arXiv:2506.15070v1 [cs.CR] 18 Jun 2025

Toward a Lightweight, Scalable, and Parallel
Secure Encryption Engine

Rasha Karakchi
Dept. of Computer Science and Engineering
University of South Carolina
Columbia, USA
karakchi@cec.sc.edu

Nishant Chinnasami
Dept. of Computer Science and Engineering
University of South Carolina
Columbia, USA
nishantc @email.sc.edu

Abstract—The exponential growth of applications of the In-
ternet of Things (IoT) has intensified the demand for efficient,
high-throughput, and energy-efficient data processing at the
edge. Conventional CPU-centric encryption methods suffer from
performance bottlenecks and excessive data movement, especially
in latency-sensitive and resource-constrained environments. In
this paper, we present SPiME, a lightweight, scalable, and FPGA-
compatible Secure Processor in Memory Encryption architecture
that integrates the Advanced Encryption Standard (AES-128)
directly into a Processing-in-Memory (PiM) framework. SPiME
is designed as a modular array of parallel PiM units, each
combining an AES core with a minimal control unit to enable
distributed in-place encryption with minimal overhead.

The architecture is fully implemented in Verilog and tested on
multiple AMD UltraScale and UltraScale+ FPGAs. Evaluational
results show that SPiMe can scale beyond 4,000 parallel units
while maintaining less than 5% utilization of key FPGA resources
on high-end devices. It delivers over 25 Gbps in sustained encryp-
tion throughput with predictable, low-latency performance. The
design’s portability, configurability, and resource efficiency make
it a compelling solution for secure edge computing, embedded
cryptographic systems, and customizable hardware accelerators.

Index Terms—FPGA, Verilog, AES, Processor-in-Memory

I. INTRODUCTION

The rise of Internet of Things (IoT) systems has significantly
accelerated Big Data generation, raising urgent challenges
in secure, real-time, and energy-efficient data processing [1].
IoT devices continuously produce sensitive data streams that
must be encrypted and processed under tight bandwidth and
energy constraints, exposing the limitations of conventional
CPU-centric systems in terms of latency and data movement
overhead.

Processing-in-Memory (PiM) has emerged as a promising
alternative, enabling computation near data to reduce trans-
fer overhead and improve performance [1]. While PiM has
demonstrated benefits in domains such as pattern matching
[2]-[5], genomics [6], and Al inference [7], securing data

Rye Stahle-Smith
Dept. of Computer Science and Engineering
University of South Carolina
Columbia, USA
rye@email.sc.edu

Tiffany Yu
Dept. of Computer Science and Engineering
University of South Carolina
Columbia, USA
tyu@email.sc.edu

within PiM remains a critical challenge. Traditional memory
hierarchies and centralized encryption methods fail to meet the
urgent needs of modern IoT and edge computing environments
(81, [9].

Security in PiM systems is particularly sensitive due to the
risk of data exposure during transfer, susceptibility to side-
channel attacks, and power leakage [10]. The Advanced En-
cryption Standard (AES) is a widely adopted countermeasure,
but software-based AES is computationally intensive and ill-
suited for real-time applications [11]. Embedding AES directly
into PiM architectures mitigates these issues by protecting
data in place, reducing latency, and minimizing the observable
attack surface [12], [13].

In this work, we introduce SPiME, a scalable and
lightweight AES-128 encryption system embedded within
a PiM framework and implemented in Verilog. Each
PiM unit integrates an aes_core—comprising submodules
sub_bytes, shift_rows, and mix_columns—with a
pim_controller for key scheduling and I/O. The system
supports throughput scaling via a parameterized NUM_PIMs
variable, enabling parallel encryption across distributed mem-
ory banks. SPiMe is designed for FPGA compatibility, modu-
lar reuse, and energy-efficient secure computation at the edge.
It addresses critical performance and security requirements for
PiM-based IoT platforms, providing a practical foundation for
secure, high-throughput data processing.

II. RELATED WORK

AES has been widely implemented in hardware to improve
performance, energy efficiency, and area utilization [14]-[27].
Prior designs have focused on optimizing resource-constrained
implementations [11], [28], improving resistance to side-
channel attacks through balanced logic [13], and achieving
high throughput using pipelined and parallel structures [8],
[29]. Other efforts are application-specific, such as targeting
5G networks [12] or employing approximate computing to

https://arxiv.org/abs/2506.15070v1

save energy [10], though these may compromise security. Xu
et al. [9] introduced a PiM-based AES integrated into DRAM,
but their approach relies on custom memory technology,
limiting portability and compatibility with FPGA platforms.

Chaves et al. [30] presented a polymorphic AES core
that merges SubBytes and MixColumns operations to reduce
resource usage and improve throughput. Iranfar et al. [31] de-
veloped a spintronic-based AES design for PiM, which offers
strong resistance to power-based side-channel attacks through
a symmetrical logic structure and uniform power profile. Liu et
al. [32] proposed AESPIM for real-time video encryption, in-
corporating system-level enhancements such as data/user-level
parallelism and QoS-aware scheduling to improve streaming
performance. Instruction-level approaches [33] leverage AES-
specific ISA extensions or general-purpose operations like
Pread and byte_perm, achieving fast encryption on CPUs but
relying on specialized hardware and typically supporting only
non-feedback encryption modes.

In contrast, our work introduces a modular and reconfig-
urable FPGA-based AES architecture designed for Processing-
in-Memory (PiM) systems. By integrating multiple AES-128
cores with lightweight controllers, our design enables parallel
and pipelined encryption directly near memory. This signifi-
cantly reduces data movement and memory access overhead,
leading to improved throughput and energy efficiency. Unlike
solutions that require custom memory or CPU instruction ex-
tensions, our architecture supports flexible deployment across
FPGA platforms, making it well-suited for secure, scalable,
and energy-aware applications in edge and embedded envi-
ronments.

Control/CPU System

SPiME

(][] [=]
0) [-
EEE

—I Cipher/Encrypted

sleuﬂgs
|o13ue)
-
<

1
w

Plain/Data-in
v
Aoy

Fig. 1: Proposed SPiME System.

III. DESIGN AND ARCHITECTURES

Our proposed architecture SPIME (Secure Processor in
Memory Encryption) is designed as an array of parallel
multiple processor-in-memory (PiM) units where each PiM
comprises a PiM controller and an AES core. The design is

fully described in Verilog and features a modular organization
that promotes scalability, reusability, and clarity.

Figure 1 illustrates the full SPIME architecture, composed
of an array of multiple PiM units. Each PiM unit receives
its plaintext input (data_in) and encryption key from buffers
managed by the CPU. The operation of the PiM units is
directed by a set of control signals originating from the CPU.
After processing, each PiM unit outputs the ciphertext to
a corresponding output buffer. The experimental evaluation
presented in this work focuses specifically on the SPIME
component itself, excluding analysis of the resource usage
or performance of the surrounding system. The followning
subsections are description of SPIME and its components.

A. Top-Level System

This is the main module that instantiates multiple PiM
processing units, each consisting of a PiM_Controller and an
associated AES_Core. It includes a parameter, NUM_PiMs,
which defines the number of parallel encryption units oper-
ating in the system. The top-level module coordinates global
input/control signals such as system clock, reset, encryption
start, and plaintext/key input. It gathers outputs from each
processing unit and can be extended to include aggregation,
output buffering, or interfacing to a larger memory subsystem.
Figure 2 presents the design units of n processor-in-memory
units.

B. PiM Controller

Each PiM_Controller is responsible for orchestrating the
AES encryption process for its assigned memory block. As
shown in Algorithm 1, it handles:

Start/Done Handshaking initiates the AES core when start
is asserted, and monitors the done signal from the AES core.

Data Handling routes the input plaintext and key to the
AES core and captures the result of the ciphertext after
encryption.

Clk
Rst
Din

Key
Start

PIMn

PIM1

PIM 2

Fig. 2: SPIME top_Level design consisting of an n PiMs where
each consists of AES_Core and control unit

Control Flow Management can support additional logic
for data buffering, memory interfacing, or result distribution
in a complete PIM setup. The controller acts as a lightweight
scheduler that isolates control complexity from the AES dat-
apath and makes the design modular.

Algorithm 1: PIM Controller State Machine

1 Function PIM_Controller (clk, rst, start, data_in, key, aes_done,
aes_data_out) :

// Initialize state

state < IDLE;

aes_start < 0;

done «+ 0;

data_out < 0;

while rrue do

if st = 1 then

state < IDLE;

aes_start < O;

7 T NIV NY

S e » 2

1 done <+ 0;

11 else

12 switch state do

13 case IDLE do

14 if start = 1 then

15 aes_start < 1;

16 state < START_AES;
17 case START_AES do

18 aes_start < 0;

19 state < WAIT_AES;

20 case WAIT_AES do

21 if aes_done = 1 then

22 data_out < aes_data_out;
23 done + 1;

24 state < DONE;

25 case DONE do
26 done <+ 0;
27 state < IDLE;

C. AES Core

It performs AES-128 encryption on a single 128-bit data
block using a 128-bit key. It is pipelined and driven by a
finite-state machine (FSM) that sequences through the AES
rounds. In this design, we depend on the previous work of
AES [14]-[27]. The AES_Core is designed as a synchronous
digital hardware module implemented in Verilog that controls
the AES encryption process. This module coordinates the
sequence of AES transformations applied to the input plaintext
using a set of pre-computed round keys.

o Inputs:

— clk: System clock signal drives the sequential logic.

— rst: Active-high synchronous reset signal to initial-
ize internal states.

— start: Signal to initiate the encryption process.

— data_in: 128-bit plaintext input data.

— key: 128-bit AES key (used for key expansion).

— round_keys_flat: Concatenated 1408-bit bus
containing all 11 round keys (each 128-bit).

o Outputs:
— data_out: 128-bit ciphertext output after encryp-

tion.
— done: Flag indicating completion of encryption.
Upon initialization or reset, the module unpacks
the round_keys_flat input into an array

round_keys[0..10], each holding a 128-bit round
key. The module includes a finite-state machine (FSM) with

four states: IDLE, INIT, ROUND, and FINAL, which control
the encryption flow:

IDLE State: The module waits for the start signal.
When asserted, it transitions to the INIT state. Outputs remain
inactive during this state.

INIT State: Resets the round counter to zero and performs
the initial AddRoundKey operation by XOR-ing the input data
with round_keys [0], initializing the internal AES state.
Then, it moves to the ROUND state.

ROUND State: Sequentially performs AES round trans-
formations:SubBytes, ShiftRows and MixColumns. The trans-
formed state is XOR-ed with the next round key
round_keys|[round + 1], and the round counter is in-
cremented. If the round counter reaches 9, the FSM transitions
to the FINAL state; otherwise, it continues processing rounds.

FINAL State: Executes the final AES round, applying
SubBytes and ShiftRows but skipping MixColumns. The state
is then XOR-ed with the last round key round_keys[10].
The output data_out is set to the encrypted data, done is
asserted, and the FSM returns to IDLE.

When the synchronous reset rst is asserted, all internal
registers, including the state machine and round counter,
are cleared. The FSM returns to the IDLE state, and the
done signal is de-asserted. The AES_Core is divided into
the following submodules that represent the functional blocks
of AES. Each submodule is designed to be synthesized and
modular. Algorithm 2 describes thoroughly the AES_Core
operation.

D. AES_Sub_Bytes

This module implements the AES S-Box substitution op-
eration. Each byte in the 128-bit block is replaced using
a lookup table or logic circuit that performs the non-linear
transformation. The S-Box is designed using combinational
logic or ROM-based lookup depending on FPGA resources.
The AES_Sub_Bytes module implements the SubBytes
transformation step in AES encryption as a synchronous
process controlled by a clock and reset signals. It handles
input data packets, validates them, and produces corresponding
outputs based on the packet type.

o Inputs:

— clock: The system clock signal, driving all sequen-
tial operations.

— reset: Active-high synchronous reset signal to ini-
tialize internal registers.

— input_valid: A flag indicating when the input
data is valid.

— packet_type: A signal identifying the type of
input packet.

— input_data: The data input to be processed by
the SubBytes operation.

o Outputs:

— output_valid: Flag indicating when the output
data is valid.

— output_data: The processed output data after the
SubBytes step.

Algorithm 2: AES Core Algorithm

1 Function

AES_Core (clk, rst, start, data_in, key, round_keys_flat):
Input: clk, rst, start, data_in, key, round_keys_flat
Output: done, data_out
// Unpack round keys from flattened input
for i <— 0 to 10 do

| round_keys[i] < round_keys_flat[i - 128+ : 128];

// Initialize FSM
current_state < IDLE;
// FSM transition
if rst then
| current_state < IDLE;

else
| current_state < next_state;

// FSM next state logic
if current_state = IDLFE then

‘ next_state < start ? INIT : IDLE,
else if current_state = INIT then

‘ next_state < ROUND;
else if current_state = ROUN D then

‘ next_state < (round =9) ? FINAL : ROUND;
else if current_state = FIN AL then

‘ next_state < IDLFE,
else

| newxt_state <~ IDLE;

// Round logic

if rst then

state < 0;
round < 0;
done <+ 0;

else
if current_state = IDLE then
‘ done <+ 0;
else if current_state = INIT then
round < 0;
state < data_in @ round_keys[0];
else if current_state = ROUN D then
state < miz_columns_out®dround_keys[round+1];
round < round + 1;
else if current_state = FIN AL then
state < shift_rows_out ® round_keys[10];
data_out < state;
done + 1;

// Apply AES transformations

sub_bytes_out < SubBytes(state);

shift_rows_out < ShiftRows(sub_bytes_out);
miz_columns_out < MixColumns(shift_rows_out);
return done, data_out

The module operates as follows:

o« When the reset signal is asserted (high), the module

clears its internal temporary data register and de-asserts
the output_valid signal to zero, effectively resetting
its internal state.
On each rising edge of the clock signal, if the
input_valid flag is high, the module inspects the
packet_type:

— Ifthe packet_type equals 2 (indicating the packet
is relevant for the SubBytes operation), the input data
is latched into an internal temporary register, and
the output_valid flag is asserted to indicate the
output data is now valid.

— Otherwise, if the packet type does not match,
output_valid is de-asserted, indicating no valid
output data for this cycle.

o The output data, output_data, continuously reflects

the value stored in the temporary register temp_data.

This behavior ensures that only valid data packets of the

expected type are processed and output, while other packets
are ignored.

E. AES_Shift Rows

This module implements the cyclic left shift of the AES
state rows. The AES ShiftRows transformation is a permu-
tation step applied to the 128-bit AES state matrix. It cyclically
shifts the bytes in each row of the state by a certain offset to
the left, depending on the row index.

o Input: A 128-bit state data_in represented as a 4x4

matrix of bytes.

e Output: A 128-bit state data_out, also represented
as a 4x4 matrix of bytes after applying the ShiftRows
operation.

The transformation proceeds as follows:

o The state matrix consists of 4 rows and 4 columns, where
each element is a byte.

e For the first row (row = 0), the bytes remain un-
changed; data_out [0] [column] is directly assigned
from data_in[0] [column].

o For subsequent rows (row = 1, 2, 3), each byte is
shifted cyclically to the left by an amount equal to the
row index:

data_out [row] [column] <

data_in[row] [(column + row) mod 4]

meaning each row shifts its bytes left by its row number,
wrapping around cyclically.

F. AES Mix_Columns

The AES_ Mix_Columns transformation operates on the
128-bit input state data_in, which is arranged as 4 columns
of 4 bytes each. The transformation processes each column
independently by applying finite field arithmetic in GF(2%).

Specifically, for each column ¢ (from O to 3), the four bytes
(S0, 81, S2, 83) of that column are extracted. Each output byte
(mg, m1, ma, m3) of the transformed column is computed as
a linear combination of the input bytes using multiplication
by constants 2 and 3 in GF(2%), where multiplication by 2 is
implemented by the function mul_by_ 2 and multiplication
by 3 is performed by mul_by_3. These computations are
defined as follows:

mo = mul_by_2(sg) © mul_by_3(s1) @ s2 ® s3
my = sop @ mul_by_2(s1) ® mul_by_3(s2) P s3
mo = so ® s1 @ mul_by_2(s2) ® mul_by_3(s3)
mz = mul_by_3(sg) & s1 ® s2 ® mul_by_2(s3)

Here, multiplication by 2 (mulyy2) is implemented as a
left shift of the byte followed by a conditional XOR with Ox1b
if the most significant bit was set before the shift, to ensure
reduction modulo of the AES polynomial. Multiplication by 3

(mul_by_3) is computed as the XOR of mul_by_2 and the
original byte. After computing (mg,m, mso,ms3), the output

state data_out is updated by replacing column c with these
new bytes. This process is repeated for all four columns,
resulting in the fully transformed AES state.

G. Add_Round_Key and Key Scheduler

It performs XOR between the 128-bit state and the 128-bit
round key. This operation is simple but crucial for combining
the input data with the key material. Although not always
implemented as a separate module, the AES_Core contains
logic to expand the 128-bit key into 11 round keys using the
Rijndael key expansion algorithm [34]. Each round key is used
once per round.

IV. TESTING AND EVALUATION PROCESS

To assess the practicality and performance of the proposed
SPiMe architecture, we performed a detailed evaluation us-
ing multiple FPGA platforms. Our analysis spans hardware
resource utilization, scalability, latency, and throughput, with
designs synthesized and tested on AMD UltraScale and Ultra-
Scale+ devices.

A. FPGA Platforms and Configuration

We selected five FPGA platforms for evaluation: U55C,
U280, VCU118, ZCU104, and ZCU106. These devices span
a range from high-end data center accelerators to embedded-
class SoCs. Table I summarizes their hardware specifications,
including available logic (LUTs), flip-flops (FFs), memory
resources (BRAM and URAM), and DSP blocks.

To explore SPIME’s scalability, we instantiated arrays with
increasing numbers of parallel PiM units: 256, 512, 1024,
2048, and 4096. Each PIM unit comprises an AES-128
encryption core and a control unit (controller). The upper
bound of 4096 units was selected based on routing limitations
observed during placement and implementation, particularly
due to the total wire count exceeding 1 million nets in the
largest configurations.

TABLE I: Comparison of FPGA Devices

Device Part LUTs (K) FFs (K) BRAM URAM DSPs
UssC xcu55c-fsvh2892-2L-e 1304 2607 2016 960 9024
U280 xcu280-fsvh2892-2L-e 1304 2607 2016 960 9024
VCUI118 xcvu9p-figa2104-2L-e 1182 2364 2160 960 6840
ZCU104 xczuTev-ffvcl156-2-¢ 230 460 312 96 1728
ZCU106 xczuTev-ffvcl156-2- 230 460 312 96 1728

B. Hardware Resource Utilization

Figure 3 illustrates the LUT utilization across different
FPGA platforms as the number of PIM units increases. On
high-end devices like U55C, U280, and VCU118, even the
4096-PIM configuration consumed only around 3.65% of the
available LUTS. In contrast, smaller devices such as ZCU104
and ZCU106 reported LUT utilization near 18.44% for the
same configuration, highlighting the impact of limited logic
capacity.

Figure 4 presents the flip-flop (register) usage. As with
LUTs, register consumption scales linearly with the number

o B

=
R]

256 m512 m1024 2048 4096

5 .
=
(=]
5
E
=
-
(2]
=
=

VCU118
DEVICES

ZCU104

ZCU 106

Fig. 3: The LUTs utilization percentage versus number of
PiMs (256-4096) on different FPGA devices.

=
(=]

256 m512 1024 m2048 409

REGISTER UTILIZATION (%)
O P N WEO DN O

VCU118
DEIVCES

ZCU104 ZCU106

Fig. 4: The register utilization percentage versus number of
PiMs (256-4096) on different FPGA devices.

of instantiated PiM units. Larger FPGAs maintained sub-
2% FF utilization for 4096 PiMs, while ZCU-series devices
reached nearly 10%. These results confirm the modularity
and efficiency of the SPIME design, indicating that the per-
PiM overhead in both logic and control resources remains
consistent across platforms.

C. Latency Analysis

Latency was calculated as a function of the number of cycles
per AES operation and the operating frequency (Fmax). Each
AES operation requires a fixed 11-cycle sequence: 1 cycle for
initiation, 9 for AES rounds, and 1 for finalization. The latency
in microseconds is given by Equation 1:

Cycles t t task
Latency (us) = 1000 x (ycles to execute one tas > "

f max

Figure 5 shows how latency inversely scales with clock
frequency. At 100 MHz, latency is approximately 0.11 g s,
reducing to 0.036 p s and 0.022 p s at 300 MHz and 500
MHz, respectively. This behavior confirms SPiMe’s suitability
for real-time applications, as its latency remains both low and
predictable.

D. Throughput Evaluation

Throughput was measured as the amount of encrypted data
(in bits) divided by latency. The throughput in Gbps is given
by Equation 2:

Block size - 106 @)
Latency (us)

Figure 6 shows the performance as the number of PIM units
increases, using a fixed block size of 1024 bits. Throughput
scales nearly linearly with PIM count, reaching over 23 Gbps
at 500 MHz with 4096 PIMs.

Figure 7 shows the effect of increasing the block sizes
(1K, 4K, 16K, 64K) at a fixed frequency and PIM count.
Larger blocks amortize control and I/O overhead, yielding
significantly higher throughput. The design performs best in
batch or buffered processing scenarios, which are common in
secure IoT edge devices.

Throughput (Gbps) = (

>
Q
=
e
=

300
FMAX (MHZ)

Fig. 5: SPIME latency varies based on the Fmax while same
for all arrays of NUM_PIMs.

256 m512 1024 w2048 - 4096

THROUGHPUT (GBIT/S)

300
FMAX (MHZ)

Fig. 6: Throughput of 1024 block size with the NUM_PIMs
varies from 1K to 4K.

The results show that SPiMe efficiently scales up to 4096
PIMs with minimal LUT and FF overhead. The latency is
deterministic and low, ranging from 0.022 p s to 0.11 u
s depending on frequency. Throughput exceeds 25 Gbps in
optimal configurations, with consistent linear scaling. The

1600
1400
1200

1000

Iz
Li
=
@
©
=
=
&
e
o
=
Q
=
Lo
=

200 300 400 500
FMAX (MHZ)

Fig. 7: Throughput varies based on the block size while
maximum frequency and num_pims varies.

architecture remains portable across large and small FPGA
platforms with proportional resource usage.

V. CONCLUSION AND FUTURE WORK

This work presented SPIME, a scalable, lightweight AES-
based secure memory core tailored for FPGA-based Processor-
in-Memory (PiM) architectures. Implemented entirely in Ver-
ilog, SPIME integrates a PIM controller with an AES-128 core,
enabling parallel encryption with minimal control overhead.

Hardware Efficiency and Scalability: SPIME exhibits excel-
lent scalability across a range of FPGA platforms. On high-end
devices like the US5C and VCUI118, we instantiated up to
4096 parallel PiM units with under 4% resource utilization.
On smaller platforms (ZCU104/106), SPIME scaled down
effectively, maintaining low per-unit overhead. The design’s
modularity ensures adaptability from embedded systems to
datacenter-class accelerators.

Latency and Throughput: Each AES encryption completes
in a fixed 11-cycle sequence, resulting in predictable, constant-
time performance. At 500 MHz, latency drops to 0.022 ps.
Throughput scales linearly with the number of units and block
size, reaching over 25 Gbps at peak with 4K units. Larger
blocks significantly improve throughput efficiency by amor-
tizing control overhead, making SPiME suitable for secure
streaming and batched workloads like video analytics and edge
Al inference.

Robustness: No architectural bottlenecks were observed
across scale tests. FSM-based control and pipelining enabled
smooth operation, with routing congestion being the only
limitation at extreme scales—an issue addressable in ASIC
flows or future FPGAs with improved routing fabrics.

Future work includes full system integration with memory
and CPU coordination, dynamic workload adaptation, real
hardware benchmarking, and side-channel security validation.
Additionally, SPIME will be extended with high-level software
APIs to support broader adoption in edge and cloud-based
secure computing environments.

To conclude, SPiME is, to our knowledge, the first FPGA-
compatible, parameterizable PiM-based encryption core that

supports scalable parallel AES processing. Its modular design,
predictable performance, and low overhead make it a strong
candidate for secure, high-throughput processing in both edge
and cloud environments.

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Xu Yang, Yumin Hou, and Hu He. A processing-in-memory architec-
ture programming paradigm for wireless internet-of-things applications.
Sensors, 19(1):140, 2019.

Rasha Karakchi and Jason D. Bakos. Napoly: A non-deterministic
automata processor overlay. ACM Transactions on Reconfigurable
Technology and Systems, 16:1-25, 2023.

Rasha Karakchi, Lothrop O. Richards, and Jason D. Bakos. A dynami-
cally reconfigurable automata processor overlay. In 2017 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
pages 1-8, 2017.

Rasha Karakchi, Charles Daniels, and Jason Bakos. An overlay architec-
ture for pattern matching. In 2019 IEEE 30th International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
volume 2160-052X, pages 165-172, 2019.

Ryan Karbowniczak and Rasha Karakchi. Optimizing sequence align-
ment with scored nfas. arXiv preprint arXiv:2501.02162, 2025.

Rasha Karakchi, Jordan A. Bradshaw, and Jason D. Bakos. High-level
synthesis of a genomic database search engine. In 2016 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
pages 1-6, 2016.

Rasha Karakchi and Ryan Karbowniczak. Developing a self-explanatory
transformer. In 2024 IEEE/ACM Symposium on Edge Computing (SEC),
pages 523-525. IEEE, 2024.

Kimmo Jarvinen, Matti Tommiska, and Jouni Skyttd. A fully pipelined
memoryless 17.8 gbps aes-128 encryptor. In Field Programmable Logic
and Applications (FPL), pages 147-152. IEEE, 2008.

Lei Xu, Hao Wang, and Yong Chen. A processing-in-memory aes
implementation in dram for secure and efficient data encryption. /IEEE
Transactions on Computers, 2023. Early Access.

Jun Zhang, Yu Liu, and Jie Han. An energy-efficient aes implementation
using approximate logic synthesis. Integration, the VLSI Journal, 75:85—
94, 2021.

Robert McEvoy, Conor Murphy, Mdire McLoone, and William Marnane.
A compact fpga-based architecture for aes encryption. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 14(7):693-701,
2006.

Qiang Wang, Li Zhang, and Yifan Zhao. High-performance aes-gcm
design for S5g security on fpga. ACM Transactions on Embedded
Computing Systems (TECS), 20(5s):1-18, 2021.

Kris Tiri and Ingrid Verbauwhede. Securing encryption algorithms
against dpa at the logic level: Next generation smart card technology.
In Cryptographic Hardware and Embedded Systems (CHES). Springer,
2003.

Pawet Chodowiec and Kris Gaj. Very compact fpga implementation of
the aes algorithm. In International workshop on cryptographic hardware
and embedded systems, pages 319-333. Springer, 2003.

Ashwini M Deshpande, Mangesh S Deshpande, and Devendra N Kay-
atanavar. Fpga implementation of aes encryption and decryption. In
2009 international conference on control, automation, communication
and energy conservation, pages 1-6. IEEE, 2009.

S Sridevi Sathya Priya, P Karthigaikumar, and Narayana Ravi Teja. Fpga
implementation of aes algorithm for high speed applications. Analog
integrated circuits and signal processing, pages 1-11, 2022.

Joseph Zambreno, David Nguyen, and Alok Choudhary. Exploring
area/delay tradeoffs in an aes fpga implementation. In International
Conference on Field Programmable Logic and Applications, pages 575—
585. Springer, 2004.

Piotr Chodowiec and Krzysztof Gaj. Asic implementation of the aes
rijndael algorithm. In International Conference on Field Programmable
Logic and Applications, pages 160—-171. Springer, 2002.

Tim Good and Mohammed Benaissa. Aes on fpga from the fastest
to the smallest. In Cryptographic Hardware and Embedded Systems—
CHES 2005: 7th International Workshop, Edinburgh, UK, August 29—
September 1, 2005. Proceedings 7, pages 427-440. Springer, 2005.
Harshali Zodpe and Ashok Sapkal. An efficient aes implementation
using fpga with enhanced security features. Journal of King Saud
University-Engineering Sciences, 32(2):115-122, 2020.

[21]

(22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

Taniya Hasija, Amanpreet Kaur, KR Ramkumar, Shagun Sharma,
Sudesh Mittal, and Bhupendra Singh. A survey on performance analysis
of different architectures of aes algorithm on fpga. Modern Electronics
Devices and Communication Systems: Select Proceedings of MEDCOM
2021, pages 39-54, 2023.

Hrushikesh S Deshpande, Kailash J Karande, and Altaaf O Mulani.
Efficient implementation of aes algorithm on fpga. In 2014 International
Conference on Communication and Signal Processing, pages 1895—
1899. IEEE, 2014.

Atul M Borkar, RV Kshirsagar, and MV Vyawahare. Fpga imple-
mentation of aes algorithm. In 201/ 3rd International Conference on
Electronics Computer Technology, volume 3, pages 401-405. IEEE,
2011.

Umer Farooq and M Faisal Aslam. Comparative analysis of different
aes implementation techniques for efficient resource usage and better
performance of an fpga. Journal of King Saud University-Computer
and Information Sciences, 29(3):295-302, 2017.

Xiwei Zhang, Meng Li, and Jing Hu. Optimization and implementation
of aes algorithm based on fpga. In 2018 IEEE 4th International
Conference on Computer and Communications (ICCC), pages 2704—
2709. IEEE, 2018.

Hrushikesh S Deshpande, Kailash J Karande, and Altaaf O Mulani.
Area optimized implementation of aes algorithm on fpga. In 2015
International Conference on Communications and Signal Processing
(ICCSP), pages 0010-0014. IEEE, 2015.

Joseph Sunil, HS Suhas, BK Sumanth, and S Santhameena. Im-
plementation of aes algorithm on fpga and on software. In 2020
IEEE International Conference for Innovation in Technology (INOCON),
pages 1-4. IEEE, 2020.

Atsushi Satoh, Shuji Morioka, Kohji Takano, and Sumio Munetoh. A
compact Rijndael hardware architecture with S-box optimization. In
Advances in Cryptology—ASIACRYPT 2001, pages 239-254. Springer,
2001.

Xiaohui He, Bin Li, and Yong Zhang. A parallel aes architecture for
high-speed network security. I[EEE Access, 8:21725-21735, 2020.
Ricardo Chaves, Georgi Kuzmanov, Stamatis Vassiliadis, and Leonel
Sousa. Reconfigurable memory based aes co-processor. In Proceedings
20th IEEE International Parallel & Distributed Processing Symposium,
pages 8—pp. IEEE, 2006.

Pegah Iranfar, Abdolah Amirany, and Mohammad Hossein Moaiyeri.
Power attack-immune spintronic-based aes hardware accelerator for
secure and high-performance pim architectures. IEEE Transactions on
Magnetics, 61(4):1-12, 2025.

Yiding Liu, Guangyu Huang, Yuwei Zhang, Xuehai Wang, and Yu Wang.
Enabling PIM-based AES encryption for online video streaming. Jour-
nal of Systems Architecture, 132:102734, 2022.

Ruby B Lee and Yu-Yuan Chen. Processor accelerator for aes. In 2010
IEEE 8th Symposium on Application Specific Processors (SASP), pages
16-21. IEEE, 2010.

Tariq Jamil. The rijndael algorithm. /IEEE potentials, 23(2):36-38, 2004.

