
ar
X

iv
:2

50
6.

14
94

4v
1

 [
cs

.C
R

]
 1

7
Ju

n
20

25

Fair Data Exchange with Constant-Time Proofs

Majid Khabbazian

University of Alberta, Canada

Abstract. The Fair Data Exchange (FDE) protocol introduced at CCS
2024 offers atomic pay-per-file transfers with constant-size proofs, but
its prover and verifier runtimes still scale linearly with the file length n.
We collapse these costs to O(λ)—essentially constant—by viewing the
file as a rate-1 Reed–Solomon (RS) codeword, extending it to a lower-
rate RS code with constant redundancy, encrypting this extended vector,
and then proving correctness for only a pseudorandom Θ(λ) subset of
the resulting ciphertexts; RS decoding repairs any corrupted symbols
with negligible failure probability. Our protocol preserves full client- and
server-fairness, and adds only a tunable communication redundancy over-
head.
Finally, we patch the elliptic-curve mismatch in the Bitcoin instantiation
of FDE with a compact zk-SNARK, enabling the entire exchange to run
off-chain and falling back to just two on-chain transactions when channels
are unavailable.

1 Introduction

Digital commerce increasingly revolves around the one-shot sale of large digital
assets—scientific data sets, proprietary machine-learning weights, high-resolution
media, even genomic archives—between parties with no prior trust relation-
ship. Ensuring that the buyer actually receives the promised file while the seller
simultaneously receives payment is therefore a foundation stone of the data-
driven economy. Traditional escrow or licensing services resolve this tension by
inserting costly legal or institutional intermediaries; blockchain-based atomic
fair-exchange protocols aim to provide the same fairness guarantee with only a
smart contract as referee. Achieving that goal without inflating on-chain fees or
forcing the parties through many interactive rounds, however, remains challeng-
ing once file sizes grow into the multi-megabyte range.

The prominent blockchain-based fair-exchange protocols—FairSwap [1], File-
Bounty [3], and FairDownload [2]—all follow a dispute-driven model, resolving
misbehavior through an explicit on-chain arbitration phase. FairSwap requires
both parties to remain responsive throughout a complaint period, during which
buyers must provide Merkle proofs of misbehavior. FileBounty relaxes continu-
ous responsiveness by allowing zk-SNARK-based disputes at any point, limiting
potential loss to individual file chunks but implicitly assuming partial data has
proportional utility. FairDownload resolves disputes via off-chain exchange of
signed data chunks, with disputes settled on-chain using O(log k)-sized Merkle
inclusion proofs.

https://arxiv.org/abs/2506.14944v1

2 Majid Khabbazian

The FDE protocol [5] entirely eliminates dispute timers and achieves constant-
sized on-chain communication. In FDE, the seller publishes a single KZG polyno-
mial commitment and provides an upfront, constant-sized Verifiable Encryption
of Committed Knowledge (VECK) proof that every ciphertext sent to the buyer
encrypts the correct polynomial evaluation. The protocol requires only three
on-chain messages—commitment → payment → decryption key. The buyer can
verify the VECK proof immediately, pay, and decrypt the file without waiting
or worrying about subsequent disputes.

A significant drawback of the VECK protocols introduced in [5] for FDE is
their high computational cost for both proof generation and verification. For a
relatively small file (128KiB, represented by n = 4096 encrypted evaluations),
the original authors report approximately 34 seconds of verifier runtime and more
than 40 seconds of prover runtime on commodity hardware.1 Since these runtimes
scale roughly linearly with file size, exchanging a 128 MiB file would extrapolate
to over nine hours of verification and approximately seventeen hours of proof
generation—clearly impractical for most real-world data-exchange scenarios.

An approach to overcoming the computational bottleneck described above
is to incorporate coding. Consider the scenario where the original data is first
encoded using a fixed-rate code with high minimum distance and an efficient
decoding algorithm, and the commitment is subsequently applied to this encoded
data. In this setup, the verifier only requires proof that a randomly selected
subset of ciphertexts—of size proportional to the security parameter—decrypts
correctly. This design effectively guarantees data recovery for the buyer, as any
corrupted segments can be corrected through the decoding process.

However, embedding redundancy directly into the original committed data
increases its size, an undesirable property for blockchain applications where stor-
age efficiency is critical. For instance, Ethereum blobs are limited to 128 KiB;
thus, coding inherently reduces the useful payload size. Moreover, and perhaps
more critically, including coding at the commitment stage obliges proposers and
validators on the blockchain to verify correctness of encoding, imposing signifi-
cant additional computational burdens.

An alternative and more practical strategy is for the seller to separately
provide additional encrypted redundancy alongside the original encrypted data.
The seller must then demonstrate two critical facts to the buyer: (1) a randomly
selected subset of ciphertexts correctly decrypts to the committed data values,
and (2) the provided redundancy indeed results from applying an appropriate
error-correcting code directly to the original data.

Our proposed solution follows this second approach. A key step is identifying
an appropriate error-correcting code that not only has high minimum distance
and efficient decoding but also permits concise proofs verifying that the cod-
ing was correctly applied to the original data committed by the seller. Upon
investigating various coding strategies, we discovered a naturally fitting code
already inherent within the KZG polynomial commitment framework used by
FDE: Reed–Solomon codes. Reed–Solomon codes are maximum-distance sepa-

1 Figure 6 in [5]; measurements for the El Gamal-based VECK protocol.

Atomic Data Exchange with Constant-Time Proofs 3

rable (MDS), enable efficient decoding, and the original KZG commitment in-
herently includes commitments to the redundancy portion. As a result, we can
directly utilize the existing FDE protocol—with moderate modification—to re-
alize our coding-based enhancement.

We demonstrate that our coding-based VECK protocol significantly reduces
both proof generation and verification costs, achieving essentially constant com-
plexity with respect to the file size, while fully preserving the atomicity and
fairness guarantees of the original FDE protocol. This substantial improvement
comes with two minor trade-offs: (1) the seller encrypts and transmits a modest
and adjustable amount of redundancy (for example, a 10% overhead), and (2)
the buyer executes an efficient decoding routine only in the unlikely event of
seller misbehavior; even in such scenarios, fairness and atomicity remain strictly
enforced. Notably, although our coding approach introduces redundancy along-
side the original data, it does not require a larger Common Reference String
(CRS) than the one used by the original FDE protocol.

In addition to the contributions described above, we identify a compatibility
issue with the Bitcoin-based implementation of FDE proposed by the original
authors. Specifically, the elliptic curve groups currently used by Bitcoin adaptor
signatures (secp256k1) do not match the pairing-friendly elliptic curve groups
(e.g., BLS12-381) required by the VECK protocols proposed in [5]. Moreover,
Bitcoin currently has no proposals to adopt pairing-friendly curves. To resolve
this incompatibility, we introduce a generic constant-time solution that lever-
ages standard zk-SNARKs. Our approach not only addresses the elliptic-curve
mismatch but also enables the entire protocol to be executed exclusively off-
chain (within Bitcoin’s Lightning Network), hence eliminating costly blockchain
transactions that would otherwise increase the expense of file exchanges.

2 Background

2.1 Notation and Definitions

Let λ ∈ N denote the security parameter. A non-negative function σ(λ) is said
to be negligible if, for every polynomial p(λ), there exists a sufficiently large λ0

such that for all λ ≥ λ0:

σ(λ) ≤ 1

p(λ)
.

For a random variable x, we write x←R X to indicate that x is drawn uniformly
at random from the set X.

Throughout this paper, we denote by Fp the finite field of prime order p. We
let Fp[X] represent the set of all univariate polynomials with coefficients in Fp.
Specifically, we denote by Fk

p[X] the set of polynomials of degree exactly k, and
by F≤k

p [X] the set of polynomials of degree at most k.
We work with elliptic-curve groups G1, G2, and a target group GT , each of

prime order p. We utilize a cryptographic bilinear pairing map e : G1 × G2 →
GT , satisfying standard properties of bilinearity, non-degeneracy, and efficient

4 Majid Khabbazian

computability. Our constructions specifically utilize the pairing-friendly elliptic
curve BLS12-381, which provides approximately 128 bits of security. The prime
order p in the BLS12-381 curve is roughly 255 bits in length.

For a set S and a function ϕ(X) ∈ Fp[X], ϕS(X) denotes the minimal-degree
polynomial in Fp[X] satisfying ϕS(i) = ϕ(i) for all i ∈ S. Additionally, define

VS(X) :=
∏
i∈S

(X − i).

2.2 KZG Polynomial Commitments

The KZG polynomial commitment scheme [4] provides a cryptographic method
for succinctly committing to polynomials and efficiently generating evaluation
proofs. It leverages pairing-based cryptography to achieve constant-size commit-
ments and evaluation proofs, independently of the polynomial degree.

Formally, the KZG polynomial commitment scheme consists of the following
algorithms:

– Setup(1λ, n) → crs: generates G: elliptic-curve groups G1, G2, GT of prime
order p ≥ 22λ, with generators g1 ∈ G1, g2 ∈ G2, gT ∈ GT , and a bilinear
pairing map e : G1×G2 → GT . Samples a uniformly random secret τ ←R Fp

and publish
crs =

(
G, {gτ

i

1 }ni=1, {gτ
i

2 }ni=1

)
.

– Commit(crs, ϕ) → C: Given the crs and the coefficients of ϕ(X) ∈ Fp[X],
output the commitment

C = g
ϕ(τ)
1 .

– Open(crs, ϕ, i)→ π: Given public parameters crs, polynomial ϕ(X) ∈ Fp[X],
and an evaluation point i, the prover outputs the opening proof:

π = g
ϕ(τ)−ϕ(i)

τ−i

1 ∈ G1.

– Verify(crs, Cϕ, i, ϕ(i), π)→ 0/1: To verify an opening, the verifier checks the
pairing equation:

e(Cϕ/g
ϕ(i)
1 , g2)

?
= e(πi, g

τ−i
2),

and outputs 1 if it holds, otherwise 0.
– batchOpen(crs, ϕ, S) → π: Given public parameters crs, polynomial ϕ(X),

and multiple distinct evaluation points S, the prover computes the evalua-
tions {ϕ(i)}i∈S and produces a single aggregated proof:

π = g
q(τ)
1 ,

where
q(X) =

ϕ(X)− ϕS(X)

VS(X)
.

Atomic Data Exchange with Constant-Time Proofs 5

– batchVerify(crs, Cϕ, S, {ϕ(i)}i∈S , π)→ 0/1: The verifier efficiently checks the
aggregated proof π by verifying the following pairing equation:

e
(
Cϕ/g

ϕS(τ)
1 , g2

)
?
= e

(
π, g

VS(τ)
2

)
.

The verifier outputs 1 if this equation holds and 0 otherwise.

2.3 FDE Protocol

FDE is a blockchain-based protocol which enables a client and a storage server
to atomically exchange data for payment. Atomicity guarantees fairness: the
server receives payment if and only if the client obtains the promised data.
The FDE protocol leverages the KZG polynomial commitment scheme, chosen
due to its constant-size commitments and efficient batchable opening proofs,
making it particularly suitable for scenarios where clients may retrieve subsets of
data. Additionally, KZG commitments are already widely adopted in blockchain
ecosystems, notably in Ethereum’s Danksharding for data availability, making
FDE naturally compatible with existing infrastructure.

In the FDE protocol, data is represented as evaluations of a polynomial ϕ(·) of
degree ℓ ≤ n, that is as {ϕ(i)}ℓi=0. The server first publishes a public verification
key vk to a blockchain smart contract, alongside specific transaction details such
as the agreed price and the client’s blockchain address (step 1). Off-chain, the
server then sends the encrypted evaluations {cti}ℓi=0 of each data point {ϕ(i)}ℓi=0

to the client. These ciphertexts are accompanied by a cryptographic proof show-
ing that each ciphertext cti correctly encrypts the corresponding polynomial
evaluation ϕ(i) committed to by a KZG polynomial commitment Cϕ, under
a secret decryption key sk that matches the previously submitted verification
key vk (step 2).

Upon receiving and verifying these ciphertexts and associated proofs, the
client locks the agreed-upon funds in the blockchain smart contract (step 3).
The server subsequently can claim these funds only by revealing the correct
decryption key sk that corresponds to the public verification key vk (step 4). After
the server publishes the decryption key, the client retrieves it from the blockchain
(step 5), allowing immediate decryption of the ciphertexts and recovery of the
original committed data (step 6). If the server fails to reveal the secret key
within a specified timeout, the client recovers the funds locked in the contract,
thus preserving fairness.

FDE satisfies three critical properties: correctness (honest parties always suc-
ceed), client-fairness (the server obtains payment only if the client receives the
data), and server-fairness (the client learns nothing about the data unless the
server is paid).

2.4 Verifiable Encryption under Committed Key (VECK)

At the heart of the FDE protocol lies a novel cryptographic primitive called
VECK. At a high level, VECK enables a prover (in our context, the server) to

6 Majid Khabbazian

demonstrate that a set of ciphertexts indeed encrypts evaluations of a polynomial
at specific points, using an encryption key consistent with a publicly commit-
ted verification key. Concretely, VECK allows efficient verification of ciphertext
correctness against a polynomial commitment without revealing the underlying
plaintext evaluations or the encryption key itself. This construction ensures that
the verifier (client) learns no additional information beyond the correctness of
ciphertexts until the prover reveals the corresponding decryption key.

Formal description. Let (Setup,Commit) be a non-interactive binding com-
mitment scheme, where Setup(1λ, n)→ crs generates a public common reference
string, and Commit(crs, w ∈ W) → Cw generates a commitment to w. A non-
interactive VECK scheme for a class of functions F = {F : W → V } is defined
as follows [5]:

– VECK.Gen(crs) → pp: A PPT algorithm that, given the crs, outputs pa-
rameters pp and defines relevant spaces. The parameters pp are implicitly
provided to subsequent algorithms.

– VECK.Enc(F,Cw,w) → (vk, sk, ct, π): A PPT algorithm run by the server
that takes (F,Cw,w) and outputs a verification key vk, a decryption key sk
and the encryptions ct of F (w), as well as a proof π.

– VECK.Verct(F,Cw, vk, ct, π) → {0, 1}: A deterministic polynomial-time algo-
rithm executed by the client that returns either accept or reject.

– VECK.Verkey(vk, sk) → {0, 1}: A deterministic polynomial-time algorithm
executed by the blockchain or a trusted third party to verify the validity
of the secret key.

– VECK.Dec(sk, ct) → v/⊥: A deterministic polynomial-time algorithm exe-
cuted by the client that outputs a value in V or a failure symbol ⊥.

A secure VECK scheme must satisfy the following key properties:

– Correctness (informal): Honestly generated ciphertexts and proofs always
verify correctly, and decryption recovers the original polynomial evaluations.

– Soundness (informal): No computationally bounded adversary can generate
ciphertexts and corresponding proofs that pass verification yet encrypt values
different from the committed polynomial evaluations, unless cryptographic
assumptions are broken.

– Zero-Knowledge (informal): The proof and ciphertexts do not reveal any
additional information about the underlying polynomial evaluations or se-
cret encryption key beyond correctness until the decryption key is explicitly
revealed.

2.5 Reed–Solomon Codes

Let (a0, . . . , aℓ) ∈ F ℓ+1
p be a message vector and define the degree-ℓ polynomial

ϕ(X) =

ℓ∑
i=0

aiX
i.

Atomic Data Exchange with Constant-Time Proofs 7

Fix n > ℓ pairwise-distinct evaluation points α1, . . . , αn ∈ Fp. The corresponding
Reed–Solomon codeword is

c =
(
ϕ(α1), . . . , ϕ(αn)

)
∈ Fn

p .

This construction yields an (n, ℓ + 1) linear code with rate R = (ℓ + 1)/n
and minimum Hamming distance dmin = n − ℓ, hence being able to correct
up to ⌊(dmin − 1)/2⌋ symbol errors. Decoding is efficient: algorithms such as
Berlekamp–Massey, the extended Euclidean method, or FFT-based techniques
recover the original message in O(n2) down to O(n log2 n) time.

3 FDE with Constant Proof-time

Overview. To achieve constant proof-time in FDE, we propose a new VECK
protocol, denoted as VECK+

El, and integrate it into the existing FDE protocol.
Before formally presenting VECK+

El, we summarize the key insights underlying
our approach.

Recall that in the original FDE protocol, the data consists of evaluations
of a polynomial ϕ(X) over a domain [ℓ] := {0, 1, . . . , ℓ}, with a succinct polyno-
mial commitment Cϕ. This structure naturally supports polynomial commitment
schemes such as KZG, which conveniently enable efficient batch openings and
compact verification proofs.

While data continues to be explicitly represented by polynomial evaluations
at the points in [ℓ], we observe that knowledge of the polynomial coefficients
(a0, a1, . . . , aℓ) is sufficient to completely determine the data, as these coefficients
fully specify the polynomial ϕ(X) = a0 + a1x+ · · ·+ aℓx

ℓ. Thus, one may view
the coefficient vector as a complete representative of the data. Evaluating this
polynomial at the points in [ℓ] corresponds precisely to encoding the coefficient
vector into a Reed–Solomon (RS) codeword.

Crucially, by extending the evaluation domain beyond [ℓ], we obtain a longer
RS codeword with a lower rate, inherently capable of correcting errors. This
insight motivates the first part of our enhanced protocol: the server encrypts an
expanded set of polynomial evaluations, extending beyond the original evaluation
points. A subtle yet significant observation is that this expanded evaluation set
does not alter the underlying polynomial commitment. In other words, the same
original commitment Cϕ is valid for the extended set of evaluations. Thus, the
prover can seamlessly use the original commitment, eliminating any need to
create or prove additional commitments.

The final piece of our approach involves verifying encryption correctness on
only a small random subset of size Θ(λ). Assuming that the verifaciton passes,
due to the error-correcting capability of the underlying RS code, the probability
of decoding failure will be negligible in λ. Consequently, the soundness of the
original protocol—requiring the adversary’s success probability to be negligible—
is preserved.

In the more general setting, where a client may request evaluations of the
polynomial at a subset of points S ⊆ [ℓ], the server first constructs a polynomial

8 Majid Khabbazian

ϕ′
S(X) that matches the original polynomial ϕ(X) over the points in S. The

server then sends encrypted evaluations of ϕ′
S(X) at an extended superset of

points S+ ⊇ S. Importantly, the evaluations on the extended set S+ reveal
no additional information beyond what is already contained in the evaluations
of ϕ′(X) over the original set S. The server subsequently proves correctness of
encryption only on a small random subset SR ⊆ S+, of size Θ(λ).

We formalize the above idea by proposing VECK+
El, an enhanced ElGamal-

based VECK protocol.
Formal description. As in [5], we use KZG as our commitment scheme and

let the function F in VECK be the evaluation of polynomial at a given set of
points. Our VECK+

El protocol is ElGmal based. This choice is merely because the
ElGamal-based VECK protocol proposed in [5] requires much lower bandwidth
than the Paillier-based VECK at the cost of higher proof-time complexity. This
choice is therefore reasonable as we reduce the proof time to constant (but do
not improve the communication overhead).

Let VECKEl denote the Elgamal-based VECK protocol proposed in [5]. Since
VECK+

El and VECKEl have similarities, instead of constructing VECK+
El from scratch,

we strive to call VECKEl operation whenever possible to reduce repetition of ba-
sic operations already covered in the construction of VECKEl. Towards this end,
we split the operations VECKEl.Enc→ (vk, sk, ct, π) into two sub-operations:

VECKEl.Enc1 → (vk, sk, ct)

and
VECKEl.Enc2 → (π, ct−).

The first sub-operation returns all outputs except the proof, while the second
sub-operation returns only the proof along with ct−, an encryption at point −1
employed in VECKEl.Enc to assist with ciphertext verification [5].

Furthermore, we stipulate that if VECKEl.Dec fails to recover a value—that
is, the plaintext falls outside the brute-force search range—it returns ⊥, which
we treat as an erasure at that position.

Let β > 1 be a fixed constant that balances bandwidth overhead against
computational cost in the protocol. Given a (possibly corrupted) set of polyno-
mial evaluations D = {ϕ(i)}i∈I of a polynomial ϕ(X) at the index set I, we
denote by

RS.Dec(S, I,D)

the Reed–Solomon decoder at positions S. If decoding succeeds, it returns the
correct values {ϕ(i)}i∈S .

Atomic Data Exchange with Constant-Time Proofs 9

Case S = [ℓ]. This corresponds to the scenario in which the client requests
the entire data set. We handle the case S ⊂ [ℓ] separately, as requesting the full
data set (S = [ℓ]) allows fewer steps in both VECKplusEl.Enc and VECK+

El.Verct.

VECK+
El:

– VECK+
EL.GEN(crs) → pp: On input crs =

(
G, {gτi1 }ni=1, {g

τi
2 }ni=1

)
, generate

random group elements with unknown discrete logarithms h ←R G1 and
hi ←R G1 for i ∈ [m] ∪ {−1}, where m = ⌈β · ℓ⌉.

– VECK+
EL.Enc(F[ℓ],Cϕ, ϕ(X))→ (vk, sk, ct, π).

1. Compute (vk, sk, ct) := VECKEl.Enc1(F[m],Cϕ, ϕ(X))
2. Generate a Fiat-Shamir pseudo-random challenge subset SR ⊂ [m] with
|SR| = min(ℓ+ 1, ⌈ λ

β−1⌉).
3. Compute (πR, ct−) := VECKEl.Enc2(FSR

,Cϕ, ϕ(X)).
4. Output (vk, sk, ct, π = (πR, ct−))

– VECK+
EL.Verct(F[ℓ],Cϕ, vk, ct, π)→ 0/1

1. Parse π as (πR, ct−).
2. Output VECKEl.Verct(FSR

,Cα, vk, {cti}i∈SR
∪ ct−, πR).

– VECK+
El.Verkey(vk, sk)→ 0/1 : For sk = s ∈ Fp, return 1 iff vk = hs.

– VECK+
El.Dec(F[ℓ], sk, ct)→ {ϕ(i)}i∈[ℓ].

1. Output RS.Dec([ℓ], [m],VECK.Dec(F[m], sk, ct)).

Theorem 1. For the case S = [ℓ], the generation and verification times of
VECK+

El are O(λ).

Proof. Each step (specifically, steps 2 and 3) in the proof generation runs in O(λ)
time: generating the random subset SR requires O(R) = O(λ) operations, and
VECKEl.Enc2 (step 3) has complexity linear in |SR|, which is also O(λ). Similarly,
the time complexity of VECKEl.Verct is linear in |SR| ∈ O(λ).

10 Majid Khabbazian

Case S ⊂ [ℓ]. This corresponds to the scenario in which the client does not
request the entire data set.

VECK+
El:

– VECK+
El.GEN(crs) → pp: On input crs =

(
G, {gτi1 }ni=1, {g

τi
2 }ni=1

)
, generate

random group elements with unknown discrete logarithms h ←R G1 and
hi ←R G1 for i ∈ [m] ∪ {−1}, where m = ⌈β · |S|⌉.

– VECK+
EL.Enc(FS,Cϕ, ϕ(X))→ (vk, sk, ct, π).

1. Sample t←R Fp.
2. Set ϕ′

S(X) := t VS(X) + ϕS(X).
3. Compute CS := Commit(crs, ϕ′

S(X)).
4. Compute (vk, sk, ct) := VECKEL.Enc1(F[m],CS, ϕ

′
S(X))

5. Compute πS := batchOpen
(
crs, ϕ(X)− ϕ′

S(X), S
)
.

6. Generate a Fiat-Shamir pseudo-random challenge subset |SR| = min(|S|+
1, ⌈ λ

β−1⌉).
7. Compute (πR, ct−) := VECKEl.Enc2(FSR

,CS, ϕ
′
S(X)).

8. Output
(
vk, sk, ct, π = (πS, πR, ct−)

)
– VECK+

EL.Verct(FS,Cϕ, vk, ct, π)→ 0/1
1. Parse π as (πS , πR, ct−).
2. Compute b1 := batchVefiry(crs,Cϕ/CS,S,0, πS).
3. Compute b2 = VECKEl.Verct(FSR

,CS, vk, {cti}i∈S ∪ ct−, πR).
4. Output b1 ∧ b2.

– VECK+
El.Verkey(vk, sk)→ 0/1 : For sk = s ∈ Fp, return 1 iff vk = hs.

– VECK+
El.Dec(FS, sk, ct)→ {ϕ(i)}i∈S .

1. Output RS.Dec(S, [m],VECK.Dec(F[m], sk, ct)).

Theorem 2. Let S ⊂ [ℓ].

(i) If the verifier has the pre-computed element g
VS(τ)
2 , the running time of

VECK+
El.Verct is O(λ).

(ii) Otherwise, the prover can supply a KZG opening proof for VS(X) at a
Fiat–Shamir-chosen point κ, in which case verification costs O(|S|+ λ).

Proof. When g
VS(τ)
2 is available, Step 2 requires only a constant number of group

operations, i.e. O(1). Step 3 performs λ pairing/exponentiation checks, so the
total cost is O(λ).

If the verifier lacks g VS(τ)
2 , the prover can provide a KZG opening π of VS(X)

at κ. Verifying π costs O(1) pairings, but the verifier must evaluate VS(κ) locally,
which takes O(|S|) field operations. Together with the O(λ) checks, this yields
O(|S|+ λ) overall.

Theorem 3. In the random-oracle and algebraic-group models, the protocol VECK+
El

satisfies correctness, soundness, and computational zero-knowledge; hence it is a
secure VECK.

Atomic Data Exchange with Constant-Time Proofs 11

4 FDA via Payment Channels

Tas et al. [5] proposed a Bitcoin-based implementation of FDA that leverages
adaptor signatures. However, their scheme utilizes pairing-friendly elliptic curves
(e.g., BLS12-381), which are incompatible with the secp256k1 curve currently
used by Bitcoin’s adaptor signatures. Consequently, direct integration of their
proposed FDE protocols into Bitcoin faces significant practical barriers.

To resolve this incompatibility, we propose leveraging Bitcoin’s Lightning
Network (LN) combined with zk-SNARKs. As an additional advantage, our ap-
proach naturally eliminates the need for costly on-chain transactions.

Specifically, the server (prover) generates a zk-SNARK proof πt attesting
knowledge of a secret scalar sk that satisfies the following relation:

R
(
(h, vk, t), sk

)
= [vk = hsk ∧ t = H(sk)],

where h, vk, and t are publicly known parameters. Although generating the zk-
SNARK proof πt introduces computational overhead, this cost is constant with
respect to the data size and can be precomputed.

Our resulting FDA protocol operates as follows:

Step 1: The server sends to the client the ciphertext and its proof by calling
VECK+

El.Enc, the value t, and the zk-SNARK proof πt.
Step 2: The client verifies all provided proofs, including πt. Upon successful

verification, the client initiates a payment via LN, using t as the hash
value in the HTLC.

Due to the atomicity provided by LN, the server obtains the payment iff it re-
veals the secret scalar sk, enabling the client to decrypt the ciphertext. Crucially,
this achieves atomic exchange without incurring additional costly blockchain
transactions.

Fallback without LN. If either party lacks LN connectivity, the same fairness
guarantees can be enforced using exactly two Bitcoin transactions2, structured
as follows:

1. Funding Transaction: The client locks the payment amount in a P2WSH
output with the script:

OP_IF OP_SHA256 ⟨t⟩ OP_EQUALVERIFY

⟨server_pk⟩ OP_CHECKSIG

OP_ELSE ⟨Ttimeout⟩ OP_CHECKLOCKTIMEVERIFY OP_DROP

⟨client_pk⟩ OP_CHECKSIG

OP_ENDIF

2 The original FDA protocol on Ethereum uses three on-chain transactions in the
success path: registering the server’s public key, locking payment by the client, and
the server revealing the decryption key [5].

12 Majid Khabbazian

Here, t = H(sk) is the hash commitment, and Ttimeout is a blockchain times-
tamp after which the client can reclaim the funds.

2. Spend or Refund Transaction: The above output is spent via one of two
branches:
– Success Path (before Ttimeout): The server spends the output with

witness data:
⟨sk⟩, ⟨σserver⟩, 1

The secret scalar sk is thus revealed on-chain, allowing the client to de-
crypt the data.

– Refund Path (after Ttimeout): The client reclaims the output by pro-
viding:

⟨σclient⟩, 0

No secret is revealed, and the client safely recovers their funds.

This fallback ensures fairness with minimal overhead when LN nodes are
unavailable.

5 Conclusion

We presented a practical implementation of FDE that reduces proof generation
and verification complexities from linear in the file size to O(λ), achieved by in-
corporating Reed–Solomon redundancy and sampling only Θ(λ) ciphertexts. The
proposed protocol maintains FDE’s fairness guarantees while incurring minimal
additional bandwidth overhead.

To further reduce computational overhead at the verifier (client) side, an
honest server may optionally transmit the plaintext directly to the client after
receiving the payment in full.

References

1. Dziembowski, S., Eckey, L., Faust, S.: Fairswap: How to fairly exchange digital
goods. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS.
pp. 967–984. ACM (2018). https://doi.org/10.1145/3243734.3243857

2. He, S., Lu, Y., Tang, Q., Wang, G., Wu, C.Q.: Fair peer-to-peer content de-
livery via blockchain. In: Bertino, E., Schulmann, H., Waidner, M. (eds.) Com-
puter Security - ESORICS. Lecture Notes in Computer Science, vol. 12972, pp.
348–369. Springer (2021). https://doi.org/10.1007/978-3-030-88418-5_17, https:
//doi.org/10.1007/978-3-030-88418-5_17

3. Janin, S., Qin, K., Mamageishvili, A., Gervais, A.: Filebounty: Fair
data exchange. In: IEEE European Symposium on Security and Pri-
vacy Workshops, EuroS&P Workshops. pp. 357–366. IEEE (2020).
https://doi.org/10.1109/EUROSPW51379.2020.00056

https://doi.org/10.1145/3243734.3243857
https://doi.org/10.1007/978-3-030-88418-5_17
https://doi.org/10.1007/978-3-030-88418-5_17
https://doi.org/10.1007/978-3-030-88418-5_17
https://doi.org/10.1109/EUROSPW51379.2020.00056

Atomic Data Exchange with Constant-Time Proofs 13

4. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to poly-
nomials and their applications. In: Abe, M. (ed.) Advances in Cryptology -
ASIACRYPT 2010. Lecture Notes in Computer Science, vol. 6477, pp. 177–
194 (2010). https://doi.org/10.1007/978-3-642-17373-8_11, https://doi.org/10.
1007/978-3-642-17373-8_11

5. Tas, E.N., Seres, I.A., Zhang, Y., Melczer, M., Kelkar, M., Bonneau, J., Nikolaenko,
V.: Atomic and fair data exchange via blockchain. In: Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security, CCS. pp.
3227–3241. ACM (2024). https://doi.org/10.1145/3658644.3690248

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/3658644.3690248

	Fair Data Exchange with Constant‑Time Proofs

