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Abstract—We propose a novel directional modulation (DM)
design for OFDM transmitters aided by a time-modulated in-
telligent reflecting surface (TM-IRS). The TM-IRS is configured
to preserve the integrity of transmitted signals toward multiple
legitimate users while scrambling the signal in all other directions.
Existing TM-IRS design methods typically target a single user
direction and follow predefined rule-based procedures, making
them unsuitable for multi-user scenarios. Here, we propose
a generative AI-based approach to design good sets of TM-
IRS parameters out of a set of all possible quantized ranges
of parameters. The design objective is to maximize the sum
rate across the authorized directions. We model the TM-IRS
parameter selection as a deterministic Markov decision process
(MDP), where each terminal state corresponds to a specific
configuration of TM-IRS parameters. GFlowNets are employed
to learn a stochastic policy that samples TM-IRS parameter
sets with probability proportional to their associated sum rate
reward. Experimental results demonstrate that the proposed
method effectively enhances the security of the TM-IRS-aided
OFDM systems with multi-users. Also, despite the vast size
of the TM-IRS configuration space, the GFlowNet is able to
converge after training on fewer than 0.000001% of all possible
configurations, demonstrating remarkable efficiency compared to
exhaustive combinatorial search. Implementation code is avail-
able at https://github.com/ZhihaoTao/GFN4TM-RIS to facilitate
reproducibility.

Index Terms—Intelligent reflecting surface, time modulation,
physical layer security, OFDM, GFlowNets.

I. INTRODUCTION

The broadcast nature of wireless propagation exposes con-

fidential data to interception unless special precautions are

taken. Physical layer security (PLS) exploits physical char-

acteristics of the wireless medium, such as channel fading,

noise, interference, and spatial diversity, to complement—or,

in some circumstances, replace—higher-layer cryptographic

techniques [1]–[3]. Among the many PLS mechanisms pro-

posed, directional modulation (DM) has attracted particular

interest because it embeds information in the spatial signature

of the transmitted waveform: a receiver aligned with the

intended steering direction observes an undistorted constella-

tion, whereas other directions see a scrambled one [4]–[6].

Compared with other PLS approaches such as secrecy rate
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maximization [7], [8] or artificial-noise injection [9], [10],

DM can offer comparable secrecy in a more cost-effective and

energy-efficient manner [11].

DM implementations have been proposed for fully digi-

tal or hybrid beamforming architectures with multiple radio-

frequency (RF) chains and fine-grained phase control at each

antenna element or each transmitted symbol [11]–[14]. A cost-

effective single-RF-chain alternative is to apply time modula-

tion to a phased array driven by orthogonal frequency-division

multiplexing (OFDM) signals [15], [16]. By using single-

pole-single-throw (SPST) switches to periodically connect and

disconnect antennas to the RF chain, a time-modulated array

(TMA) generates controllable harmonics whose periods are

aligned with the OFDM symbol duration. As a result, each

subcarrier of the transmitted OFDM signal carries a weighted

mixture of all original symbols, where the mixing coefficients

depend on the TMA parameters, i.e., connection times, or

on states, and on state durations. This mixing represents

scrambling of the transmitted symbols in all directions. The

scrambling towards a desired direction can be eliminated by

a rule-based design of the TM parameters. It should be noted

that the energy utilization efficiency of TMA reduces with the

periodic deactivation of antenna elements [17].

Recent research [18] shifts time modulation to an intelligent

reflecting surface (IRS). IRS is a passive metasurface com-

posed of programmable elements that dynamically adjust the

phase of incident electromagnetic waves to realize beamform-

ing [19]. By exerting the periodic TM on each IRS element, the

system in [18] is designed to implement a 3D directional mod-

ulation. Also, the large aperture of an IRS delivers substantial

beamforming gain that compensates for power lost of TMA

during element deactivation. In [18], the TM-IRS parameters

are still obtained using simple, closed-form rules. Although

these rule-based patterns are straightforward to implement,

they ensure undistorted signal reception in only a single user

direction, while their extension to multiple users is challenging.

This is particularly restrictive, as multi-user scenarios are

common in contemporary wireless communication systems.

This paper proposes a generative-AI framework for TM-

IRS-assisted OFDM systems that replaces rule-based TM-IRS

patterns with selecting good sets of TM-IRS parameters out

https://arxiv.org/abs/2506.14992v1


of a set of all possible quantized ranges of parameters. The

measure of goodness is the sum rate at authorized directions.

We model the TM-IRS parameter selection as a deterministic

Markov decision process (MDP), where each terminal state

corresponds to a specific configuration of TM-IRS parameters.

GFlowNets are employed to learn a stochastic policy that

samples TM-IRS parameter sets with probability proportional

to their associated sum rate reward. GFlowNets are unsu-

pervised models that leverage a flow-matching principle to

sample composite objects with probabilities proportional to a

user-defined reward [20], [21]. In our setting, the analytical

expression for the sum rate of the legitimate users serves

as the reward function. The TM-IRS parameter space is

discretized, and the parameter selection task is formulated as

a deterministic Markov decision process (MDP), where each

terminal state corresponds to a complete TM-IRS parameter

set. i.e., a full on/off and phase shift configuration of the IRS

elements. A feedforward neural network-based GFlowNet is

trained offline to sample TM-IRS parameter sets in proportion

to their associated sum rate reward. Experimental results show

that the TM-IRS patterns generated by the learned GFlowNet

yield undistorted reception at multiple desired directions while

effectively scrambling signals in all other directions, thereby

thwarting potential eavesdroppers. Notably, the sampling pol-

icy is stochastic and remains unknown to any adversary, sig-

nificantly increasing the difficulty of potential attacks. More-

over, unlike deterministic optimization methods, the GFlowNet

naturally generates a diverse set of high-performing TM-IRS

configurations. This diversity allows the system to randomize

TM-IRS patterns over time, thereby further enhancing the

security [16].

The remainder of the paper is organized as follows. Sec-

tion II presents the system model and formalizes the TM-

IRS parameter optimization problem. Section III details the

proposed GFlowNet-based TM-IRS parameter design frame-

work. Numerical results demonstrating the effectiveness of the

proposed approach are provided in Section IV. Finally, Sec-

tion V concludes the paper and discusses potential directions

for future research.

II. SYSTEM MODEL

Consider an IRS composed of Mx ×Mz passive reflecting

units that assists a uniform linear array (ULA) transmitting

OFDM signals. Let θT and φT denote the elevation and

azimuth angles of the ULA transmitter w.r.t. the IRS, respec-

tively. From the transmitter’s perspective, the IRS is modeled

as a point target due to the sub-wavelength size of individual

IRS elements and the overall compactness of the surface [22].

Thus, we denote the direction of the IRS as viewed from

the ULA by θI . We consider a single legitimate user first

for notational convenience and denote its direction relative

to the IRS as (θc, φc). It is assumed that θI is known at

the transmitter, and (θT , φT ) and (θc, φc) are known at the

IRS. The location of potential eavesdroppers is assumed to

be unknown. Additionally, all elements of both the ULA and

the IRS are spaced by half the carrier wavelength, i.e., λ/2.

The channel to the legitimate destination is assumed to be

known at the legitimate receivers. If the eavesdropper does not

know its channel from the transmitter, then the channel effect

would represent additional scrambling. Here we will assume

the scenario in which the eavesdropper knows its channel and

can compensate for it. Thus, in the following, the channel will

not be included in the expressions.

Each antenna element is fed with an OFDM signal, which

is expressed as

e(t) =
1√
K

K−1
∑

k=0

d(k)ej2π(fc+kfs)t, 0 ≤ t < Ts, (1)

where K is the number of subcarriers, d(k) is the dig-

itally modulated data symbol on the k-th subcarrier, fc
is the carrier frequency, fs is the subcarrier spacing, and

Ts is the OFDM symbol duration. By setting the antenna

weight wn = e−jnπ cos θI to focus the ULA beam to-

ward the IRS, we have the radiated waveform r(t, θI) =
1√
N

∑N−1
n=0 e(t)wne

jnπ cos θI =
√
Ne(t), where N is the

number of transmit antennas.

Each IRS unit is connected to a high-speed SPST switch

and a phase shifter. The switches operate in two states: “on”

and “off.” Let Umn(t) denote the on/off switching function of

the (m,n)-th IRS unit, with a period equal to Ts. Define the

normalized turn-on instant as τomn ∈ [0, 1) and the normalized

on-duration as ∆τmn ∈ [0, 1). The switching function Umn(t)
is set to 1 when t ∈ [Tsτ

o
mn, Ts(τ

o
mn+∆τmn)] and 0 otherwise.

This periodic square waveform can be expanded using its

Fourier series:

Umn(t) =

∞
∑

l=−∞
ej2πlfst∆τmnsinc(lπ∆τmn)

× e−jlπ(2τo
mn+∆τmn),

(2)

The harmonics introduced by time modulation are centered at

integer multiples of fs. Define the far-field array factor of the

(m,n)-th IRS element as [23]

amn(θ, φ) = e−jπ(m sin θ cosφ+n sin θ sinφ). (3)

Let cmn be the unit-modulus phase shift applied by the (m,n)-
th IRS unit, the signal reflected by the IRS toward direction

(θ, φ) can then be expressed as

y(t, θ, φ) = r(t, θI)

Mx−1
∑

m=0

Mz−1
∑

n=0

amn(θT , φT )Umn(t)

× cmnamn(θ, φ).

(4)

Substituting (1) and (2) into (4) and reorganizing terms

yields

y(t, θ, φ) =

√

N

K

K−1
∑

k=0

d(k)ej2π(fc+kfs)t

×
∞
∑

l=−∞
ej2πlfstV (l,Ωmn, θ, φ),

(5)



where Ωmn = {cmn,∆τmn, τ
o
mn} represents the TM-IRS

parameter configuration, and

V (l,Ωmn, θ, φ) =

Mx−1
∑

m=0

Mz−1
∑

n=0

amn(θT , φT )cmnamn(θ, φ)

×∆τmnsinc(lπ∆τmn)e
−jlπ(2τo

mn+∆τmn).
(6)

Here, V (l) denotes the coefficient of the l-th harmonic gen-

erated by the time modulation of the (m,n)-th IRS element

at direction (θ, φ). After OFDM demodulation and adding

Gaussian noise zi with zero mean and variance σ2, the received

data symbol on the i-th subcarrier is given by

yi(θ, φ) =

√

N

K

K−1
∑

k=0

d(k)V (i− k,Ωmn, θ, φ) + zi. (7)

From (7), it is evident that each subcarrier symbol contains a

weighted summation of symbols from all subcarriers, resulting

in data scrambling across subcarriers.

In [18], to ensure undistorted reception at the legitimate

user, the TM parameters were selected to satisfy V (i −
k,Ωmn, θc, φc) = 0 for all i 6= k, i.e. nulling scrambling,

which can be achieved via closed-form rule-based TM-IRS

parameter design. However, the resulting rules do not guaran-

tee that the scrambling experienced by other legitimate users

at (θ, φ) 6= (θc, φc) can be effectively mitigated, making this

approach difficult to extend to multi-user scenarios. In this

work, we do not aim to enforce Vi−k = 0 for all i 6= k (where

Vi−k denotes V (i−k,Ωmn, θc, φc) for notational simplicity) to

achieve undistorted reception. Instead, Vi−k for i 6= k can be

treated as interference terms. Define the signal-to-interference-

plus-noise ratio (SINR) at the i-th subcarrier of one legitimate

user as

SINRi =
η|V0|2

η
∑i

j=i−(K−1) |Vj |2 − |V0|2 + σ2
, (8)

where η = N/K . The achievable sum rate across all subcar-

riers can then be expressed as

C =

K−1
∑

i=0

log2(1 + SINRi). (9)

The total sum rate of U legitimate users is

Ctotal =

U
∑

u=1

Cu, (10)

where Cu is defined by (9) and the subscript ‘u’ denotes the

u-th user. Meanwhile, to ensure that the symbol constellation

remains unaffected by the phase of V0, a constraint is imposed:

| arg(V0)u| ≤ ξu, where ξu is a threshold determined by

the modulation scheme. For M-PSK modulation, ξu must

be smaller than π/M. Accordingly, the design of the TM-

IRS parameters is formulated as a constrained optimization

problem:

max
Ωmn

Ctotal

s.t. | arg(V0)u| ≤ ξu.
(11)

From the above equations, we can see that the magnitude

and phase of V0, the scrambling terms, and the noise are all

taken into account. In the following, we propose a GFlowNet-

based approach to optimize the TM-IRS parameters under the

constraint in (11).

III. GFLOWNET-BASED TM-IRS PARAMETER DESIGN

A. Overview of GFlowNets

The GFlowNet framework models the sequential decision-

making process as a deterministic MDP, defined over a set of

states S, with a subset of terminal states X ⊂ S. At each state

s ∈ S, a discrete set of actions A(s) determines the permissible

transitions, forming a directed acyclic graph (DAG) structure.

A trajectory consists of a sequence of actions from the root

(initial) state to a terminal state, with the possibility that

different action paths may reach the same state, reflecting

the non-injective structure of the graph. Rewards are only

assigned to terminal states, while all intermediate states carry

zero reward, i.e., R(s) = 0 for s /∈ X . The training objective

in GFlowNets is to learn a stochastic policy that induces a

distribution over terminal states proportional to their associated

non-negative rewards [20].

To achieve this, GFlowNets view the MDP as a network of

flows propagating from the root node to the terminal nodes.

An edge flow F (s, a) is defined for each action a taken at

state s, resulting in a transition to s′ = T (s, a), and the total

state flow F (s) corresponds to the sum of flows through that

state. The flow matching principle requires that, at every state,

the incoming flow equals the sum of its outgoing flow and

reward. Specifically, for a node s′, we define the incoming

and outgoing flows as:

Fin(s
′) =

∑

s,a:T (s,a)=s′

F (s, a), (12)

Fout(s
′) =

∑

a′∈A(s′)

F (s′, a′). (13)

Flow conservation imposes Fin(s
′) = R(s′) + Fout(s

′). From

these flows, we define the forward and backward transition

probabilities as

PF (s′|s) = F (s, a)

F (s)
, PB(s|s′) = F (s, a)

F (s′)
, (14)

where T (s, a) = s′. The overall normalization constant, or

partition function, of the flow network is given by the sum of

rewards over all terminal states:

Z =
∑

x∈X
R(x). (15)

To train the GFlowNet, the trajectory balance (TB) loss [24]

is used, which considers entire trajectories from the initial to

terminal states. For a sampled trajectory τ = (s0 → s1 →
· · · → sn = x), the TB objective compares the forward and



backward path probabilities, scaled by the estimated reward

and partition function:

Lw(τ) =

(

ln
Zw

∏n

t=1 P
F
w
(st|st−1)

R(x)
∏n

t=1 P
B
w
(st−1|st)

)2

, (16)

where both PF
w

and PB
w

are parametrized using neural net-

works with learnable parameters w, and Zw is a trainable

scalar approximating the partition function. Minimizing this

loss over sampled trajectories encourages the learned forward

policy to produce samples whose marginal distribution over

terminal states aligns proportionally with their rewards.

B. GFlowNets for the TM-IRS Parameter Design

We leverage the GFlowNet framework to optimize Ωmn

for all IRS elements in our OFDM system. The TM-IRS

optimization is casted first as a parameter selection problem

and a discrete MDP, where each intermediate state corresponds

to a partial assignment of TM-IRS parameters. Specifically,

each TM-IRS parameter, including cmn, τomn and ∆τmn

for each IRS element, is discretized into Q1, Q2 and Q3

possible values, i.e., ej0, e
j 2π
Q1 , e

j 4π
Q1 , · · · , ej

2π(Q−1)
Q1 for cmn,

0, 1
Q2

, 2
Q2

, . . . , Q2−1
Q2

for τomn, and 0, 1
Q3

, 2
Q3

, . . . , Q3−1
Q3

for

∆τmn. Let M = MxMz denote the total number of IRS

elements. We represent the current TM-IRS state by a binary

vector s ∈ R
M×Q, which is partitioned into M blocks,

each corresponding to one TM-IRS parameter and having

Q = Q1 +Q2 +Q3 entries.

Initially, at the root state, s is a zero vector, meaning

no any TM-IRS parameter has been assigned a value. After

each action, a specific TM-IRS parameter is assigned one

of its discretized values, by setting the corresponding entry

in the associated block of s to 1 while keeping all other

entries in that block at 0. After a sequence of 3M actions,

a terminal state is reached where every TM-IRS parameter

has been assigned exactly one value, and thus every block

in s contains a single 1. At each step, the action space

A(s) consists of choosing a value for one of the unassigned

TM parameters. The reward associated with a terminal state

is based on the objective in (11), but modified to suit the

GFlowNet framework. Specifically, we define the reward as

R = Ctotal ·
U
∏

u=1

H(ξu − | arg(V0)u|), (17)

where H(·) is the Heaviside step function, i.e., H(x) = 1
if x ≥ 0, and 0 otherwise. This formulation encourages the

GFlowNet to generate TM-IRS parameter configurations that

maximize the legitimate communication user performance only

if the phase constraint | arg(V0)u| ≤ ξu is satisfied for all

users. Infeasible solutions that violate any user’s constraint

are assigned zero reward and are thus disincentivized dur-

ing training. In the special case of a single legitimate user,

we can directly set the phase shift parameter as cmn =
[amn(θT , φT )amn(θc, φc)]

−1
to steer the IRS beam toward

the legitimate direction. This choice ensures that V0 becomes
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Fig. 1: Evolution of the TB loss and the estimated partition

function lnZ over training episodes.

real-valued, thereby avoiding any undesired phase shift in the

symbol constellation, and eliminates the need to enforce the

constraint
∏U

u=1 H(ξu − | arg(V0)u|) in the reward.

The forward and backward sampling policies, PF
w

and PB
w

,

are modeled by a feedforward neural network parameterized by

w. The output of the network is a vector of dimension 2M×Q,

where the first M × Q entries correspond to the forward

transition probabilities and the latter M×Q entries correspond

to the backward transition probabilities. During training, the

action selection is based on the forward probabilities PF
w

. To

prevent repeated selection of already assigned parameters, the

forward probabilities for completed parameters are masked to

zero at each decision step. The network is trained using the TB

loss described in (16), ensuring that the learned forward policy

samples TM-IRS parameter configurations with probability

proportional to their associated reward in (17). Training is

conducted offline by sampling multiple root-to-leaf trajectories

in the MDP, applying the TB loss, and updating w and the total

reward Z via gradient descent. After training, the GFlowNet

can be deployed online to sample diverse high-reward TM-IRS

parameter configurations.

IV. EXPERIMENTS

We consider an IRS-assisted OFDM system with Mx =
Mz = 6 passive reflecting elements, K = 16 subcarriers,

transmitting 1024 OFDM signals, and N = 8 antennas at

the ULA transmitter. The transmitter is located at (θT , φT ) =
(15◦, 10◦). QPSK modulation is employed, the SNR is set to 0

dB and the path loss is set as 1 for simplicity. Also, we adopt a

nearest-neighbor decision rule to detect the transmitted symbol.

For the adopted GFlowNet, Q1 is set as 16 and each TM

parameter, τomn and ∆τmn, is discretized into Q2 = Q3 = 8
uniform values in [0, 1) unless otherwise specified. A feedfor-

ward neural network with three hidden layers, each containing

256 neurons, is used to parameterize the GFlowNet. Training
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Fig. 2: Comparison of SER over different spatial directions:

(a) rule-based TM parameter design [18]; (b) GFlowNet-based

TM parameter design.
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Fig. 3: Enhancing security via TM parameter diversity: (a)

SER versus θ for four GFlowNet-generated TM configurations

with fixed φ = 30◦; (b) averaged SER across the four

configurations.

is performed offline on a powerful Apple M3 Max chip with

36 GB memory.

Here, symbol error rate (SER) is adopted as the performance

metric. If evaluated on a logarithmic scale, a small offset of

10−4 is added to handle zero-SER cases if necessary. In the

SER heatmaps, darker regions indicate lower error rates.

We begin with a single legitimate user located at (θc, φc) =
(40◦, 30◦) to efficiently demonstrate the performance of the

proposed GFlowNet-based design and to facilitate a fair

comparison with the rule-based TM approach in [18]. Here

cmn = [amn(θT , φT )amn(θc, φc)]
−1

, so cmn is not included

in the GFlowNet and the training time can be reduced greatly.

Also, the GFlowNet model is trained using 9 × 105 sampled

trajectories, with a learning rate of 10−2 for the first 7 × 105

trajectories to accelerate the training and 10−3 for the remain-

ing 2× 105 to fine-tune the training.

Fig. 1 shows the evolution of the TB loss and the estimated

partition function lnZ over training episodes. The TB loss

steadily decreases, indicating that the forward and backward

flows are being balanced properly. The partition function lnZ
stabilizes as training progresses, suggesting convergence of the

overall model. It is worth noting that the TM parameter space

contains approximately 872 ≈ 1065 configurations, making

exhaustive search infeasible. However, by parametrizing the

flow using a deep neural network, the proposed framework

effectively generalizes across the enormous solution space
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100
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GFlowNet-based

Fig. 4: SER versus θ for the proposed GFlowNet-based method

in a two-user scenario.

using only 9 × 105 samples (fewer than 0.000001% of all

possible configurations), inferring reward distribution even for

unvisited TM configurations.

Fig. 2 compares the SER performance across spatial direc-

tions for two TM design methods: the rule-based approach

from [18] in Fig. 2(a), and the proposed GFlowNet-based

method in Fig. 2(b). In both cases, the desired user direction

(40◦, 30◦) achieves very low SER, while most undesired di-

rections exhibit high SER, indicating that the proposed method

can achieve comparable direction modulation performance for

security against the rule-based one. Moreover, several unin-

tended directions also experience low SER, as highlighted by

the red boxes in Fig. 2(b). This arises because our proposed

method does not explicitly regulate the SINR in undesired

directions; as a result, certain TM-IRS configurations may

inadvertently yield high SINR in those regions. To mitigate

this situation, we can leverage the GFlowNet’s capability to

generate diverse high-reward TM configurations and vary the

TM pattern over time. Specifically, four distinct TM parameter

sets are sampled, and the configuration is switched every 256

OFDM symbols. Fig. 3(a) illustrates the SER versus θ (with

fixed φ = 30◦) for each of the four configurations individ-

ually. It can be seen that low-SER directions differ across

configurations, while the desired user direction consistently

maintains near-zero SER. Fig. 3(b) shows the aggregated SER

performance across all spatial directions, where the SER in

previously vulnerable regions is improved, as evidenced by

the lighter color areas. This dynamic TM strategy effectively

reduces the risk of eavesdropping without requiring knowledge

of the eavesdroppers’ locations.

To evaluate the multi-user capability of the proposed TM-

IRS design, we extend the previous single-user setting to a two-

user scenario by introducing a second legitimate user located

at (−40◦, 30◦), in addition to the original user at (40◦, 30◦).
In this case, the SNR is set as 0 dB and the GFlowNet is

trained using the reward formulation in (17), where ξu is set

as π/5 for both users. Fig. 4 presents the SER performance



versus angle θ with fixed φ = 30◦, from which we can see

that the GFlowNet-based approach successfully maintains low

SER for both user directions, thereby demonstrating its ability

to jointly optimize TM-IRS parameters for multi-user support.

This highlights the flexibility and scalability of the proposed

framework in handling more complex directional modulation

requirements.

V. CONCLUSION

This paper presented a new framework for 3D directional

modulation in OFDM systems assisted by TM-IRS. Moti-

vated by the limitations of existing rule-based TM-IRS de-

signs—which are typically restricted to single-user scenarios

and lack flexibility—we proposed a generative model based on

GFlowNets to enable secure multi-user transmission. By mod-

eling the TM-IRS parameter selection process as a determin-

istic MDP, and training a trajectory balance-based GFlowNet

to sample from this space, we were able to generate diverse

TM-IRS configurations that maximize the achievable sum rate

across authorized directions while maintaining constellation

integrity. Experimental results confirmed that the proposed

method offers strong performance in both single- and multi-

user settings, demonstrating lower SERs in desired directions

while introducing sufficient scrambling elsewhere. Also, the

generated diverse high-performing parameter sets facilitate

time-varying TM-IRS strategies that further enhance security

against potential eavesdroppers even without prior knowledge

of their locations. Future work may explore extensions to more

complex wireless scenarios, such as (partially) known locations

of the eavesdroppers, imperfect CSI, or joint optimization with

sensing functions.
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