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Abstract. With the rapid advancements in Natural Language Processing (NLP),
large language models (LLMs) like GPT-4 have gained significant traction in diverse
applications, including security vulnerability scanning. This paper investigates the ef-
ficacy of GPT-4 in identifying software vulnerabilities compared to traditional Static
Application Security Testing (SAST) tools. Drawing from an array of security mis-
takes, our analysis underscores the potent capabilities of GPT-4 in LLM-enhanced
vulnerability scanning. We unveiled that GPT-4 (Advanced Data Analysis) outper-
forms SAST by an accuracy of 94% in detecting 32 types of exploitable vulnerabilities.
This study also addresses the potential security concerns surrounding LLMs, empha-
sising the imperative of security by design/default and other security best practices
for AI.

1 Introduction

One of the most significant threats within cybersecurity is the application of zero-day threats.
These tend to be caused by unforeseen vulnerabilities in code and which can open up
significant weaknesses within our society. For example, Heartbleed [1] was one significant
example of this, and where the OpenSSL software package allowed an adversary to capture
part of the running memory on a server, and which could reveal passwords and cryptographic
keys. And, so, while many developers are diligent in their approach, there are still many
cases of code being released without a strong focus on cybersecurity testing. A well-defined
trait is that software developers often have an eye for usability and in producing workable
code rather than for it to be safe from future vulnerabilities [2].

This paper aims to understand if machine-learning-aided testing for cybersecurity could
enhance our existing static approaches to software testing. A core contribution of the paper
is in the testing of the accuracy performance of the machine-learning approach of GPT-4
against the usage of static testing tools, along with a well-defined methodology that can be
used in the assessment for the accuracy of bug finding. It uses a sampling-based approach to
code examples and focuses on well-defined classifications of software bugs as defined within
the MITRE ATT&CKTM framework.

The remainder of this paper is organised as follows. Related work (section 2) will present
past work on this topic. Then, we will evaluate the hypothesis that GPT-4 identifies vulner-
abilities more effectively than SAST tools through the methodology and security scenario
(Section 3). Section 4 presents the results. Section 5 presents the discussion and future
research. Sections 6 and 7 present the limitations and conclusion.
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1.1 Background

Machine learning in code analysis for cybersecurity has been elaborated very well [3]. Recent
progress in natural language processing (NLP) has given rise to potent language models like
the GPT (Generative Pre-trained Transformer) series, encompassing large language models
(LLM) like ChatGPT and GPT-4 [4]. Traditionally, Static Application Security Testing
(SAST) is a method that employs Static Code Analysis (SCA) to detect possible security
vulnerabilities. We are interested in seeing whether SAST or GPT could be more efficient
in decreasing the window of vulnerability. The window of vulnerability is defined as when
the most vulnerable systems apply the patch minus the time an exploit becomes active. The
precondition is met if two milestones that assume the detection of vulnerabilities verify their
effectiveness, along with the vendor patch [5].

Laws in some countries, like China, ban the reporting on zero-days (see articles 4 and
9 of [6]), and contests like the Tianfu Cup [7], which is a systematic effort to find zero
days, proliferate zero-day discovery continuously. Therefore, this precondition may not be
satisfied in a timely manner, especially if the confirmation of vulnerabilities is not verified.
A wide window of vulnerability threatens national security if a zero-day is exploited against
critical infrastructures. DARPA introduces an important challenge that may help overcome
this threat: (AIxCC) [8]). Moreover, this topic touches a part of the BSI studies [9, 10], and
where we can define two main classifications of software testing for cybersecurity bugs as:

– Static Application Security Testing (SAST). This is often referred to as White Box
Testing, which is a set of algorithms and techniques used for analysing source code. It
operates automatically in a non-runtime environment to detect vulnerabilities such as
hidden errors or poor source code during development.

– Dynamic Application Security Testing (DAST). This follows the opposite approach and
analyses the program while it is operating. Functions are called with values in the vari-
ables as each line of code is checked, and possible branching scenarios are guessed.
Currently, GPT-4 and other LLMs can not provide DAST capabilities because the code
needs to run within the runtime for this to work, requiring many deployment consider-
ations.

2 Related Work

Dominik Sobania et al. [11] explored automated program repair techniques, specifically fo-
cusing on ChatGPT’s potential for bug fixing. According to them, while initially not designed
for this purpose, ChatGPT demonstrated promising results on the QuixBugs benchmark,
rivalling advanced methods like CoCoNut and Codex. ChatGPT’s interactive dialogue sys-
tem uniquely enhances its repair rate, outperforming established standards. Wei Ma et
al. [12] noted that while ChatGPT shows impressive potential in software engineering(SE)
tasks like code and document generation, its lack of interpretability raises concerns given
SE’s high-reliability requirements. Through a detailed study, they categorised AI’s essen-
tial skills for SE into syntax understanding, static behaviour understanding, and dynamic
behaviour understanding. Their assessment, spanning languages like C, Java, Python, and
Solidity, revealed that ChatGPT excels in syntax understanding (akin to an AST parser)
but faces challenges in comprehending dynamic semantics. The study also found ChatGPT
prone to hallucinations, emphasising the need to validate its outputs for SE dependability
and suggesting that codes from LLMs are syntactically correct but potentially vulnerable.



Haonan Li et al. [13] discussed the challenges of balancing precision and scalability in
static analysis for identifying software bugs. While LLMs show potential in understanding
and debugging code, their efficacy in handling complex bug logic, which often requires
intricate reasoning and broad analysis, remains limited. Therefore, the researchers suggest
using LLMs to assist rather than replace static analysis. Their study introduced LLift,
an automated system combining a static analysis tool and an LLM to address use-before-
initialisation (UBI) bugs. Despite various challenges like bug-specific modelling and the
unpredictability of LLMs, LLift, when tested on real-world potential UBI bugs, showed
significant precision (50%( and recall (100%). Notably, it uncovered 13 new UBI bugs in the
Linux kernel, highlighting the potential of LLM-assisted methods in extensive real-world
bug detection.

Norbert Tihani et al. [14] introduced the FormAI dataset, comprising 112,000 AI-generated
C programs with vulnerability classifications generated by GPT-3.5-turbo. These programs
range from complex tasks like network management and encryption to simpler ones, like
string operations. Each program comes labelled with the identified vulnerabilities, pinpoint-
ing the type, line number, and vulnerable function. To achieve accurate vulnerability detec-
tion without false positives, the Efficient SMT-based Bounded Model Checker (ESBMC) was
used. This method leverages techniques like model checking and constraint programming to
reason over program safety. Each vulnerability also references its corresponding Common
Weakness Enumeration (CWE) number.

Codex, introduced by Mark et al. [15], represents a significant advancement in GPT
language models, tailored specifically for code synthesis using data from GitHub. This re-
fined model underpins the operations of GitHub Copilot. When assessed on the HumanEval
dataset, designed to gauge the functional accuracy of generating programs based on doc-
strings, Codex achieved a remarkable 28.8% success rate. In stark contrast, GPT-3 yielded a
0% success rate, and GPT-J achieved 11.4%. A standout discovery was the model’s enhanced
performance through repeated sampling, with a success rate soaring to 70.2% when given
100 samples per problem. Despite these promising results, Codex does exhibit certain lim-
itations, notably struggling with intricate docstrings and variable binding operations. The
paper deliberates on the broader ramifications of deploying such potent code-generation
tools, touching upon safety, security, and economic implications.

In a technical evaluation, Cheshkov et al. [16] found that the ChatGPT and GPT-3
models, despite their success in various other code-based tasks, performed on par with a
dummy classifier for this particular challenge. Utilising a dataset of Java files sourced from
GitHub repositories, the study emphasised the models’ current limitations in the domain of
vulnerability detection. However, the authors remain optimistic about the potential of future
advancements, suggesting that models like GPT-4, with targeted research, could eventually
make significant contributions to the field of vulnerability detection.

A comprehensive study conducted by Xin Liu et al. [17] investigated the potential of
ChatGPT in Vulnerability Description Mapping (VDM) tasks. VDM is pivotal in efficiently
mapping vulnerabilities to CWE and MITRE ATT&CK Techniques classifications. Their
findings suggest that while ChatGPT approaches the proficiency of human experts in the
Vulnerability-to-CWE task, especially with high-quality public data, its performance is no-
tably compromised in tasks such as Vulnerability-to-ATT&CK, particularly when reliant
on suboptimal public data quality. Ultimately, Xin Liu et al. emphasise that, despite the
promise shown by ChatGPT, it is not yet poised to replace the critical expertise of profes-
sional security engineers, asserting that closed-source LLMs are not the conclusive answer
for VDM tasks. Last but not least, the OWASP top 10 for LLMs [18] introduced ten secu-



rity risks as follows: Prompt Injection, Insecure Output Handling, Training Data Poisoning,
Model Denial of Service, Supply Chain Vulnerabilities, Sensitive Information Disclosure,
Insecure Plugin Design, Excessive Agency, Over reliance, and Model Theft.

3 Methodology and security scenarios

3.1 Experiment Design and Data

We selected two different Static Application Security Testing (SAST) tools to ensure a fair
comparison. The first is SonarQube [19], a well-established open-source platform that has
been in maintenance since 2006. SonarQube supports 29 languages and offers continuous
inspection of code quality. It conducts automatic reviews through static analysis to detect
bugs, code smells, and other issues across the 29 supported languages. The platform provides
insights on duplicated code, coding standards, unit tests, code coverage, code complexity,
comments, bugs, and security vulnerabilities.

On the other hand, the second tool is a relatively new, paid Software-as-a-Service (SaaS)
that began operations in 2020, named Cloud Defence [20]. Its mission is ”to shield Cloud
Native Applications from Zero Day Attacks.” To derive a comprehensive evaluation, we
combined the outcomes of both tools using an ’OR’ operation and named this consolidated
result the ”SAST result.” Consequently, a positive outcome (indicated by a ’1’) in the SAST
result signifies that either of the tools successfully detected the security vulnerability.

For this study, we selected 32 known security pitfalls that developers might inadvertently
introduce, potentially leading to zero-day vulnerabilities. Based on our observations, we
formulated the following hypotheses:

– H0: GPT-4-Advanced Data Analysis detects vulnerabilities with the same or worse
performance than the SAST tools.

– H1: GPT-4-Advanced Data Analysis detects vulnerabilities with better performance
than the SAST tools.

Design of the Experiment We have taken the code samples from GitHub or Snyk. We
ran each code sample independently through the GPT-4-Advanced Data Analysis web and
the SAST tool. It is unclear whether the API used in the beta version of the GPT Advanced
Data Analysis(formerly code interpreter) is ”8K context”, as there is no API available
for the Advanced Data Analysis and token/size pricing model at the time of writing this
paper. However, there are indications [21] that the 8K context model is being used. Detailed
records of their responses were maintained and are accessible [22]. For each tool’s detection
ability, outcomes were categorised binarily: 1 denoting correct detection and 0 indicating a
miss. Given the comparative nature of the study, the Chi-Squared Test for Independence
was chosen. This test facilitates the determination of significant differences between the
detection capabilities of GPT-4 and the SAST tool. We made a 2x2 contingency table that
was formulated as follows:

GPT-4 Correct GPT-4 Incorrect
SAST Correct a b

SAST Incorrect c d

Wherein:

– a: Represents vulnerabilities correctly identified by both tools.



– b: Represents vulnerabilities exclusively detected by the SAST tool.
– c: Represents vulnerabilities exclusively identified by GPT-4.
– d: Represents vulnerabilities that remained undetected by both entities.

Interpretation of Outcomes We used McNemar’s test [23], and the p-value below 0.05
was established as the benchmark for statistical significance. If attained, it would signify a
superior performance of GPT-4 over the SAST tool in the scope of vulnerability detection.

3.2 Security Vulnerabilities and Data

We explored the security scenarios that are listed in Table 1 and examined GPT4 and a
SAST for each. Code snippets and answers of GPT and SAST are documented [22].

Table 1. Brief Descriptions of Various Attacks and sample code

IDCoding security mistakes sample Description

1 Buffer overflow [24] Overwriting memory by overflowing a buffer.

2 SQL Injection [25, 26] injecting malicious SQL code into a query.

3 Cross-Site Scripting (XSS) [27] Injecting malicious scripts into web pages viewed by users.

4 Broken Access Control [28] Improperly enforcing what users can or cannot do.

5 Insecure deserialization [29] Exploiting unsafe data unmarshalling.

6 Log4J [30] Exploiting the Log4J Java logging library.

7 Unrestricted upload [31] Uploading malicious files without restrictions.

8 Improper input validation [32] Not verifying the user’s input properly.

9 Memory Leak [33] Unintentional memory consumption leading to crashes.

10 Mass assignment [34] Overwriting object properties without restrictions.

11 Server-side request forgery [35] Making the server run unauthorized actions.

12 Insecure temporary files [36] Exploiting insecurely created temporary files.

13 Cleartext storage in a cookie [37] Storing sensitive data unencrypted in cookies.

14 XPath injection [38] Injecting malicious XPath queries.

15 Weak password recovery [39] Exploiting inadequate password recovery systems.

16 Logging vulnerabilities [40] Inadequately protecting or revealing logs.

17 Insecure Randomness [41] Using predictable random number generators.

18 NoSQL injection attack [42] Injecting malicious code into NoSQL queries.

19 Code injection [43] Injecting malicious code into an application.

20 No rate limiting [44] Overloading systems by not capping request rates.

21 Vulnerable components [45] Using outdated or flawed software components.

22 Insecure design [46] Designing systems without security in mind.

23 Insecure hash [47] Using weak hashing methods.

24 ReDoS [48] Exploiting regex to cause denial-of-service.

25 XML external entity injection [49] Attacking parsers with external XML entities.

26 Cross site request forgery [50] Making users unknowingly submit a malicious request.

27 DOM XSS [51] Injecting malicious scripts via the Document Object Model.

28 Open redirect [52] Redirecting users to malicious sites.

29 Directory traversal [53] Accessing files outside of the intended directory.

30 Prototype pollution [54] Altering prototype objects.

31 Container capabilities [55] Containers retaining unnecessary capabilities.

32 Container privileged mode [56] Running containers with full system privileges.



4 Results

The comparison results between the online SAST tool and GPT-4 for detecting security
vulnerabilities are presented in Table 2. Vulnerabilities ranged from common issues like
Buffer Overflow and SQL Injection to more specific ones like Prototype Pollution. GPT-4
consistently detected most vulnerabilities correctly, as indicated by a ”1” under the ”GPT-
C” column. In contrast, tools like sonarcloud.io and clouddefense.ai had varied results, with
some vulnerabilities detected correctly and others not.

To enhance the generalizability of our method to encompass a broader range of SAST
tools, we introduced new columns named SAST-Correct and SAST-Incorrect into Table 3.
We constructed the contingency matrix using these columns and GPT-Correct and GPT-
Incorrect.

SASTcorrect =
⋃

SAST

ResultcorrectSAST ;SASTincorrect = 1 − SASTcorrect

Utilising McNemar’s test [23], a comparative evaluation of vulnerability detection per-
formance between GPT-4 and SAST tools was conducted. The test yielded a Chi-square
value of 20.046 with an associated p-value of 0.000007562 using the in the appendix.

Given this result and adopting a significance level of 0.05%, we can reject the null
hypothesis, and our experiment supports the alternative hypothesis:

– H0: GPT-4-Advanced Data Analysis has the same or worse performance than SAST
tools.

– H1: GPT-4-Advanced Data Analysis has better performance than SAST tools.

5 Discussion and future research

GPT-4 has shown a promising ability to detect vulnerabilities that traditional SAST tools
might miss. This revelation is significant for several reasons:

– Evolution of Detection Tools: As software development processes evolve, so too must the
tools that ensure their security. The capabilities of GPT-4 in our experiment suggest that
language models can serve as powerful supplements, if not alternatives, to traditional
SAST tools.

– Cost Implications: Traditional SAST tools, especially proprietary ones, can be expensive.
If language models can provide comparable or even superior performance, organisations
might be able to reduce costs associated with security testing.

– Time Efficiency: The rapid analysis capabilities of models like GPT-4 could reduce
the time taken for security assessments, especially in continuous integration/continuous
deployment (CI/CD) environments.

However, while GPT-4’s performance is commendable, it is essential to approach these
findings with caution. Language models, no matter how advanced, are not infallible. They
operate based on patterns in the data they have been trained on. If a novel vulnerability
emerges after their training cut-off, they might not recognise it. Integration of language
models into existing software development lifecycles requires careful consideration, especially
concerning reliability, false positives/negatives, and the model’s interpretability.

Looking ahead, there are multiple avenues for expanding upon this research:



Table 2. Comparison results for various security vulnerabilities. C: Correct detection; I: Incorrect
detection. Tools compared include GPT-4 Advanced Data Analysis (GPT), sonarcloud.io (SQ),
and clouddefense.ai (CDA). Vulnerabilities are referenced by their Common Weakness Enumeration
(CWE) ID, available at https://cwe.mitre.org/.

ID Security vulnerability inside a code snippet with
its CWE

GPT-
C

GPT-I SQ-C SQ-I CDA-
C

CDA-I CWE

1 Buffer overflow [57] 1 0 1 0 1 0 121

2 SQL Injection [58] 1 0 1 0 1 0 564

3 Cross-Site Scripting (XSS) [59]: 1 0 0 1 0 1 79

4 Brocken Access Control [60] 1 0 0 1 0 1 284

5 Insecure deserialization [61] 1 0 0 1 0 1 502

6 log 4J [61] 1 0 0 1 0 1 502

7 Unrestricted upload of dangerous files [62] 1 0 0 1 0 1 434

8 Improper input validation [63] 1 0 0 1 0 1 20

9 Memory Leak [64] 1 0 0 1 1 0 401

10 Mass assignment with secret leak [65] 1 0 0 1 0 1 915

11 Server-side request forgery [66] 1 0 1 0 1 0 918

12 Insecure temporary file [67] 1 0 0 1 0 1 377

13 Plaintext storage of sensitive information in cook-
ies [68]

1 0 0 1 0 1 315

14 XPath injection [69] 1 0 0 1 0 1 643

15 Weak password recovery [70] 1 0 0 1 0 1 640

16 Logging vulnerabilities [71] 1 0 0 1 0 1 532

17 Insecure Randomness [72] 1 0 0 1 0 1 330

18 NoSQL injection attack [73] 1 0 0 1 0 1 89

19 Code injection [74] 1 0 1 0 1 0 94

20 No rate limiting [75] 1 0 0 1 0 1 770

21 Vulnerable and outdated components [76] 0 1 0 1 0 1 1352

22 Insecure design [77] 0 1 0 1 0 1 657

23 Insecure hash [78] 1 0 0 1 0 1 328

24 ReDoS [79] 1 0 0 1 0 1 185

25 XML external entity injection [80] 1 0 1 0 1 0 611

26 Cross-site request forgery [81] 1 0 0 1 0 1 352

27 DOM XSS [82] 1 0 1 0 1 0 80

28 Open redirect [83] 1 0 1 0 1 0 601

29 Directory traversal [84] 1 0 0 1 1 0 23

30 Prototype pollution [85] 1 0 0 1 0 1 1321

31 Container does not drop default capabilities [86] 1 0 0 1 0 1 250

32 Container is running in privileged mode [86] 1 0 0 1 0 1 250

https://cwe.mitre.org/


GPT-4 Correct GPT-4 Incorrect

SAST Correct 11 0

SAST Incorrect 22 2
Table 3. Comparison of SAST and GPT-4 Detection Abilities

1. Broader SAST Tool Comparison: While our study focused on two specific SAST tools,
future research could incorporate a broader range of tools to provide a more compre-
hensive comparison.

2. Usability in Real-world Application: It would be beneficial to test GPT-4’s detection
capabilities in real-world scenarios, such as live software development environments, to
assess its practical applicability and compare its output with expert opinion.

3. Integration with Development Environments: Research could explore how GPT-4 or
similar models can seamlessly and securely integrate into popular development environ-
ments and platforms.

4. Security-trained LLMs: While GPT-4 is a generalised model, there might be benefits in
training custom language models specifically focused on security vulnerability detection.

5. LLMs-trained using Fault-Tolerant Quantum Computers(FTQC):

6. Jens Eisert et al. [87] provided a resource estimation for large machine learning mod-
els trained over Fault-Tolerant Quantum Computers (FTQC), focusing on significant
computational expenses, power, and time consumption challenges. They demonstrated
that FTQCs could offer efficient resolutions for generic (stochastic) gradient descent
algorithms, scaling as O(T 2×polylog(n)), where n is the size of the models and T is the
number of iterations in training. The effectiveness depended on the models being suf-
ficiently dissipative and sparse with minimal learning rates. The authors also explored
the practical application, benchmarking models ranging from seven million to 103 mil-
lion parameters, and found potential for quantum enhancement in sparse training after
model pruning. This paper opens a new avenue for researching the resources and impact
of training security-focused LLMs using FTQCs.

Additionally, we must recognise that these advancements have both benefits and risks.
While these models can help defence, attackers could also use them to find new vulnera-
bilities, introducing an asymmetry in Offensive Cyber Operations (OCO) that necessitates
vigilant monitoring and research, which we introduce in the next section.

5.1 Security concerns of LLMs

CISA has emphasised that AI should adhere to the principle of ”Secure by Design” [88],
suggesting a comprehensive threat model tailored for domain-specific LLMs, such as GPTs
specialised in vulnerability scanning. BSI has outlined several threats pertinent to AI security
[9]. Furthermore, it is crucial to recognise that many MLOps solutions rely on open-source
frameworks. This fact introduces heightened security vulnerabilities, especially concerning
supply chain attacks on open-source resources and undetectable hidden backdoors [89]. Shafi
Goldwasser et al. shared an AI-era wisdom like Reflections on Trusting Trust [90], which
showcases undetectable backdoors in AI.

We outline the various attacks linked to LLMs; however, creating a comprehensive threat
map for LLM-enhanced SAST is an important area for future research:



1. Poisoning Attacks: Attackers introduce malicious data into the training set to com-
promise the model’s performance [91].

2. Backdoor Attacks: Attackers embed a hidden behaviour within a model, triggered by
specific inputs during deployment [92].

3. Supply chain attack: Malicious activities aimed at tampering with the AI software
supply chain to compromise the model or system [93].

4. Endpoint /API security breach: Exploiting vulnerabilities in the AI system’s access
points or interfaces to gain unauthorised access or leak information [94].

5. Model Stealing Attacks: For organisations that invested significant resources in de-
veloping a commercial or mission-critical AI model, model stealing is a threat [95].

6. Membership Inference Attacks: In membership inference attacks, the attacker tries
to determine whether a data sample was part of a model’s training data [96].

7. Attribute Inference Attacks: In attribute inference attacks, the attacker seeks to
breach the confidentiality of the model’s training data by determining the value of a
sensitive attribute associated with a specific individual or identity in the training data
[97].

8. Model Inversion Attacks: Model inversion attacks aim to recover features that char-
acterise classes from the training data [98].

9. Denial of Service: Attackers overload or manipulate the AI system, rendering it non-
operational or degrading its performance [9].

10. Prompt injection: Manipulating the input prompts to mislead or control the output
of models like GPT-4 [99].

11. Jailbreaks: Bypassing restrictions or controls put on language models to access broader
or hidden functionalities [100].

12. Privacy breach: Exploiting the model to reveal sensitive or private information it
might have been exposed to during training [101].

13. GAN-based Attack: Using Generative Adversarial Networks to confuse or mislead
the target AI model into making incorrect predictions or classifications [9].

In this paper, we do not elaborate on the attack surface of LLMs. Instead, our focus is
to underscore the significance of adhering to principles such as security by design/default
and privacy by design/default. We advocate for integrating MLSecOps and emphasise the
application of defence-in-depth strategies, notably the Zero Trust Architecture. It is also
imperative to consider specific requirements like the Software Bill of Materials (SBOM) and
other best practices when leveraging LLM-enhanced vulnerability scanning. These consider-
ations are not just recommended; they are indispensable. Also, GPT4 and code-LLMs may
generate insecure codes that warn about over-reliance on LLMs [102].

As revealed in the Vulkan files [103], reconnaissance systems are an undeniable compo-
nent of cyber warfare. Therefore, it’s imperative to enhance the resilience and robustness of
LLM-enhanced SASTs through Federated Learning (FL-LLM), as these systems will become
targets if they are not already. However, introducing FL-LLMs might also present new se-
curity challenges [104]. While using FL-LLM for training on a European scale/transatlantic
scale might be feasible, training using a reliable dataset is crucial as the dataset’s quality
will directly reflect the final performance of the model. Model hyperparameter tuning, re-
training, and pruning will require substantial resources. Therefore, developing a high-quality
European or even transatlantic dataset is unavoidable. Without such datasets, LLMs risk
becoming costly failures due to the resource-intensive nature of training, model serving, and
inference, leading to the potential for undertrained or poisoned models in cyber defence
[105, 106]. Present datasets [107] often lack comprehensive coverage of all known CWEs,
proper labelling, and multi-language data.



6 Conclusions

This study emphasises the superior capabilities of GPT-4 (Advanced Data Analysis beta) in
identifying software vulnerabilities compared to traditional SAST tools. However, integrat-
ing Language Models (LLMs) like GPT-4 into vulnerability scanning requires a comprehen-
sive understanding of associated security concerns and a commitment to evolving security
best practices from MLOps to MLSecOps. Important resources should be dedicated to ac-
quiring high-quality datasets and ensuring resource-efficient model training, inference, and
serving using a certified MLSecOps toolset. It’s important to remember that there’s no
silver bullet in vulnerability scanning; the window of vulnerability will remain a challenge
unless datasets, tooling, and skills are optimised to leverage vulnerability scanning LLMs
effectively in DevSecOps. One recommendation is that European entities consider initiating
challenges similar to AIxCC. This will facilitate the UK/EU to address security issues and
harness the potential of next-generation vulnerability scanning LLMs before they emerge as
an asymmetric capability in offensive cybersecurity operations.

Since both LLMs and SAST are evolving and progressing daily, our research subject is a
moving target. An LLM-enhanced SAST or vulnerability scanning LLMs may soon become
de facto, and their comparative studies become the next research subject [108]. Another
limitation is that we did not cover all CWEs and all SASTs/LLMs.
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7 Appendix

1 import pandas as pd
2 from s ta t smode l s . s t a t s . c o n t i n g e n c y t a b l e s import McNEmar
3

4 # 1. Read the data from the Exce l f i l e
5 df = pd . r e a d e x c e l ( ’ s e c u r i t y b u g s r e s u l t s h y p o t h e s i s  t e s t i n g . x l sx ’ )
6

7 # 2. Prepare the cont ingency matrix f o r McNemar ’ s t e s t
8 b = df [ ( df [ ”GPT−Correct ” ] == 1) & ( df [ ”SAST−I n c o r r e c t ” ] == 1) ] .

shape [ 0 ]
9 c = df [ ( df [ ”GPT I n c o r r e c t ” ] == 1) & ( df [ ”SAST−Correct ” ] == 1) ] .

shape [ 0 ]
10 t a b l e = [ [ 0 , b ] , [ c , 0 ] ]
11

12 # 3. Perform McNemar ’ s t e s t
13 r e s u l t = McNamara( tab le , exact=False , c o r r e c t i o n=True )
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14

15 # 4. Provide the r e s u l t o f the hypo t h e s i s t e s t i n g
16 i f r e s u l t . pvalue < 0 . 0 5 :
17 h y p o t h e s i s r e s u l t = ” Reject  the  n u l l  hypothes i s  (H0) .  GPT−4  

has  b e t t e r  performance  than  the  SAST t o o l s . ”
18 else :
19 h y p o t h e s i s r e s u l t = ” F a i l  to  r e j e c t  the  n u l l  hypothes i s  (H0) .  

GPT−4  does  not  perform  s t a t i s t i c a l l y  s i g n i f i c a n t l y  b e t t e r  
than  the  SAST t o o l s . ”

20

21 print ( f ”Chi−Squared :  { r e s u l t . s t a t i s t i c }” )
22 print ( f ”p−value :  { r e s u l t . pvalue }” )
23 print ( h y p o t h e s i s r e s u l t )
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