
ar
X

iv
:2

50
6.

15
10

2v
1

 [
cs

.C
R

]
 1

8
Ju

n
20

25

EVA-S2PMLP: Secure and Scalable Two-Party MLP via Spatial
Transformation

Shizhao Peng*
Beihang University

Beijing, China

by1806167@buaa.edu.cn

Shoumo Li
Beihang University

Beijing, China

22371327@buaa.edu.cn

Tianle Tao
Beihang University

Beijing, China

taotianle@buaa.edu.cn

ABSTRACT

Privacy-preserving neural network training in vertically parti-

tioned scenarios is vital for secure collaborative modeling across

institutions. This paper presents EVA-S2PMLP, an Efficient, Ver-

ifiable, and Accurate Secure Two-Party Multi-Layer Perceptron

framework that introduces spatial-scale optimization for enhanced

privacy and performance. To enable reliable computation under

real-number domain, EVA-S2PMLP proposes a secure transforma-

tion pipeline that maps scalar inputs to vector and matrix spaces

while preserving correctness. The framework includes a suite of

atomic protocols for linear and non-linear secure computations,

with modular support for secure activation, matrix-vector opera-

tions, and loss evaluation. Theoretical analysis confirms the relia-

bility, security, and asymptotic complexity of each protocol. Exten-

sive experiments show that EVA-S2PMLP achieves high inference

accuracy and significantly reduced communication overhead, with

up to 12.3× improvement over baselines. Evaluation on benchmark

datasets demonstrates that the framework maintains model utility

while ensuring strict data confidentiality, making it a practical so-

lution for privacy-preserving neural network training in finance,

healthcare, and cross-organizational AI applications.

1 INTRODUCTION

In the past decade, a wide range of privacy-preserving machine

learning frameworks have been proposed to enable secure train-

ing and inference of neural networks under secure multi-party

computation (SMPC). These frameworks span various adversarial

models, protocol abstractions, and system architectures. From the

perspective of computation paradigm and protocol primitives, Se-

cureML [1] was an early attempt under the 2-party setting, inte-

grating multiple SMPC techniques such as secret sharing for lin-

ear operations, garbled circuits for Boolean operations, and oblivi-

ous transfer or homomorphic encryption for preprocessing. How-

ever, limited protocol optimization led to high overhead and re-

duced precision. Subsequent works aimed to improve performance

and scalability. ABY3 [2] introduced a three-party protocol sup-

porting conversions among arithmetic, Boolean, and Yao circuits,

and provided an efficient secret-shared multiplication protocol. Se-

cureNN [3] proposed optimized ReLU and maxpool implemen-

tations without garbled circuits, improving communication effi-

ciency. FALCON [4] and BLAZE [5] built on these ideas to fur-

ther reduce communication cost and improve precision using opti-

mized truncation protocols. Other frameworks focused on usabil-

ity and integration with existing ML ecosystems. TF-Encrypted [6]

supported TensorFlow-based secure training, while EzPC [7] pro-

vided a high-level language to abstract cryptographic complexity.

CrypTen [8] and SecretFlow [9] offered GPU acceleration andmod-

ular cryptographic backends. Robustness under adversarial models

also received attention. FLASH [10], Trident [11], and SWIFT [12]

explored efficient secure inner product protocols under malicious

or dishonest majority models. MP-SPDZ [13] consolidated vari-

ous 2PC/3PC protocols in both semi-honest and malicious settings.

Meanwhile, federated learning frameworks such as FATE [14]

and PySyft [15] addressed privacy at the system level by combin-

ing SMPC with differential privacy or homomorphic encryption.

TenSEAL [16] offered CKKS-based encrypted training, while Pen-

cil [17] leveraged GPU-based homomorphic encryption in a verti-

cal FL setting. These frameworks collectively highlight the trend

towards higher efficiency, better usability, and stronger adversarial

resilience in privacy-preserving machine learning.

2 RELATED WORK

2.1 Data Disguising Techniques

S2PM and S3PM are the foundational linear computation protocols

within our framework, from which all other sub-protocols can be

derived. Existing research on secure matrix multiplication primar-

ily utilizes SMPC and data disguising techniques. Frameworks

such as Sharemind [18, 19] achieve secure matrix multiplication

by decomposing matrices into vector dot products U8 · V8 . Each

entry U8 · V8 is computed locally, and re-sharing in the ring Z232

is completed through six Du-Atallah protocols. Other studies,

including [3, 20, 21], reduce the linear complexity of matrix

multiplication by precomputing random triples 〈0〉B , 〈1〉B , 〈2〉B

(where (denotes additive secret sharing over Z2;). In [22–24],

optimizations to the underlying ZeroShare protocol employ

AES as a PRNG in ECB mode to perform tensor multiplication,

represented as 〈I〉 = 〈G · ~〉. The DeepSecure and XOR-GC

frameworks [25, 26] utilize custom libraries and standard logic

synthesis tools to parallelize matrix multiplication using GC

in logic gate operations, enhancing computational efficiency.

ABY3[2] combines GC and SS methods, introducing a technique

for rapid conversion between arithmetic, binary, and Yao’s 3PC

representations, achieving up to a 50× reduction in communica-

tion for matrix multiplications. Other approaches, including [16],

use CKKS encryption for vector-matrix multiplication, expanding

ciphertext slots by replicating input vectors to accommodate

matrix operations. LibOTe [27] implements a highly efficient

1-out-of-n OT by adjusting the Diffie-Hellman key-exchange and

optimizing matrix linear operations with a 64 × 64 → 128-bit

serial multiplier in F2255−19 for precision. The SPDZ framework

and its upgrades [28, 29] enhance efficiency and provable security

by integrating hidden key generation protocols for BGV public

keys, combining the strengths of HE, OT, and SS. Frameworks like

https://arxiv.org/abs/2506.15102v1

Shizhao Peng*, Shoumo Li, and Tianle Tao

SecretFlow, Secure ML, Chameleon, and Delphi [9, 30] integrate

sequential interactive GMW, fixed-point ASS, precomputed OT,

and an optimized STP-based vector dot product protocol for

matrix multiplication, achieving significant improvements in

communication overhead and efficiency.

2.2 Non-linear Operations in SMPC

Nikolaenko [31] proposes a server-based privacy-preserving linear

regression protocol for horizontally partitioned data, combining

linearly homomorphic encryption (LHE) and GC.

For vertically partitioned data, Giacomelli and Gascón [32, 33]

utilize Yao’s circuit protocol and LHE, incurring high overhead and

limited non-linear computation precision. In contrast, ABY3 [2]

reduces regression communication complexity using delayed re-

sharing techniques. Building on this, Mohassel further improves

linear regression accuracy with an approximate fixed-point mul-

tiplication method that avoids Boolean truncation [1]. Gilad [34]

presents the first three-server linear regression model, yet heavy

GC use limits scalability due to high communication costs. Liu [17]

combines DP with HE and SS to support linear regression across

vertically and horizontally partitioned models, protecting model

parameter privacy. Rathee and Tan [21, 35] leverage GPU accel-

eration and fixed-point arithmetic over shares, using 2-out-of-3

replicated secret sharing to support secure regression across three-

party servers. Ma [9] introduces the first SPU-based, MPC-enabled

PPML framework, with compiler optimizations that substantially

enhance training efficiency and usability in secure regression.

3 SYSTEM FRAMEWORK AND OBJECTIVES

In this section, we present the design of the proposed EVA-S2PMLP

framework for privacy-preserving multi-layer perceptron (MLP)

training and inference under the two-party computation (2PC) set-

ting.

3.1 System Architecture of EVA-S2PMLP

As shown in Figure 1, the EVA-S2PMLP framework consists of four

secure low-level primitives (S2PM, S2PHP, S2PSCR, and S2PHHP),

four secure high-level primitives (S2PHM, S2PRL, S2PSM, and

S2PG-MLP), and two 2PC-based MLP protocols (S2PMLP-TR for

training and S2PMLP-PR for prediction).

Upon receiving an MLP training or prediction request from the

client, the computation task is distributed to two data owners. Each

data owner locally encodes its private data and participates in the

protocol by securely feeding the input into the correspondingMLP

pipeline. These pipelines internally invoke the secure matrix mul-

tiplication and activation primitives to perform the forward and

backward propagation steps. To ensure privacy, a data disguising

technique is employed before entering the protocol, which ran-

domizes the input data with pre-generated masks, preventing any

raw data leakage during the interactive computation phase.

Each protocol and operator in EVA-S2PMLP executes through

three stages: (1) Preprocessing, where offline computations such

as randommatrix generation and format alignment are performed

locally without communication; (2) Online Computing, which

S2PHM

S2PM S2PHP S2PSCR S2PHHP

S2PMLP-TR S2PMLP-PR

Offline

EVA-S2PMLP Framework

Data

Owner 1

Data

Owner 2

Client

Secure Operators Stages

Secure Multi-Layer Perceptron

Online

Verification

S2PRL S2PSM S2PG

Figure 1: System architecture of the EVA-S2PMLP frame-

work

involves the core interactive execution between the two parties ac-

cording to the predefined algorithm; and (3) Verification, where

additional checks are performed using verification matrices to en-

sure the integrity of results. This design ensures correctness and

verifiability while maintaining strong privacy guarantees through-

out the lifecycle of model training or inference.

3.2 Security Model

For the definition of security, we follow a semi-honest model of

S2PC using the criteria of computational indistinguishability be-

tween the view of ideal-world and the simulated views of real-

world on a finite filed, and extended it to the scenario of a real

number filed.

Definition 1 (Semi-honest adversaries model [36]). In a

semi-honest adversary model, it is hypothesized that all participants

follow the exact protocol during computation but may use input and

intermediate results of their own to infer others’ original data.

Definition 2 (Computational Indistinguishability [37]).

A probability ensemble - = {- (0,=)}0∈{0,1}∗;=∈N is an infinite se-

quence of random variables indexed by 0 ∈ {0, 1}∗ and = ∈ N. In

the context of secure computation, the 0 represents the parties’ in-

puts and = denotes the security parameter. Two probability ensem-

bles - = {- (0,=)}0∈{0,1}∗;=∈N and . = {. (0,=)}0∈{0,1}∗;=∈N are

said to be computationally indistinguishable, denoted by -
2
≡ . , if

for every non-uniform polynomial-time algorithm D there exists a

negligible function ` (·) such that for every 0 ∈ {0, 1}∗ and every

= ∈ N,

|%A [� (- (0,=)) = 1] − %A [� (. (0,=)) = 1] | ≤ ` (=) (1)

Definition 3 (Privacy in Semi-honest 2-Party Computation

[38]). Let 5 : {0, 1}∗ × {0, 1}∗ ↦→ {0, 1}∗ × {0, 1}∗ be a functionality,

where 51 (G,~) (resp.,52 (G,~)) denotes the first(resp.,second) element

of 5 (G,~) and c be a two-party protocol for computing 5 . The view

of the first(resp., second) party during an execution of c on (G,~),

denoted + ��, c
1 (G,~) (resp., + ��,

c
2 (G,~)), is (G, A

1,<1
1, · · · ,<

1
C)

(resp.,(~, A2,<2
1, · · · ,<

2
C)), where A

1 (resp.,A2) represents the outcome

of the first (resp.,second) party’s internal coin tosses, and<1
8 (resp.,<

2
8)

represents the 8Cℎ message it has received. The output of the first

(resp.,second) party during an execution of c on (G,~), denoted

$*)%*)c
1 (G,~) (resp.,$*)%*)

c
2 (G,~)), is implicit in the party’s

EVA-S2PMLP: Secure and Scalable Two-Party MLP via Spatial Transformation

view of the execution. We say that c privately computes 5 (G,~) if

there exist polynomial time algorithms, denoted (1 and (2 such that:

{((1 (G, 51 (G,~)), 52 (G,~))}G,~∈{0,1}∗

2
≡ {(+ ��, c

1 (G,~), $*)%*)
c
2 (G,~))}G,~∈{0,1}∗

{(51 (G,~), (2 (~, 52 (G,~)))}G,~∈{0,1}∗

2
≡ {($*)%*)c

1 (G,~),+ ��,
c
2 (G,~))}G,~∈{0,1}∗ (2)

where
2
≡ denotes computational indistinguishability and

|G | = |~ |. We stress that above + ��, c
1 (G,~) and + ��, c

2 (G,~),

$*)%*)c
1 (G,~) and$*)%*)

c
2 (G,~) are related random variables,

defined as a function of the same random execution.

Definition 4 (Privacy in Semi-honest 3-party computa-

tion). Let 5 = (51, 52, 53) be a functionality. We say that c pri-

vately computes 5 (G,~, I) if there exist polynomial time algorithms,

denoted (1, (2 and (3 such that:

{((1(G, 51 (G,~, I)), 52 (G,~, I), 53 (G,~, I))}G,~,I∈{0,1}∗

2
≡ {(+��, c

1 (G,~, I), $*)%*)
c
2 (G,~, I),

$*)%*)c
3 (G,~, I)}G,~,I∈{0,1}∗

{(51(G,~, I), (2 (~, 52 (G,~, I)), 53 (G,~, I))}G,~,I∈{0,1}∗

2
≡ {($*)%*)c

1 (G,~, I),+ ��,
c
2 (G,~, I),

$*)%*)c
3 (G,~, I)}G,~,I∈{0,1}∗

{(51(G,~, I), 52 (G,~, I), (3 (I, 53 (G,~, I)))}G,~,I∈{0,1}∗

2
≡ {($*)%*)c

1 (G,~, I), $*)%*)
c
2 (G,~, I)

+ ��, c
3 (G,~, I)}G,~,I∈{0,1}∗ (3)

where, again,
2
≡ denotes computational indistinguishabilityand |G | =

|~ | = |I |. + ��, c
1 (G,~, I). + ��,

c
2 (G,~, I) and + ��, c

3 (G,~, I),

$*)%*)c
1 (G,~, I), $*)%*)

c
2 (G,~, I) and $*)%*)

c
3 (G,~, I) are

related random variables, defined as a function of the same random

execution.

This definition is for the general case of the real-ideal security para-

digm defined in a formal language and for deterministic functions,

as long as they can ensure that the messages {(8 (G, 58 (G)), (8 ∈

1, 2...)} generated by the simulator in the ideal-world are distin-

guishable form {E84Fc
8 (G), (8 ∈ 1, 2...)} in the real-world, then it

can be shown that a protocol privately computes 5 in a finite field.

Furthermore, a heuristic model defined on a real number field is

introduced as follows [39]:

Definition 5 (SecurityModel in field of real number). All

inputs in this model are in the real number field R. Let �� and ��
represent Alice’s and Bob’s private inputs, and $� and $� represent

Alice’s and Bob’s outputs, respectively. Let c denote the two-party

computation involving Alice and Bob, where ($�,$�) = c (��, ��).

Protocol c is considered secure against dishonest Bob if there is an

infinite number of (� ∗
�
,$∗

�
) pairs in (R,R) such that ($∗

�
,$�) =

c (� ∗
�
, ��). A protocol c is considered secure against dishonest Alice

if there is an infinite number of (� ∗
�
,$∗

�
) pairs in (R,R) such that

($�, $
∗
�
) = c (��, �

∗
�
).

A protocol is considered secure in the field of real numbers if, for

any input/output combination (� ,$) from one party, there are an

infinite number of alternative inputs in R from the second party

that will result in$ from the first party’s perspective given its own

input � . From the adversary’s point of view, this infinite number of

the other party’s input/output represents a kind of stochastic in-

distinguishability in real number field, which is similar to compu-

tational indistinguishability in the real-ideal paradigm. Moreover,

a simulator in the ideal world is limited to merely accessing the

corrupted parties’ input and output. In other words, the protocol

c is said to securely compute 5 in the field of real numbers if, and

only if, computational indistinguishability is achieved with any in-

puts from non-adversaries over a real number field, and the final

outputs generated by the simulator are constant and independent

from all inputs except for the adversaries.

4 PROPOSED WORK

This section primarily introduces the detailed procedures of the

basic protocols in the EVA-S2PMLP framework, including S2PRIP,

S2PDRL, S2PRL, S2PHP, S2PHHP, S2PSCR, S2PSM, and S2PG-MLP.

In addition, we provide a correctness analysis for these protocols.

4.1 Secure Two-Party Row Inner Product
Protocol (S2PRIP)

The problem definition of S2PRIP is as follows:

Problem 1 (Secure Two-Party Row Inner Product Proto-

col). Alice has a private matrix �, and Bob has a private matrix

�, both of which have dimensions = ×<. They aim to perform a se-

cure two-party row-wise inner product computation such that Alice

obtains a single-column matrix +0 and Bob obtains a single-column

matrix+1 , satisfying+0 ++1 = � ⊛ �.

Description of the S2PRIP Protocol: Similar to the S2PMpro-

tocol described in the appendix, the proposed S2PRIP protocol con-

sists of three phases: the preprocessing phase (seeAlgorithm 1), the

online computation phase (see Algorithm 2), and the result verifi-

cation phase (see Algorithm 3).

Preprocessing Phase: In Algorithm 1, the computation server

(CS) generates a set of random private matrices ('0, A0) and

('1 , A1) for Alice and Bob, respectively, to mask their input ma-

trices � and �. Additionally, for the purpose of subsequent result

verification (see Algorithm 3), the standard matrix (C = '0 ⊛ '1 is

also sent to Alice and Bob.

Algorithm 1 S2PRIP CS Preprocessing Phase

Input: =,<

Output: Alice⇐ ('0, A0, (C), Bob⇐ ('1 , A1 , (C)

1: '0 ← generate random matrix ⊲ '0 ∈ R
=×<

2: '1 ← generate random matrix ⊲ '1 ∈ R
=×<

3: (C ← '0 ⊛ '1 ⊲ (C ∈ R
=×1

4: A0, A1 ← generate random matrices such that A0 + A1 = (C
⊲ A0, A1 ∈ R

=×1

5: Alice← ('0, A0, (C)

6: Bob← ('1 , A1 , (C)

7: return ('0, A0, (C), ('1 , A1 , (C)

Online Phase: After the CS preprocessing phase, the online

phase consists of a series of matrix computations, as described in

Shizhao Peng*, Shoumo Li, and Tianle Tao

Algorithm 2. Note that the final row-wise inner product � ⊛ � is

masked by +0 and +1 to prevent Alice or Bob from knowing the

actual result. The correctness of the result can be easily proven:

+0 ++1 = [(�̂ ⊛ � + (A0 − +1)) + A0 − ('0 ⊛ �̂)] ++1 = [� ⊛ � −

+1 + (A0 + A1 − '0 ⊛ '1)] ++1 = � ⊛ �.

Algorithm 2 S2PRIP Online Computation Phase

Input: � ∈ R=×< and � ∈ R=×<

Output: Alice⇐ (+0,+ �0), Bob⇐ (+1 ,+ �1)

1: �̂ = � + '0 and send �̂⇒ Bob ⊲ �̂ ∈ R=×<

2: �̂ = � + '1 and send �̂ ⇒ Alice ⊲ �̂ ∈ R=×<

3: +1 ← generate random matrix ⊲ +1 ∈ R
=×1

4: + �1 = +1 − �̂ ⊛ � ⊲ +�1 ∈ R
=×1

5:) = A1 −+ �1 ⊲) ∈ R=×1

6: Send (+�1 ,)) ⇒ Alice

7: +0 =) + A0 − ('0 ⊛ �̂) ⊲ +0 ∈ R
=×1

8: + �0 = +0 + '0 ⊛ �̂ and send + �0 ⇒ Bob ⊲ + �0 ∈ R
=×1

9: return (+0,+ �0), (+1 ,+ �1)

S2PRIP Verification Phase: Similar to the S2PM result verifi-

cation module in the appendix, we also propose a result verifica-

tion algorithm for S2PRIP, as shown in Algorithm 3.

Algorithm 3 S2PRIP Result Verification Phase

Input: +�0,+ �1 , (C ∈ R
=×1

Output: Accept or Reject

1: for 8 = 1 : ; do

2: Alice generates a vector X̂0 ∈ R
=×1, where each element is

randomly chosen to be 0 or 1

3: Alice then computes �A = (+�0 ++�1 − (C) ⊙ X̂0
4: if �A ≠ (0, 0, · · · , 0)) then

5: return Reject

6: end if

7: end for

8: Bob repeats the same verification process as Alice

9: return Accept

Similar to the verification analysis of S2PM, we can also derive

that the verification failure probability of S2PRIP is %5 (S2PRIP) ≤
1
4;
≈ 9.09× 10−13 (; = 20). Based on the security analysis of S2PM,

we can derive the following theorem:

Theorem 1. The S2PRIP protocol is secure under the semi-honest

adversarial model.

4.2 Secure Two-Party DReLU Protocol
(S2PDRL)

The problem definition for S2PDRL is as follows:

Problem 2 (Secure Two-Party ReLU Derivative). Alice has a

private matrix �, and Bob has a private matrix �, both with dimen-

sions =×<. They want to perform a secure two-party ReLU derivative

operation such that Alice obtains a matrix+0 and Bob obtains a ma-

trix +1 , satisfying+0 = +1 = A4;D′(� + �).

S2PDRL Protocol Description: In S2PDRL, Alice and Bob

first convert their private matrices into vectors in row-major or-

der, denoted as a = "2E (�) and b = "2E (�), respectively.

Each of them generates a random positive real number, denoted

as ? and @. Then, Alice splits each 08 ∈ a(1 ≤ 8 ≤ =<) ran-

domly into d real numbers U
(1)
8 , U

(2)
8 , · · · , U

(d)
8 , forming a vector

" i = ? · (U
(1)
8 , 1, U

(2)
8 , 1, · · · , U

(d)
8 , 1)) . Alice then constructs a

matrix)0 by placing each vector " i as a row sequentially. Sim-

ilarly, Bob splits each 18 ∈ b (1 ≤ 8 ≤ =<) randomly into

d real numbers V
(1)
8 , V

(2)
8 , · · · , V

(d)
8 , forming a vector #i = @ ·

(1, V
(1)
8 , 1, V

(2)
8 , · · · , 1, V

(d)
8)

) . Bob constructs a matrix)1 by plac-

ing each vector #i as a column sequentially.

Algorithm 4 S2PDRL

Input: �, � ∈ R=×< and d ≥ 2

Output: +0 ++1 = A4;D′(� + �) and +0,+1 ∈ R
=×<

1: a = "2E (�) and b = "2E (�) ⊲ a ∈ R=<×1, b ∈ R=<×1

2: ?,@ ← Generate random positive real numbers ⊲ ?,@ > 0

3: for 8 := 1 to =< do

4: " i = ? · (U
(1)
8 , 1, U

(2)
8 , 1, · · · , U

(d)
8 , 1))

⊲ " i ∈ R
2d×1,

∑d
9=1 U

(9)
8 = 08

5: #i = @ · (1, V
(1)
8 , 1, V

(2)
8 , · · · , 1, V

(d)
8)

)

⊲ #i ∈ R
2d×1,

∑d
9=1 V

(9)
8 = 18

6: end for

7:)0 = ["1,"2, · · · ,"nm]
)

⊲)0 ∈ R
=<×2d

8:)1 = [#1, #2, · · · , #nm] ⊲)1 ∈ R
2d×=<

9: *0,*1 ← S2PM()0,)1) ⊲ *0,*1 ∈ R
=<×=<

10: +̂0 = E2" (3806(*0)) ⇒ Bob ⊲ +̂0 ∈ R
=×<

11: +̂1 = E2" (3806(*1)) ⇒ Alice ⊲ +̂1 ∈ R
=×<

12: +0 = +1 = A4;D′(+̂0 + +̂1) ⊲ +0,+1 ∈ R
=×<

13: return+0 , +1

Alice and Bob jointly compute)0 ×)1 = *0 + *1 using the

S2PM protocol. They then extract the diagonal elements of *0

and *1 , reconstruct matrices +̂0 and +̂1 with the same dimen-

sions as their original private matrices � and �, denoted as

+̂0 = E2" (3806(*0)) and +̂1 = E2" (3806(*1)). Alice sends

+̂0 to Bob, and Bob sends +̂1 to Alice. Finally, Alice computes

+0 = A4;D′(+̂0 + +̂1), and Bob computes +1 = A4;D′(+̂0 + +̂1). The

detailed process is shown in Algorithm 4. It is easy to verify that

+0 + +1 = A4;D′(E2" (3806(*0 + *1))) = A4;D′(E2" (3806()0 ×

)1))) = A4;D′(E2" (("1
) · #1,"2

) · #2, · · · ,"nm
) · #nm)

))) =

A4;D′(E2" (?@ · (
∑d
8=1 U

(1)
8 +

∑d
8=1 V

(1)
8 ,

∑d
8=1 U

(2)
8 +

∑d
8=1 V

(2)
8 , · · · ,

∑d
8=1 U

(=<)
8 +

∑d
8=1 V

(=<)
8)))) = A4;D′(E2" ((01 +

11, 02 +12, · · · , 0=< +1=<)
))) = A4;D′(E2" (a +b)) = A4;D′(�+�).

Optimization of the S2PDRL Protocol: S2PDRL can be opti-

mized using the S2PRIP protocol for parallelization, as shown in

Algorithm 5. The main idea of the algorithm remains unchanged,

but redundant computations are eliminated by utilizing the secure

row-wise inner product operation. The undetected anomaly situa-

tion in S2PDRL only occurs when the sub-protocol S2PRIP fails in

anomaly detection. Therefore, the probability that S2PDRL fails to

detect a computational anomaly is %5 (S2PDRL) = %5 (S2PRIP) ≤
1
4;
≈ 9.09 × 10−13 (; = 20), which is sufficiently small to be negli-

gible.

We can prove the security of the S2PDRL protocol using a secu-

rity proof process similar to that of S2PHP.

EVA-S2PMLP: Secure and Scalable Two-Party MLP via Spatial Transformation

Theorem 2. The S2PDRL protocol is secure under the semi-honest

adversarial model.

Proof. Since the result of S2PDRL is a public value and does

not require protection, we only need to analyze whether the pri-

vate inputs� and � are exposed during the execution of the proto-

col. Considering that the online computation phase of the S2PDRL

protocol is the same as that of S2PHP, with the only difference be-

ing in the offline local processing, we can similarly derive, based on

Theorem 4, that the online computation of S2PDRL is secure under

the semi-honest adversarial model. Thus, we only need to consider

whether the public disclosure of the result affects security.

Since Alice and Bob each locally generate a random number,

denoted as ? and@, respectively, the public computation result only

reveals the value of ?@ · (� +�), which does not allow either party

to deduce the private input of the other. Therefore, under the semi-

honest adversarial model, the S2PDRL protocol 5 (�,�) = relu′ (�+

�) is secure. �

Algorithm 5 Optimized S2PDRL

Input: �, � ∈ R=×< and d ≥ 2

Output: +0 ++1 = A4;D′(� + �) and +0,+1 ∈ R
=×<

1: a = "2E (�) and b = "2E (�) ⊲ a ∈ R=<×1, b ∈ R=<×1

2: ?, @ ← Generate random positive real numbers ⊲ ?, @ > 0

3: for 8 := 1 to =< do

4: " i = ? · (U
(1)
8 , 1, U

(2)
8 , 1, · · · , U

(d)
8 , 1))

⊲ " i ∈ R
2d×1,

∑d
9=1 U

(9)
8 = 08

5: #i = @ · (1, V
(1)
8 , 1, V

(2)
8 , · · · , 1, V

(d)
8)

)

⊲ #i ∈ R
2d×1,

∑d
9=1 V

(9)
8 = 18

6: end for

7:)0 = ["1,"2, · · · ,"nm]
)

⊲)0 ∈ R
=<×2d

8:)1 = [#1, #2, · · · , #nm]
)

⊲)1 ∈ R
=<×2d

9: *0,*1 ← S2PRIP()0,)1) ⊲ *0,*1 ∈ R
=<×1

10: +̂0 = A4Bℎ0?4 (*0, (=,<)) ⇒ Bob ⊲ +̂0 ∈ R
=×<

11: +̂1 = A4Bℎ0?4 (*1, (=,<)) ⇒ Alice ⊲ +̂1 ∈ R
=×<

12: +0 = +1 = A4;D′(+̂0 + +̂1) ⊲ +0,+1 ∈ R
=×<

13: return+0 , +1

4.3 Secure Two-Party ReLU Protocol (S2PRL)

The problem definition of S2PRL is as follows:

Problem 3 (Secure Two-Party ReLU Function). Alice has a

private matrix �, and Bob has a private matrix �, both of which are

=×< in dimension. They want to securely compute the ReLU function

on the sum of their matrices such that Alice receives a matrix+0 and

Bob receives a matrix+1 , satisfying+0 ++1 = relu(� + �).

Algorithm 6 S2PRL

Input: Matrices �, � ∈ R=×< and d ≥ 2

Output: +0 ++1 = relu(� + �), where +0,+1 ∈ R
=×<

1: *0,*1 ← S2PDRL(�, �, d) ⊲ *0,*1 ∈ R
=×<

2: +0 = *0 ⊙ �, +1 = *1 ⊙ � ⊲ +0,+1 ∈ R
=×<

3: return+0,+1

S2PRL Protocol Description: In S2PRL, Alice and Bob jointly

compute *0 = *1 = relu′ (� + �) using S2PDRL, and then they

individually compute +0 = *0 ⊙ � and +1 = *1 ⊙ �. The detailed

procedure is shown in Algorithm 6. It is easy to verify that +0 +

+1 = *0 ⊙ � + *1 ⊙ � = relu′ (� + �) ⊙ (� + �) = relu(� +

�). The undetected anomaly situation in S2PRL only occurs when

the sub-protocol S2PDRL fails in anomaly detection. Therefore, the

probability that S2PRL fails to detect a computational anomaly is

%5 (S2PRL) = %5 (S2PDRL) ≤
1
4;
≈ 9.09 × 10−13 (; = 20). This

failure probability is sufficiently small to be negligible.

The security of the S2PRL protocol can be proven based on the

security of S2PDRL, as stated in the following theorem.

Theorem 3. The S2PRL protocol is secure under the semi-honest

adversarial model.

4.4 Secure Two-Party SoftMax Protocol
(S2PSM)

We first present the design of the S2PHP protocol. Subsequently,

we describe the design of the S2PHHP protocol and the S2PSCR

protocol, and finally, we provide the design of the S2PSM protocol.

4.4.1 Secure Two-Party Matrix Hadamard Product Protocol

(S2PHP). The problem definition of S2PHP (Matrix) is as follows:

Problem 4 (Secure Two-Party Matrix Hadamard Product).

Alice has a private matrix �, and Bob has a private matrix �, both

of which are = ×< in dimension. They wish to securely compute the

Hadamard product of the matrices such that Alice obtains a matrix

+0 and Bob obtains a matrix+1 , satisfying+0 ++1 = � ⊙ �.

S2PHP Protocol Description: In S2PHP, Alice and Bob first

convert their private matrices into vectors using row-major order,

denoted as a = "2E (�) and b = "2E (�). Then, Alice splits each

08 ∈ a (1 ≤ 8 ≤ =<) into d random real numbers, forming a vector

" i . She replicates " i d times to form a vector " ∗
i
. Subsequently,

Alice uses each vector" ∗
i
to construct amatrix)0 , with each vector

as a row.

Algorithm 7 S2PHP

Input: �, � ∈ R=×< and d ≥ 2

Output: +0 ++1 = � ⊙ � and +0,+1 ∈ R
=×<

1: a = "2E (�) and b = "2E (�) ⊲ a ∈ R=<×1, b ∈ R=<×1

2: for 8 := 1 to =< do

3: " i = (U
(1)
8 , U

(2)
8 , · · · , U

(d)
8)

)
⊲ " i ∈ R

d×1,
∑d

9=1 U
(9)
8 = 08

4: " ∗
i
= [" i

) ," i
) , · · · ," i

)]) ⊲ " ∗
i
∈ Rd

2×1

5: end for

6:)0 = [" ∗
1
," ∗

2
, · · · ," ∗

nm]
)

⊲)0 ∈ R
=<×d2

7: for 8 := 1 to =< do

8: #i = (V
(1)
8 , V

(2)
8 , · · · , V

(d)
8)

)
⊲ #i ∈ R

d×1,
∑d

9=1 V
(9)
8 = 18

9: ?4A<B (#i) = {#
(1)
i

, #
(2)
i

, · · · , #
(1!)
i
}

10:)8 ← randomly select d vectors from ?4A<B (#i) and con-

catenate them ⊲)8 ∈ R
d×d

11: #∗
i
= "2E ()8) ⊲ #∗

i
∈ Rd

2×1

12: end for

13:)1 = [#∗
1
, #∗

2
, · · · , #∗nm] ⊲)1 ∈ R

d2×=<

14: *0,*1 ← S2PM()0,)1) ⊲ *0,*1 ∈ R
=<×=<

15: +0 = E2" (3806(*0)) ⊲ +0 ∈ R
=×<

16: +1 = E2" (3806(*1)) ⊲ +1 ∈ R
=×<

17: return+0,+1

Shizhao Peng*, Shoumo Li, and Tianle Tao

Bob splits each 18 ∈ b (1 ≤ 8 ≤ =<) into d random real numbers,

forming a vector #i . He generates all permutations of #i , denoted

as ?4A<B (#i), and randomly selects B vectors from these permuta-

tions to concatenate into a matrix)8 . Bob then converts)8 into a

vector #∗
i
using row-major order, denoted as #∗

i
= "2E ()8). Using

each vector #∗
i
, Bob constructs a matrix)1 , with each vector as a

column.

Alice and Bob jointly compute)0 ×)1 = *0 + *1 using the

S2PM protocol. They then extract the main diagonal elements

of *0 and *1 , reconstructing matrices +0 and +1 with the same

dimensions as their original private matrices � and �. This is

done by +0 = E2" (3806(*0)) and +1 = E2" (3806(*1)). The

detailed procedure is shown in Algorithm 7. It is easy to verify

that +0 + +1 = E2" (diag(*0 + *1)) = E2" (diag()0 ×)1)) =

E2" ((" ∗
1

) · #∗
1
," ∗

2

) · #∗
2
, · · · ," ∗

nm
) · #∗nm)

)) = E2" ((
∑d
8=1 U

(1)
8 ·

∑d
8=1 V

(1)
8 ,

∑d
8=1 U

(2)
8 ·

∑d
8=1 V

(2)
8 , · · · ,

∑d
8=1 U

(=<)
8 ·

∑d
8=1 V

(=<)
8))) =

E2" ((01 · 11, 02 · 12, · · · , 0=< · 1=<)
)) = E2" (a ⊙ b) = � ⊙ �.

Optimizationof the S2PHPProtocol: Similar to the optimiza-

tion method of the S2PDRL protocol, the S2PHP protocol can also

be optimized in parallel using the S2PRIP protocol to eliminate re-

dundant computations, as illustrated in Algorithm 8. Similar to the

verification analysis of S2PDRL, we can derive that the verification

failure probability of S2PHP is %5 (S2PHP) = %5 (S2PRIP) ≤
1
4;
≈

9.09 × 10−13 (; = 20).

Algorithm 8 Optimized S2PHP

Input: �, � ∈ R=×< and d ≥ 2

Output: +0 ++1 = � ⊙ � and +0,+1 ∈ R
=×<

1: a = "2E (�) and b = "2E (�) ⊲ a ∈ R=<×1, b ∈ R=<×1

2: for 8 := 1 to =< do

3: " i = (U
(1)
8 , U

(2)
8 , · · · , U

(d)
8)

)
⊲ " i ∈ R

d×1,
∑d

9=1 U
(9)
8 = 08

4: " ∗
i
= [" i

) ," i
) , · · · ," i

)]) ⊲ " ∗
i
∈ Rd

2×1

5: end for

6:)0 = [" ∗
1
," ∗

2
, · · · ," ∗

nm]
)

⊲)0 ∈ R
=<×d2

7: for 8 := 1 to =< do

8: #i = (V
(1)
8 , V

(2)
8 , · · · , V

(d)
8)

)
⊲ #i ∈ R

d×1,
∑d

9=1 V
(9)
8 = 18

9: ?4A<B (#i) = {#
(1)
i

, #
(2)
i

, · · · , #
(1!)

i
}

10:)8 ← randomly select d vectors from ?4A<B (#i) and con-

catenate them ⊲)8 ∈ R
d×d

11: #∗
i
= "2E ()8) ⊲ #∗

i
∈ Rd

2×1

12: end for

13:)1 = [#∗
1
, #∗

2
, · · · , #∗nm]

)
⊲)1 ∈ R

=<×d2

14: *0,*1 ← S2PRIP()0,)1) ⊲ *0,*1 ∈ R
=<×1

15: +0 = A4Bℎ0?4 (*0, (=,<)) ⊲ +0 ∈ R
=×<

16: +1 = A4Bℎ0?4 (*1, (=,<)) ⊲ +1 ∈ R
=×<

17: return+0,+1

Security Analysis of the S2PHP Protocol: According to the

definition of semi-honest adversarial security in the two-party

computation model, let 5 = (51, 52) be a polynomial-time proba-

bilistic function, and let c be a secure two-party protocol for com-

puting the function 5 . We consider the protocol c to securely com-

pute the function 5 if we can construct two simulators, (1 and (2,

in the ideal world such that the following relationships hold simul-

taneously:

{(1(G, 51 (G,~))}G,~∈{0,1}∗
2
≡ {E84Fc

1 (G,~)}G,~∈{0,1}∗

{(2 (~, 52 (G,~))}G,~∈{0,1}∗
2
≡ {E84Fc

2 (G,~)}G,~∈{0,1}∗ (4)

and for each participant, the output remains consistent regardless

of changes to the input of the other participant:

51 (G,~) ≡ 51 (G,~
∗)

52 (G,~) ≡ 52 (G
∗, ~) (5)

In this way, we transform the security proof into a construc-

tive problem. In the subsequent proof, we will use the following

lemma 1:

Lemma 1. For a linear system � · - = �, if A0=: (�) =

A0=: (�|�) < = (where = is the number of rows in matrix - , and

�|� is the augmented matrix), then the linear system has infinitely

many solutions [40].

Next, we will provide the security proof of S2PHP under the

semi-honest adversarial model. In this proof, the process of trans-

forming matrices � and � into matrices)0 and)1 in Algorithm 7

is denoted as)0 = '�2) (�, d) and)1 = '�2) (�, d), respectively.

Additionally, we use ' = "23806(�) to represent the generation

of a matrix ', where the main diagonal elements are composed of

all elements of matrix� in row-major order, and all other elements

are randomly generated.

Theorem 4. The S2PHP protocol is secure under the semi-honest

adversarial model.

Proof. We construct two simulators (1 and (2 to prove the

above theorem.

Adversary Alice: Assume Alice is the adversary, which means

we need to construct a simulator (1 to simulate E84Fc
1 (G,~) =

(�, d, '0, A0, (C , A ; �̂,) ,+ �1) such that (1 (G, 51 (G,~)) is indistin-

guishable from E84Fc
1 (G,~). Formally, (1 receives (�, d , '0 , A0 , (C ,

+0) and a random tape A , and then proceeds as follows:

(1) (1 uses the random tape A to generate the matrix)0 =

'�2) (�, d) and computes �̂ =)0 + '0 and A1 = (C − A0 .

(2) (1 generates two randommatrices �′ and+ ′
1
such that�⊙

�′ = +0 + +
′
1
, then generates) ′

1
= '�2) (�′, d) and * ′

1
=

"23806(+ ′
1
).

(3) (1 generates a random matrix '′
1
satisfying '0 × '

′
1
= (C ,

and computes �̂′ =) ′
1
+ '′

1
,) ′ = �̂ ×) ′

1
+ A1 − *

′
1
, and

+ � ′
1
= * ′

1
− �̂ ×) ′

1
.

(4) (1 outputs (1 (G, 51 (G,~)) = (�, d, '0, A0, (C , A ; �̂
′,) ′,+ � ′

1
).

In step 2, we observe that there are infinitely many pairs (�′,+ ′
1
)

satisfying the equation� ⊙ �′ = +0 ++
′
1
, so �′ and+ ′

1
are simulat-

able, denoted as {�′,+ ′
1
}

2
≡ {�,+1 }. Consequently,)

′
1
and * ′

1
are

also simulatable since) ′
1
= '�2) (�′, d) and * ′

1
= "23806(+ ′

1
). In

step 3, by Lemma 1, we know that when '0 is a rank-deficient

matrix, there exist infinitely many '′
1
satisfying '0 × '′

1
= (C , so

'′
1
is simulatable. Considering that the variables �̂′,) ′,+ � ′

1
are

computed from the simulatable variables) ′
1
, '′

1
,* ′

1
, it is easy to

EVA-S2PMLP: Secure and Scalable Two-Party MLP via Spatial Transformation

verify that these variables are also simulatable. Therefore, we have

{(�, d, '0, A0, (C , A ; �̂
′,) ′,+ � ′

1
)}

2
≡ {(�, d, '0 , A0, (C , A ; �̂,) ,+ �1)},

i.e., {(1(G, 51 (G,~))}G,~
2
≡ {E84Fc

1 (G,~)}G,~ . Furthermore,

* ′0 =) ′+A0−'0×�̂
′
= �̂×)1

′−'0×�̂
′+A1+A0−*1

′
=)0×)

′
1
−*1

′.

Therefore, + ′0 = 38062" (* ′0) = 38062" ()0 ×)
′
1
− *1

′). Based on

the correctness of S2PHP, we conclude that+ ′0 = +0 , which means

Alice’s output +0 remains unchanged for any input from Bob, i.e.,

51 (G,~) ≡ 51 (G,~
∗).

Adversary Bob: Assume Bob is the adversary, which

means we need to construct a simulator (2 to simu-

late E84Fc
2 (G,~) = (�, d, '1 , A1 , (C , A0, A1; �̂,+ �0) such that

(2 (~, 52 (G,~)) is indistinguishable from E84Fc
2 (G,~). Formally, (2

receives (�, d, '1 , A1 , (C ,+1) and two random tapes A0, A1, and then

proceeds as follows:

(1) (2 uses the random tape A0 to generate the matrix)1 =

'�2) (�, d) and computes �̂ =)1 +'1 . Meanwhile, (2 uses

the random tape A1 to generate the matrix *1 satisfying

+1 = 38062" (*1).

(2) (2 generates two random matrices �′ and + ′0 satisfying

�′ ⊙ � = + ′0 + +1 , then generates) ′0 = '�2) (�′, d) and

* ′0 = "23806(+ ′0).

(3) (2 generates a random matrix '′0 satisfying '′0 × '1 = (C ,

and computes �̂′ =) ′0 + '
′
0 and + � ′0 = * ′0 + '

′
0 × �̂.

(4) (2 outputs (2 (~, 52 (G,~)) = (�, d, '1 , A1 , (C , A0, A1; �̂
′,+ � ′0).

In step 2, we observe that there are infinitely many pairs (�′,+ ′0)

satisfying the equation �′ ⊙ � = + ′0 + +1 , so �′ and + ′0 are sim-

ulatable, denoted as {�′,+ ′0 }
2
≡ {�,+0}. Consequently,)

′
0 and * ′0

are also simulatable since) ′0 = '�2) (�′, d) and* ′0 = "23806(+ ′0).

In step 3, by Lemma 1, we know that when '1 is a rank-deficient

matrix, there exist infinitely many '′0 satisfying '′0 × '1 = (C , so

'′0 is simulatable. Considering that the variables �̂′,+ � ′0 are com-

puted from the simulatable variables) ′0 , '
′
0,*
′
0 , it is easy to ver-

ify that these variables are also simulatable. Therefore, we have

{(�, d, '1 , A1 , (C , A0, A1; �̂
′,+ � ′0)}

2
≡ {(�, d, '1 , A1 , (C , A0, A1; �̂,+ �0)},

i.e., {(2(~, 52 (G,~))}G,~
2
≡ {E84Fc

2 (G,~)}G,~ . Furthermore, since

+ ′
1
= 38062" (*1) = +1 , Bob’s output +1 remains unchanged for

any input from Alice, i.e., 52 (G,~) ≡ 52 (G
∗, ~). �

4.4.2 Secure Two-Party Hybrid Hadamard Product Problem

(S2PHHP). The problem definition of S2PHHP is as follows:

Problem 5 (Secure Two-Party Hybrid Hadamard Product

Problem). Alice has a pair of private matrices (�1, �2), and Bob

has a pair of private matrices (�1, �2), where�1, �1, �2, �2 ∈ R
=×< .

They wish to perform a mixed Hadamard product computation, i.e.,

5 [(�1, �2), (�1, �2)] = (�1 + �1) ⊙ (�2 + �2), where Alice obtains

matrix +0 , Bob obtains matrix +1 , and they satisfy +0 ++1 = (�1 +

�1) ⊙ (�2 + �2).

S2PHHP Protocol Description: In S2PHHP, Alice and Bob

first independently compute +00 = �1 ⊙ �2 and +10 = �1 ⊙ �2.

Then, using the S2PHP (matrix) protocol, they jointly compute

+01 + +11 = �1 ⊙ �2 and also compute +12 and +02 (both in

R
=×<). Finally, Alice computes +0 = +00 + +01 + +02, and Bob

computes +1 = +10 + +11 + +12. It is easy to verify that +0 ++1 =

+00++01++02++10++11++12 = �1⊙�2+�1⊙�2+�1⊙�2+�1⊙�2 =

(�1+�1) ⊙ (�2+�2). S2PHHPwill only fail to detect an anomaly if

all the sub-protocols S2PHP fail to detect the anomaly. Therefore,

the probability of S2PHHP failing to detect a computational anom-

aly is %5 ((2%��%) = %5 ((2%�%)2 ≤
(

1
4;

)2
≈ 8.27×10−25 (where

; = 20).

Algorithm 9 S2PHHP

Input: �1, �1, �2, �2 ∈ R
=×< , d ≥ 2

Output: +0,+1 ∈ R
=×<

1: +00 = �1 ⊙ �2 ⊲ +00 ∈ R
=×<

2: +10 = �1 ⊙ �2 ⊲ +10 ∈ R
=×<

3: +01,+11 ← S2PHP(�1, �2, d) ⊲ +01,+11 ∈ R
=×<

4: +12,+02 ← S2PHP(�1, �2, d) ⊲ +02,+12 ∈ R
=×<

5: +0 = +00 ++01 ++02 ⊲ +0 ∈ R
=×<

6: +1 = +10 ++11 ++12 ⊲ +1 ∈ R
=×<

7: return+0,+1

We prove the security of the S2PHHP protocol based on the Uni-

versal Composability (UC) framework[41]. Therefore, we use the

following lemma [19].

Lemma 2. If all sub-protocols are perfectly simulatable, then the

protocol itself is perfectly simulatable.

Theorem 5. The S2PHHP protocol is secure under the semi-honest

adversarial model.

Proof. The S2PHHP protocol is implemented in a hybrid

model where two parallel calls to the S2PHP protocol are made

to compute +0 + +1 = +00 + +01 + +02 + +10 + +11 + +12 =

�1 ⊙ �2 + �1 ⊙ �2 + (2%�%1(�1, �2, d) + (2%�%2(�1, �2, d). Ac-

cording to Lemma 2, the security of S2PHHP can be reduced to the

compositional security of the two parallel calls to S2PHP. Since

the outputs (+01,+02) and (+11,+12) from the two S2PHP calls are

respectively held by Alice and Bob, and according to Theorem 4,

these outputs in the real-world view are computationally indistin-

guishable from the simulated ideal-world view. Considering that

�1 ⊙ �2 and �1 ⊙ �2 are locally computed, it is straightforward

to prove that the summation results +0 = +00 + +01 + +02 and

+1 = +10++11++12 are simulatable and indistinguishable from the

real-world view. Therefore, in the semi-honest adversarial model,

the S2PHHP protocol 5 [(�1, �2), (�1, �2)] = (�1 +�1) ⊙ (�2 +�2)

is secure. �

4.4.3 Secure Two-Party Matrix Reciprocal Protocol based on Scale

Collapse (S2PSCR). The problem definition of S2PSCR is as fol-

lows:

Problem 6 (Secure Two-PartyMatrix Reciprocal Protocol

based on Scale Collapse). Alice has a private matrix �, and Bob

has a private matrix �, both with dimensions = ×<. They want to

perform a secure two-party matrix reciprocal operation such that

Alice obtains a matrix +0 and Bob obtains a matrix +1 , satisfying

+0 ++1 =
1

�+� .

S2PSCR Protocol Description: In S2PSCR, Alice first ran-

domly generates a matrix % with no zero elements and computes

the matrix �0 = % ⊙�. Similarly, Bob randomly generates a matrix

& with no zero elements and computes thematrix �1 = &⊙�. Then,

Shizhao Peng*, Shoumo Li, and Tianle Tao

Alice and Bob jointly compute �0 ⊙ & = *01 +*11 = (% ⊙ �) ⊙ &

and % ⊙ �1 = *02 +*12 = % ⊙ (� ⊙&) using the S2PHP (matrix) pro-

tocol. Alice computes *0 = *01 + *02 and sends *0 to Bob. Upon

receiving *0 , Bob computes) = *0 + *11 + *12 and � ∗
1
=

&
) . Fi-

nally, Alice and Bob jointly compute % ⊙ � ∗
1
= +0 ++1 =

%⊙&
) using

S2PHP. The detailed process is shown in Algorithm 10. It is easy

to verify that +0 + +1 = % ⊙ � ∗
1
=

%⊙&
) =

%⊙&
(*01+*11)+(*02+*12)

=

%⊙&
%⊙&⊙(�+�)

=
1

�+� . S2PSCR will only fail to detect an anomaly if

all the sub-protocols S2PHP fail to detect the anomaly. Therefore,

the probability of S2PSCR failing to detect a computational anom-

aly is %5 ((2%(�') = %5 ((2%�%)3 ≤
(

1
4;

)3
≈ 7.52×10−37 (; = 20).

Algorithm 10 S2PSCR

Input: �, � ∈ R=×< , d ≥ 2

Output: +0 ++1 =
1

�+� , +0,+1 ∈ R
=×<

1: %,& ← randomly generate matrices without zero elements ⊲

%,& ∈ R=×<

2: �0 = % ⊙ �, �1 = & ⊙ � ⊲ �0, �1 ∈ R
=×<

3: *01,*11 ← S2PHP(�0,&, d) ⊲ *01,*11 ∈ R
=×<

4: *02,*12 ← S2PHP(%, �1 , d) ⊲ *02,*12 ∈ R
=×<

5: *0 = *01 +*02 ⇒ BoB ⊲ *0 ∈ R
=×<

6:) = *0 +*11 +*12, �
∗
1
=

&
) ⊲), � ∗

1
∈ R=×<

7: +0,+1 ← S2PHP(%, � ∗
1
, d) ⊲ +0,+1 ∈ R

=×<

8: return+0,+1

We base our security proof of S2PSCR on the Universal Com-

posability (UC) security framework.

Theorem 6. The S2PSCR protocol, denoted as 5 (�,�) = 1
�+� , is

secure under the semi-honest adversarial model.

Proof. The S2PSCR protocol is implemented in a hybrid model,

where the protocol first calls two parallel instances of the S2PHP

protocol to compute) = %⊙(�+�)⊙& = (%⊙�)⊙&+%⊙(�⊙&) =

(2%�%1 (% ⊙ �,&, B) + (2%�%2 (%, � ⊙ &, B). Finally, a third S2PHP

is sequentially called to compute 1
�+� = (2%�%3 (%,

&
) , B). Accord-

ing to Lemma 2, the security of S2PSCR can be reduced to the

sequential compositional security of these two steps. Given that

the outputs of the two S2PHP calls in the first step, (*01,*02)

and (*11,*12), are respectively held by Alice and Bob, and based

on Theorem 4, these outputs in the real-world view are compu-

tationally indistinguishable from the simulated ideal-world view.

Therefore, it is straightforward to prove that the summation result

) = (*01 +*02) + (*11 +*12) is simulatable. The S2PHP in the sec-

ond step can also be perfectly simulated in the ideal world, making

it indistinguishable from the real-world view. Thus, in the semi-

honest adversarial model, the S2PSCR protocol 5 (�, �) = 1
�+� is

secure. �

4.4.4 Secure Two-Party So�max Protocol (S2PSM). The problem

definition of S2PSM is as follows:

Problem 7 (Secure Two-Party Softmax Function). Alice has

a private matrix�, and Bob has a private matrix �, both with dimen-

sions =×<. They want to perform a secure two-party matrix Softmax

function such that Alice obtains a matrix +0 and Bob obtains a ma-

trix +1 , satisfying+0 ++1 = softmax(� + �).

S2PSM Protocol Description: In S2PSM, Alice and Bob first

compute �0 = 4� and �1 = 4� locally. Then, they jointly compute

�0 ⊙ �1 = *01 + *11 = 4�+� using the S2PHP protocol. Next, Al-

ice and Bob each compute the horizontal sum of matrices *01 and

*11 locally, denoted as *02 = hsum(*01) and *12 = hsum(*11).

They then use the S2PSCR protocol to jointly compute 1
*02+*12

=

*03 +*13, and each horizontally replicates*03 and*13< times to

match the dimensions of � and �, denoted as *04 = hcopy(*03)

and*14 = hcopy(*13). Finally, Alice and Bob use the S2PHHP pro-

tocol to jointly compute (*01 +*11) ⊙ (*04 +*14) = +0 ++1 . The

detailed process is shown in Algorithm 11. It is easy to verify that

+0 ++1 = (*01 +*11) ⊙ (*04 +*14) = �0 ⊙ �1 ⊙ hcopy(*03 +*13) =
4�+�

hcopy(hsum(*01+*11))
=

4�+�

hcopy(hsum(4�+�))
= softmax(� + �).

S2PSMwill only fail to detect an anomaly if all its sub-protocols fail

to detect the anomaly. Therefore, the probability of S2PSM failing

to detect a computational anomaly is %5 ((2%(") = %5 ((2%�%) ·

%5 ((2%(�') · %5 ((2%��%) ≤
(

1
4;

)6
≈ 5.66 × 10−73 (; = 20).

Algorithm 11 S2PSM

Input: �, � ∈ R=×< , d ≥ 2

Output: +0 ++1 = B> 5 C<0G (� + �), +0,+1 ∈ R
=×<

1: �0 = 4�, �1 = 4� ⊲ �0, �1 ∈ R
=×<

2: *01,*11 ← S2PHP(�0, �1, d) ⊲ *01,*11 ∈ R
=×<

3: *02 = ℎBD< (*01), *12 = ℎBD< (*11) ⊲ *02,*12 ∈ R
=×1

4: *03,*13 ← S2PSCR(*02,*12, d) ⊲ *03,*13 ∈ R
=×1

5: *04 = ℎ2>?~ (*03), *14 = ℎ2>?~ (*13) ⊲ *04,*14 ∈ R
=×<

6: +0,+1 ← S2PHHP((*01,*04), (*11,*14), d) ⊲ +0,+1 ∈ R
=×<

7: return+0,+1

We can prove the security of S2PSM based on the UC frame-

work.

Theorem 7. The S2PSM protocol is secure under the semi-honest

adversarial model.

4.5 Secure Two-Party Gradient Protocol for
Multi-Layer Perceptrons (S2PG-MLP)

The problem definition of S2PG-MLP is as follows:

Problem 8 (Secure Two-Party Multi-Layer Perceptron

Gradient Computation Process). Let the network parameters be

given by � = {30, 31, · · · , 3!}, which represent the number of neu-

rons in each layer, including the input, hidden, and output layers,

where !(! ≥ 2) denotes the number of layers excluding the input

layer. For the ;-th layer of the model (1 ≤ ; < !), assume that Al-

ice and Bob each hold parts of the model parameters of layer ; + 1,

,̂
(;+1)
0 ,,̂

(;+1)
1

, and the gradients �
(;+1)
0 ,�

(;+1)
1

, as well as the in-

termediate input variables of layer ; , -
(;)
0 , -

(;)

1
. They aim to per-

form privacy-preserving multi-layer perceptron gradient computa-

tion, so that Alice and Bob ultimately obtain �
(;)
0 and �

(;)

1
, satis-

fying �
(;)
0 + �

(;)

1
= � (;) , which represents the model gradient of

layer ; .

S2PG-MLP Protocol Description: In the gradient computa-

tion of the ;-th layer (1 ≤ ; < !) during MLP backpropagation,

the inputs are the model parameters of layer ; + 1 held by both par-

ties, ,̂
(;+1)
0 ,,̂

(;+1)
1

∈ R=×3! , and the gradients �
(;+1)
0 ,�

(;+1)
1

∈

EVA-S2PMLP: Secure and Scalable Two-Party MLP via Spatial Transformation

R
=×3;+1 , the intermediate variables of layer ; , -

(;)
0 , -

(;)

1
∈ R=×3; ,

and a splitting parameter d ≥ 2. The outputs are the gradi-

ents of layer ; , �
(;)
0 ,�

(;)

1
∈ R=×3; . Alice and Bob first process

,̂
(;+1)
0 ,,̂

(;+1)

1
by removing the first row and transposing them,

denoted as,0 = dtrans(,̂
(;+1)
0) and,1 = dtrans(,̂

(;+1)
1

). Then,

Alice and Bob jointly compute relu′ (-
(;)
0 + -

(;)

1
) = �0 = �1 using

the S2PDRL protocol, and compute (�
(;+1)
0 +�

(;+1)
1
)× (,0+,1) =

*0 + *1 using the S2PHM protocol. Finally, both parties locally

compute the gradients of layer ; , �
(;)
0 = �0 ⊙ *0 and �

(;)

1
=

�1⊙*1 . The detailed process is shown in Algorithm 12.We analyze

the probability of anomaly detection failure in S2PG-MLP. S2PG-

MLP will only fail to detect an anomaly if all the sub-protocols

S2PDRL and S2PHM fail to detect the anomaly. Therefore, the

probability of S2PG-MLP failing to detect a computational anom-

aly is %5 ((2%�-"!%) = %5 ((2%�'!) · %5 ((2%�") ≤
(

1
4;

)3
≈

7.52 × 10−37 (; = 20).

Algorithm 12 S2PG-MLP

Input: ,̂
(;+1)
0 ,,̂

(;+1)
1

,�
(;+1)
0 ,�

(;+1)
1

, -
(;)
0 , -

(;)

1
, d

Output: �
(;)
0 ,�

(;)

1

1: ,0 = 3CA0=B (,̂
(;+1)
0),,1 = 3CA0=B (,̂

(;+1)
1

)

⊲,0,,1 ∈ R
3;+1×3;

2: �0, �1 ← S2PDRL(-
(;)
0 , -

(;)

1
, d) ⊲ �0, �1 ∈ R

=×3;

3: *0,*1 ← S2PHM((�
(;+1)
0 ,,0), (�

(;+1)

1
,,1))

⊲ *0,*1 ∈ R
=×3;

4: �
(;)
0 = �0 ⊙ *0 ,�

(;)

1
= �1 ⊙ *1 ⊲ �

(;)
0 ,�

(;)

1
∈ R=×3;

5: return�
(;)
0 ,�

(;)

1

Correctness: For simplicity, we assume that the entire train-

ing set is used in each training round (i.e., � = =). Using � =

{30, 31, · · · , 3!} to represent the network structure, in each round

of backpropagation, for the !-th layer, we have:�
(!)
0 + �

(!)

1
=

.
(!)
0 + .

(!)

1
− . = . (!) − . = � (!) , and for the ;-th layer

(1 ≤ ; < !), we have: �
(;)
0 + �

(;)

1
= �0 ⊙ *0 + �1 ⊙ *1 =

((�
(;+1)
0 +�

(;+1)
1
) × (,0 +,1)) ⊙ relu′ (-

(;)
0 + -

(;)

1
) = (� (;+1) ×

dtrans(,̂ (;+1))) ⊙ relu′ (- (;)) = � (;) . This follows the centralized

gradient propagation formula, thus proving the correctness of the

gradient protocol.

We can prove the security of S2PG-MLP based on the UC frame-

work.

Theorem 8. The S2PG-MLP protocol is secure under the semi-

honest adversarial model.

5 SECURE TWO-PARTY MLP
COLLABORATIVE MODELING BASED ON
SPATIAL SCALE OPTIMIZATION

This section introduces the proposed secure two-party multi-layer

perceptron (MLP) training and prediction algorithms (S2PMLP-TR

and S2PMLP-PR), along with their corresponding correctness anal-

yses.

5.1 Secure Two-Party MLP Model Training

The problem definition of S2PMLP-TR is as follows:

Problem 9 (Secure Two-Party Multi-Layer Perceptron

Training Process). For a scenario involving heterogeneous dis-

tributed data, Alice and Bob each hold part of the training dataset,

denoted as -0 and -1 , respectively, and both parties share the la-

bels . . Using a batch size of �, a learning rate of [, and a total

number of iterations C , the network parameters are represented as

� = {30, 31, · · · , 3!}, where each 38 represents the number of neu-

rons in the 8-th layer, including the input, hidden, and output lay-

ers, and ! is the number of layers excluding the input layer. The

goal is to perform privacy-preserving MLP training based on the

above parameters, so that Alice and Bob ultimately obtain ,̂0 =

{,̂
(1)
0 ,,̂

(2)
0 , · · · ,,̂

(!)
0 } and ,̂1 = {,̂

(1)
1

,,̂
(2)
1

, · · · ,,̂
(!)

1
}, sat-

isfying: ,̂ = {,̂ (1) ,,̂ (2) , · · · ,,̂ (!) } = {,̂
(1)
0 + ,̂

(1)
1

,,̂
(2)
0 +

,̂
(2)

1
, · · · ,,̂

(!)
0 + ,̂

(!)

1
}, which represents the trained model pa-

rameters.

S2PMLP-TR Protocol Description: In MLP model training,

the overall training process for each batch can be divided into two

parts: forward propagation and backward propagation. Similarly,

S2PMLP-TR can also be split into two parts: S2PMLP-TR forward

propagation and S2PMLP-TR backward propagation. Embedding

these two parts into the overall training process forms the com-

plete S2PMLP-TR protocol.

Algorithm 13 S2PMLP-TR

Input: !, � , -0, -1 , . , �, C, [, d

Output: ,̂0,,̂1

1: # = ⌈=� ⌉

2: =1, =2, · · · , =#−1 = � and =# = = − (# − 1) · �

3: {. (1) , . (2) , · · · , . (#) }← Split . sequentially into # parts

⊲ . (8) ∈ {0, 1}=8×3!

4: -̂0, -̂1 = 0332>; (-0, -1) ⊲ -̂0, -̂1 ∈ R
=×(30+1)

5: {-̂
(1)
0 , -̂

(2)
0 , · · · , -̂

(#)
0 }← Split -̂0 into # parts

⊲ -̂
(8)
0 ∈ R=8×(30+1)

6: {-̂
(1)
1

, -̂
(2)
1

, · · · , -̂
(#)

1
}← Split -̂1 into # parts

⊲ -̂
(8)

1
∈ R=8×(30+1)

7: Initialize ,̂0 = {,̂
(1)
0 ,,̂

(2)
0 , · · · ,,̂

(!)
0 }

⊲ ,̂
(8)
0 ∈ R(38−1+1)×38

8: Initialize ,̂1 = {,̂
(1)
1

,,̂
(2)
1

, · · · ,,̂
(!)

1
}

⊲ ,̂
(8)

1
∈ R(38−1+1)×38

9: for A>D=3 := 1 to C do

10: for 8 := 1 to # do

11: .
(!)
0 , .

(!)

1
, - ∗0 , -

∗
1
, /∗0 , /

∗
1

← S2PMLP-TR-

FP(!,�, -̂
(8)
0 , -̂

(8)

1
,,̂0,,̂1 , d)

12: ,̂0,,̂1 ← S2PMLP-TR-

BP(!,�, .
(!)
0 , .

(!)

1
, . (8), - ∗0 , -

∗
1
, /∗0 , /

∗
1
, d)

13: end for

14: end for

15: return ,̂0,,̂1

Overall Process: In S2PMLP-TR, the inputs are the num-

ber of network layers ! ≥ 1, the set of neuron counts � =

Shizhao Peng*, Shoumo Li, and Tianle Tao

{30, 31, · · · , 3!}, the inputs -0, -1 ∈ R
=×30 , the labels . ∈

{0, 1}=×3! , the batch size 1 ≤ � ≤ =, the number of iterations

C ≥ 1, the learning rate [> 0, and the splitting parameter

d ≥ 2. The outputs are the model parameters held by both parties,

,̂0 = {,̂
(1)
0 ,,̂

(2)
0 , · · · ,,̂

(!)
0 } and,̂1 = {,̂

(1)
1

,,̂
(2)
1

, · · · ,,̂
(!)

1
},

where ,̂
(8)
0 ,,̂

(8)

1
∈ R(38−1+1)×38 (1 ≤ 8 ≤ !).

Alice and Bob first perform some plaintext operations to obtain

several public variables: they compute # =

⌈

=
�

⌉

, which indicates

the number of batches, determine the number of samples in the

8-th batch =8 (1 ≤ 8 ≤ #), and split the labels . into # parts,

where. (8) represents the 8-th part. Once these operations are com-

pleted, Alice and Bob preprocess their private data by concatenat-

ing columns, such that -̂0 = [1, -0] and -̂1 = [0, -1]. This prepro-

cessing is denoted as -̂0, -̂1 = addcol(-0, -1). Alice splits -̂0 into

parts sequentially, where -̂
(8)
0 represents the 8-th part, and Bob

performs the same operation.

Alice and Bob then choose a parameter initialization method

and initialize their respective network parameters ,̂0 =

{,̂
(1)
0 ,,̂

(2)
0 , · · · ,,̂

(!)
0 } and ,̂1 = {,̂

(1)
1

,,̂
(2)
1

, · · · ,,̂
(!)

1
}. Af-

ter completing the above preparations, the next step is to up-

date the parameters using gradient descent. Each training itera-

tion processes all batches sequentially. For each batch, Alice and

Bob sequentially invoke S2PMLP-TR-FP (privacy-preserving for-

ward propagation) and S2PMLP-TR-BP (privacy-preserving back-

ward propagation) to complete the training for that batch. The

training process continues until C iterations are completed. The de-

tailed process is described in Algorithm 13.

Algorithm 14 S2PMLP-TR Forward Propagation (S2PMLP-FP)

Input: !, � , -0, -1 , ,̂0,,̂1 , d

Output: .
(!)
0 , .

(!)

1
, - ∗0 , -

∗
1
, /∗0 , /

∗
1

1: /
(0)
0 = -0 , /

(0)
1

= -1 ⊲ /
(0)
0 , /

(0)
1
∈ R=×(30+1)

2: for ; := 1 to ! − 1 do

3: -
(;)
0 , -

(;)

1
← S2PHM((/

(;−1)
0 ,,̂

(;)
0), (/

(;−1)
1

,,̂
(;)

1
))

⊲ -
(;)
0 , -

(;)

1
∈ R=×3;

4: .
(;)
0 , .

(;)

1
← S2PRL(-

(;)
0 , -

(;)

1
, d) ⊲ .

(;)
0 , .

(;)

1
∈ R=×3;

5: /
(;)
0 , /

(;)

1
= 0332>; (.

(;)
0 , .

(;)

1
) ⊲ /

(;)
0 , /

(;)

1
∈ R=×(3;+1)

6: end for

7: -
(!)
0 , -

(!)

1
← S2PHM((/

(!−1)
0 ,,̂

(!)
0), (/

(!−1)
1

,,̂
(!)

1
))

⊲ -
(!)
0 , -

(!)

1
∈ R=×3!

8: .
(!)
0 , .

(!)

1
← S2PSM(-

(!)
0 , -

(!)

1
, d) ⊲ .

(!)
0 , .

(!)

1
∈ R=×3!

9: return .
(!)
0 , .

(!)

1
, - ∗0 , -

∗
1
, /∗0 , /

∗
1

Forward Propagation: In the forward propagation of S2PMLP-

TR, the inputs are the number of network layers ! ≥ 1, the

set of neuron counts � = {30, 31, · · · , 3!}, the batch inputs

held by both parties -0, -1 ∈ R
=×(30+1) , the model parame-

ters held by both parties ,̂0 = {,̂
(1)
0 ,,̂

(2)
0 , · · · ,,̂

(!)
0 } and

,̂1 = {,̂
(1)

1
,,̂
(2)

1
, · · · ,,̂

(!)

1
}, and the splitting parameter d ≥

2. The outputs are the outputs of the model’s output layer held

by both parties .
(!)
0 , .

(!)

1
∈ R=×3! , as well as the intermedi-

ate variables for all layers: - ∗0 = {-
(0)
0 , -

(1)
0 , · · · , -

(!)
0 }, - ∗

1
=

{-
(0)

1
, -
(1)

1
, · · · , -

(!)

1
}, /∗0 = {/

(0)
0 , /

(1)
0 , · · · , /

(!)
0 }, and /∗

1
=

{/
(0)
1

, /
(1)
1

, · · · , /
(!)

1
}.

First, set /
(0)
0 = -0 and /

(0)
1

= -1 . Then, iterate through the

first !− 1 layers. For the ;-th layer (1 ≤ ; < !): Alice and Bob com-

pute (/
(;−1)
0 +/

(;−1)

1
) × (,̂

(;)
0 +,̂

(;)

1
) = -

(;)
0 +-

(;)

1
securely us-

ing the S2PHM (secure two-party matrix multiplication) protocol.

They then compute relu(-
(;)
0 +-

(;)

1
) = .

(;)
0 +.

(;)

1
securely using

the S2PRL (secure two-party ReLU activation) protocol. Finally, Al-

ice and Bob preprocess .
(;)
0 and .

(;)

1
by concatenating columns to

add a constant, denoted as /
(;)
0 , /

(;)

1
= addcol(.

(;)
0 , .

(;)

1
).

For the !-th layer: Alice and Bob compute (/
(!−1)
0 +/

(!−1)
1

) ×

(,̂
(!)
0 + ,̂

(!)

1
) = -

(!)
0 + -

(!)

1
securely using the S2PHM proto-

col. They then compute softmax(-
(!)
0 + -

(!)

1
) = .

(!)
0 + .

(!)

1
se-

curely using the S2PSM (secure two-party Softmax computation)

protocol. The detailed process of forward propagation is shown in

Algorithm 14.

Backward Propagation: In the backward propagation of

S2PMLP-TR, the inputs are the number of network layers ! ≥

1, the set of neuron counts � = {30, 31, · · · , 3!}, the batch in-

puts held by both parties -0, -1 ∈ R
=×(30+1) , the outputs of the

model’s output layer held by both parties .
(!)
0 , .

(!)

1
∈ R=×3! , the

batch labels . ∈ R=×3! , the intermediate variables for all layers:

- ∗0 = {-
(0)
0 , -

(1)
0 , · · · , -

(!)
0 }, - ∗

1
= {-

(0)

1
, -
(1)

1
, · · · , -

(!)

1
}, /∗0 =

{/
(0)
0 , /

(1)
0 , · · · , /

(!)
0 }, /∗

1
= {/

(0)
1

, /
(1)
1

, · · · , /
(!)

1
}, the model pa-

rameters held by both parties ,̂0 = {,̂
(1)
0 ,,̂

(2)
0 , · · · ,,̂

(!)
0 } and

,̂1 = {,̂
(1)
1

,,̂
(2)
1

, · · · ,,̂
(!)

1
}, the learning rate [> 0, and the

splitting parameter d ≥ 2. The outputs are the updated model pa-

rameters held by both parties ,̂0 = {,̂
(1)
0 ,,̂

(2)
0 , · · · ,,̂

(!)
0 } and

,̂1 = {,̂
(1)

1
,,̂
(2)

1
, · · · ,,̂

(!)

1
}.

Algorithm 15 S2PMLP-TR Backward Propagation (S2PMLP-BP)

Input: !, � , .
(!)
0 , .

(!)

1
, . , - ∗0 , -

∗
1
, /∗0 , /

∗
1
, ,̂0 , ,̂1 , [, d

Output: ,̂0 , ,̂1

1: �
(!)
0 = .

(!)
0 − . ,�

(!)

1
= .
(!)

1
⊲ �
(!)
0 ,�

(!)

1
∈ R=×3!

2: for ; := ! − 1 to 1 do

3: �
(;)
0 ,�

(;)

1
← S2PG(,̂

(;+1)
0 ,,̂

(;+1)
1

,�
(;+1)
0 ,�

(;+1)
1

, -
(;)
0 ,

-
(;)

1
, d)

4: end for

5: for ; := 1 to ! do

6:)0 = /
(;−1))

0 ,)1 = /
(;−1))

1
⊲)0,)1 ∈ R

(3;−1+1)×=

7: X,
(;)
0 , X,

(;)

1
← S2PHM(()0,�

(;)
0), ()1 ,�

(;)

1
))

⊲ X,
(;)
0 , X,

(;)

1
∈ R(3;−1+1)×3;

8: ,̂
(;)
0 := ,̂

(;)
0 − [· X,

(;)
0 ⊲ ,̂

(;)
0 ∈ R(3;−1+1)×3;

9: ,̂
(;)

1
:= ,̂

(;)

1
− [· X,

(;)

1
⊲ ,̂

(;)

1
∈ R(3;−1+1)×3;

10: end for

11: return ,̂0 , ,̂1

Alice and Bob first compute the gradient for the !-th layer as

�
(!)
0 = .

(!)
0 − . and �

(!)

1
= .
(!)

1
. They then proceed with back-

propagation from layer ! − 1 to layer 1. For each layer, Alice and

EVA-S2PMLP: Secure and Scalable Two-Party MLP via Spatial Transformation

Bob jointly invoke the S2PG-MLP protocol to compute the gradi-

ents �
(;)
0 ,�

(;)

1
for that layer.

Once the gradient for each layer is computed, the model param-

eters are updated. For the ;-th layer (1 ≤ ; ≤ !): Alice and Bob first

compute)0 = /
(;−1))

0 and)1 = /
(;−1))

1
, the transposes of the in-

termediate variables from the previous layer. They then securely

compute ()0+)1)×(�
(;)
0 +�

(;)

1
) = X,

(;)
0 +X,

(;)

1
using the S2PHM

(secure two-party matrix multiplication) protocol. Finally, they

each update their local model parameters:,̂
(;)
0 := ,̂

(;)
0 −[·X,

(;)
0

and ,̂
(;)

1
:= ,̂

(;)

1
− [· X,

(;)

1
. The detailed process of backward

propagation is shown in Algorithm 15.

Correctness: For simplicity, we assume that each training

epoch uses the entire training dataset (i.e., � = =). Let � =

{30, 31, · · · , 3!} represent the network structure. During forward

propagation in each epoch, for the ;-th layer (1 ≤ ; < !): -
(;)
0 +

-
(;)

1
= (/

(;−1)
0 +/

(;−1)
1

) × (,̂
(;)
0 +,̂

(;)

1
) = / (;−1) ×,̂ (;) = - (;) ,

and .
(;)
0 + .

(;)

1
= relu(-

(;)
0 + -

(;)

1
) = relu(- (;)) = . (;) . For the

!-th layer: -
(!)
0 + -

(!)

1
= (/

(!−1)
0 + /

(!−1)
1

) × (,̂
(!)
0 + ,̂

(!)

1
) =

/ (!−1) ×,̂ (!) = - (!) , and .
(!)
0 +.

(!)

1
= so�max(-

(!)
0 +-

(!)

1
) =

so�max(- (!)) = . (!) .

These results conform to the centralized forward propagation

formulas, thus proving the correctness of forward propagation.

During backpropagation in each epoch, for the!-th layer:�
(!)
0 +

�
(!)

1
= .
(!)
0 + .

(!)

1
− . = . (!) − . = � (!) .

For the ;-th layer (1 ≤ ; < !), based on the correctness of S2PG-

MLP, the gradient descent in S2PMLP-TR adheres to the central-

ized gradient propagation formula. For parameter updates in the

;-th layer (1 ≤ ; ≤ !): ,̂
(;)
0 + ,̂

(;)

1
:= ,̂

(;)
0 + ,̂

(;)

1
− [· (X,

(;)
0 +

X,
(;)

1
), which is equivalent to:,̂ (;) := ,̂ (;) − [· X, (;) . This sat-

isfies the centralized parameter update formula, thus proving the

correctness of backpropagation. Based on the correctness of both

forward and backpropagation, we can verify the overall training

correctness of S2PMLP-TR.

We analyze the probability of anomaly detection failure for

S2PMLP-TR in each batch. Assuming the network structure has

! layers (! ≥ 1), S2PMLP-TR will only fail to detect an

anomaly if all the sub-protocols S2PHM, S2RL, S2PG-MLP, and

S2PSM fail to detect the anomaly. Therefore, the probability of

S2PMLP-TR failing to detect a computational anomaly in each

batch is %5 ((2%"!%-)') = %5 ((2%�")2! · %5 ((2%'!)
!−1 ·

%5 ((2%�-"!%)!−1 · %5 ((2%(") ≤
(

1
4;

)8!+2
≤

(

1
4;

)10
≈ 3.87 ×

10−121 (; = 20).

We can prove the security of S2PMLP-TR based on the UC frame-

work.

Theorem 9. The S2PMLP-TR protocol is secure under the semi-

honest adversarial model.

5.2 Secure Two-Party MLP Inference Model

The problem definition of S2PMLP-PR is as follows:

Problem 10 (Secure Two-Party Multi-Layer Perceptron In-

ference). In the context of heterogeneous distributed data, let the

network parameters be given by � = {30, 31, · · · , 3!}, where each

element represents the number of neurons in each layer, including

the input, hidden, and output layers, and ! represents the number of

network layers excluding the input layer. Alice and Bob respectively

hold parts of the prediction dataset, denoted as -0 and -1 , as well as

the model parameters for all layers: ,̂0 = {,̂
(1)
0 ,,̂

(2)
0 , · · · ,,̂

(!)
0 }

and,̂1 = {,̂
(1)
1

,,̂
(2)
1

, · · · ,,̂
(!)

1
}. Their goal is to performprivacy-

preserving inference of themulti-layer perceptronmodel such that Al-

ice obtains.
(!)
0 and Bob obtains.

(!)

1
, satisfying:.

(!)
0 +.

(!)

1
= . (!) ,

where . (!) represents the true prediction result of the model.

S2PMLP-PR Protocol Description: In S2PMLP-PR, the input

includes the number of network layers ! ≥ 1, the set of neu-

ron counts � = {30, 31, · · · , 3!}, the input data for both par-

ties -0, -1 ∈ R
=×30 , the model parameters held by both parties

,̂0 = {,̂
(1)
0 ,,̂

(2)
0 , · · · ,,̂

(!)
0 } and,̂1 = {,̂

(1)
1

,,̂
(2)
1

, · · · ,,̂
(!)

1
},

and the splitting parameter d ≥ 2. The output is the model output

of the output layer held by both parties, .
(!)
0 , .

(!)

1
∈ R=×3! .

The S2PMLP-PR protocol follows the same forward propaga-

tion flow as S2PMLP-TR. Specifically, Alice and Bob preprocess

their private data by concatenating columns such that /
(0)
0 =

[1, -0] and /
(0)

1
= [0, -1]. This preprocessing step is denoted as:

/
(0)
0 , /

(0)

1
= addcol(-0, -1).

Then, for each of the first !−1 layers, Alice and Bob jointly com-

pute: (/
(;−1)
0 + /

(;−1)
1

) × (,̂
(;)
0 + ,̂

(;)

1
) = -

(;)
0 + -

(;)

1
, using the

S2PHM protocol. They then jointly compute: relu(-
(;)
0 + -

(;)

1
) =

.
(;)
0 + .

(;)

1
, using the S2PRL protocol. Finally, they perform a col-

umn concatenation step: /
(;)
0 , /

(;)

1
= addcol(.

(;)
0 , .

(;)

1
).

For the !-th layer, Alice and Bob first jointly compute: (/
(!−1)
0 +

/
(!−1)
1

)×(,̂
(!)
0 +,̂

(!)

1
) = -

(!)
0 +-

(!)

1
, using the S2PHM protocol.

They then jointly compute: so�max(-
(!)
0 + -

(!)

1
) = .

(!)
0 + .

(!)

1
,

using the S2PSM protocol. The detailed process is shown in Algo-

rithm 16.

Algorithm 16 S2PMLP-PR

Input: !, � , -0 , -1 , ,̂0 , ,̂1 , d

Output: .
(!)
0 , .

(!)

1
, - ∗0 , -

∗
1
, /∗0 , /

∗
1

1: /
(0)
0 , /

(0)

1
= 0332>; (-0, -1) ⊲ /

(0)
0 , /

(0)

1
∈ R=×(30+1)

2: for ; := 1 to ! − 1 do

3: -
(;)
0 , -

(;)

1
← S2PHM((/

(;−1)
0 ,,̂

(;)
0), (/

(;−1)
1

,,̂
(;)

1
))

⊲ -
(;)
0 , -

(;)

1
∈ R=×3;

4: .
(;)
0 , .

(;)

1
← S2PRL

(

-
(;)
0 , -

(;)

1
, d
)

⊲ .
(;)
0 , .

(;)

1
∈ R=×3;

5: /
(;)
0 , /

(;)

1
= 0332>; (.

(;)
0 , .

(;)

1
) ⊲ /

(;)
0 , /

(;)

1
∈ R=×(3;+1)

6: end for

7: -
(!)
0 , -

(!)

1
← S2PHM((/

(!−1)
0 ,,̂

(!)
0), (/

(!−1)

1
,,̂
(!)

1
))

⊲ -
(!)
0 , -

(!)

1
∈ R=×3!

8: .
(!)
0 , .

(!)

1
← S2PSM(-

(!)
0 , -

(!)

1
, d) ⊲ .

(!)
0 , .

(!)

1
∈ R=×3!

9: return .
(!)
0 , .

(!)

1
, - ∗0 , -

∗
1
, /∗0 , /

∗
1

Shizhao Peng*, Shoumo Li, and Tianle Tao

Correctness: Let � = {30, 31, · · · , 3!} represent the network

structure. During the prediction process of the multi-layer per-

ceptron, for the ;-th layer (1 ≤ ; < !), we have -
(;)
0 + -

(;)

1
=

(/
(;−1)
0 + /

(;−1)

1
) × (,̂

(;)
0 + ,̂

(;)

1
) = / (;−1) × ,̂ (;) = - (;) , and

.
(;)
0 + .

(;)

1
= relu(-

(;)
0 +-

(;)

1
) = relu(- (;)) = . (;) .

For the !-th layer, we have -
(!)
0 +-

(!)

1
= (/

(!−1)
0 +/

(!−1)

1
) ×

(,̂
(!)
0 + ,̂

(!)

1
) = / (!−1) × ,̂ (!) = - (!) , and .

(!)
0 + .

(!)

1
=

so�max(-
(!)
0 +-

(!)

1
) = so�max(- (!)) = . (!) .

These results conform to the centralized model prediction for-

mulas, thus proving the correctness of S2PMLP-PR.

Assuming the network structure has ! layers (! ≥ 1), S2PMLP-

PR will only fail to detect an anomaly if all the sub-protocols

S2PHM, S2RL, and S2PSM fail to detect the anomaly. Therefore, the

probability of S2PMLP-PR failing to detect a computational anom-

aly is given by %5 ((2%"!%-%') = %5 ((2%�")! · %5 ((2%'!)
!−1 ·

%5 ((2%(") ≤
(

1
4;

)3!+5
≤

(

1
4;

)8
≈ 4.68 × 10−97 (; = 20).

We can prove the security of S2PMLP-PR based on the UC frame-

work.

Theorem 10. The S2PMLP-PR protocol is secure under the semi-

honest adversarial model.

6 THEORETICAL COMPLEXITY ANALYSIS

In this section, we present a comprehensive theoretical analysis

of the computational and communication complexity of the proto-

cols proposed in this chapter. Each protocol is analyzed with re-

spect to three stages: extitpreprocessing, extitonline computation,

and extitverification. We also provide detailed breakdowns of both

the total communication cost and the number of communication

rounds.

We specifically analyze the complexity of the following proto-

cols: S2PHP, S2PSCR, S2PHHP, S2PDRL, S2PRL, S2PSM, S2PMLP-

TR, and S2PMLP-PR. For simplification, we assume that the input

of all basic protocols is a square matrix of size = × =. For MLP pro-

tocols, we assume the neural network has ! hidden layers (with

! ≥ 2), each consisting of 3 neurons, and the input contains = sam-

ples. Bias terms are omitted for brevity. The complexity analysis

is given per training round on the entire dataset. We also denote

d as the partition parameter and ℓ as the bit-length of each data

element.

6.1 Computational Complexity

The results are summarized in Table 1, detailing the cost of each

protocol across all stages.

Take S2PHP as an example. In the preprocessing phase, the = × =

matrix is partitioned into two matrices of dimension =2 × d2 and

d2 ×=2, respectively. The dominant cost arises from the S2PM pro-

tocol invoked internally, which performs a matrix multiplication

of these sizes. Hence, the preprocessing and online computation

both incur O(=4d2) operations. The verification step checks the

integrity of an =2 ×=2 matrix using methods in S2PM, resulting in

O(=4) operations. The complexity of other protocols follows simi-

lar logic.

Table 1: Theoretical Computational Complexity of EachPro-

tocol

Protocol
Stage-wise Computational Complexity

Total
Preprocessing Online Verification

S2PHP O(=4d2) O(=4d2) O(=4) O(=4d2)

S2PSCR O(=4d2) O(=4d2) O(=4) O(=4d2)

S2PHHP O(=4d2) O(=4d2) O(=4) O(=4d2)

S2PDRL O(=4d) O(=4d) O(=4) O(=4d)

S2PRL O(=4d) O(=4d) O(=4) O(=4d)

S2PSM O(=4d2) O(=4d2) O(=4) O(=4d2)

S2PMLP-TR O(!=232d + =232d2) O(!=232d + =232d2) O(!=232) O(!=232d + =232d2)

S2PMLP-PR O(!=232d + =232d2) O(!=232d + =232d2) O(!=232) O(!=232d + =232d2)

6.2 Communication Complexity

The communication complexity of each protocol, including round

count and total bits transferred, is listed in Table 2.

Table 2: Theoretical Communication Complexity of Each

Protocol

Protocol Rounds Communication Cost [bits]

S2PHP 6 (7=4 + 4=2d2)ℓ

S2PSCR 19 (21=4 + 12=2d2 + =2)ℓ

S2PHHP 12 (14=4 + 8=2d2)ℓ

S2PDRL 8 (7=4 + 8=2d + 2=2)ℓ

S2PRL 8 (7=4 + 8=2d + 2=2)ℓ

S2PSM 37 (21=4 + 12=2d2 + 21=2 + 12=d2 + =)ℓ

S2PMLP-TR 52! + 9 ((14! + 7)=232 + 12=3d2 + (16! − 16)=3d + 21=2 + 12=d2 + (40! − 14)=3 + (22! − 4)32 + =)ℓ

S2PMLP-PR 20! + 29 ((7! + 14)=232 + 12=3d2 + (8! − 8)=3d + 21=2 + 12=d2 + (10! − 2)=3 + 14!32 + =)ℓ

As an example, the S2PHP protocol invokes the S2PM primitive

once and incurs 6 communication rounds. The total communica-

tion cost is determined by the size of input matrices =2 × d2 and

d2 × =2, yielding (7=4 + 4=2d2)ℓ bits. Other protocol costs follow

from their constituent primitives and message sizes.

7 PERFORMANCE EVALUATION

7.1 Setup Configuration

All protocols in the EVA-S2PMLP framework are implemented in

Python as independent modules. Experiments are conducted on

a local machine equipped with an Intelr Core™ Ultra 7 proces-

sor (22 cores), 32 GB RAM, running Ubuntu 22.04 LTS. To mini-

mize discrepancies caused by variable network conditions, we sim-

ulate both LAN and WAN environments during testing. Specifi-

cally, LAN is configured with 10.1 Gbps bandwidth and 0.1 ms

latency, while WAN is set with 300 Mbps bandwidth and 40 ms

latency. The system involves four simulated computation nodes

launched via different ports: two act as data owners, one acts as

a semi-honest commodity server (CS) responsible only for gener-

ating randomness during the offline phase, and one serves as the

client who initiates the computation and retrieves the final result.

7.2 Parameter Description

We evaluate the performance of four fundamental protocols

(S2PHP, S2PSCR, S2PRL, S2PSM) in terms of computation cost,

communication overhead, and precision loss. Since most existing

secure logistic regression frameworks use approximate methods

and do not require multiplicative-to-additive conversions or recip-

rocal operations (as in our S2PLoR approach), we only include com-

parisons for low-level multiplication protocol S2PVEM and activa-

tion function protocol S2PVS. For S2PHP, we compare our results

EVA-S2PMLP: Secure and Scalable Two-Party MLP via Spatial Transformation

under the semi-honest setting against four representative frame-

works: Crypten, SecretFlow, LibOTe, and TenSEAL. For S2PSCR,

we consider Crypten, SecretFlow, LibOTe, and Rosetta. For S2PRL,

we include Crypten, LibOTe, Rosetta, and MP-SPDZ. For S2PSM,

we evaluate against Crypten, LibOTe, and MP-SPDZ. Since many

existing frameworks operate over ringZ2: and suffer from floating-

point limitations, we generate random inputs using 16-digit signif-

icands formatted as 1.0102 · · · 015 × 10X with X ∈ [−G, G], where

G ∈ Z. In runtime evaluations, we set G = 4; in precision evalua-

tions, we sweep G from 0 to 8 with a step size of 2, covering five

representative precision ranges.

7.3 Efficiency of Basic Protocols

We first assess the runtime efficiency of the four basic protocols in

the EVA-S2PMLP framework. Average results are summarized in

Table 3. We then compare their communication cost across exist-

ing frameworks, as shown in Figure 2. Total runtime comparisons

under LAN andWAN settings are depicted in Figure 3 and Figure 4,

respectively. In addition to the cross-framework comparisons, we

evaluate the verification overhead of all protocols by measuring

both the number of verification rounds and the proportion of to-

tal time spent on verification as the input size scales, visualized in

Figure 5. Furthermore, we examine the scalability of S2PHP and

S2PSCR with large-scale matrix inputs, with results presented in

Figure 6.

Table 3: Performance Evaluation of Basic Protocols in EVA-

S2PMLP

Protocol Dimension
Communication Overhead Computation Time (S) Total Time (S)

Volume (KB) Rounds Preprocessing Online Computation Verification Total Computation LAN WAN

S2PHP

10 188.14

6

7.89E-04 1.65E-04 1.11E-04 1.07E-03 1.81E-03 2.46E-01

20 756.17 2.23E-03 5.38E-04 2.77E-04 3.05E-03 4.22E-03 2.63E-01

30 1724.92 4.40E-03 1.16E-03 5.49E-04 6.11E-03 8.02E-03 2.91E-01

40 3074.14 7.46E-03 2.10E-03 9.40E-04 1.05E-02 1.34E-02 3.31E-01

50 4798.83 1.18E-02 3.24E-03 1.49E-03 1.65E-02 2.08E-02 3.82E-01

S2PSCR

10 565.34

19

2.71E-03 5.90E-04 3.98E-04 3.70E-03 6.02E-03 7.78E-01

20 2271.78 8.41E-03 1.86E-03 1.02E-03 1.13E-02 1.49E-02 8.30E-01

30 5181.94 1.82E-02 4.09E-03 2.24E-03 2.46E-02 3.04E-02 9.20E-01

40 9235.06 2.36E-02 5.73E-03 2.89E-03 3.22E-02 4.11E-02 1.03E+00

50 14416.16 3.46E-02 8.16E-03 4.42E-03 4.71E-02 5.99E-02 1.18E+00

S2PRL

10 195.45

10

6.61E-04 2.36E-04 1.35E-04 1.03E-03 2.18E-03 4.06E-01

20 782.23 1.55E-03 7.87E-04 3.63E-04 2.70E-03 4.29E-03 4.23E-01

30 1782.23 3.08E-03 1.69E-03 7.58E-04 5.52E-03 7.87E-03 4.52E-01

40 3175.20 5.57E-03 2.62E-03 1.03E-03 9.22E-03 1.26E-02 4.92E-01

50 4956.14 6.37E-03 3.04E-03 1.50E-03 1.09E-02 1.57E-02 5.40E-01

S2PSM

10 1144.72

47

4.86E-03 1.52E-03 6.92E-04 7.07E-03 1.26E-02 1.92E+00

20 4592.75 1.81E-02 4.20E-03 1.99E-03 2.43E-02 3.24E-02 2.02E+00

30 10471.66 2.70E-02 6.04E-03 3.43E-03 3.65E-02 4.91E-02 2.19E+00

40 18659.94 4.51E-02 1.03E-02 5.64E-03 6.11E-02 7.99E-02 2.43E+00

50 29127.59 6.98E-02 1.54E-02 8.75E-03 9.39E-02 1.21E-01 2.73E+00

S2PG

10 212.38

20

5.07E-04 3.76E-04 1.66E-04 1.05E-03 3.21E-03 8.07E-01

20 841.34 8.78E-04 7.84E-04 3.51E-04 2.01E-03 4.65E-03 8.24E-01

30 1911.66 1.84E-03 1.68E-03 9.52E-04 4.47E-03 7.92E-03 8.54E-01

40 3403.06 5.71E-03 2.86E-03 1.22E-03 9.79E-03 1.44E-02 8.98E-01

50 5310.56 4.47E-03 3.95E-03 1.84E-03 1.03E-02 1.63E-02 9.49E-01

As shown in Table 3, despite the incorporation of verification

mechanisms, our basic protocols still achieve fast execution under

both LAN and WAN settings due to their streamlined computa-

tional workflows. Note that some protocols exhibit a slight discrep-

ancy in communication rounds compared to the theoretical analy-

sis in Table 2. This is because we have optimized the protocols for

precision, which alters the number of communication rounds.

As illustrated in Figure 2, the communication volume of our

framework ranks moderately high across the four basic protocols

when compared with mainstream frameworks. This increase is

mainly due to the overhead introduced by our integrated verifi-

cation mechanisms.

Figure 3 shows that under LAN settings, our framework

achieves the fastest total execution time across all four basic pro-

tocols, with the exception of S2PHP, which ranks second. Crypten,

10 20 30 40 50
Dimension

100

101

102

103

104

105

106

O
ve

rh
ea

d
(K

B)

EVA-S2PMLP
Crypten
SecretFlow

LibOTe
TenSEAL

(a) Communication overhead of S2PHP

10 20 30 40 50
Dimension

102

103

104

105

106

O
ve

rh
ea

d
(K

B)

EVA-S2PMLP
Crypten
SecretFlow

LibOTe
Rosetta

(b) Communication overhead of
S2PSCR

10 20 30 40 50
Dimension

101

102

103

104

105

106

107

O
ve
rh
ea
d

(K
B)

EVA-S2PMLP
Crypten
OT

Rosetta
MP-SPDZ

(c) Communication overhead of S2PRL

10 20 30 40 50
Dimension

102

103

104

105

106

107

108

O
ve

rh
ea

d
(K

B) EVA-S2PMLP
Crypten

LibOTe
MP-SPDZ

(d) Communication overhead of S2PSM

Figure 2: Communication overhead comparison between

EVA-S2PMLP and other frameworks

10 20 30 40 50
Dimension

100

101

102

103

104

Ti
m
e
(m

s) EVA-S2PMLP
Crypten
SecretFlow

LibOTe
TenSEAL

(a) S2PHP execution time (LAN)

10 20 30 40 50
Dimension

101

102

103

104

Ti
m
e
(m

s)

EVA-S2PMLP
Crypten
SecretFlow

LibOTe
Rosetta

(b) S2PSCR execution time (LAN)

10 20 30 40 50
Dimension

100

101

102

103

104

105

Ti
m
e
(m

s)

EVA-S2PMLP
Crypten
LibOTe

Rosetta
MP-SPDZ

(c) S2PRL execution time (LAN)

10 20 30 40 50
Dimension

101

102

103

104

105

106

107

Ti
m
e
(m

s)

EVA-S2PMLP
Crypten

LibOTe
MP-SPDZ

(d) S2PSM execution time (LAN)

Figure 3: Total execution time comparison (LAN) between

EVA-S2PMLP and other frameworks

SecretFlow, and Rosetta perform relatively well due to their use

of secret sharing schemes, which incur minimal overhead during

simple computations. LibOTe exhibits poor performance due to its

reliance on encryption operations and high communication costs,

and TenSEAL performs even worse as it operates entirely on en-

crypted data. Our MASCOT implementation based on MP-SPDZ,

Shizhao Peng*, Shoumo Li, and Tianle Tao

although providing high security through malicious OT, signifi-

cantly compromises performance. Overall, our framework outper-

forms existing solutions due to fewer fixed communication rounds

and streamlined computation.

10 20 30 40 50
Dimension

0.1

1

101

102

103

Ti
m

e
(s

)

EVA-S2PMLP
Crypten
SecretFlow

LibOTe
TenSEAL

(a) S2PHP execution time (WAN)

10 20 30 40 50
Dimension

1

101

102

103

Ti
m
e
(s
)

EVA-S2PMLP
Crypten
SecretFlow

LibOTe
Rosetta

(b) S2PSCR execution time (WAN)

10 20 30 40 50
Dimension

0.1

1

101

102

103

104

Ti
m

e
(s

)

EVA-S2PMLP
Crypten
LibOTe

Rosetta
MP-SPDZ

(c) S2PRL execution time (WAN)

10 20 30 40 50
Dimension

1

101

102

103

104

Ti
m
e
(s
)

EVA-S2PMLP
Crypten

LibOTe
MP-SPDZ

(d) S2PSM execution time (WAN)

Figure 4: Total execution time comparison (WAN) between

EVA-S2PMLP and other frameworks

As shown in Figure 4, our framework consistently achieves the

lowest execution time across all four protocols under WAN set-

tings. This is largely due to our reduced communication rounds. In

contrast, secret-sharing-based frameworks like Crypten require ex-

tensive message exchanges for share reconstruction, which leads

to high latency in WAN environments.

From Figure 5, we observe that the verification time ratio re-

mains stable for large input dimensions but fluctuates slightly for

small inputs. This is due to our batch optimization strategy, where

both verification and total runtime scale linearly with the num-

ber of batches. The overall verification time ratio remains approxi-

mately equal to that of a single batch. When the verification round

is set to ! = 10, the failure probabilities of the four protocols are

negligible: %5 ((2%�%) ≈ 9.53× 10−7, %5 ((2%(�') ≈ 8.67× 10−19,

%5 ((2%'!) ≈ 9.53× 10−7, and %5 ((2%(") ≈ 7.52× 10−37. Thus, a

verification round of ! = 10 is practically sufficient, and the verifi-

cation overhead remains around 40%.

Figure 6 demonstrates that both S2PHP and S2PSCR maintain

fast execution even for extremely large matrices. Under LAN set-

tings with 5000×5000 input size, the total runtime for S2PHP is un-

der 6 minutes, and under 16 minutes for S2PSCR. Moreover, their

total execution time scales approximately linearly with input size,

confirming the scalability and practicality of both protocols in real-

world large-scale scenarios.

7.4 Precision Evaluation of Basic Protocols

In the precision evaluation experiments, we used 50 × 50 matrices

as input and tested the maximum relative error of three core pro-

tocols in our framework (S2PHP, S2PSCR, and S2PSM) under five

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Dimension

10

20

30

40

50

60

70

80

90

Pr
op

or
ti

on
 (

%
)

L = 5 Pf ≤ 0.510

L = 10 Pf ≤ 0.520

L = 20 Pf ≤ 0.540

(a) Verification time ratio of S2PHP

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Dimension

10

20

30

40

50

60

70

80

90

Pr
op

or
ti

on
 (

%
)

L = 5 Pf ≤ 0.530

L = 10 Pf ≤ 0.560

L = 20 Pf ≤ 0.5120

(b) Verification time ratio of S2PSCR

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Dimension

10

20

30

40

50

60

70

80

90

Pr
op

or
ti

on
 (

%
)

L = 5 Pf ≤ 0.510

L = 10 Pf ≤ 0.520

L = 20 Pf ≤ 0.540

(c) Verification time ratio of S2PRL

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Dimension

10

20

30

40

50

60

70

80

90

Pr
op

or
ti

on
 (

%
)

L = 5 Pf ≤ 0.560

L = 10 Pf ≤ 0.5120

L = 20 Pf ≤ 0.5240

(d) Verification time ratio of S2PSM

Figure 5: Verification time ratio of basic protocols in EVA-

S2PMLP

1000 2000 3000 4000 5000
Dimension

0

200

400

600

800

1000

Ti
m

e
(s

)

S2PHP (LAN)
S2PSCR (LAN)

(a) Execution time for large matrices
(LAN)

1000 2000 3000 4000 5000
Dimension

0

1000

2000

3000

4000

5000

Ti
m

e
(s

)

S2PHP (WAN)
S2PSCR (WAN)

(b) Execution time for large matrices
(WAN)

Figure 6: Performance of S2PHP and S2PSCR with large in-

put matrices

precision ranges X . We also compared the maximum relative er-

rors of these protocols with those of other frameworks, as shown

in Figure 7.

In our framework, the S2PHP and S2PSCR protocols can be

viewed as parallel numerical operations over matrix elements.

Hence, the precision can be analyzed from the perspective of nu-

merical computation. As shown in Figure 7(a), the maximum rela-

tive error of S2PHP and S2PR increases slightly with the increase

in X . This is because larger X values result in greater disparities

among input values, which in turn introducemore rounding errors

during computation. However, this increase has an upper bound.

Since S2PSCR is built upon S2PHP, and the core computation in

S2PHP involves vector dot products, the upper bound of the rel-

ative error is given by the formula "'� ≤ 1.25=D
|x |) · |~ |

|x) ·~ |
, as es-

tablished in [42]. Here, = is the vector length (with split number

d = 2, = = d2 = 4), D is the unit roundoff (for 64-bit floating-point

numbers, D = 2−52), and the ratio
|x |) · |~ |

|x) ·~ |
equals 1 when random

EVA-S2PMLP: Secure and Scalable Two-Party MLP via Spatial Transformation

0 1 2 3 4 5 6 7 8
Input Precision Range δ

10−16

10−15

10−14

M
RE

S2PHP
S2PSCR
S2PSM

(a) Maximum relative error of the three
protocols

0 1 2 3 4 5 6 7 8
Input Precisi n Range δ

10−16

10−12

10−8

10−4

1

M
RE

EVA-S2PMLP
Crypten
SecretFlow

OT
TenSEAL

(b) Comparison of maximum relative
error for S2PHP

0 1 2 3 4 5 6 7 8
Input Precisi n Range δ

10−16

10−12

10−8

10−4

1

M
RE EVA-S2PMLP

Crypten
SecretFlow

OT
Rosetta

(c) Comparison of maximum relative
error for S2PSCR

0 1 2 3 4 5 6 7 8
Input Precisi n Range δ

10−16

10−12

10−8

10−4

1

M
RE

EVA-S2PMLP
Crypten

OT
MP-SPDZ

(d) Comparison of maximum relative
error for S2PSM

0 1 2 3 4 5 6 7 8
Input Precision Range δ

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
RE

(×
1E

−
15

)

N = 10
N = 20
N = 30

N = 40
N = 50

(e) Maximum relative error of S2PG

Figure 7: Precision comparison of EVA-S2PMLP basic proto-

cols with other frameworks

splits maintain the same sign. Hence, we derive the upper bound

as"'� ≤ 1.25 × 4 × 2−52 ≈ 1.11 × 10−15.

Interestingly, the maximum relative error of S2PSM decreases

as X increases. This is because the Softmax activation function is

a normalized exponential function. When the data range varies

widely, the exponentiation causes large values to dominate with

probabilities close to 1, while small values shrink towards 0. As

a result, larger X values produce output matrices dominated by

0s and 1s, leading to a decrease in relative error. As shown in

Figures 7(b)∼(d), our framework consistently outperforms others

in terms of accuracy across S2PHP, S2PSCR, and S2PSM. LibOTe

ranks second, since it mainly secures data during transmission and

only incurs minor precision loss during data splitting. In the case

of S2PHP, TenSEAL operates over the ring Z2: , and achieves stable

accuracy under small X ranges. However, once the values exceed

the representation range, the error grows rapidly. Garbled circuits

introduce large errors during conversions between arithmetic and

Boolean circuits. Similarly, secret-sharing-based schemes suffer

substantial precision loss due to their use of fixed-point represen-

tations. Consequently, frameworks such as Crypten, SecretFlow,

and Rosetta exhibit poor performance. Specifically for S2PSM, MP-

SPDZ achieves relatively stable accuracy by transforming expo-

nential functions into partial integer and floating-point operations

via bit decomposition, and then approximating floating-point com-

putations using polynomials. In contrast, other frameworks gen-

erally use polynomial or piecewise approximations for activation

functions, leading to significant loss in accuracy. In conclusion,

the precision comparison experiments demonstrate that our frame-

work offers a substantial accuracy advantage over existing main-

stream frameworks.

7.5 Performance Evaluation of Secure
Two-Party MLP

To evaluate the performance of the EVA-S2PMLP framework, we

conducted training and inference tasks using vertically partitioned

secure two-party multilayer perceptron (MLP) models on different

datasets and compared themwith two state-of-the-art frameworks

(Crypten and FATE) in terms of time and various evaluation met-

rics. Additionally, we implemented a plaintext MLP using Python

(PlainMLP) as a performance baseline, and used it to standardize

the parameter configuration for all models.

Datasets and Experimental Setup: We used two small

datasets, Iris (150 samples: 120 for training, 30 for testing, with

4 features per sample) and Wine (178 samples: 142 for training,

36 for testing, with 13 features per sample), as well as two large

datasets, MNIST (70,000 samples: 60,000 for training, 10,000 for

testing, with 784 features per sample) and CIFAR (60,000 sam-

ples: 50,000 for training, 10,000 for testing, with 3,072 features

per sample). The two small datasets are for 3-class classification,

and the two large datasets are for 10-class classification. In secure

two-party MLP training and inference, each dataset’s features are

equally divided between Alice and Bob as private input, while the

labels are considered public. We adopted a three-layer MLP model

(one hidden layer and one output layer) for all datasets. For the

small datasets, the hidden layer size and batch size are both 16,

and the learning rate is 0.1. For the large datasets, both values are

set to 128, with a learning rate of 0.01. All models are trained for 5

epochs.

Evaluation Metric: In multi-class classification using MLPs,

suppose the number of classes is 3 , then the label of each sam-

ple is represented as a one-hot vector of length 3 , where the in-

dex of the value ’1’ indicates the correct class. The MLP outputs

a 3-dimensional float vector for each test sample, representing the

probability of belonging to each class. The class with themaximum

probability is taken as the predicted label. Model performance is

evaluated using accuracy, defined as the proportion of correctly

predicted labels in the test set.

We compared our framework with FATE and Crypten across all

four datasets, using the plaintext model PlainMLP as a reference.

The time comparison results are shown in Table 4, and accuracy

results are shown in Table 5. Moreover, we analyzed the stage-wise

time breakdown of training and inference in our framework on

these datasets, as shown in Figure 8.

From Table 4 and Table 5, we observe that our framework deliv-

ers the best overall performance in terms of both time efficiency

and model accuracy. FATE, which is based on federated learning,

has relatively low communication volume, but incurs large com-

putational overhead due to the use of homomorphic encryption.

Crypten, based on secret sharing, leads to a very large number of

Shizhao Peng*, Shoumo Li, and Tianle Tao

Table 4: Efficiency Comparison of Secure Two-Party MLP

Models

Dataset Framework
Training Overhead Training Time (s) Inference Overhead Inference Time (s)

Comm. (MB) Rounds LAN WAN Comm. (MB) Rounds LAN WAN

Iris

Crypten 34.32 53336 7.57 2136.57 0.78 212 0.09 8.57

Fate 7.35 6280 99.86 350.62 0.17 685 23.24 50.58

EVA-S2PMLP 156.04 9960 1.68 403.13 3.23 117 0.02 4.78

PlainMLP - - 2.95E-03 - - - 3.65E-05 -

Wine

Crypten 42.79 59916 9.60 2401.36 0.97 279 0.1 11.26

Fate 11.20 9429 115.99 492.50 0.25 772 27.30 58.11

EVA-S2PMLP 223.55 11205 2.04 454.90 4.53 117 0.03 4.81

PlainMLP - - 3.23E-03 - - - 4.12E-05 -

Mnist

Crypten 156982.25 5034723 7350.09 212300.31 3552.21 921 71.01 699.73

Fate 5575.10 4498933 158569.63 338221.41 126.15 1372 544.33 602.34

EVA-S2PMLP 2171802.23 583905 6439.94 85972.55 22664.37 117 65.49 657.01

PlainMLP - - 20.75 - - - 0.1 -

Cifar

Crypten 258809.20 7907699 23120.84 345339.41 5856.36 1082 3039.30 5234.11

Fate 10798.50 7570978 178975.13 481336.76 244.35 1694 815.21 889.13

EVA-S2PMLP 7738807.30 486795 19595.81 239401.05 70402.87 117 2975.50 4803.12

PlainMLP - - 117.04 - - - 1.09 -

communication rounds, which impacts overall runtime. Although

our framework has a higher communication volume, the number

of communication rounds is much smaller and the computation

is lightweight, resulting in low time cost. Moreover, the inabil-

ity of FATE and Crypten to accurately compute non-linear opera-

tions leads to inferior accuracy compared to our framework. Over-

all, EVA-S2PMLP outperforms existing frameworks in secure MLP

tasks.

Table 5: Accuracy Comparison of Secure Two-Party MLP

Models

Framework
Accuracy

Iris Wine MNIST CIFAR

Crypten 0.9333 0.9722 0.9325 0.4627

Fate 0.8000 0.9444 0.9332 0.3729

EVA-S2PMLP 1.0000 1.0000 0.9582 0.4812

PlainMLP 1.0000 1.0000 0.9638 0.4951

As shown in Figure 8, under a LAN environment, the main com-

ponents of model training and prediction time are offline compu-

tation, online computation, and communication. For large datasets

(MNIST and CIFAR), the computation time exceeds communica-

tion time due to the high bandwidth and low latency of LANs. No-

tably, the verification time accounts for a very small proportion

in MLP applications, demonstrating the lightweight nature of our

verification module.

0 20 40 60 80 100
Proportion (%)

I

W

M

C

D
at

as
et

Offline
Online

Verification
Communication

(a) S2PMLP-TR Time Breakdown

0 20 40 60 80 100
Proportion (%)

I

W

M

C

D
at

as
et

Offline
Online

Verification
Communication

(b) S2PMLP-PR Time Breakdown

Figure 8: Time Breakdown of S2PMLP-TR and S2PMLP-PR

in Different Stages

8 CONCLUSION AND FUTUREWORK ON
EVA-S2PMLP

In this chapter, we proposed EVA-S2PMLP, a privacy-preserving

framework for secure two-party multilayer perceptron (MLP)

training and inference, which achieves superior overall per-

formance across multiple datasets compared to state-of-the-art

privacy-preserving frameworks such as FATE, CrypTen, and

SecretFlow. We introduced several atomic protocols—S2PHP,

S2PDRL, S2PRL, and S2PSM—for secure matrix operations and

nonlinear activation functions, and conducted a thorough exper-

imental evaluation of their communication cost, computational

efficiency, and numerical precision. The S2PRL and S2PSM pro-

tocols in EVA-S2PMLP adopt exact implementations of nonlinear

functions, such as ReLU and Softmax, providing significant pre-

cision advantages over approximation-based counterparts used

in most mainstream frameworks. Our S2PHP (matrix multiplica-

tion) and S2PDRL (dropout-based regularization) protocols intro-

duce a configurable splitting parameter d to balance computation

and communication cost; in this work, we set d = 2 to maxi-

mize efficiency while maintaining precision. Furthermore, we ex-

tended the underlying vector verification mechanism to support

matrix-level verification, ensuring correctness in the presence of

floating-point computations. However, this extension introduces

additional computational and communication overhead, highlight-

ing the need for more lightweight verification techniques in fu-

ture work. Overall, EVA-S2PMLP achieves near-baseline accuracy

in privacy-preserving MLP tasks while significantly reducing com-

munication rounds and improving runtime efficiency during both

training and inference. Experimental results on datasets ranging

from small-scale (Iris, Wine) to large-scale (MNIST, CIFAR) con-

firm the robustness, scalability, and practical effectiveness of our

approach. These results suggest that EVA-S2PMLP holds strong po-

tential for real-world privacy-preserving machine learning appli-

cations in distributed environments such as federated healthcare

and financial analytics.

In future work, we plan to: (1) design more efficient matrix-level

verification protocols to reduce overhead in high-dimensional

MLPs; (2) extend the framework to support active adversaries and

malicious threat models, further enhancing its security guarantees;

and (3) evaluate its deployment under realistic WAN settings in-

volving multiple independent institutions. Additionally, generaliz-

ing the current 2-party protocol design to arbitrary =-party set-

tings remains an important direction toward achieving broader ap-

plicability and system scalability.

9 CREDIT AUTHORSHIP CONTRIBUTION
STATEMENT

Shizhao Peng: Conceptualization, Methodology, Software, Val-

idation, Formal analysis, Visualization, Writing-original draft,

Writing-review & editing. Shoumo Li: Software, Validation. Tianle

Tao: Software, Writing-review & editing.

10 ACKNOWLEDGMENTS

This work was supported by the National Science and Technology

Major Project of the Ministry of Science and Technology of China

Grant No.2022XAGG0148.

EVA-S2PMLP: Secure and Scalable Two-Party MLP via Spatial Transformation

REFERENCES
[1] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-

preserving machine learning. In 2017 IEEE symposium on security and privacy
(SP), pages 19–38. IEEE, 2017.

[2] PaymanMohassel and Peter Rindal. Aby3: A mixed protocol framework for ma-
chine learning. In Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security, pages 35–52, 2018.

[3] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure
computation for neural network training. Proceedings on Privacy Enhancing
Technologies, 2019.

[4] SameerWagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, PrateekMit-
tal, and Tal Rabin. Falcon: Honest-majority maliciously secure framework for
private deep learning. arXiv preprint arXiv:2004.02229, 2020.

[5] Arpita Patra and Ajith Suresh. Blaze: Blazing fast privacy-preserving machine
learning. In Proceedings 2020 Network and Distributed System Security Sympo-
sium, San Diego, CA, 2020. Internet Society.

[6] Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste, Morgan Giraud, Ian
Livingstone, Justin Patriquin, and Gavin Uhma. Private machine learning in
tensorflow using secure computation. arXiv preprint arXiv:1810.08130, 2018.

[7] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. Ezpc: Programmable and efficient secure two-party computation for
machine learning. In 2019 IEEE european symposium on security and privacy
(EuroS&P), page 496–511. IEEE, 2019. Citation Key: chandran2019ezpc.

[8] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-party computa-
tion meetsmachine learning. Advances in Neural Information Processing Systems,
34:4961–4973, 2021.

[9] Junming Ma, Yancheng Zheng, Jun Feng, Derun Zhao, Haoqi Wu,Wenjing Fang,
Jin Tan, Chaofan Yu, Benyu Zhang, and Lei Wang. {SecretFlow-SPU}: A perfor-
mant and {User-Friendly} framework for {Privacy-Preserving}machine learn-
ing. In 2023 USENIX Annual Technical Conference (USENIX ATC 23), pages 17–33,
2023.

[10] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. Flash: Fast and
robust framework for privacy-preservingmachine learning. Proceedings on Pri-
vacy Enhancing Technologies, 2020. Citation Key: byali2020flash.

[11] Sai Rahul Rachuri, Ajith Suresh, and Harsh Chaudhari. Trident: Efficient 4pc
framework for privacy preservingmachine learning. In Network and distributed
system security symposium, page 1–18. Internet Society, 2020. Citation Key:
rachuri2020trident.

[12] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. SWIFT: Super-fast
and robust Privacy-Preserving machine learning. In 30th USENIX security sym-
posium (USENIX security 21), page 2651–2668, 2021. Citation Key: koti2021swift.

[13] Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In
Proceedings of the 2020 ACM SIGSAC conference on computer and communications
security, pages 1575–1590, 2020.

[14] Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, and Qiang Yang. Fate: An indus-
trial grade platform for collaborative learning with data protection. Journal of
Machine Learning Research, 22(226):1–6, 2021.

[15] Alexander Ziller, Andrew Trask, Antonio Lopardo, Benjamin Szymkow, Bobby
Wagner, Emma Bluemke, Jean-MickaelNounahon, Jonathan Passerat-Palmbach,
Kritika Prakash, Nick Rose, Théo Ryffel, Zarreen Naowal Reza, and Georgios
Kaissis. PySyft: A Library for Easy Federated Learning, page 111–139. Springer
International Publishing, Cham, 2021.

[16] Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfedhal.
Tenseal: A library for encrypted tensor operations using homomorphic encryp-
tion. arXiv preprint arXiv:2104.03152, 2021.

[17] Xuanqi Liu, Zhuotao Liu, Qi Li, Ke Xu, and Mingwei Xu. Pencil: Private and
extensible collaborative learning without the non-colluding assumption. arXiv
preprint arXiv:2403.11166, 2024.

[18] Wenliang Du and Mikhail J Atallah. Privacy-preserving cooperative statisti-
cal analysis. In Seventeenth Annual Computer Security Applications Conference,
pages 102–110. IEEE, 2001.

[19] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In Computer Security-ESORICS 2008: 13th
European Symposium on Research in Computer Security, Málaga, Spain, October
6-8, 2008. Proceedings 13, pages 192–206. Springer, 2008.

[20] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko.
Motion–a framework for mixed-protocol multi-party computation. ACM Trans-
actions on Privacy and Security, 25(2):1–35, 2022.

[21] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. Cryptgpu: Fast privacy-
preserving machine learning on the gpu. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1021–1038. IEEE, 2021.

[22] JasonMathewMiller, Logan HHarbour, Robert WCarlsen, Andrew E Slaughter,
Brandon Samuel Biggs Jr, and Cody J Permann. Simple, secure, internet delivery
of moose-based applications. Technical report, Idaho National Lab.(INL), Idaho
Falls, ID (United States), 2021.

[23] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput
secure three-party computation for malicious adversaries and an honest major-
ity. In Annual international conference on the theory and applications of crypto-
graphic techniques, pages 225–255. Springer, 2017.

[24] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multi-
party computation from fixed-key block ciphers. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 825–841. IEEE, 2020.

[25] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. Deepsecure:
scalable provably-securedeep learning. In Proceedings of the 55th Annual Design
Automation Conference, DAC ’18, pages 1–6, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[26] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor
gates and applications. In Automata, Languages and Programming: 35th Interna-
tional Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings,
Part II 35, pages 486–498. Springer, 2008.

[27] Lance Roy Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious
Transfer Library. https://github.com/osu-crypto/libOTe, 2016.

[28] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive:Making spdz great
again. InAnnual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 158–189. Springer, 2018.

[29] Carsten Baum, Daniele Cozzo, and Nigel P Smart. Using topgear in overdrive:
a more efficient zkpok for spdz. In International Conference on Selected Areas in
Cryptography, pages 274–302. Springer, 2019.

[30] PratyushMishra, Ryan Lehmkuhl, AkshayaramSrinivasan,Wenting Zheng, and
RalucaAda Popa. Delphi: A cryptographic inference system for neural networks.
In Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in
Practice, pages 27–30, 2020.

[31] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh,
and Nina Taft. Privacy-preserving ridge regression on hundreds of millions of
records. In 2013 IEEE symposium on security and privacy, pages 334–348. IEEE,
2013.

[32] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Do-
erner, Samee Zahur, and David Evans. Privacy-preserving distributed linear
regression on high-dimensional data. Cryptology ePrint Archive, 2016.

[33] Irene Giacomelli, Somesh Jha, Marc Joye, C David Page, and Kyonghwan Yoon.
Privacy-preserving ridge regression with only linearly-homomorphic encryp-
tion. In Applied Cryptography and Network Security: 16th International Confer-
ence, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings 16, pages 243–261.
Springer, 2018.

[34] Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Peter Rindal, and Mike Rosulek.
Secure data exchange: A marketplace in the cloud. In Proceedings of the 2019
ACM SIGSAC Conference on Cloud Computing Security Workshop, pages 117–128,
2019.

[35] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Di-
vya Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party
secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 325–342, 2020.

[36] David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. A pragmatic introduc-
tion to securemulti-party computation. Foundations and Trends® in Privacy and
Security, 2(2-3):70–246, 2018.

[37] Oded Goldreich. Foundations of Cryptography, Volume 2. Cambridge university
press Cambridge, 2004.

[38] Yehuda Lindell. How to simulate it–a tutorial on the simulation proof technique.
Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich, pages
277–346, 2017.

[39] Wenliang Du, Yunghsiang S Han, and Shigang Chen. Privacy-preserving mul-
tivariate statistical analysis: Linear regression and classification. In Proceedings
of the 2004 SIAM international conference on data mining, pages 222–233. SIAM,
2004.

[40] Thomas S. Shores. Applied Linear Algebra and Matrix Analysis. Undergraduate
Texts in Mathematics. Springer International Publishing, Cham, 2018.

[41] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, FOCS ’01, page 136, USA, 2001. IEEE Computer Society.

[42] Christopher J Zarowski. An introduction to numerical analysis for electri-
cal and computer engineers. John Wiley & Sons, 2004. Citation Key:
zarowski2004introduction.

[43] Shizhao Peng, Tianrui Liu, Tianle Tao, Derun Zhao, Hao Sheng, and Haogang
Zhu. Eva-s3pc: Efficient, verifiable, accurate secure matrix multiplication proto-
col assembly and its application in regression, 2024.

A ALGORITHMS OF EVA-S3PC

This section introduces the S2PM and S2PHM protocols in EVA-

S3PC[43].

https://github.com/osu-crypto/libOTe

Shizhao Peng*, Shoumo Li, and Tianle Tao

A.1 S2PM

The problem definition of S2PM is as follows:

Problem 11 (Secure 2-Party Matrix Multiplication). Alice

has an = × B matrix � and Bob has an B ×< matrix �. They want to

conduct the multiplication, such that Alice gets +0 and Bob gets +1 ,

where +0 ++1 = � × �.

A.1.1 Description of S2PM. The S2PM includes three stages: CS

pre-processing stage in Algorithm 17, online computation stage

in Algorithm 18, and result verification stage in Algorithm 19.

Pre-processing Stage. In Algorithm 17, CS generates random

private matrices '0 for Alice and '1 for Bob, where A0=: ('0) < B

and A0=: ('1) < B . Subsequently, CS computes (C = '0 · '1 and

generates random matrices A0 for Alice and A1 for Bob, where A0 +

A1 = (C . Finally, CS sends a set of matrices ('0, A0, (C) to Alice and

('1 , A1 , (C) to Bob.

Algorithm 17 S2PM CS Pre-processing Stage

Input: =, B,<

Output: Alice⇐ ('0, A0, (C) and Bob⇐ ('1 , A1 , (C)

1: '0 ← generate a random matrix ⊲

'0 ∈ R
=×B , A0=: ('0) =<8=(=,B) − 1

2: '1 ← generate a random matrix ⊲

'1 ∈ R
B×<, A0=: ('1) =<8=(B,<) − 1

3: (C = '0 × '1 ⊲ (C ∈ R
=×<

4: A0, A1 ← generate random matrices ⊲

A0, A1 ∈ R
=×<, A0 + A1 = (C

5: Alice⇐ ('0, A0, (C)

6: Bob⇐ ('1 , A1 , (C)

7: return ('0, A0, (C), ('1 , A1 , (C)

Online Stage. In Algorithm 18, Alice computes �̂ = � +'0 and

sends �̂ to Bob while Bob computes �̂ = � + '1 and sends �̂ to

Alice. Bob then generates a random matrix +1 , computes + �1 =

+1 − �̂×�,) = A1 −+�1 , and then sends (+�1 ,)) to Alice. Finally,

Alice computes the matrix+0 =) +A0− ('0× �̂),+�0 = +0+'0× �̂,

and sends +�0 to Bob.

Algorithm 18 S2PM Online Computing Stage

Input: � ∈ R=×B and � ∈ RB×<

Output: Alice⇐ (+0,+ �0) and Bob⇐ (+1 ,+ �1)

1: �̂ = � + '0 and send �̂⇒ Bob ⊲ �̂ ∈ R=×B

2: �̂ = � + '1 and send �̂ ⇒ Alice ⊲ �̂ ∈ RB×<

3: +1 ← generate a random matrix ⊲ +1 ∈ R
=×<

4: + �1 = +1 − �̂ × � ⊲ +�1 ∈ R
=×<

5:) = A1 −+ �1 ⊲) ∈ R=×<

6: send (+�1 ,)) ⇒ Alice

7: +0 =) + A0 − ('0 × �̂) ⊲ +0 ∈ R
=×<

8: + �0 = +0 + '0 × �̂ and send +�0 ⇒ Bob ⊲ + �0 ∈ R
=×<

9: return (+0,+ �0), (+1 ,+ �1)

Verification Stage. In Algorithm 19, Alice and Bob perform the

same steps for ; rounds of verification. In each round, a vector X̂0
whose elements are all randomly composed of 0 or 1 is generated

for the computation of �A = (+�0 + +�1 − (C) × X̂0 . Accept if

�A = (0, 0, · · · , 0)) holds for all ; rounds, reject otherwise.

Algorithm 19 S2PM Result Verification Stage

Input: + �0,+ �1 , (C ∈ R
=×< and ; > 0

Output: Accept if verified, Reject otherwise

1: for 8 := 1 to ; do

2: X̂0 ← generate a vector randomly composed of 0 or 1 ⊲

X̂0 ∈ R
<×1

3: �A = (+�0 ++�1 − (C) × X̂0 ⊲ �A ∈ R
=×1

4: if �A ≠ (0, 0, · · · , 0)) then

5: return Rejected;

6: end if

7: end for

8: return Accepted

A.2 S2PHM

The problem definition of S2PHM is as follows:

Problem 12 (Secure 2-PartyMatrix HybridMultiplication

Problem). Alice has private matrices (�1, �2) and Bob has private

matrices (�1, �2), where (�1, �1) ∈ R
=×B ,(�2, �2) ∈ R

B×< . They

want to conduct the hybrid multiplication 5 [(�1, �2), (�1, �2)] =

(�1 + �1) · (�2 + �2) in which Alice gets +0 and Bob gets +1 such

that+0 ++1 = (�1 + �1) · (�2 + �2).

A.2.1 Description of S2PHM. In S2PHM, Alice and Bob compute

+00 = �1×�2,+10 = �1×�2 respectively, and then jointly compute

+01 + +11 = �1 × �2 and +12, +02 ∈ R
=×< with S2PM protocol.

Finally, Alice sums +0 = +00 ++01 ++02 and Bob sums +1 = +10 +

+11 ++12.

Algorithm 20 S2PHM

Input: (�1, �1) ∈ R
=×B , (�2, �2) ∈ R

B×<

Output: +0,+1 ∈ R
=×<

1: +00 = �1 × �2 ⊲ +00 ∈ R
=×<

2: +10 = �1 × �2 ⊲ +10 ∈ R
=×<

3: +01,+11 ← S2PM(�1, �2) ⊲ +01,+11 ∈ R
=×<

4: +12,+02 ← S2PM(�1, �2) ⊲ +02,+12 ∈ R
=×<

5: +0 = +00 ++01 ++02 ⊲ +0 ∈ R
=×<

6: +1 = +10 ++11 ++12 ⊲ +1 ∈ R
=×<

7: return+0,+1

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Disguising Techniques
	2.2 Non-linear Operations in SMPC

	3 System Framework and Objectives
	3.1 System Architecture of EVA-S2PMLP
	3.2 Security Model

	4 PROPOSED WORK
	4.1 Secure Two-Party Row Inner Product Protocol (S2PRIP)
	4.2 Secure Two-Party DReLU Protocol (S2PDRL)
	4.3 Secure Two-Party ReLU Protocol (S2PRL)
	4.4 Secure Two-Party SoftMax Protocol (S2PSM)
	4.5 Secure Two-Party Gradient Protocol for Multi-Layer Perceptrons (S2PG-MLP)

	5 Secure Two-Party MLP Collaborative Modeling Based on Spatial Scale Optimization
	5.1 Secure Two-Party MLP Model Training
	5.2 Secure Two-Party MLP Inference Model

	6 Theoretical Complexity Analysis
	6.1 Computational Complexity
	6.2 Communication Complexity

	7 PERFORMANCE EVALUATION
	7.1 Setup Configuration
	7.2 Parameter Description
	7.3 Efficiency of Basic Protocols
	7.4 Precision Evaluation of Basic Protocols
	7.5 Performance Evaluation of Secure Two-Party MLP

	8 Conclusion and future work on EVA-S2PMLP
	9 CRediT authorship contribution statement
	10 Acknowledgments
	References
	A Algorithms of EVA-S3PC
	A.1 S2PM
	A.2 S2PHM

