constant
interest factor IΛ(T) = 12% for all token types T.
• In steps 1 and 2, A and B deposit 50 units of T0 and T1, respectively, for which they

receive equal amounts of credit tokens Tc
0 and Tc

1.
• In step 3, B borrows 30: T0, using his credit tokens Tc

1 as collateral for the loan. The loan
is permitted because the B’s health factor after the action is above the safety threshold 1.
Although B could have borrowed up to W c(B) · Tliq = 50 · 2/3 = 33.3 units of T0, given
the collateral of 50: T1

c, here we assume that B decides to leave some margin to manage
future price volatility and the accrual of interest, which could decrease B’s health factor.

• In step 4, interest accrues on B’s debt. Since the interest rate is 12%, B’s debt on T0
grows from 30 to 33.6.

• In step 5, B repays part of her debt, by paying 5: T0 to the LP. In this way, B’s health
factor grows from 0.99 to 1.16, avoiding the risk of being immediately liquidated by A.

• In step 6, the price of T0 is increased by 0.3: since the debt value is at the denominator in
the formula of collateralization (2.11), this yields a decrease of B’s health factor. This
value drops to 0.89, crossing the threshold for liquidations.

• In step 7, A liquidates 11: T0 of B’s debt, obtaining in exchange vc
1: Tc

1, where:

vc
1 = 11

XR(T1) · π′(T0)
π′(T1) · Rliq = 11

1 · 1.3
1 · 1.1 = 15.73

Since the liquidation reward Rliq > 1, the value in credit tokens obtained by A is greater
than the value in base tokens she paid, making the liquidation profitable:

11 · π(T1) = 11 · 1.3 = 14.3 < 15.73 · XR(T1) · π(T1) = 15.73
After the liquidation, B’s health factor is increased (to 0.99), since B’s debt value has
decreased while the credit value has been preserved. Note that A could have not liquidated,
e.g., 12: T0, since doing so would have made B’s health factor exceed the safety threshold.

• In step 8, A redeems 10: Tc
0, receiving 10.72: T0 in exchange. Here, each unit of Tc

0 is
exchanged for XR(T0) = 36+17.6/15.73+34.27 = 1.072 units of T0, due to accrued interests.
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A[100: T0] | B[50: T1] | [0: T0, 0: T1] | π = {T0 7→ 1, T1 7→ 1}
1. A:dep(50:T0)−−−−−−−−−→ A[50: T0, 50: Tc

0] | B[50: T1] | [50: T0] | · · ·
2. B:dep(50:T1)−−−−−−−−−→ A[· · ·] | B[50: Tc

1] | [50: T0, 50: T1] | · · ·
3. B:bor(30:T0)−−−−−−−−−→ A[· · ·] | B[30: T0, 30: Td

0] | [20: T0, 50: T1] | · · · (H(B) = 1.11)
4. int−−−→ B[30: T0, 33.6: Td

0] | [20: T0, 50: T1] | · · · (H(B) = 0.99)
5. B:rep(5:T0)−−−−−−−−→ B[25: T0, 28.6: Td

0] | [25: T0, 50: T1] | · · · (H(B) = 1.16)
6. px(0.3:T0)−−−−−−−−→ · · · | π′ = {T0 7→ 1.3, T1 7→ 1} (H(B) = 0.89)

7. A:liq(B,11:T0,Tc
1)−−−−−−−−−−−−→ A[39: T0, 50: Tc

0, 15.73: Tc
1] | B[25: T0, 34.27: Tc

1, 17.6: Td
0] | (H(B) = 0.99)

[36: T0, 50: T1] | π′

8. A:rdm(10:Tc
0)−−−−−−−−−−→ A[49.72: T0, 40: Tc

0, 15.73: Tc
1] | B[· · ·] | [25.28: T0, 50: T1] | π′

Figure 1. Interactions between two users and a lending pool.

3. Structural properties of lending protocols

We establish in this section some structural properties of lending protocols, such as relevant
invariants on their reachable states. As usual, free variables in statements are meant to be
universally quantified; furthermore, blockchain states in the hypotheses are always assumed
to be reachable. For simplicity, we will just write, for example, X ̸= px to mean that there
exist no δ and T such that X = px(δ: T), and similarly for other transaction types.

First, we establish that the transition system is deterministic. This follows directly from
the fact that, given a blockchain state Γ and a transaction X, there is at most one applicable
rule. Determinism is a key property for blockchains, since it ensures that all the blockchain
nodes can reconstruct the same state from a sequence of transactions.

Lemma 3.1 (Determinism). If Γ X−→ Γ′ and Γ X−→ Γ′′, then Γ′ = Γ′′.

Lemma 3.2 establishes that the amount of any base token is preserved by state transitions.
The only exception is the [Swp] transition, which however does not “morally” break the
invariant, since it represents the exchange of tokens between the user and an external service.
By applying Lemma 3.2 inductively, it follows that base tokens are preserved along arbitrary
sequences of transitions (not containing swaps).

Lemma 3.2 (Preservation of base tokens). Let (ω, Λ, π) X−→ (ω′, Λ′, π′) with X ≠ swp. Then,
for all T:

Sω(T) + Λ(T) = Sω′(T) + Λ′(T)

The following lemma gives a useful invariant on reachable LP states: if the LP has no
credit tokens Tc, then it has neither reserves of T nor debit tokens Td. Another invariant
relating base, credit and debit tokens will be established later in (3.1).

Lemma 3.3. If SΛ(Tc) = 0, then Λ(T) = 0 = SΛ(Td).

The exchange rate of any base token type T is preserved by all state transitions, except
interest accruals and, in the case there are no debts in T, a redeem that reclaims the
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entirety of the credits (bringing back the exchange rate to 1). When interests accrue, the
exchange rate of T strictly increases whenever users have loans in T. By Equation (2.11),
this guarantees that the credit token Tc will gain value (whenever the price of the underlying
base token T is not decreased by a price update transition).

Lemma 3.4 (Monotonicity of exchange rate). Let (ω, Λ, π) X−→ (ω′, Λ′, π′). Then, for all T:
(a) if X = int and SΛ(Td) > 0, then

XRΛ′(T) = XRΛ(T) + SΛ(Td)
SΛ(Tc) · IΛ(T) > XRΛ(T)

(b) if X = rdm, and SΛ′(Tc) = 0, then XRΛ′(T) = 1
(c) otherwise, XRΛ′(T) = XRΛ(T).

By (2.2), in initial blockchain states the exchange rate of each token is 1. Therefore,
from the previous lemma it follows that in any reachable state the exchange rate of any
token is always greater than or equal to 1. This is formalised by the following:

Corollary 3.5. XRΛ(T) ≥ 1.

Together with (2.2), this corollary gives an upper bound to the supply of credit tokens
in each reachable LP state. More precisely, the supply of Tc is bounded by the amount of
reserves of T in the LP, plus the overall debt on T:

SΛ(Tc) ≤ Λ(T) + SΛ(Td) (3.1)
Note that, in the specific case where Λ(T) = 0 = SΛ(Td), Equation (3.1) shows that

also the inverse of Lemma 3.3 holds, i.e. under that hypothesis, we have that SΛ(Tc) = 0.
The following theorem establishes that the total net worth of all users remains constant

throughout executions, except possibly when token prices are updated.

Theorem 3.6 (Preservation of net worth). For all Γ X−→ Γ′ such that X ̸= px:∑
C∈A

WΓ′(C) =
∑
C∈A

WΓ(C)

4. Economic analysis of single transactions

In this section we exhaustively analyze how each action affects the net worth of users and
their health factor. We will see that, among user actions (i.e., all the actions except int and
px), the only action that can change the net worth of a user is the liquidation (positively if
fired by the user, negatively if suffered by the user) — Lemma 4.1. Environment actions
such as interest accruals and price updates, on the other hand, affect the net worth of users
exposed to the relevant tokens — that is, users holding debt or credit tokens whose price
or interest is modified by these actions. In particular, int always penalizes debtors (users
who have debts), and benefits creditors (users who hold credit tokens) — Lemma 4.3. The
action px, on the contrary, benefits debtors and penalizes creditors if the price goes down,
while it penalizes debtors and benefits creditors if the price goes up — Lemma 4.2.

Besides maximizing gains, users are also compelled with reducing the risk of incurring
in losses. In particular, a user should avoid being the subject of a liquidation. The risk of
being liquidated depends on the health factor: indeed, to avoid liquidations, one’s health
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factor should not fall below 1. We will prove that deposits, repayments and liquidations
increase the health factor of the user who fires them, while borrows and redeems decrease
it — Lemma 4.4. In particular, we will see that, while in general repayments improve the
health factor more than deposits, for users that are severely indebted it is better to deposit
rather than repay — Lemma 4.6.

4.1. Effect of transactions on net worth. In order to study the economic impact of
actions on users’ net worth, we first define the gain of an address A upon firing a sequence
of transactions X from a state Γ:

gA(Γ, X ) = WΓ′(A) − WΓ(A) if Γ X−→ Γ′ (4.1)

Note that the gain is well-defined, because if Γ X−→ Γ′ and Γ X−→ Γ′′, then by determinism
(Lemma 3.1) we must have Γ′ = Γ′′. When gA(Γ, X ) < 0, we will use the term loss to
denote the value |gA(Γ, X )|. Note that X must not necessarily be performed by A, as it
may include other users’ actions, or environment actions.

Note that when some of the transactions in X are not enabled in Γ, then the gain
gA(Γ, X ) is not well-defined. In this case, with a slight abuse of notation, we will write
gA(Γ, X ) to mean gA(Γ, X ′), where X ′ is the sequence of transactions obtained from X by
removing all the non-enabled transactions.

The following lemma shows that the only user action (i.e. all actions except int or px)
that can change the net worth of users is liq. Such action increases the net worth of the
liquidator and correspondingly decreases that of the liquidated address. In particular, the
gain of the liquidator is proportional to the amount liquidated, and it coincides with the
loss of the user being liquidated.

Lemma 4.1 (Gain from user actions). Let X be enabled in Γ, with X ̸∈ {int, px}. Then:
(1) gA(Γ, X) = 0 ⇐⇒ X is not a liquidation involving A.
(2) gA(Γ, X) > 0 ⇐⇒ X is a liquidation performed by A;
(3) gA(Γ, X) < 0 ⇐⇒ X is a liquidation suffered by A;
In particular, if X = A: liq(B, v: T0, Tc

1), we have that:
(4) gA(Γ, X) = −gB(Γ, X) = v · π(T0) · Rliq.

Note that the gain of A only depends on the value v · π(T0) being liquidated. This
implies that the optimal strategy for a non-strategic user A — i.e., one who just wants to
maximize their istantaneous gain — is to liquidate as much as possible, regardless of the
users being liquidated and of the token types of the collateral received.

The following lemma shows how a user A benefits from (or gets damaged by) a price
update of a token T. Specifically, the gain of A is given by the product between her wealth
restricted to T and the ratio between the price variation and the old price of T. Recalling
from (2.8) the definition of restricted wealth, we see that this gain is proportional to the
amount of base tokens owned, plus the credits (adjusted by the exchange rate), and minus
the debts, all multiplied by the price variation.

Lemma 4.2 (Gain from price updates). The gain of A upon a transaction px(δ: T) in
Γ = (ω, Λ, π) is given by:

gA(Γ, px(δ: T)) = WΓ(A) |T · δ

π(T) =
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ
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Note that, when the price decreases (i.e. δ < 0), the proportionality is of opposite sign,
i.e. a user with lots of debts in T would benefit from the price decrease, while a user with
lots of credits or base tokens would suffer losses.

The following lemma quantifies the effect of interest accruals on the users’ gain. For
each address A and token T, the gain of A is proportional to the interest accrued, to the
price of T, and to the difference between the user credits in T (weighted by the ratio between
the supply of debts and credits in T) and the user debts in T.

Lemma 4.3 (Gain from interest accruals). The gain of A upon a transaction int in Γ =
(ω, Λ, π) is given by:

gA(Γ, int) =
∑

SΛ (Tc)>0

(Λ(Tc, A)
SΛ(Tc) · SΛ(Td) − Λ(Td, A)

)
· IΛ(T) · π(T)

We additionally observe that the overall gain of A is given by the summation of the
pointwise gains, as per (2.9). From that, we infer that A’s gain restricted to a given token
type T is positive if and only if A has credits in T and the ratio of A’s credits in T over the
total credits of T exceeds the ratio of A’s debts over the total debit in T, i.e.:

gA(Γ, int) |T > 0 ⇐⇒ Λ(Tc, A)
SΛ(Tc) >

Λ(Td, A)
SΛ(Td)

In particular, this implies that pure creditors always have a gain from interest accruals.

4.2. Effect of transactions on health factor. We now study how user actions impact
the health factor. The following lemma shows that deposits, repayments and liquidations
increase users’ health factor, while borrows and redeems decrease it.

Lemma 4.4 (Health factor from user actions). Let Γ X−→ Γ′, with X = A: ℓ(· · · ). Then:
(1) ℓ ∈ {dep, rep, liq} =⇒ HΓ′(A) ≥ HΓ(A)
(2) ℓ ∈ {bor, rdm} =⇒ HΓ′(A) ≤ HΓ(A)
(3) ℓ ∈ {swp} =⇒ HΓ′(A) = HΓ(A)
Moreover, the inequalities in (1) and (2) are strict if and only if W d

Γ(A) > 0.

We have shown how actions performed by a user impact her health factor. It remains
to study the effect of transactions that are not performed by the user, i.e. price updates,
interest accruals, and liquidation suffered.

Price updates and interest accruals, depending on the state, can arbitrarily increase and
decrease both the credits and the debts, hence it is quite clear that the health factor after
these transactions can either increase or decrease.

For liquidations suffered, however, the ratio between the value of the liquidated debts
and that of the seized credits is fixed, given by Rliq, hence it is not that straightforward to
conclude whether the health factor of the liquidated user always increases, always decreases,
or can either increase or decrease. While the previous lemma showed that the health factor
of liquidators always increases, here we show that that of the liquidated address may either
increase or decrease. It is not difficult to quantify the variation in the health factor of a
borrower B who is suffering a liquidation, even though this is not particularly insightful.
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For a liquidation A: liq(B, v: T0, Tc
1) fired in Γ, the difference between the new and the old

health factor of B is given by:

HΓ′(B) − HΓ(B) =

(
W c

Γ(B) − W d
Γ(B) · Rliq/XRΓ (T0)

)
· v · π(T0) · Tliq

W d
Γ(B) · (W d

Γ(B) − v · π(T0))
The following example shows concrete cases where the health factor of the borrower

increases or decreases upon a liquidation.

Example 4.5. Consider a lending protocol with parameters Tliq = 2/3, Rliq = 1.3, and an
utility-based interest rate function with α = 0 and β = 1/2. Let Γ be an initial blockchain
state where the following sequences of transactions are enabled:

X = B: dep(50: T) B: bor(30: T) int A: liq(10: T, B, T)
Y = A: dep(90: T) X

In X , the health factor of the borrower B increases from 0.96 to 0.99 with the liquidation
while in Y is decreases from 0.82 to 0.80. This is because A’s deposit (which is not present
in X ) has affected the exchange rate of T after the interest accrual: in X , such exchange
rate is 1.3, while in Y it is 1.1. This decrease in the exchange rate, caused by the reduced
impact of B’s debts on the ratio in (2.2), makes the value of B’s credits decrease compared
to X . Since the value of B’s debts is preserved, this explains the decrease in B’s health
factor. See: https://github.com/bitbart/lp-model/tree/main/examples-lmcs. ⋄

A user at risk of liquidation should try to immediately improve her health factor in order
to avoid the losses coming from being liquidated. The following lemma compares the
improvements that repays and deposits bring to the health factor.

Lemma 4.6 (Health factor: deposit vs. repay). Let Γ A:dep(v:T)−−−−−−−→ Γdep and Γ A:rep(v:T)−−−−−−→ Γrep.
Then:

HΓrep(A) ≥ HΓdep(A) ⇐⇒ v · π(T) ≥ W d
Γ(A) − W c

Γ(A)

From the previous lemma we see that repayments increase the health factor more than
deposits if and only if the value transferred to the LP is greater than the difference between
the value of debts of the user and the value of credit tokens held. In practice, this means that,
for users with a positive net position — i.e., when W d

Γ(A) < W c
Γ(A) — it is more beneficial

to repay instead of deposit. Instead, for users with negative net position, it could be more
convenient to deposit, especially when the transferred value is small. This contradicts the
statement contained in the Aave FAQs1 for which “By default, repayments increase your
health factor more than deposits”.

5. Economic analysis of strategic players

All results in the previous section pertain to actions that have an immediate impact — either
positive or negative — on a user. In contrast, in this section we consider more complex
scenarios in which a user foresees a future event (e.g. int, px, or a liquidation against them).
We study the strategic dimension of lending protocols: in particular, which actions should
the user fire before the foreseen action takes effect in order to improve their net worth?

1https://web.archive.org/web/20240914031752/https://docs.aave.com/faq/liquidations

https://github.com/bitbart/lp-model/tree/main/examples-lmcs
https://web.archive.org/web/20240914031752/https://docs.aave.com/faq/liquidations
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Conversely, if the user intends to execute a specific action, would it be better to fire it before
or after the foreseen event?

We start by considering a game where a borrower A foresees that she is going to be
liquidated. In order to avoid the liquidation, the only possibly helpful actions are those
which increase A’s health factor — by Lemma 4.4 — dep, rep and liq. We already know
from Lemma 4.1 that liquidations performed by A increase her gain, so we limit our analysis
to dep and rep. Theorem 5.1 shows that these actions are only helpful if they disable the
liquidation fired against A; otherwise, they do not have any effect.

Theorem 5.1 (Strategy for impending liquidations). Let A and Γ = (ω, Λ, π) be such that
HΓ(A) < 1, and let liq be a shorthand for an arbitrary liquidation on A enabled in Γ.

Let X = A: ℓ(v: T) with ℓ ∈ {dep, rep}, and let Γ X−→ Γ′. Then:

(1) If ℓ = dep, then gA(Γ, X liq) > gA(Γ, liq) ⇐⇒ v ≥ XRΛ (T)
π(T) ·

(
W d

Λ,π(A)
Tliq

− W c
Λ,π(A)

)
(2) If ℓ = rep, then gA(Γ, X liq) > gA(Γ, liq) ⇐⇒ v ≥ 1

π(T) ·
(
W d

Λ,π(A) − W c
Λ,π(A) · Tliq

)
The theorem also shows that, if A wants to minimize the parameter v, then she should

choose dep if and only if W d
Γ(A) · (XRΓ (T)/Tliq − 1) ≥ W c

Γ(A) · (XRΓ(T) − Tliq), and choose
rep otherwise.

Note that A cannot fire valid bor and rdm transactions in Γ, since, by hypothesis, A can
be subject to liquidation, and so HΓ(A) < 1.

The following theorem shows how a user can take advantage of an incoming price update.
It turns out that the only effective action is front-running the price update with a swap of
the token affected by the price update. The rational strategy is to sell the token when its
price is going to decrease, and to buy it otherwise.

Theorem 5.2 (Strategy for impending price updates). Let X = A: ℓ(· · · ) mentioning token
T, let Γ X−→ Γ′, and let px be a shorthand for px(δ: T). We have that:

gA(Γ, X px) ◦ gA(Γ, px) = gA(Γ, px X)
where the relation ◦ is given by:

◦ =


= if ℓ ∈ {dep, rep, bor, rdm}
> if (δ > 0 and ℓ = swp(v: T′ , T)) or (δ < 0 and ℓ = swp(v: T, T′))
< if (δ < 0 and ℓ = swp(v: T′ , T)) or (δ > 0 and ℓ = swp(v: T, T′))

More precisely, if Γ has price function π, then:

gA(Γ, X px) = gA(Γ, px) + σ · v · δ ·
(

π(T′)
π(T)

)σ

σ =
{

1 ℓ = swp(v: T′ , T)
−1 ℓ = swp(v: T, T′)

Notice that in Theorem 5.2 we have not included the case ℓ = liq. Indeed, by Lemma 4.1
we already know that liq yields a positive gain, but only because of the liquidation reward. It
is irrelevant to perform it before or after the price update (i.e. gA(Γ, liq px) = gA(Γ, px liq)).

The previous theorem shows that, anticipating an increase in the price of T, the only
single actions that a user A can perform to improve her net worth is to sell another token T′

to buy T. But what if A is already fully exposed on T (i.e. she possesses only tokens in T)?
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In traditional finance, traders can increase their exposition to a given asset via financial
options: the trader buys a contract from a issuer, acquiring the right to buy from the
issuer the underlying asset for a fixed strike price in the future. Hence, if in the future the
market price of the asset exceeds the strike price, the trader can make a profit by buying
the discounted asset from the issuer and resell it at market price. Some analogies between
lending protocols and financial options has been investigated in [QEZ+24,SVTZ24].

The following lemma shows how A can exploit the lending protocol to increase her
exposure to token T and benefit from a foreseen increase in the price of T, analogously what
buyers do with financial options.
Lemma 5.3 (Strategy for impending price updates, II). Let:

X = A: dep(v: T) A: bor(v′: T′) A: swp(v′: T′ , T)
be enabled in Γ, and let px be a shorthand for px(δ: T) with δ > 0. We have that:

gA(Γ, X px) > gA(Γ, px)

The following theorem considers a game in which A foresees an impending interest
accrual. If we consider an arbitrary interest rate function, then there is no single action
that A can fire before the interest accrual that is guaranteed to benefit her. Even if we
limit to linear utility interest rate functions, i.e. IΛ(T) = α · UΛ(T) + β, as in (2.15), then
A’s strategy is not straightforward: depending on the state of the lending pool and on the
parameters α and β, firing a given action before the interest accrual may be beneficial or
detrimental for A. Indeed, we have that:

(i) deposits increase A’s credit (which is going to appreciate after the interest accrual),
but decrease the utilization (implying that the credit previously held by A is going to
appreciate less);

(ii) borrows increase A’s debt (which is going to increase after the interest accrual), but
increase the utilization (implying that the credit previously held by A is going to
appreciate more);

(iii) repayments, symmetrically to borrows, decrease A’s debt, and decrease the utilization;
(iv) redeems, symmetrically to deposits, decrease A’s credit but increase the utilization;
(v) liquidations behave similarly to deposits, with the only difference that the credits

received are of a different token type than that of the deposited tokens, and of higher
value; but this is not always enough to compensate for the lower credit appreciation.

Note that swaps do not interact with the lending pool whatsoever, hence firing them before
or after an interest accrual is not going to have any impact in any case. In Section 6.2, we
will show how an adversary can manipulate the utilization in order to increase her gain.

In the special case in which α = 0, i.e. interest rates are constant and do not depend on
the utilization, we can conclude that certain actions are surely going to benefit A (or, at
most, have no impact), and other actions are surely going to penalize A (or, at most, have
no impact). More specifically, deposits and repayments are beneficial, while borrows and
redeems are detrimental. For liquidations, even in this case, there is no monotonicity.
Theorem 5.4 (Strategy for impending interest accruals). Assume that the lending protocol
uses the linear utility interest rate function IΛ(T) = α ·UΛ(T)+β in (2.15). Let X = A: ℓ(· · · )
mentioning token T with transaction parameter v.
(1) If the parameters α and β are arbitrary, then for every ℓ ∈ {dep, bor, rep, rdm, liq} and

for every ◦ ∈ {>, =, <}, there exists Γ and v such that gA(Γ, X int) ◦ gA(Γ, int).
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(2) If α = 0, then:
(a) if ℓ ∈ {dep, rep}, then for all Γ and v, gA(Γ, X int) ≥ gA(Γ, int)
(b) if ℓ ∈ {bor, rdm}, then for all Γ and v, gA(Γ, X int) ≤ gA(Γ, int)
(c) if ℓ = liq, then for all ◦ ∈ {≥, ≤}, there exist Γ, v such that gA(Γ, X int) ◦ gA(Γ, int)

Note that liq does not enjoy any monotonicity, not even in the case where α = 0. Indeed,
in certain situations it is beneficial to perform a liquidation before interests accrue, while in
others, it is better to wait until after the interest accrual. This is due to the fact that higher
overall amounts of debts imply higher exchange rates increases after int. In particular, given
that credit tokens appreciate after an increase in exchange rates, a user who holds a high
amount of credit tokens would benefit more from waiting interest rates to increase.

Example 5.5 (Liquidations and interest accruals). Recall the sequence of transactions in
Fig. 1 up to step 6 included. Assume that A anticipates that an int is going to happen, and
she has to decide whether to liquidate B before the interests accrual or not. The convenience
of liquidating B or not depends on the specific interest rate function. Consider e.g., the
utility-based interest rate function in (2.15) in the simple case where α = 0, that is, there
is a constant interest rate β for each token type. If the interest increase is relatively low
(e.g., β = 10%), then the credit tokens held by A do not appreciate significantly, and so the
liquidation reward is sufficiently high to incentivize A to liquidate B. However, if interest
rates increase significantly (e.g. β = 100%) or the liquidation bonus is very small, then the
appreciation of the credit tokens held by A can be so impactful that the best strategy for A
would be wait to liquidate B, so that the overall amount of debts will make the appreciation
of the credit tokens higher enough to surpass the benefit given by the liquidation bonus. ⋄

6. Attacks

In this section we illustrate some attacks to lending protocols, which only require the
adversary to own sufficient liquidity of certain tokens.

We start by considering price manipulation attacks, where an adversary uses their capital
to trigger a temporary price fluctuation of a token handled by the lending pool (Section 6.1).
More specifically, Theorem 6.1 shows an attack where the adversary’s goal is to borrow more
tokens than what they should be allowed to. Theorem 6.2 shows another attack where the
adversary exploits a price manipulation to make a borrower under-collateralized and then
liquidate her credit tokens.

Then, we consider utilization attacks, where an adversary manipulates the utilization of
certain tokens to benefit from a change in the interest accrual (Section 6.2). More specifically,
Theorem 6.3 shows an under-utilization attack in which an adversary deposits some tokens
to decrease the utilization in order to pay less interests on her debts (penalizing creditors).
Theorem 6.4 shows an over-utilization attack in which an adversary borrows some token to
increase the utilization in order to gain more from the interest accrual (penalizing debtors).

Although these kinds of attacks are already known in literature [GPH+20, QZLG21,
BCL21,MNW22,ZXE+23,ALFX24], our results are the first to formally establish general
conditions under which they can occur.

In our results, we will make some simplifying assumptions on the credits or debts of the
addresses involved in the attack, e.g. that the adversary has all the credits of a given token
type, or none. This allows us to prove that the attacks always succeed, regardless of the
actual token amounts invested by the adversary in the attack. In practice, even when such
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conditions are not precisely met (e.g., the adversary does not possesses exactly all the credit
tokens, but most of them), the attack will still succeed for suitable choices of the transaction
parameters. It is possible to estimate such suitable values by using the formulas to compute
the gain provided in Section 4. For the sake of clarity, and to provide a better intuition on
the attacks, we will consider the cases in which the hypotheses hold.

6.1. Price manipulation attacks. In the decentralized setting, price oracles are usually
implemented as smart contracts that determine the price of a token depending on an
underlying market on that token. A typical implementation is given by constant-function
Automated Market Makers (AMMs) [AC20], which realize a market on two or more token
types, allowing users to swap tokens at an algorithmically-determined exchange rate that
depends solely on the offer and supply of the supported tokens. For example, in the simple
case of a constant-product AMM on two tokens T0, T1, swaps preserve the product of the
reserves of the two tokens in the AMM. Accordingly, the price of T0 w.r.t. T1 is defined
as the ratio between the reserves of T1 and those of T0 in the AMM. When a user swaps
units of T0, since the product of the reserves must remain constant, then after the swap
the reserves of T1 decrease, and so the price of T0 will decrease as well. This design, in
principle, makes AMMs suitable as price oracles, as users have an economic incentive to
perform tokens swap in order to align the AMM token prices to external prices [BCL22].

In practice, relying on instantaneous AMM prices in a lending protocol can be inse-
cure [WPG+22]. Indeed, an adversary with sufficient capital in a given token can induce
significant price fluctuations of that token. This manipulated price can then be exploited in
interactions with a lending protocol — as we will demonstrate below — before the adversary
reverses the manipulation to restore the original price on the AMM. Formally, we model
such a price manipulation attack as a sequence of transactions where the adversary fires
a transaction px(δ: T) to manipulate the price, then perform a sequence of interactions
with the LP, and finally restores the original price by firing px(−δ: T). We remark that the
proposer-builder separation scheme currently adopted by Ethereum [HKTW23] makes is
possible for an adversary to perform such transaction bundles atomically.

The following theorem shows an attack in which an adversary A manipulates price
updates in order to borrow more tokens than what she should be allowed to. Specifically,
after the attack, although A’s gain remain constant, her net position becomes negative. This
allows A to extract value from the LP by effectively defaulting on debt that is no longer
backed by a sufficient collateral. Since the lending protocol cannot enforce repayments, the
uncovered debt results in a loss for the pool.

Theorem 6.1 (Undercollateralized loan attack). Let Γ = (ω, Λ, π), and assume that A has
no credits or debts with the LP, i.e., W c

Γ(A) = W d
Γ(A) = 0. Consider the following sequence

of transactions:
X = A: dep(v1: T1) px(−δ: T2) A: bor(v2: T2) px(δ: T2)

where 0 < δ < π(T2) and v2 = v1
XRΛ (T1) · π(T1)

π(T2)−δ · Tliq. Let Γ X−→ Γ′. Then:
(1) gA(Γ, X ) = 0
(2) W c−d

Γ′ (A) < 0 if and only if δ > π(T2) · (1 − Tliq)

The theorem gives a lower bound for the price increase δ under which the attack does
not have effect (i.e. the net position does not go negative). Note that, since δ can take values
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in (0, π(T2)) and 0 < Tliq < 1, then there always exists a value for δ large enough to make
the attack succeed.

The following theorem shows another attack, where the attacker A manipulates prices
in order to make another user B under-collateralized and so make a gain from B’s liqui-
dation. In this attack, we assume that the collateral of B relies on a single token type T1
(hypothesis 1), that B has debts only in T2 (hypothesis 2), that the adversary has some
tokens T2 (hypothesis 3) and that B is not liquidatable in the current state (hypothesis 4).

Theorem 6.2 (Liquidation attack). Let Γ = (ω, Λ, π), and let A and B be such that:
(1) Λ(Tc

1, B) = vc and Λ(Tc, B) = 0 for all T ̸= T1
(2) Λ(Td

2, B) = vd and Λ(Td, B) = 0 for all T ̸= T2
(3) ω(T2, A) > 0
(4) HΓ(B) ≥ 1
Then, for every δ > 0 sufficiently small, and for every vl > 0 such that vl ≤ ω(T2, A), vl ≤ vd

and vl < vc · XRΛ (T1)
Rliq

· δ
π(T2) , given the following sequence of transactions:

X = px((−π(T1) + δ): T1) A: liq(B, vl: T2, Tc
1) px((π(T1) − δ): T1)

we have that X is enabled in Γ, and gA(Γ, X ) > 0.

6.2. Utilization attacks. Utilization, defined previously in (2.14), gives an estimate of how
much the reserves of a token are valuable, and are hence often used to determine interest
rates: the higher the utilization, the higher the interest rate. This, however, exposes lending
protocols to attacks where the adversary manipulates the utilization function in order to
increase or decrease the interest rates to their advantage [BCL21].

We formalise in Theorem 6.3 an under-utilization attack, where an adversary deposits
some tokens before an interest accrual in order to decrease the utilization of the token and pay
less interests on her debts, and then immediately redeem her credits. Dually, Theorem 6.4
establishes conditions for an over-utilization attack, where an adversary borrows some tokens
before the interest accrual in order to increase the utilization of the token and hence increase
the appreciation of her credit tokens, and then immediately repays her debt. In both attacks,
the adversary is not fairly participating in the dynamic of the lending protocol, but rather
manipulating its intended behavior to increase her net worth.

The following theorem shows an under-utilization attack in which an adversary A
manipulates the utilization of a token T. We assume that A has no credits (but possibly
debts) in T. We also consider a user B who has credits (but no debts) in T. The attack
consists in A firing a deposit immediately before an interest accrual, thus decreasing the
utilization of T, and then redeeming her credits. This strategy benefits A in two ways: first,
if A has debts, then a lower utilization implies a lower interest rate, hence reducing the
increase of A’s debt; secondly, given that A has now acquired credits in T, these credits
appreciate and can be redeemed for a higher value. User B, on the contrary, gets penalized
by A’s attack, since a lower utilization implies a lower appreciation of her credits.

Theorem 6.3 (Under-utilization attack). Assume that the LP uses the linear utility interest
rate function in (2.15) with α > 0. Let Γ = (ω, Λ, π), and let A, B and T be such that:
(1) Λ(Tc, A) = 0
(2) Λ(Tc, B) > 0 and Λ(Td, B) = 0
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Assume that the following sequence of transactions:
X = A: dep(v: T) int A: rdm(vc: T)

is enabled in Γ, where vc is the amount of credits held by A in the intermediate state before
rdm. Then, we have that:

gA(Γ, X ) > gA(Γ, int) gB(Γ, X ) < gB(Γ, int)

If we drop the assumption that A does not possess any credit, then the attack does not
necessarily succeed for every state of the lending pool for every value v, since the deposit
decreases the appreciation of the credits already possessed by A. In such a case, there is a
trade off between the lower appreciation of A’s credits, on one side, and the reduction in
the increment of A’s debt, and the gains coming from the credit appreciation of the newly
deposited tokens, on the other side. In general, the attack succeeds when A has plenty of
debts in T but few credits. Precise relations between these values are established in the
proof of Theorem 5.4.

The following theorem shows an over-utilization attack performed by an adversary A,
which possesses all the credits in T (but not all the debts in T). We also consider another
user B, which possesses debts in T (but not credit). Here, the adversary A borrows some
tokens immediately before the interest accrual, thus increasing the utilization of the token
T, and then immediately repays the loan. This strategy benefits A as a higher utilization
implies a higher interest rate, and, since A is the only credits possessor, then all the overall
debt increase in T correspond to an appreciation of A credits. Even though also the debts
of A increase, since A is the only creditor, then this loss is matched by the gain coming from
the appreciation of her credits. User B, on the contrary, gets penalized by the attack, since
now her debts have increase more than they would have in the absence of the attack.

Theorem 6.4 (Over-utilization attack). Assume that the LP uses the linear utility interest
rate function in (2.15) with α > 0. Let Γ = (ω, Λ, π), and let A, B and T be such that:
(1) Λ(Tc, A) = SΛ(Tc) and Λ(Td, A) < SΛ(Td)
(2) Λ(Td, B) > 0
Assume that the following sequence of transactions:

X = A: bor(v: T) int A: rep(v: T)
is enabled in Γ. Then, we have that:

gA(Γ, X ) > gA(Γ, int) gB(Γ, X ) < gB(Γ, int)

Similarly to the previous theorem, if we drop the assumption that A possesses all the
credits in T, then the attack is not guaranteed to succeed for every state of the lending pool
for every value v. Indeed, there is now a trade off between the increase in A’s debt, and
the increase in the appreciation of A’s credits. In general, the attack succeeds when A has
plenty of credits but few debts in T.

7. Limitations

For simplicity, our model of lending protocols abstracts away from certain functionalities
and fine-grained details of real-world lending platforms. While these simplifications limit the
direct applicability of our theory to existing systems, we believe that our results describe
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ideal properties that lending protocols should satisfy – such as preservation of global net
worth, incentives for liquidity providers and liquidators, etc.

We discuss here some of the key abstractions made in our model, using the Aave protocol
implementation [aav20c] for reference.
• Governance. In early implementations of Aave and Compond, administrators had the

authority to set key economic parameters of the protocol, such as the interest rate function,
liquidation threshold, and and liquidation reward. To mitigate the risk of administrators
engaging in improper behavior, more recent versions of these platforms use governance
tokens, distributed among liquidity providers, to collectively govern and update protocol
parameters. In our model, we assume for simplicity that protocol parameters are fixed.

• Deposits and collaterals. Our [Dep] rule allows any user to add a new token type to the LP
by just performing the first deposit of tokens of that type. In contrast, adding a new token
type to an Aave LP must be authorized by the governance mechanisms. Additionally, our
[Dep] rule, together with the definition of user collateralization (2.11), ensures that every
deposit is automatically enabled as collateral. In contrast, Aave allows users to selectively
disable specific deposited token types from being used as collateral.

• Liquidations. Our [Liq] rule allows liquidators to receive credit tokens in exchange for the
repaid debt; if liquidators want to convert the credit tokens in the underlying base tokens,
they must send a redeem transaction after the liquidation. In Aave, liquidators can also
choose to receive the underlying base tokens directly. Furthermore, [Liq] allows liquidators
to repay any fraction of the debt, with the only constraint that the borrower’s health
factor after the liquidation does not exceed 1. In Aave, instead, liquidations can repay
up-to a 50% fraction of the debt [aav20a]. Since this constraint can be easily bypassed by
splitting a liquidation into multiple actions, we have omitted it. Another difference is that
in our model the protocol parameters Tliq (liquidation threshold) and Rliq (liquidation
reward) are uniform across all token types. In contrast, Aave allows these parameters to
vary by token, enabling the protocol to fine-tune incentives in selected tokens.

• Interest accrual. Our [Int] rule models the accrual of interest on loans as an update
triggered by a privileged entity. This abstraction reflects the fact that the int action is not
associated with any address, unlike other actions such as deposit or redeem. In lending
protocol implementations, interest accruals are not executed on demand by privileged
entities; instead, they occur automatically whenever a user performs an action that requires
up-to-date debt amounts. To reduce execution costs, a single interest rate is applied over
the entire period since the last accrual, which can introduce minor inaccuracies.

• Price updates. Our [Px] rule models the update of a token price performed by a price
oracle. In contrast, Aave associates each token type with its own price oracle. This oracle
is usually a smart contract that aggregates multiple independent sources, in order to
mitigate the risk of price manipulation [GADH25].

• Flash loans. Lending platforms typically expose a flash loan functionality, which allows
users to borrow arbitrary amounts of tokens without a collateral, provided that the
borrowed funds are repaid within the same transaction. This transaction can bundle
multiple actions performed by the same user: its atomicity guarantees that all operations

— i.e. borrowing, using the borrowed tokens, and repaying the loan — must either complete
successfully or be entirely reverted [aav20b]. Our model does not include flash loans, as
they are usually meant to be used in combination with other protocols. Note that the
possibility of obtaining large amounts of funds without providing a collateral is implicitly
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assumed in the attacks in Section 6, where the adversary needs sufficient capital to obtain
the desired manipulation of token prices or utilization.

• Fees. Aave requires users to pay fees for certain actions, such as borrowing and executing
flash loans. These fees are accumulated in a reserve managed by the protocol’s governance
mechanisms and are intended to serve as a protection against unforeseen events.

• Token amounts. In our model, we let token amounts range over the continuous domain
of non-negative real numbers. In contrast, real-world lending protocol implementations
operate over a discrete domain, representing token amounts as fixed-size integers. As a
result, all operations involving token amounts require rounding, which can introduce small
inaccuracies and edge cases (and, possibly, attack vectors) abstracted away by our model.

8. Related work

Even though lending protocols have been extensively studied in recent years, only a few
works base their analysis on formal, operational models that capture the interactions in
lending protocols at the granularity of individual transactions. The work most closely related
to ours is [BCL21], whose LP model served as a key inspiration for our model. Although
both models encompass the same types of transactions (except swaps, which are not present
in [BCL21]), the representation of LP and blockchain states are quite different. While,
similarly to process algebras, [BCL21] renders states as parallel compositions of simple
terms (e.g., an individual user wallet, a lending pool handling a single token type), in our
model we gather all the components of the LP state (reserves, credit and debit maps) into a
single function. Besides that, credits and debits are represented asymmetrically in [BCL21]:
namely, credits are associated to users’ wallets, while debits to LP states. These differences
are not merely aesthetic, however, as they deeply impact the way states predicates are
represented, and how states are updates. Overall, our design choices lead to a substantially
clearer LP semantics and to more succinct proofs than [BCL21]. Another key difference lies
in the comprehensiveness of the theoretical analysis. Compared to our work, the results
in [BCL21] constitute a narrower subset: they include only simplified versions of exchange
rate monotonicity (Lemma 3.4), net worth preservation (Theorem 3.6), and gain from user
actions (Lemma 4.1). Our theoretical framework provides refined versions of these results,
along with a thorough analysis of the effects of each individual actions and more complex
strategies, supported by rigorous proofs for all statements.

Several works have focused on specific features of lending protocols, such as interest rate
functions, price stabilization mechanisms, liquidation strategies, and flash loans.

Interest rate functions. The impact of interest rate functions on market liquidity and
efficiency in lending protocols has been studied by [GWPK20], which provides an empirical
analysis of the interest rate models employed by various protocols. The two main platforms
Aave and Compound rely on static interest rate curves, which often struggle to adapt to rapid
market changes such as major price fluctuations. Dynamic interest rates aiming at stabilizing
utilization have been studied in various works [CSBS23,BNJ+24,BNWV24,NKV24,BCT25].
However, it has been observed that, although dynamic interest rates provide better utilization
levels, they also increase the exposure to manipulation attacks [CEK23,BNWV24].
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Prices. While, in our model, prices are simply modelled as a function from token types
to non-negative real numbers, the literature has explored sophisticated price models and
mechanism to mitigate price volatility. A taxonomy of various price stabilization mechanisms
has been proposed in [MSS20]. The behaviour of lending protocols in times of high price
volatility has been discussed in [GPH+20]. This work also uncovers a vulnerability in the
governance design of MakerDAO that allowed attackers to utilize flash loans to steal funds
from the contract. The performance of MakerDAO’s oracles has been studied empirically
in [GRB20], which also proposes alternate price feed aggregation models to improve oracle
accuracy. The profitability competition for user deposits between staking in proof-of-stake
systems and lending protocols has been studied in [Chi19,CE20]: when lending is believed to
be more profitable than staking, users may shift deposits away from the staking contract of
the underlying consensus protocol towards lending pools, thereby endangering the security
of the system. The work [BEK24] studies the interaction between AMMs and LPs, analysing
the impact of transaction costs, arbitrage opportunities, hedging of impermanent losses,
and risk management. Price manipulation attacks, such as those presented in Section 6.1,
have been formally characterized in [BMZ24] as instances of MEV interference between a
contract (the lending pool) and its dependencies (the AMM serving as a price oracle). This
interference allows the adversary interacting with the AMM to extract more value from the
LP than would be possible by interacting with the LP alone.

Liquidations. A liquidation model intended to simulate interactions between lending
pool liquidations and token exchange markets in times of high price volatility has been
studied in [GPH+20]. The optimal bidding strategy for collateral liquidators in MakerDAO
auctions has been studied in [DPT20]. The work [GPH+20] analyzed what happens when
large price drops make many accounts under-collateralized. A key observation of this
work is that if liquidators sell off collateral at an external market for units of the repaid
token type, the limited market demand for collateral tokens may prevent liquidations from
being executed. In the Compound protocol, liquidation efficiency has been studied through
historical data [PWXL21], while the evolution of liquidatable and undercollateralized debt
has been studied in [KCCM20] and the risk of financial contagion triggering a cascade of
defaults in [TKWP23]. The impact of different liquidation strategies and protocol designs
on the net position of borrowers has been studied in [BCJ+22]. Strategies to liquidate under-
collateralized borrowers, such as those studied in Section 5, have been formally characterized
as instances of Maximal Extractable Value (MEV) in [BZ25]. In particular, liquidations that
do not exploit the knowledge of the mempool are classified by [BZ25] as a benign form of MEV.
This classification aligns with the broader community consensus [Bar23,JG24,TMW+24],
which views such liquidations as a necessary incentive mechanism to keep lending protocols
aligned with their intended functionality.

Flash loans. An analysis of flash loans transactions in the main lending platforms has
been conducted in [WWL+20]. Flash loans have been exploited in several attacks, as
they enable attackers to have access to large amount of funds that can be used to initiate
attacks [val20,har20,ori20,akr20]. Attacks such as pump and arbitrage and price manipulation
have been studied in [QZLG21]. A framework for the automated synthesis of attacks that
exploit flash loans has been proposed in [CBL24].
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9. Conclusions

We have presented a formal model and analysis of decentralized lending protocols, based
on common features synthesised from mainstream lending platforms such as Aave and
Compound [aav25b,com25b]. Our theoretical investigation of lending protocols has provided
answers to the following research questions:
(1) What structural properties and invariants are enjoyed by lending pools?
(2) What is the economic effect of each individual interaction with a lending pool?
(3) Which strategies can be followed by rational users anticipating a forthcoming action?
(4) Which attacks are possible for adversaries with a large amount of capital?

Overall, our formal model proved to be sufficiently granular to precisely reproduce and
analyse known attacks from the literature, and at the same time streamlined enough to allow
for succinct proofs. To the best of our knowledge, we are the first to have systematically
studied the incentive mechanism of lending protocols at that level of granularity, providing
a comprehensive analysis of user strategies. Most notably, we focused on strategies for
front-running of impending transactions. In our analysis, we have observed that the dynamics
of interest accruals are among the most complex aspects of the lending protocols, giving rise
to different manipulation attacks and non-trivial user strategies.

Future work. Our analysis shows that lending protocols — despite the relative simplicity
of the rules governing the semantics of individual actions — exhibit complex emergent
behaviour. While the strategic properties and the attacks formalised in Sections 5 and 6
capture relevant aspects of these behaviour, it remains an open question whether more
sophisticated strategies or attacks may exist. The search of strategies for reaching certain
economic goals could be facilitated by specialised automatic tools. A relatively light-weight
approach towards this goal is statistical model checking, a simulation-based technique
that allows to observe the quantitative behavior of complex systems, based on statistical
techniques to measure the confidence in the result produced. Some initial results regarding
the application of this approach to lending protocols are in [BCJ+22], which studies how
different liquidation strategies and choices of the protocol parameters Tliq and Rliq impact
the net position of borrowers. A drawback of this approach — aside not guaranteeing 100%
accuracy in the results — is that players’ (probabilistic) strategies must be given as input to
the simulator. Therefore, this technique does not seem suitable for automatically discovering,
or ruling out the existence of, strategies that achieve given economic goals.

Another approach to inferring strategies and attacks in lending protocols is SMT-
based bounded model checking. This technique involves encoding the semantics of lending
protocols as a set of logical constraints and then querying whether there exists a sequence of
transactions — up to a given length — that satisfies a specified property over blockchain
states. While existing tools that apply SMT-based model checking to smart contracts written
in real-world languages such as Solidity or Move are generally unable to verify — or even
express — strategic properties [BCL25], a specialized tool built upon our abstract model
could potentially offer greater expressiveness and effectiveness.
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ω(T, A) ≥ v > 0 vc = v/XRΛ (T) Λ′ = Λ + {T 7→ v} + {(Tc, A) 7→ vc}

(ω, Λ, π) A:dep(v:T)−−−−−−−→ (ω − {(T, A) 7→ v}, Λ′, π)
[Dep]

Λ(T) ≥ v > 0 Λ′ = Λ − {T 7→ v} + {(Td, A) 7→ v}) HΛ′,π(A) ≥ 1

(ω, Λ, π) A:bor(v:T)−−−−−−→ (ω + {(T, A) 7→ v}, Λ′, π)
[Bor]

ω(T, A) ≥ v > 0 Λ(Td, A) ≥ v Λ′ = Λ + {T 7→ v} − {(Td, A) 7→ v}

(ω, Λ, π) A:rep(v:T)−−−−−−→ (ω − {(T, A) 7→ v}, Λ′, π)
[Rep]

Λ(Tc, A) ≥ vc > 0 v = vc · XRΛ(T) Λ(T) ≥ v

Λ′ = Λ − {T 7→ v} − {(Tc, A) 7→ vc} HΛ′,π(A) ≥ 1

(ω, Λ, π) A:rdm(vc:Tc)−−−−−−−−→ (ω + {(T, A) 7→ v}, Λ′, π)
[Rdm]

Λ′ = Λ +
∑

T,A Λ(Td, A) · IΛ(T)

(ω, Λ, π) int−→ (ω, Λ′, π)
[Int]

ω(T0, A) ≥ v0 > 0 Λ(Td
0, B) ≥ v0 vc

1 = v0
XRΛ (T1) · π(T0)

π(T1) · Rliq Λ(Tc
1, B) ≥ vc

1

Λ′ = Λ + {T0 7→ v0} + {(Tc
1, A) 7→ vc

1} − {(Tc
1, B) 7→ vc

1} − {(Td
0, B) 7→ v0}

A ̸= B HΛ,π(B) < 1 HΛ′,π(B) ≤ 1

(ω, Λ, π)
A:liq(B,v0:T0,Tc

1)
−−−−−−−−−−−→ (ω − {(T0, A) 7→ v0}, Λ′, π)

[Liq]

π(T) + δ > 0

(ω, Λ, π) px(δ:T)−−−−−→ (ω, Λ, π + {T 7→ δ})
[Px]

ω(T0, A) ≥ v > 0 ω′ = ω − {(T0, A) 7→ v} + {(T1, A) 7→ v · π(T0)
π(T1) }

(ω, Λ, π) A:swp(v:T0,T1)−−−−−−−−−→ (ω′, Λ, π)
[Swp]

Figure 2. LP semantics.

Appendix A. Proofs for Section 3

In this and the following appendices we provide detailed proofs for all your statements. These
proofs are presented in the order in which the statements appear in the paper, even though
this order does not always reflect their logical dependencies. To clarify the relationship
among our statements, Figure 3 displays a graph of the dependencies: an arrow a → b means
that the proof of statement a depends on statement b. Note that this graph is acyclic.

For quick reference, we also summarize the semantics of LPs in Figure 2.
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Lem 3.3

Lem 3.4

Thm 3.6

Lem 4.1Lem 4.3 Lem 4.2Lem 4.4 Lem 4.6

Thm 5.4 Thm 5.1 Thm 5.2 Lem 5.3 Thm 6.1Thm 6.2Thm 6.3Thm 6.4

Figure 3. Dependencies among the statements.

Proof of Lemma 3.2. By inspection of the rules in Figure 2, it is immediate to observe
that all the rules but [Swp] ensure that transition preserve the supply of base token types.

Proof of Lemma 3.3. Let Γ = (ω, Λ, π) be a reachable state. We proceed by induction on
the length of the trace to reach Γ. The base case holds trivially, since in initial LP states
there are no tokens. For the inductive case, assume that Γ X−→ Γ′ = (ω′, Λ′, π′) and that the
statement holds in Γ. There are the following cases:
• A: dep(v: T). We have that SΛ′(Tc) > 0, hence the thesis holds trivially.
• A: bor(v: T). We have that Λ(T) > 0, so by hypothesis it must be SΛ(Tc) > 0. Since the

[Bor] rule does not affect credit tokens, then SΛ′(Tc) > 0, hence the thesis holds trivially.
• A: rep(v: T). We have that SΛ(Td) > 0, hence by the induction hypothesis we must have

SΛ(Tc) > 0. Since the [Rep] rule does not affect credit tokens, then SΛ′(Tc) > 0, hence the
thesis holds trivially.

• A: rdm(vc: Tc). If SΛ′(Tc) > 0, then the thesis holds trivially. Otherwise, if SΛ′(Tc) = 0,
then it must be vc = SΛ(Tc). Therefore, we have:

Λ′(T) = Λ(T) − vc · XRΛ(T) = Λ(T) − SΛ(Tc) · XRΛ(T) by [Rdm] and hyp.
We have now two cases, depending on whether SΛ(Tc) = 0 or not. If SΛ(Tc) = 0, then
by (2.2) we have that XRΛ(T) = 1. Furthermore, by the induction hypothesis we have
that Λ(T) = 0 = SΛ(Td). Therefore:

Λ′(T) = Λ(T) − SΛ(Tc) = −SΛ(Tc) = 0
SΛ′(Td) = SΛ(Td) = 0

Otherwise, if SΛ(Tc) > 0, then by (2.2):

Λ′(T) = Λ(T) − SΛ(Tc) · Λ(T) + SΛ(Td)
SΛ(Tc) = −SΛ(Td)

Since Λ′(T) cannot be negative, it must be SΛ(Td) = 0 = Λ′(T).
• A: liq(B, v0: T0, Tc

1). We have two cases, depending on whether T is the repaid token T0
or the base token underlying the credit token T1

c.
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– T = T0 ̸= T1. Assume that SΛ′(T0
c) = 0. Since the [Liq] transition does not affect the

amount of T0
c, then it must be SΛ(T0

c) = 0. Then, the thesis follows by the induction
hypothesis.

– T = T1. In this case thesis holds trivially, since SΛ′(T1
c) ≥ vc

1 > 0 by the [Liq] rule.
• In all the other cases, the transition does not affect tokens T in the LP, hence the thesis

follows directly from the hypothesis.

Proof of Lemma 3.4. Let Γ X−→ Γ′, where Γ = (ω, Λ, π) and Γ′ = (ω′, Λ′, π′). We must
prove that, for all T:
(a) if X = int, and SΛ(Td) > 0, then

XRΛ′(T) = XRΛ(T) + SΛ(Td)
SΛ(Tc) · IΛ(T) > XRΛ(T)

(b) if X = rdm, and SΛ′(Tc) = 0, then XRΛ′(T) = 1
(c) otherwise, XRΛ′(T) = XRΛ(T).

We proceed by cases on X . Note that, if X ̸= int but T does not appear in the transaction,
then its exchange rate does not change. Hence, besides the case X = int, we only have to
deal with transactions that mention T. There are the following exhaustive cases:
• A: dep(v: T). Since the [Dep] rule increases the base tokens T, then Λ′(T) > 0, and so by

Lemma 3.3 it must be SΛ′(Tc) > 0. Then:

XRΛ′(T) =
Λ′(T) + SΛ′(Td)

SΛ′(Tc) by (2.2)

= Λ(T) + v + SΛ(Td)
SΛ(Tc) + v/XRΛ (T)

by [Dep]

= Λ(T) + v + SΛ(Td)
SΛ(Tc) · XRΛ(T) + v

· XRΛ(T) by arith.

= Λ(T) + v + SΛ(Td)

SΛ(Tc) · Λ(T) + SΛ(Td)
SΛ(Tc) + v

· XRΛ(T) by (2.2)

= XRΛ(T) by arith.

• A: bor(v: T). Since the [Bor] rule increases the debit tokens Td, then SΛ′(Td) > 0, and so
by Lemma 3.3 it must be SΛ′(Tc) > 0. Then:

XRΛ′(T) =
Λ′(T) + SΛ′(Td)

SΛ′(Tc) by (2.2)

= (Λ(T) − v) + (SΛ(Td) + v)
SΛ(Tc) by [Bor]

= Λ(T) + SΛ(Td)
SΛ(Tc) by arith.

= XRΛ(T) by (2.2)
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• int. For every A, we have that
Λ′(Td, A) = Λ(Td, A) + Λ(Td, A) · IΛ(T) = Λ(Td, A) · (1 + IΛ(T))

The supply of credit tokens changes as follows:
SΛ′(Td) =

∑
A∈A

Λ′(Td, A)

=
∑
A∈A

Λ(Td, A) · (1 + IΛ(T)

=
∑
A∈A

Λ(Td, A) +
∑
A∈A

Λ(Td, A) · IΛ(T)

= SΛ(Td) +
∑
A∈A

Λ(Td, A) · IΛ(T)

The exchange rate changes as follows. If SΛ(Tc) = 0, then, by [Int] also SΛ′(Tc) = 0,
and hence, by Equation (2.2), XRΛ(T) = 1 = XRΛ′(T). Otherwise, if SΛ(Tc) ̸= 0, then
SΛ′(Tc) = SΛ(Tc) ̸= 0, and so:

XRΛ′(T) =
Λ′(T) + SΛ′(Td)

SΛ′(Tc) by (2.2)

=
Λ(T) + SΛ(Td) +

∑
A∈A Λ(Td, A) · IΛ(T)

SΛ(Tc) by [Int]

= Λ(T) + SΛ(Td)
SΛ(Tc) +

∑
A∈A Λ(Td, A) · IΛ(T)

SΛ(Tc) by arith.

= XRΛ(T) +
∑

A∈A Λ(Td, A) · IΛ(T)
SΛ(Tc) by (2.2)

= XRΛ(T) + SΛ(Td)
SΛ(Tc) · IΛ(T) by (2.1)

We now have the two following two cases:
– If SΛ(Td) = 0, the second addend in the previous equation is equal to 0, hence

XRΛ′(T) = XRΛ(T).
– If SΛ(Td) > 0, since by Equation (2.13) IΛ(T) > 0, then the second addend is strictly

positive, hence XRΛ′(T) > XRΛ(T).
• A: rep(v: T). Since the [Rep] rule increases the base tokens T, then Λ′(T) > 0, and so by

Lemma 3.3 it must be SΛ′(Tc) > 0. Then:

XRΛ′(T) =
Λ′(T) + SΛ′(Td)

SΛ′(Tc) by (2.2)

= (Λ(T) + v) + (SΛ(Td) − v)
SΛ(Tc) by [Rep]

= Λ(T) + SΛ(Td)
SΛ(Tc) by arith.

= XRΛ(T) by (2.2)
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• A: rdm(v: Tc). We have two cases. First, consider the case SΛ′(Tc) ≠ 0, i.e. v ̸= SΛ(Tc).
Then:

XRΛ′(T) =
Λ′(T) + SΛ′(Td)

SΛ′(Tc) by (2.2)

= Λ(T) − v · XRΛ(T) + SΛ(Td)
SΛ(Tc) − v

by [Rdm]

= Λ(T) · SΛ(Tc) − v · XRΛ(T) · SΛ(Tc) + SΛ(Td) · SΛ(Tc)
(SΛ(Tc) − v) · SΛ(Tc) by arith.

= Λ(T) · SΛ(Tc) − v · (Λ(T) + SΛ(Td)) + SΛ(Td) · SΛ(Tc)
(SΛ(Tc) − v) · SΛ(Tc) by (2.2)

= Λ(T) · (SΛ(Tc) − v) + SΛ(Td) · (SΛ(Tc) − v)
(SΛ(Tc) − v) · SΛ(Tc) by arith.

= XRΛ(T) by (2.2)
Otherwise, if SΛ′(Tc) = 0, then, by definition of exchange rate (2.2), XRΛ′(T) = 1.

• In the case of liq, since there are two tokens that appear in the rule, we will first consider
the case in which the token T corresponds to the debt being repayed by the liquidator,
and, secondly, the case in which the token T is the token whose associated credit tokens
are seized and passed to the liquidator.
– A: liq(B, v: T, T′c), with T ̸= T′ .

XRΛ′(T) =
Λ′(T) + SΛ′(Td)

SΛ′(Tc) by (2.2)

= (Λ(T) + v) + (SΛ(Td) − v)
SΛ(Tc) by [Liq]

= Λ(T) + SΛ(Td)
SΛ(Tc) by arith.

= XRΛ(T) by (2.2)
– A: liq(B, v: T′ , Tc), with T ̸= T′ .

XRΛ′(T) =
Λ′(T) + SΛ′(Td)

SΛ′(Tc) by (2.2)

= Λ(T) + SΛ(Td))
SΛ(Tc) + v′ − v′ by [Liq]

= Λ(T) + SΛ(Td)
SΛ(Tc) by arith.

= XRΛ(T) by (2.2)
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– A: liq(B, v: T, Tc).

XRΛ′(T) =
Λ′(T) + SΛ′(Td)

SΛ′(Tc) by (2.2)

= (Λ(T) + v) + (SΛ(Td) − v)
SΛ(Tc) + v′ − v′ by [Liq]

= Λ(T) + SΛ(Td)
SΛ(Tc) by arith.

= XRΛ(T) by (2.2)
• px(δ: T) Price updates do not change the number of base/credit/debit tokens in the LP,

hence the thesis holds trivially.
• swp(v: T1, T2) Swaps do not change the number of base/credit/debit tokens in the LP,

hence the thesis holds trivially.

Proof of Corollary 3.5. We must prove that XRΛ(T) ≥ 1 for all reachable LP state Λ.
Let Γ = (ω, Λ, π) be a reachable blockchain state. If Γ is initial, then SΛ(Tc) = 0, and so
the second case of (2.2) applies, giving XRΛ(T) = 1. Otherwise, the statement follows by
applying inductively Lemma 3.4.

Proof of Theorem 3.6. We have to prove that, for every state Γ, and for every transition:

Γ = (ω, Λ, π) X−→ Γ′ = (ω′, Λ′, π)
such that X ̸= px, we have that:∑

C∈A

WΓ′(C) =
∑
C∈A

WΓ(C)

Since
∑

C∈A gC(Γ, X) =
∑

C∈A(WΓ′(C) − WΓ(C)), we can equivalently prove that:∑
C∈A

gC(Γ, X) = 0

Note that Lemma 4.1 implies the thesis for all cases except X = int. Indeed, it states that:
• if X is not a liq, then the gain of the user A who fired the transaction is gA(Γ, X) = 0,

while the gain of the other users does not change.
• if X is a liq, say X = A: liq(B, v: T0, Tc

1), then the only non-zero gains are those of A and B,
and gA(Γ, X) = −gB(Γ, X), i.e.:∑

C∈A

gC(Γ, X) =
( ∑

C∈A\{A,B}
gC(Γ, X)

)
+ gA(Γ, X) + gB(Γ, X)

= 0 + gA(Γ, X) − gA(Γ, X) = 0
We now consider the case X = int. From Lemma 4.3, we have that, for all T, if SΛ(Tc) = 0,
then for all A, gA(Γ, int) |T= 0; otherwise, if SΛ(Tc) > 0, for all A:

gA(Γ, int) |T=
(

Λ(Tc, A) · SΛ(Td)
SΛ(Tc) − Λ(Td, A)

)
·
(
IΛ(T) · π(T)

)
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Let c = IΛ(T) · π(T). We have that:∑
C∈A

gC(Γ, int) |T =
∑
C∈A

(
Λ(Tc, C) · SΛ(Td)

SΛ(Tc) − Λ(Td, C)
)

· c by (2.1)

=

(∑
C∈A

Λ(Tc, C)
)

· SΛ(Td)
SΛ(Tc) −

∑
C∈A

Λ(Td, C)

 · c by arith.

=
(

SΛ(Tc) · SΛ(Td)
SΛ(Tc) − SΛ(Td)

)
· c by (2.1)

= 0 by arith.

The thesis follows from (2.9).

Appendix B. Proofs for Section 4

Proof of Lemma 4.1. Let X ̸∈ {int, px} be enabled in Γ. We have to prove that:
(1) gA(Γ, X) = 0 iff X is not a liquidation involving A.
(2) gA(Γ, X) > 0 iff X is a liquidation performed by A;
(3) gA(Γ, X) < 0 iff X is a liquidation suffered by A;
and, in the case X = A: liq(B, v: T0, Tc

1), that:
(4) gA(Γ, X) = −gB(Γ, X) = v · π(T0) · Rliq.

Assume that the state transition is given by:

Γ = (ω, Λ, π) X−→ Γ′ = (ω′, Λ′, π)
In order to prove the first three points, we proceed by cases on X. The last point will follow
from the cases concerning liq.

First, consider the case in which A does not appear in X. In this case, the amount of
base tokens, credits, and debts held by A do not change. Since, by hypothesis, X ̸= px, the
token prices do not change too, and hence Wω′,π(A) = Wω′,π(A) and W d

Λ′,π(A) = W d
Λ,π(A).

For W c
Λ′,π(A), we have to consider possible changes in the exchange rates. By Lemma 3.4

and the hypothesis that X ≠ int, we know that the exchange rate of a token type T can
only change if X is a rdm that reclaims the entirety of the credits in T. If this is the case,
since by hypothesis A does not appear in X, in means that A had no credits in T, i.e.
W c

Λ,π(A) |T= 0 = W c
Λ,π(A) |T , hence W c

Λ′,π(A) = W c
Λ,π(A).

Now let’s consider the following exhaustive cases in which A appears in X:
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• A: dep(v: T). We have that:
WΓ′(A) = Wω′,π(A) + W c

Λ′,π(A) − W d
Λ′,π(A) by (2.7)

= Wω′,π(A) +
∑
T′

Λ′(T′c, A) · XRΛ′(T′) · π(T′) − W d
Λ′,π(A) by (2.5)

= Wω′,π(A) +
∑
T′

Λ′(T′c, A) · XRΛ(T′) · π(T′) − W d
Λ′,π(A) by Lem. 3.4

=
(
Wω,π(A) − v · π(T)

)
+
( ∑

T′ ̸=T
Λ(T′c, A) · XRΛ(T′) · π(T′)

+ (Λ(Tc, A) + vc) · XRΛ(T) · π(T)
)

− W d
Λ,π(A) by [Dep]

= Wω,π(A) − v · π(T) + W c
Λ,π(A) + vc · XRΛ(T) · π(T) − W d

Λ,π(A) by arith. + (2.5)

= Wω,π(A) − v · π(T) + W c
Λ,π(A) + v · XRΛ(T)

XRΛ(T) · π(T) − W d
Λ,π(A) by def. vc

= Wω,π(A) − v · π(T) + W c
Λ,π(A) + v · π(T) − W d

Λ,π(A) by Lem. 3.4
= Wω,π(A) + W c

Λ,π(A) − W d
Λ,π(A) by arith.

= WΓ(A) by (2.7)
• A: bor(v: T). We have that:

WΓ′(A) = Wω′,π(A) + W c
Λ′,π(A) − W d

Λ′,π(A) by (2.7)

=
(
Wω,π(A) + v · π(T)

)
+ W c

Λ,π(A) −
(
W d

Λ,π(A) + v · π(T)
)

by [Bor]

= Wω,π(A) + W c
Λ,π(A) − W d

Λ,π(A) by arith.
= WΓ(A) (2.7)

• A: rep(v: T). We have that:
WΓ′(A) = Wω′,π(A) + W c

Λ′,π(A) − W d
Λ′,π(A) by (2.7)

=
(
Wω,π(A) − v · π(T)

)
+ W c

Λ,π(A) −
(
W d

Λ,π(A) − v · π(T)
)

by [Rep]

= Wω,π(A) + W c
Λ,π(A) − W d

Λ,π(A) by arith.
= WΓ(A) by (2.7)

• A: rdm(vc: Tc). By rule [Rdm], let v = vc · XRΛ(T). We have now two subcases.
If SΛ′(Tc) > 0, then by Lemma 3.4 it follows that XRΛ′(T) = XRΛ(T), and so we have:

WΓ′(A) = Wω′,π(A) + W c
Λ′,π(A) − W d

Λ′,π(A) by (2.7)

=
(
Wω,π(A) + v · π(T)

)
+
(
W c

Λ,π(A) − vc · XRΛ(T) · π(T)
)

− W d
Λ,π(A) by [Rdm]

= Wω,π(A) + v · π(T) + W c
Λ,π(A) − v · π(T) − W d

Λ,π(A) by def. v

= Wω,π(A) + W c
Λ,π(A) − W d

Λ,π(A) by arith.
= WΓ(A) by (2.7)
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Otherwise, if SΛ′(Tc) = 0, then it means that vc = SΛ(Tc) = Λ(Tc, A), and by Lemma 3.4
it follows that XRΛ′(T) = 1. Hence, we have that:

WΓ′(A) = Wω,π(A) + v · π(T) − W d
Λ,π(A)

+
∑

T′ ̸=T
Λ′(T′c, A) · XRΛ′(T′) · π(T′) by Λ′(Tc, A) = 0

= Wω,π(A) + v · π(T) − W d
Λ,π(A)

+
∑

T′ ̸=T
Λ(T′c, A) · XRΛ(T′) · π(T′) by [Rdm]

= Wω,π(A) + v · π(T) − W d
Λ,π(A)

+
∑
T′

Λ(T′c, A) · XRΛ(T′) · π(T′) − Λ(Tc, A) · XRΛ(T) · π(T) by arith.

= Wω,π(A) + v · π(T) − W d
Λ,π(A) + W c

Λ,π(A)
− Λ(Tc, A) · XRΛ(T) · π(T) by arith.
= WΓ(A) + v · π(T) − vc · XRΛ(T) · π(T) by (2.7), vc = Λ(Tc, A)
= WΓ(A) + v · π(T) − v · π(T) by def. vc

= WΓ(A) by arith.
• A: liq(B, v0: T0, Tc

1), where B ̸= A. We have that:
WΓ′(A) = Wω′,π(A) + W c

Λ′,π(A) − W d
Λ′,π(A) by (2.7)

= Wω′,π(A) +
∑
T

Λ′(Tc, A) · XRΛ′(T) · π(T) − W d
Λ′,π(A) by (2.5)

= Wω′,π(A) +
∑
T

Λ′(Tc, A) · XRΛ(T) · π(T) − W d
Λ′,π(A) by Lem. 3.4

=
(
Wω,π(A) − v0 · π(T0)

)
+
∑

T ̸=T1

Λ′(Tc, A) · XRΛ(T) · π(T)

+
(
Λ(T1

c, A) + vc
1

)
· XRΛ(T1) · π(T1) − W d

Λ,π(A) by [Liq]

=
(
Wω,π(A) − v0 · π(T0)

)
+
(
W c

Λ,π(A) + vc
1 · XRΛ(T1) · π(T1)

)
− W d

Λ,π(A) by arith. and (2.5)

= Wω,π(A) − v0 · π(T0) + W c
Λ,π(A)

+ v0 · 1
XRΛ(T1) · π(T0)

π(T1) · Rliq · XRΛ(T1) · π(T1) − W d
Λ,π(A) by def. vc

1

= Wω,π(A) − v0 · π(T0) + W c
Λ,π(A) + v0 · π(T0) · Rliq − W d

Λ,π(A) by arith.
= Wω,π(A) + W c

Λ,π(A) − W d
Λ,π(A) + (Rliq − 1) · v0 · π(T0) by arith.

= WΓ(A) + (Rliq − 1) · v0 · π(T0) by (2.7)
Recalling that v0 > 0, π(T0) > 0 and Rliq > 1, we obtain:

gA(Γ, X) = (Rliq − 1) · v0 · π(T0) > 0
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• B: liq(A, v: T0, Tc
1), where B ̸= A. We have that:

WΓ′(A) = Wω′,π(A) + W c
Λ′,π(A) − W d

Λ′,π(A) (2.7)

= Wω′,π(A) +
∑
T

Λ′(Tc, A) · XRΛ′(T) · π(T) − W d
Λ′,π(A) by (2.5)

= Wω′,π(A) +
∑
T

Λ′(Tc, A) · XRΛ(T) · π(T) − W d
Λ′,π(A) by Lem. 3.4

= Wω,π(A) +
( ∑

T ̸=T1

Λ(Tc, A) · XRΛ(T) · π(T)

+ (Λ(T1
c, A) − vc

1) · XRΛ(T1) · π(T1)
)

−
(
W d

Λ,π(A) − v0 · π(T0)
)

[Liq]

= Wω,π(A) + W c
Λ,π(A) − vc

1 · XRΛ(T1) · π(T1)
− W d

Λ,π(A) + v0 · π(T0) (arith. + (2.5))

= Wω,π(A) + W c
Λ,π(A) − v0 · 1

XRΛ(T1) · π(T0)
π(T1) · Rliq · XRΛ(T1) · π(T1)

− W d
Λ,π(A) + v0 · π(T0) (def. vc

1)
= Wω,π(A) + W c

Λ,π(A) − v · π(T0) · Rliq − W d
Λ,π(A) + v0 · π(T0) (Lemma 3.4)

= Wω,π(A) + W c
Λ,π(A) − W d

Λ,π(A) + (1 − Rliq) · v0 · π(T0) (arith.)
= WΓ(A) + (1 − Rliq) · v0 · π(T0) (2.7)

Recalling that v0 > 0, π(T0) > 0 and Rliq > 1, we obtain:
gA(Γ, X) = (1 − Rliq) · v0 · π(T0) < 0

This case, together with the previous one, proves that, if X = A: liq(B, v: T0, Tc
1), then

gA(Γ, X) = −gB(Γ, X) = v · π(T0) · Rliq Note that gB(Γ, X) is obtained from this case by
switching A and B.

• swp(v: T0, T1), with v′ = v · π(T0)
π(T1) . We have that:

WΓ′(A) = Wω′,π(A) + W c
Λ′,π(A) − W d

Λ′,π(A) by (2.7)

=
(
Wω,π(A) − v · π(T0) + v′ · π(T1)

)
+ W c

Λ,π(A) − W d
Λ,π(A) by [swp]

=
(
Wω,π(A) − v · π(T0) + v · π(T0)

π(T1) · π(T1)
)

+ W c
Λ,π(A) − W d

Λ,π(A) by def. v′

= Wω,π(A) + W c
Λ,π(A) − W d

Λ,π(A) by arith.
= WΓ(A) by (2.7)

Proof of Lemma 4.2. Let Γ = (ω, Λ, π), and let p = π(T). Then, given X = px(δ: T),
by (2.8) we have to prove that:

gA(Γ, X) =
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ
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Assume that the state transition is given by:

Γ = (ω, Λ, π) X−→ Γ′ = (ω′, Λ′, π′)
First, note that, since only the price of T changes, it trivially holds that WΓ′(A) |T′ =
WΓ(A) |T′ for every T′ ̸= T. Hence, gA(Γ, X) = gA(Γ, X) |T , and so we can restrict to analyse
gA(Γ, X) |T= WΓ′(A) |T −WΓ(A) |T . The wealth of A in the old state Γ is given by:

WΓ(A) |T = Wω,π(A) |T +W c
Λ,π(A) |T −W d

Λ,π(A) |T by (2.7)
= ω(T, A) · p + (Λ(Tc, A) · XRΛ(T) · p) − (Λ(Td, A) · p) by (2.4),(2.5),(2.6)

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· p by arith.

while for the new state, we have that:
WΓ′(A) |T = Wω′,π(A) |T +W c

Λ′,π(A) |T −W d
Λ′,π(A) |T by (2.7)

= ω′(T, A) · (p + δ) + Λ′(Tc, A) · XRΛ′(T) · (p + δ)
− Λ′(Td, A) · (p + δ) by (2.4),(2.5),(2.6)

= ω(T, A) · (p + δ) + Λ(Tc, A) · XRΛ(T) · (p + δ)
− Λ(Td, A) · (p + δ) by [Px] and (3.4)

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· (p + δ) by arith.

Summing up:
gA(Γ, X) = gA(Γ, X) |T by previous observation

= WΓ′(A) |T −WΓ(A) |T by (4.1)

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ by arith.

Proof of Lemma 4.3. Let Γ = (ω, Λ, π). We have to prove that the gain of a user A upon
an int transaction in Γ w.r.t. T is given by:

gA(Γ, int)|T =



(
Λ(Tc, A) · SΛ(Td)

SΛ(Tc) − Λ(Td, A)
)

·
(
IΛ(T) · π(T)

)
if SΛ(Tc) > 0

0 otherwise
Assume that the state transition is given by:

Γ = (ω, Λ, π) X−→ Γ′ = (ω′, Λ′, π)
By unfolding the definition of W and its components with (2.4)—(2.7), we have that:

WΓ′(A) |T = Wω′,π(A) |T +W c
Λ′,π(A) |T −W d

Λ′,π(A) |T
= ω′(T, A) · π′(T) + Λ′(Tc, A) · XRΛ′(T) · π′(T) − Λ′(Td, A) · π′(T)

=
(
ω(T, A) + Λ(Tc, A) · XRΛ′(T) −

(
Λ(Td, A) · (1 + IΛ(T))

) )
· π(T) (B.1)
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We have two subcases. If SΛ(Tc) > 0, by Lemma 3.4 and (B.1) we obtain:

WΓ′(A) |T=
(

ω(T, A) + Λ(Tc, A) ·
(

XRΛ(T) + SΛ(Td)
SΛ(Tc) · IΛ(T)

)

−
(
Λ(Td, A) · (1 + IΛ(T))

))
·π(T)

(B.2)

and so we obtain the following gain restricted to T:
gA(Γ, X) |T = WΓ′(A) |T −WΓ(A) |T by (4.1)

=
(

Λ(Tc, A) · SΛ(Td)
SΛ(Tc) · IΛ(T) −

(
Λ(Td, A) · IΛ(T)

))
· π(T) by (B.2)

=
(

Λ(Tc, A) · SΛ(Td)
SΛ(Tc) − Λ(Td, A)

)
·
(
IΛ(T) · π(T)

)
by arith.

Otherwise, if SΛ(Tc) = 0, then, by Lemma 3.4 we have that XRΛ′(T) = XRΛ(T), and by
Lemma 3.3 we have that Λ(Td, A) = 0. Hence we have:

WΓ′(A) |T =
(
ω(T, A) + Λ(Tc, A) · XRΛ′(T) −

(
Λ(Td, A) · (1 + IΛ(T))

) )
· π(T) by (B.1)

=
(
ω(T, A) + Λ(Tc, A) · XRΛ′(T)

)
· π(T) by Lem. 3.3

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T)

)
· π(T) by Lem. 3.4

= WΓ(A) |T by (2.7)
from which we have the thesis gA(Γ, X) |T= 0.

Proof of Lemma 4.4. Let X = A: ℓ(· · · ), and let Γ X−→ Γ′. We have to prove that:
• ℓ ∈ {dep, rep, liq} =⇒ HΓ′(A) ≥ HΓ(A)
• ℓ ∈ {bor, rdm} =⇒ HΓ′(A) ≤ HΓ(A)
• ℓ ∈ {swp} =⇒ HΓ′(A) = HΓ(A)
and the inequalities are strict if and only if W d

Γ(A) > 0.
Let Γ = (ω, Λ, π) and let Γ′ = (ω′, Λ′, π′). Note that since we are excluding px, the

prices remain constant, and so π′ = π. Recall the the health factor is defined by:

HΛ,π(A) =


W c

Λ,π(A)
W d

Λ,π(A)
· Tliq if W d

Λ,π(A) > 0

+∞ otherwise

We start by noting that, if W d
Λ,π(A) = 0, the health factor cannot increase, and it

decreases if and only if A’s debts increase (i.e. they become strictly positive). Otherwise, if
W d

Λ,π(A) = 0, we have that:
(1) if the credits increase and the debts do not change, the health factor increases;
(2) if the credits do not change and the debts decrease, the health factor increases;
(3) if the credits decrease and the debts do not change, the health factor decrease;
(4) if the credits do not change and the debts increase, the health factor decreases;
(5) if the credits and the debts do not change, the health factor remains constant.
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We then analyse the change in A’ credits and debts based on ℓ:
• ℓ = dep: credits increase and debts do not change (case 1).
• ℓ = bor: debts increase and credits do not change (case 4).
• ℓ = rep: debts decreases and credits do not change (case 2).
• ℓ = rdm: credits decrease and debts do not change (case 3).
• ℓ = liq: credits increase and debts do not change (case 1).
• ℓ = swp: the credits and the debts do not change (case 5).

Proof of Lemma 4.6. Let Γ0
A:dep(v:T)−−−−−−−→ Γ1 and Γ0

A:rep(v:T)−−−−−−→ Γ′
1. We have to prove that:

HΓ′
1
(A) ≥ HΓ1(A) if and only if v · π(T) ≥ W d

Γ0(A) − W c
Γ0(A)

Let Γ0 = (ω0, Λ0, π0), let Γ1 = (ω1, Λ1, π1), and let Γ′
1 = (ω′

1, Λ′
1, π′

1). By Lemma 3.4, we
have that both transitions preserve the exchange rate, i.e. XRΛ1(T) = XRΛ0(T) = XRΛ0(T).

We first compute the health factor in Γ1. First, note that W d
Λ0,π(A) > 0, since the

rule [Rep] is enabled in Γ0 and its premise requires that the repayer has a strictly positive
debit. Since dep does not modify the debts, then W d

Λ1,π(A) = W d
Λ0,π(A) > 0. Therefore:

HΓ1(A) =
W c

Λ1,π(A)
W d

Λ1,π(A)
· Tliq by (2.12)

=
∑

Ti
Λ1(Ti

c, A) · XRΛ1(Ti) · π(Ti)∑
Ti

Λ1(Td, A) · π(Ti)
· Tliq by (2.5),(2.6)

=

(∑
Ti

Λ0(Ti
c, A) · XRΛ1(Ti) · π(Ti)

)
+ v/XRΛ0 (T) · XRΛ1(T) · π(T)∑

Ti
Λ0(Td, A) · π(Ti)

· Tliq by [Dep]

=

(∑
Ti

Λ0(Ti
c, A) · XRΛ0(Ti) · π(Ti)

)
+ v · π(T)∑

Ti
Λ0(Td, A) · π(Ti)

· Tliq by Lem. 3.4

=
W c

Λ0,π(A) + v · π(T)
W d

Λ0,π(A)
· Tliq by (2.5),(2.6)

We then compute the health factor in Γ′
1. There are two subcases, depending on whether

A repays the entirety of her debts or not.
If A repays all her debts, i.e. v = Λ0(Td, A), then v ·π(T) = W d

Λ0
(A) ≥ W d

Λ0
(A)−W c

Λ0
(A)

and W d
Λ′

1,π(A) = 0. Hence, by the definition of health factor, HΛ′
1
(A) = +∞ > HΛ1(A).
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Otherwise, if A does not repay the entirety of her debts, we have that W d
Λ′

1,π(A) > 0,
and the health factor in Γ′

1 is given by:

HΓ′
1
(A) =

W c
Λ′

1,π(A)
W d

Λ′
1,π(A)

· Tliq by (2.12)

=
∑

Ti
Λ′

1(Ti
c, A) · XRΛ′

1
(Ti) · π(Ti)∑

Ti
Λ′

1(Td, A) · π(Ti)
· Tliq by (2.5),(2.6)

=
∑

Ti
Λ0(Ti

c, A) · XRΛ′
1
(Ti) · π(Ti)∑

Ti
Λ0(Td, A) · π(Ti) − v · π(T)

· Tliq by [Rep]

=
∑

Ti
Λ0(Ti

c, A) · XRΛ0(Ti) · π(Ti)∑
Ti

Λ0(Td, A) · π(Ti) − v · π(T)
· Tliq by Lem. 3.4

=
W c

Λ0,π(A)
W d

Λ0,π(A) − v · π(T)
· Tliq by (2.5) and (2.6)

Let A = W c
Γ0

(A), let B = W d
Γ0

(A), and let C = v · π(T). Note that B ≥ C holds by
the premise of [Rep]. In particular, in the case that B = C, then the health factor is by
definition +∞, which is greater than 0. So from now on, we only consider the case B > C.
The proof follows from the following auxiliary result:

∀A ∈ R, B > C > 0 ∈ R : A

B − C
≥ A + C

B
⇐⇒ C ≥ B − A (B.3)

To prove (B.3), note that:
A

B − C
≥ A + C

B
⇐⇒ A · B ≥ (A + C) · (B − C)

⇐⇒ A · B ≥ A · B − A · C + B · C − C2

⇐⇒ 0 ≥ (−A + B − C) · C

⇐⇒ C ≥ B − A

Appendix C. Proofs for Section 5

Proof of Theorem 5.1. Let A and Γ such that HΓ(A) < 1, and let liq be a shorthand for
an arbitrary liquidation on A enabled in Γ.

Let X = A: ℓ(v: T) with ℓ ∈ {dep, rep}, and Γ X−→ Γ′. Then we have to prove that:

(1) If X = dep, then gA(Γ, X liq) > gA(Γ, liq) ⇐⇒ v ≥ XRΓ (T)
πΓ (T) ·

(
W d

Γ(A)
Tliq

− W c
Γ(A)

)
(2) If X = rep, then gA(Γ, X liq) > gA(Γ, liq) ⇐⇒ v ≥ 1

πΓ (T) ·
(
W d

Γ(A) − W c
Γ(A) · Tliq

)
Note that we have to cases:

• If after firing X the liq is still enabled, we have that gA(Γ, X liq) = gA(Γ, X) + gA(Γ′, liq) =
0 + gA(Γ′, liq) < 0 by Lemma 4.1.

• If after firing X the liq is not enabled anymore, we have that gA(Γ, X liq) = gA(Γ, X) = 0
by Lemma 4.1.
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Hence, we now compute the threshold values of v for which the liq gets disabled, i.e. for
which HΓ′(A) = 1 (since by Lemma 4.4 both dep and rep increase the health factor, for
higher values of v we have that HΓ′(A) ≥ 1). Note that, if we consider a fixed liquidation on
A with parameter vl, then, in the case of ℓ = rep, it would be possible to disable the liq also
by making the condition Λ(Td, A) ≥ vl false, by repaying a v > Λ(Td, A) − vl. However, in
general, a user in danger of being liquidated does not precisely know the amount of debt that
a liquidator will try to liquidate. For arbitrary values of vl indeed, as it is in the hypothesis
of the theorem, the only way to avoid being liquidated is making the health factor greater
or equal to 1.
• If X = dep, then

HΓ′(A) =
W c

Γ(A) + v/XRΓ (T) · πΓ(T)
W d

Γ(A)
· Tliq

hence we have that HΓ′(A) ≥ 1 if and only if

v ≥ XRΓ(T)
πΓ(T) ·

(
W d

Γ(A)
Tliq

− W c
Γ(A)

)
• If X = rep, then

HΓ′(A) =
W c

Γ(A)
W d

Γ(A) − v · πΓ(T)
· Tliq

hence we have that HΓ′(A) ≥ 1 if and only if

gA(Γ, liq) ⇐⇒ v ≥ 1
πΓ(T) ·

(
W d

Γ(A) − W c
Γ(A) · Tliq

)

Proof of Theorem 5.2. Let px be a shorthand for px(δ: T). Let Γ X−→ Γ′ with X = A: ℓ(· · · )
mentioning token T. We have to prove that:

gA(Γ, X px) ◦ gA(Γ, px) = gA(Γ, px X) (C.1)
where the relation ◦ is given by:

◦ =


= if ℓ ∈ {dep, rep, bor, rdm}
> if (δ > 0 and ℓ = swp(v: T′ , T)) or (δ < 0 and ℓ = swp(v: T, T′))
< if (δ < 0 and ℓ = swp(v: T′ , T)) or (δ > 0 and ℓ = swp(v: T, T′))

More precisely, we have to prove that if Γ has price function π, then:

gA(Γ, X px) = gA(Γ, px) + σ · v · δ ·
(

π(T′)
π(T)

)σ

σ =
{

1 ℓ = swp(v: T′ , T)
−1 ℓ = swp(v: T, T′)

Note that the rightmost equality in (C.1) is given by Lemma 4.1. Hence, we only have
to prove the leftmost equality/inequality. Under the hypotheses of the theorem, we have:

gA(Γ, X px) = gA(Γ, X) + gA(Γ′, px) by (4.1)
= gA(Γ′, px) by Lem. 4.1

=
(
ω′(T, A) + Λ′(Tc, A) · XRΛ′(T) − Λ′(Td, A)

)
· δ by Lem. 4.2

We proceed from here by cases on ℓ:
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• A: dep(v: T).

gA(Γ, X px) =
(
(ω(T, A) − v) + (Λ(Tc, A) + v/XRΛ (T)) · XRΛ′(T) − Λ(Td, A)

)
· δ by [Dep]

=
(
(ω(T, A) − v) + (Λ(Tc, A) + v/XRΛ (T)) · XRΛ(T) − Λ(Td, A)

)
· δ by Lem 3.4

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ by arith.

= gA(Γ, px) by Lem. 4.2
• A: bor(v: T).

gA(Γ, X px) =
(
(ω(T, A) + v) + Λ(Tc, A) · XRΛ′(T) − (Λ(Td, A) + v)

)
· δ by [Bor]

=
(
(ω(T, A) + v) + Λ(Tc, A) · XRΛ(T) − (Λ(Td, A) + v)

)
· δ by Lem. 3.4

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ by arith.

= gA(Γ, px) by Lem. 4.2
• A: rep(v: T).

gA(Γ, X px) =
(
(ω(T, A) − v) + Λ(Tc, A) · XRΛ′(T) − (Λ(Td, A) − v)

)
· δ by [Rep]

=
(
(ω(T, A) − v) + Λ(Tc, A) · XRΛ(T) − (Λ(Td, A) − v)

)
· δ by Lem. 3.4

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ by arith.

= gA(Γ, px) by Lem. 4.2
• A: rdm(vc: Tc). Let v = vc · XRΛ(T). We have two subcases. If SΛ′(Tc) > 0, then:

gA(Γ, X px) =
(
(ω(T, A) + v) + (Λ(Tc, A) − vc) · XRΛ′(T) − Λ(Td, A)

)
· δ by [Rdm]

=
(
(ω(T, A) + v) + (Λ(Tc, A) − vc) · XRΛ(T) − Λ(Td, A)

)
· δ by Lem. 3.4

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ by arith.

= gA(Γ, px) by Lem. 4.2
Otherwise, if SΛ′(Tc) = 0, then vc = Λ(Tc, A), and so:

gA(Γ, X px) =
(
(ω(T, A) + v) + (Λ(Tc, A) − vc) · XRΛ′(T) − Λ(Td, A)

)
· δ by [Rdm]

=
(
(ω(T, A) + v) + (Λ(Tc, A) − vc) · XRΛ(T) − Λ(Td, A)

)
· δ by arith.

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ by arith.

= gA(Γ, px) by Lem. 4.2
• swp(v: T′ , T). Let v′ = v · π(T′ )/π(T). We have that:

gA(Γ, X px) =
(
(ω(T, A) + v′) + Λ(Tc, A) · XRΛ′(T) − Λ(Td, A)

)
· δ by [Swp]

=
(
(ω(T, A) + v′) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ by Lem. 3.4

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ + v′ · δ by arith.

= gA(Γ, px) + v′ · δ by Lem. 4.2
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Since v′ > 0, we have that gA(Γ, Xpx) ◦ gA(Γ, px) whenever δ ◦ 0 for ◦ ∈ {<, >}.
• swp(v: T, T′). Let v′ = v · π(T)/π(T′ ). We have that:

gA(Γ, X px) =
(
(ω(T, A) − v′) + Λ(Tc, A) · XRΛ′(T) − Λ(Td, A)

)
· δ by [Swp]

=
(
(ω(T, A) − v′) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ by Lem. 3.4

=
(
ω(T, A) + Λ(Tc, A) · XRΛ(T) − Λ(Td, A)

)
· δ − v′ · δ by arith.

= gA(Γ, px) − v′ · δ by Lem. 4.2
Since v′ > 0, we have that gA(Γ, Xpx) ◦ gA(Γ, px) whenever 0 ◦ δ for ◦ ∈ {<, >}.

Proof of Lemma 5.3. Let px be a shorthand for px(δ: T1), with δ > 0, and consider the
following sequence of transactions:

X = A: dep(v1: T1) A: bor(v2: T2) A: swp(v2: T2, T1)
For all Γ such that X is enabled in Γ, we prove that:

gA(Γ, X px) > gA(Γ, px)
We start by giving names to the intermediate states reached during the execution of X . Let:

Γ = (ω0, Λ0, π) A:dep(v1:T1)−−−−−−−−−−→ Γ1 = (ω1, Λ1, π)
A:bor(v2:T2)−−−−−−−−−−→ Γ2 = (ω2, Λ2, π)

A:swp(v2:T2,T1)−−−−−−−−−−→ Γ3 = (ω3, Λ3, π)
Let v′

1 = v2 · π(T2)/π(T1). By the rules [Dep], [Bor] and [Swp], we have that:
ω1 = ω0 − {(T1, A) 7→ v1} Λ1 = Λ0 + {T1 7→ v1} + {(Tc

1, A) 7→ v1/XRΛ0 (T1)}

ω2 = ω1 + {(T2, A) 7→ v2} Λ2 = Λ1 − {T2 7→ v2} + {(Td
2, A) 7→ v2}

ω3 = ω2 − {(T2, A) 7→ v2} + {(T1, A) 7→ v′
1} Λ3 = Λ2

We then estimate A’s gain as follows:
gA(Γ, X px) = gA(Γ, X ) + gA(Γ3, px) by (4.1)

= gA(Γ3, px) by Lem. 4.1

=
(
ω3(T1, A) + Λ3(T1

c, A) · XRΛ3(T1) − Λ3(T1
d, A)

)
· δ by Lem. 4.2

=
(
ω3(T1, A) + Λ3(T1

c, A) · XRΛ0(T1) − Λ3(T1
d, A)

)
· δ by Lem. 3.4

=
(
(ω0(T1, A) − v1 + v′

1)

+ (Λ0(T1
c, A) + v1/XRΛ0 (T1)) · XRΛ0(T1) − Λ3(T1

d, A)
)

· δ by [Dep,Bor,Swp]

=
(
(ω0(T1, A) + v′

1) + Λ0(T1
c, A) · XRΛ0(T1) − Λ3(T1

d, A)
)

· δ by arith.

= gA(Γ, px) + v′
1 · δ

Therefore, gA(Γ, X px) − gA(Γ, px) = v′
1 · δ > 0.
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Proof of Theorem 5.4. Let X = A: ℓ(· · · ) mentioning token T with transaction parameter
v. We have to prove that:
(1) If we do not make assumptions on the interest rate function IΛ(T), then we have that,

for every ℓ ∈ {dep, bor, rep, rdm, liq} and for every ◦ ∈ {>, =, <}, there exists Γ0 and v
such that gA(Γ0, X int) ◦ gA(Γ0, int).

(2) If we assume a constant interest rate function, i.e. IΛ(T) = rT , then:
(a) ℓ ∈ {dep, rep} =⇒ for all Γ0 and v, gA(Γ0, X int) ≥ gA(Γ0, int)
(b) ℓ ∈ {bor, rdm} =⇒ for all Γ0 and v, gA(Γ0, X int) ≤ gA(Γ0, int)
(c) ℓ ∈ {liq} =⇒ for all ◦ ∈ {≥, ≤}, there exists Γ0 and v such that gA(Γ0, X int) ◦

gA(Γ0, int)
In order to prove the theorem, we proceed as follows. We explicitly compute the formula
of the gain for each ℓ ∈ {dep, bor, rep, rdm, liq}. We then directly prove points (2.a) and
(2.b), i.e. we show that the inequalities for the cases in which ℓ ∈ {dep, rep, bor, rdm}
and IΛ(T) = rT hold; moreover, we precisely determinate when the inequalities are
strict or not. To prove the rest of the theorem, have to provide a counter-examples for
each case. A counter-example consists of an interest rate function IΛ(T), a reachable
state Γ0, and a choice of parameter v such that gA(Γ0, X int) ◦ gA(Γ0, int) (for ◦ being one
of {>, =, <}). Note that the points (2.a) and (2.b) already gives us 8 counter-example
(for ℓ ∈ {dep, rep} we have the cases ◦ ∈ {>, =}, and for ℓ ∈ {bor, rdm} we have the
cases ◦ ∈ {<, =}). For the remaining 7 cases, in order not to overload the proof with
simple yet long computations, we provide the following link to the counter-examples:
https://github.com/bitbart/lp-model/tree/main/examples-lmcs/frontrun-int.
Let Γ0

int−→ Γ1 and Γ0
X−→ Γ′

0
int−→ Γ′

1, and assume that the states are deconstructed as follows:
Γ0 = (ω0, Λ0, π0) Γ′

0 = (ω′
0, Λ′

0, π′
0) Γ1 = (ω1, Λ1, π1) Γ′

1 = (ω′
1, Λ′

1, π′
1)

First, we note that, for every T′ ̸= T, gA(Γ0, int) |T′ = gA(Γ0, X int) |T′ . Hence we will
focus only on gA(Γ0, int) |T and gA(Γ0, X int) |T .

By Lemma 4.3 we have that:

gA(Γ0, int) |T=


(

Λ0(Ti
c, A) · SΛ0(Ti

d)
SΛ0(Ti

c) − Λ0(Ti
d, A)

)
· IΛ0(Ti) · π0(Ti) if SΛ(Tc) > 0

0 otherwise
We now compute A’s net worth in Γ′

1. We proceed by cases on X.
• A: dep(v: T). Note that we have that SΛ′(Tc) > 0, since a successful dep generates a

positive amount of credits.
We have that:

gA(Γ0, X int) |T = gA(Γ0, X) |T +gA(Γ′
0, int) |T

= 0 +
(

Λ′
0(Tc, A) ·

SΛ′
0
(Td)

SΛ′
0
(Tc) − Λ′

0(Td, A)
)

·
(
IΛ′

0
(T) · π′

0T
)

(4.1 + 4.3)

=
((

Λ0(Tc, A) + v/XRΛ0 (T)
)

· SΛ0(Td)
SΛ0(Tc) + v/XRΛ0 (T)

− Λ0(Td, A)
)

·
(
IΛ′

0
(T) · π0T

)
by [Dep]

We have two cases, depending on whether SΛ(Tc) = 0 or not.
If SΛ(Tc) = 0, we have that gA(Γ0, int) = 0 |T , and, from Lemma 3.3, that SΛ0(Td) = 0

(and so also Λ0(Td, A) = 0). Hence we obtain that also gA(Γ0, X int) |T= 0.

https://github.com/bitbart/lp-model/tree/main/examples-lmcs/frontrun-int
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Otherwise, we have that:

gA(Γ0, X int) |T −gA(Γ0, int) |T =
((

Λ0(Tc, A) + v/XRΛ0 (T)
)

· SΛ0(Td)
SΛ0(Tc) + v/XRΛ0 (T)

− Λ0(Td, A)
)

· IΛ′
0
(T) · π0T

−
(

Λ0(Tc, A) · SΛ0(Td)
SΛ0(Tc) − Λ0(Td, A)

)
· IΛ0(T) · π0T

If we consider a constant interest rate, i.e. IΛ′
0
(T) = IΛ0(T), then

gA(Γ0, X int) |T −gA(Γ0, int) |T = SΛ0(Td) ·
(

Λ0(Tc, A) + v/XRΛ0 (T)

SΛ0(Tc) + v/XRΛ0 (T)
− Λ0(Tc, A)

SΛ0(Tc)

)
· IΛ0(T) · π0T

This amount is positive, and it is equal to zero if and only if SΛ0(Td) = 0. Indeed,

IΛ0(T) > 0 and π0T > 0 by definition, and Λ0(Tc, A) + v/XRΛ0 (T)

SΛ0(Tc) + v/XRΛ0 (T)
− Λ0(Tc, A)

SΛ0(Tc) > 0 follows

from the simple mathematical fact that, given A, B ∈ R≥0 with A < B, and C ∈ R>0,
then A+C

B+C > A
B .

• A: bor(v: T). Note that a bor can only be fired if the reserves are non-zero, i.e. Λ(T) > 0.
By Lemma 3.3, this implies that SΛ(Tc) > 0. Moreover, after a successful bor, we have
SΛ′(Td) > 0. By Lemma 3.3, this implies that SΛ′(Tc) > 0.

We have that:
gA(Γ0, X int) |T = gA(Γ0, X) |T +gA(Γ′

0, int) |T

= 0 +
(

Λ′
0(Tc, A) ·

SΛ′
0
(Td)

SΛ′
0
(Tc) − Λ′

0(Td, A)
)

·
(
IΛ′

0
(T) · π′

0T
)

(4.1 + 4.3)

=
(

Λ0(Tc, A) · SΛ0(Td) + v

SΛ0(Tc) −
(
Λ0(Td, A) + v

))
·
(
IΛ′

0
(T) · π0T

)
by [Bor]

Hence we have that

gA(Γ0, X int) |T −gA(Γ0, int) |T =
(

Λ0(Tc, A) · SΛ0(Td) + v

SΛ0(Tc) −
(
Λ0(Td, A) + v

))
·
(
IΛ′

0
(T) · π0T

)

−
(

Λ0(Tc, A) · SΛ0(Td)
SΛ0(Tc) − Λ0(Td, A)

)
· IΛ0(T) · π0T

If we consider a constant interest rate, i.e. IΛ′
0
(T) = IΛ0(T), then

gA(Γ0, X int) |T −gA(Γ0, int) |T = v ·
(

Λ0(Tc, A)
SΛ0(Tc) − 1

)
·
(
IΛ′

0
(T) · π0T

)
which is ≤ 0, since Λ0(Tc, A) ≤ SΛ0(Tc).
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• A: rep(v: T). Note that a rep can only be fired if the exist some debts, i.e. SΛ(Td) > 0,
which, by Lemma 3.3, implies SΛ(Tc) > 0. Moreover, since rep does not impact credits,
we have that SΛ′(Tc) = SΛ(Tc) > 0.

We have that:
gA(Γ0, X int) |T = gA(Γ0, X) |T +gA(Γ′

0, int) |T

= 0 +
(

Λ′
0(Tc, A) ·

SΛ′
0
(Td)

SΛ′
0
(Tc) − Λ′

0(Td, A)
)

·
(
IΛ′

0
(T) · π′

0T
)

(4.1 + 4.3)

=
(

Λ0(Tc, A) · SΛ0(Td) − v

SΛ0(Tc) −
(
Λ0(Td, A) − v

))
·
(
IΛ′

0
(T) · π0T

)
by [Rep]

Hence we have that

gA(Γ0, X int) |T −gA(Γ0, int) |T =
(

Λ0(Tc, A) · SΛ0(Td) − v

SΛ0(Tc) −
(
Λ0(Td, A) − v

))
·
(
IΛ′

0
(T) · π0T

)

−
(

Λ0(Tc, A) · SΛ0(Td)
SΛ0(Tc) − Λ0(Td, A)

)
· IΛ0(T) · π0T

If we consider a constant interest rate, i.e. IΛ′
0
(T) = IΛ0(T), then

gA(Γ0, X int) |T −gA(Γ0, int) |T = −v ·
(

Λ0(Tc, A)
SΛ0(Tc) − 1

)
·
(
IΛ′

0
(T) · π0T

)
which is ≥ 0, since Λ0(Tc, A) ≤ SΛ0(Tc).

• A: rdm(v: T). Note that a rdm can only be fired if the credits are non-zero, i.e. SΛ(Tc) > 0.
There are two cases.

In the first case, A redeems all the T-credits available in the lending pool. Then,
SΛ′(Tc) = 0, and hence, by Lemma 3.3, also SΛ′(Td) = 0. Since rdm does not affect debts,
this implies that also SΛ(Td) = 0. Hence we have that

gA(Γ0, X int) |T = gA(Γ0, X) |T +gA(Γ′
0, int) |T

= 0 + 0 (4.1 + 4.3)
which implies that gA(Γ0, X int) |T −gA(Γ0, int) |T≤ 0, since gA(Γ0, int) |T≥ 0 (recall that,
by hypothesis, SΛ(Td) = 0).

In the second case, A does not redeem all the T-credits available in the lending pool, i.e.
SΛ′(Tc) > 0.
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We have that:
gA(Γ0, X int) |T = gA(Γ0, X) |T +gA(Γ′

0, int) |T

= 0 +
(

Λ′
0(Tc, A) ·

SΛ′
0
(Td)

SΛ′
0
(Tc) − Λ′

0(Td, A)
)

·
(
IΛ′

0
(T) · π′

0T
)

(4.1 + 4.3)

=
((

Λ0(Tc, A) − v/XRΛ0 (T)
)

· SΛ0(Td)
SΛ0(Tc) − v/XRΛ0 (T)

− Λ0(Td, A)
)

·
(
IΛ′

0
(T) · π0T

)
by [Dep]

and hence

gA(Γ0, X int) |T −gA(Γ0, int) |T =
((

Λ0(Tc, A) − v/XRΛ0 (T)
)

· SΛ0(Td)
SΛ0(Tc) − v/XRΛ0 (T)

− Λ0(Td, A)
)

· IΛ′
0
(T) · π0T

−
(

Λ0(Tc, A) · SΛ0(Td)
SΛ0(Tc) − Λ0(Td, A)

)
· IΛ0(T) · π0T

If we consider a constant interest rate, i.e. IΛ′
0
(T) = IΛ0(T), then

gA(Γ0, X int) |T −gA(Γ0, int) |T = SΛ0(Td) ·
(

Λ0(Tc, A) − v/XRΛ0 (T)

SΛ0(Tc) − v/XRΛ0 (T)
− Λ0(Tc, A)

SΛ0(Tc)

)
· IΛ0(T) · π0T

This amount is negative, and it is equal to zero if and only if SΛ0(Td) = 0. Indeed,

IΛ0(T) > 0 and π0T > 0 by definition, and Λ0(Tc, A) − v/XRΛ0 (T)

SΛ0(Tc) − v/XRΛ0 (T)
− Λ0(Tc, A)

SΛ0(Tc) < 0 follows

from the simple mathematical fact that, given A, B ∈ R≥0 with A < B, and C ∈ R>0,
then A−C

B−C < A
B .

Appendix D. Proofs for Section 6

Proof of Theorem 6.1. Let Γ = (ω, Λ, π), and assume that A has no credits or debts
with the LP, i.e., W c

Γ(A) = W d
Γ(A) = 0. Consider the following sequence of transactions:

X = A: dep(v1: T1) px(−δ: T2) A: bor(v2: T2) px(δ: T2)

where 0 < δ < π(T2) and v2 = v1
XRΛ (T1) · π(T1)

π(T2)−δ · Tliq. We have to prove that:
(1) gA(Γ, X ) = 0
(2) W c−d

Γ′ (A) < 0 if Γ X−→ Γ′.
To prove Item (1), consider the sequence of transitions:

Γ X1=A:dep(v1:T1)−−−−−−−−−−→ Γ1
X2=px(−δ:T2)−−−−−−−−−→ Γ2

X3=A:bor(v2:T2)−−−−−−−−−−→ Γ3
X4=px(δ:T2)−−−−−−−−→ Γ′

Note that if X1 is not enabled in Γ, then by the hypothesis that A has no credits in Γ then also
X3 will not be enabled, and so gA(Γ, X ) = 0. Otherwise, if X1 is enabled in Γ but X3 is not
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enabled in Γ2, then the effects of X2 and X4 cancel out, and then gA(Γ, X ) = gA(Γ, X1) = 0
by Lemma 4.1. Finally, in case all the transactions in X are enabled, we have that:

gA(Γ, X ) = gA(Γ, X1) + gA(Γ1, X2) + gA(Γ2, X3) + gA(Γ3, X4) by (4.1)
= gA(Γ1, X2) + gA(Γ3, X4) by Lem. 4.1

= WΓ1(A) |T2 · −δ

π(T2) + WΓ3(A) |T2 · δ

π(T2) − δ
by Lem 4.2

=
(
ω1(T2, A) + Λ1(Tc

2, A) · XRΛ1(T2) − Λ1(Td
2, A)

)
· −δ

+
(
ω3(T2, A) + Λ3(Tc

2, A) · XRΛ3(T2) − Λ3(Td
2, A)

)
· δ by (2.8)

=
(
ω1(T2, A) + Λ1(Tc

2, A) · XRΛ1(T2) − Λ1(Td
2, A)

)
· −δ

+
(
ω1(T2, A) + v2 + Λ1(Tc

2, A) · XRΛ3(T2) − Λ1(Td
2, A) − v2

)
· δ by [Bor]

=
(
ω1(T2, A) + Λ1(Tc

2, A) · XRΛ1(T2) − Λ1(Td
2, A)

)
· −δ

+
(
ω1(T2, A) + Λ1(Tc

2, A) · XRΛ3(T2) − Λ1(Td
2, A)

)
· δ by arith.

=
(
ω1(T2, A) + Λ1(Tc

2, A) · XRΛ1(T2) − Λ1(Td
2, A)

)
· −δ

+
(
ω1(T2, A) + Λ1(Tc

2, A) · XRΛ1(T2) − Λ1(Td
2, A)

)
· δ by Lem. 3.4

= 0 by arith.

To prove Item (2), observe that since by hypothesis W c
Γ(A) = W d

Γ(A) = 0, then in Γ′ we
have that:

W c
Γ′(A) = v1

XRΛ(T1) · π(T1)

W d
Γ′(A) = v2 · π(T2) = v1

XRΛ(T1) · π(T1)
π(T2) − δ

· Tliq · π(T2)

Therefore:

W c−d
Γ′ (A) = W c

Γ′(A) − W d
Γ′(A) = v1

XRΛ(T1) · π(T1) ·
(
1 − Tliq · π(T2)

π(T2) − δ

)
This amount is negative if and only if

Tliq · π(T2)
π(T2) − δ

> 1

or, equivalently, since 0 < δ < π(T2):

δ > π(T2) ·
(
1 − Tliq

)

Proof of Theorem 6.2. Let Γ = (ω, Λ, π) and let A and B such that:
(1) Λ(Tc

1, B) = vc, and Λ(Tc, B) = 0 for all T ̸= T1 (i.e. the collateral of B relies on a single
token type T1)

(2) Λ(Td
2, B) = vd, and Λ(Td, B) = 0 for all T ̸= T2 (i.e. B has debts only in T2)

(3) ω(T2, A) > 0
(4) HΓ(B) ≥ 1 (i.e. B cannot be liquidated in Γ)
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Then, for every δ > 0 sufficiently small, and for every vl > 0 such that vl ≤ ω(T2, A), vl ≤ vd

and vl < vc · XRΛ (T1)
Rliq

· δ
π(T2) , given the following sequence of transactions:

X = px((−π(T1) + δ): T1) A: liq(B, vl: T2, Tc
1) px((π(T1) − δ): T1)

it holds that:
(1) X is enabled in Γ
(2) gA(Γ, X ) > 0
We start by giving names to the intermediate states reached during the execution of X :

Γ = (ω, Λ, π) X1 = px((−π(T1)+δ):T1)−−−−−−−−−−−−−−−−→ Γ1 = (ω1, Λ1, π1) ω1 = ω, Λ1 = Λ
X2 = A:liq(B,vl:T2,Tc

1)
−−−−−−−−−−−−−−−−→ Γ2 = (ω2, Λ2, π2) π2 = π1

X3 = px((π(T1)−δ):T1)−−−−−−−−−−−−−−−−→ Γ3 = (ω3, Λ3, π3) ω3 = ω2, Λ3 = Λ2

We first prove Item (1). Of course, both price updates are enabled whenever δ > 0,
so in order to prove that X is enabled in Γ we only need to prove that the liquidation is
enabled in Γ1. We check that all the premises of [Liq] hold:
• ω1(T2, A) ≥ vl > 0 is given by the conditions on vl

• Λ1(Td
2, B) ≥ vl is given by the conditions on vl

• Λ1(Tc
1, B) ≥ vl

XRΛ1 (T1) · π1(T2)
π1(T1) · Rliq is given by the fact that π1(T2) = δ, π1(T1) = π(T1),

and vl < vc · XRΛ (T1)
Rliq

· δ
π(T2) .

• HΓ1(B) < 1 is given by the fact that

HΓ1(B) = vc · π1(T1)
vd · π1(T2) · Rliq = vc · δ

vd · π(T2) · Rliq

which, for δ sufficiently small, is strictly less than 1.
• HΓ2(B) ≤ 1 is given by the fact that

HΓ2(B) =

(
vc − vl

XRΛ1 (T1) · π1(T2)
π1(T1) · Rliq

)
· π1(T1)(

vd − vl

)
· π1(T2)

· Rliq by [Liq]

=

(
vc − vl

XRΛ (T1) · π(T2)
δ · Rliq

)
· δ(

vd − vl

)
· π(T2)

· Rliq by Lem. 3.4

=
vc · δ − vl

XRΛ (T1) · π(T2) · Rliq(
vd − vl

)
· π(T2)

· Rliq by arith.

which, for δ sufficiently small, is less or equal to 1 (note that δ bounds vl).
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We now prove Item (2). Since by the previous point all transactions are enabled, we
have that:
gA(Γ, X ) = gA(Γ, X1) + gA(Γ1, X2) + gA(Γ2, X3) by (4.1)

= WΓ(A) |T1 ·−π(T1) + δ

π(T1) + gA(Γ1, X2) + WΓ2(A) |T1 ·π(T1) − δ

δ
by Lem. 4.2

=
(
ω(T1, A) + Λ(Tc

1, A) · XRΛ(T1) − Λ(Td
1, A)

)
· (−π(T1) + δ)

+ gA(Γ1, X2)

+
(
ω2(T1, A) + Λ2(Tc

1, A) · XRΛ2(T1) − Λ2(Td
1, A)

)
· (π(T1) − δ) by (2.8)

>
(
ω(T1, A) + Λ(Tc

1, A) · XRΛ(T1) − Λ(Td
1, A)

)
· (−π(T1) + δ)

+ gA(Γ1, X2)

+
(
ω1(T1, A) + Λ1(Tc

1, A) · XRΛ2(T1) − Λ1(Td
1, A)

)
· (π(T1) − δ) by [Liq]

=
(
ω(T1, A) + Λ(Tc

1, A) · XRΛ(T1) − Λ(Td
1, A)

)
· (−π(T1) + δ)

+ gA(Γ1, X2)

+
(
ω(T1, A) + Λ(Tc

1, A) · XRΛ2(T1) − Λ(Td
1, A)

)
· (π(T1) − δ) by [Px]

=
(
ω(T1, A) + Λ(Tc

1, A) · XRΛ(T1) − Λ(Td
1, A)

)
· (−π(T1) + δ)

+ gA(Γ1, X2)

+
(
ω(T1, A) + Λ(Tc

1, A) · XRΛ(T1) − Λ(Td
1, A)

)
· (π(T1) − δ) by Lem. 3.4

= gA(Γ1, X2) by arith.
> 0 by Lem. 4.1

Proof of Theorem 6.3. Let Γ = (ω, Λ, π), and let A, B and T be such that:
(1) Λ(Tc, A) = 0 and
(2) Λ(Tc, B) > 0 and Λ(Td, B) = 0
Then, let X be the following sequence of transactions:

X = A: dep(v: T) int A: rdm(vc: T)
where vc is the amount of credits held by A in the intermediate state before rdm.

Assuming X is enabled in Γ, and that the lending protocol uses the linear utility interest
rate function in (2.15) with α > 0, we have to prove that:
• gA(Γ, X ) > gA(Γ, int),
• gB(Γ, X ) < gB(Γ, int)
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We start by giving names to the intermediate states reached during the execution of X :

Γ = (ω, Λ, π) X1 = A:dep(v:T)−−−−−−−−−−−→ Γ1 = (ω1, Λ1, π)
X2 = int−−−−−−−−−−−→ Γ2 = (ω2, Λ2, π)
X3 = A:rdm(vc:T)−−−−−−−−−−−−→ Γ3 = (ω3, Λ3, π)

First note that, for every T′ ̸= T, it trivially holds that gA(Γ, X ) |T′ = gA(Γ, int) |T′ and
gB(Γ, X ) |T′ = gB(Γ, int) |T′ . Hence, we only focus on the gains restricted to T.

By hypothesis, we have that SΛ(Tc) > 0 and SΛ(Td) > 0. Since dep does not decrease
the supply of credits nor that of debts, we also have that SΛ1(Tc) > 0 and SΛ1(Td) > 0.
Moreover, since Λ(Td, B) = 0 and the deposit fired by A does not impact the credits of B,
we also have Λ1(Td, B) = 0
The gain of A is given by:
gA(Γ, X ) |T = gA(Γ, X1) |T +gA(Γ1, X2) |T +gA(Γ2, X3) |T by (4.1)

= 0 + gA(Γ1, X2) |T + 0 by Lem. 4.1

=
(Λ1(Tc, A)

SΛ1(Tc) · SΛ1(Td) − Λ1(Td, A)
)

· IΛ1(T) · π(T) by Lem. 4.3

=
(Λ(Tc, A) + v/XRΛ (T)

SΛ(Tc) + v/XRΛ (T)
· SΛ(Td) − Λ(Td, A)

)
· IΛ1(T) · π(T) by [Dep]

=
(

v/XRΛ (T)

SΛ(Tc) + v/XRΛ (T)
· SΛ(Td) − Λ(Td, A)

)
· IΛ1(T) · π(T) by hyp.

> −Λ(Td, A) · IΛ1(T) · π(T) by arith.

= −Λ(Td, A) ·
(

α · SΛ(Td)
(Λ(T) + v) + SΛ(Td)

+ β

)
· π(T) by (2.15) + [Dep]

> −Λ(Td, A) ·
(

α · SΛ(Td)
Λ(T) + SΛ(Td)

+ β

)
· π(T) by arith.

= gA(Γ, int) |T Lem. 4.3 + hyp.

The gain of B is given by:
gB(Γ, X ) |T = gB(Γ, X1) |T +gB(Γ1, X2) |T +gB(Γ2, X3) |T by (4.1)

= 0 + gB(Γ1, X2) |T +0 by Lem. 4.1

=
(Λ1(Tc, B)

SΛ1(Tc) · SΛ1(Td) − Λ1(Td, B)
)

· IΛ1(T) · π(T) by Lem. 4.3

= Λ1(Tc, B)
SΛ1(Tc) · SΛ1(Td) · IΛ1(T) · π(T) by hyp.

= Λ(Tc, B)
SΛ(Tc) + v/XRΛ (T)

· SΛ(Td) ·
(

α · SΛ(Td)
(Λ(T) + v) + SΛ(Td)

+ β

)
· π(T) by [Dep]

<
Λ(Tc, B)
SΛ(Tc) · SΛ(Td) ·

(
α · SΛ(Td)

Λ(T) + SΛ(Td)
+ β

)
· π(T) by arith

= gB(Γ, int) |T by Lem. 4.3
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Proof of Theorem 6.4. Let Γ = (ω, Λ, π), and let A, B and T be such that:
(1) Λ(Tc, A) = SΛ(Tc) and Λ(Td, A) < SΛ(Td)
(2) Λ(Td, B) > 0
Then, let the following sequence of transactions:

X = A: bor(v: T) int A: rep(v: T)
be enabled in Γ. If IΛ(T) is a linear utility interest rate function with α > 0, then:
• gA(Γ, X ) > gA(Γ, int),
• gB(Γ, X ) < gB(Γ, int)
We start by giving names to the intermediate states reached during the execution of X :

Γ = (ω, Λ, π) X1 = A:bor(v:T)−−−−−−−−−−−→ Γ1 = (ω1, Λ1, π)
X2 = int−−−−−−−−−−−→ Γ2 = (ω2, Λ2, π)
X3 = A:rep(v:T)−−−−−−−−−−−→ Γ3 = (ω3, Λ3, π)

First note that, for every T′ ̸= T, it trivially holds that gA(Γ, X ) |T′ = gA(Γ, int) |T′ and
gB(Γ, X ) |T′ = gB(Γ, int) |T′ . Hence, we only focus on the gains restricted to T.

By hypothesis, we have that SΛ(Td) > 0, and, by Lemma 3.3, also SΛ(Tc) > 0. Since
bor does not decrease the supply of credits nor that of debit tokens, we also have that
SΛ1(Tc) > 0 and SΛ1(Td) > 0.

The gain of A is given by:
gA(Γ, X ) |T = gA(Γ, X1) |T +gA(Γ1, X2) |T +gA(Γ2, X3) |T by (4.1)

= 0 + gA(Γ1, X2) |T + 0 by Lem. 4.1

=
(Λ1(Tc, A)

SΛ1(Tc) · SΛ1(Td) − Λ1(Td, A)
)

· IΛ1(T) · π(T) by Lem. 4.3

=
(Λ(Tc, A)

SΛ(Tc) ·
(
SΛ(Td) + v

)
−
(
Λ(Td, A) + v

))
· IΛ1(T) · π(T) by [bor]

=
(
SΛ(Td) + v − Λ(Td, A) − v

)
·
(

α · SΛ(Td) + v

Λ(T) + SΛ(Td)
+ β

)
· π(T) by hyp.

>
(
SΛ(Td) − Λ(Td, A)

)
·
(

α · SΛ(Td)
Λ(T) + SΛ(Td)

+ β

)
· π(T) by arith.

=
(
SΛ(Td) − Λ(Td, A)

)
· IΛ(T) · π(T) by (2.15)

= gA(Γ, int) |T Lem. 4.3 + hyp.

Note that the hypothesis that SΛ(Td) > Λ(Td, A) is necessary to show the strict
inequality. Otherwise, we would have gA(Γ, X ) |T= 0 = gA(Γ, int) |T .
We now compute the gain of B. Note that, since by hypothesis Λ(Tc, A) = SΛ(Tc), then
Λ(Tc, B) = 0, and, since the borrow fired by A does not affect the credits of B, then we also
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have Λ1(Tc, B) = 0. The gain:
gB(Γ, X ) |T = gB(Γ, X1) |T +gB(Γ1, X2) |T +gB(Γ2, X3) |T by (4.1)

= 0 + gB(Γ1, X2) |T + 0 by Lem. 4.1

=
(Λ1(Tc, B)

SΛ1(Tc) · SΛ1(Td) − Λ1(Td, B)
)

· IΛ1(T) · π(T) by Lem. 4.3

= −Λ1(Td, B) ·
(

α · SΛ1(Td)
Λ1(T) + SΛ1(Td)

+ β

)
· π(T) by hyp.

= −Λ(Td, B) ·
(

α · SΛ(Td) + v

Λ(T) + SΛ(Td)
+ β

)
· π(T) by [Bor]

< −Λ(Td, B) ·
(

α · SΛ(Td)
Λ(T) + SΛ(Td)

+ β

)
· π(T) by arith.

= gB(Γ, int) |T by Lem. 4.3
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