
ar
X

iv
:2

50
6.

14
52

6v
1 

 [
qu

an
t-

ph
] 

 1
7 

Ju
n 

20
25

Certified randomness from quantum speed limits

Caroline L. Jones,1, 2, ∗ Albert Aloy,1, 2, † Gerard Higgins,1, 3 and Markus P. Müller1, 2, 4

1Institute for Quantum Optics and Quantum Information,
Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria

2Vienna Center for Quantum Science and Technology (VCQ),
Faculty of Physics, University of Vienna, Vienna, Austria

3Institute of High Energy Physics, Austrian Academy of Sciences, Dominikanerbastei 16, A-1010 Vienna, Austria
4Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada

(Dated: June 17, 2025)

Quantum speed limits are usually regarded as fundamental restrictions, constraining the amount
of computation that can be achieved within some given time and energy. Complementary to this
intuition, here we show that these limitations are also of operational value: they enable the se-
cure generation of certified randomness. We consider a prepare-and-measure scenario with some
(experimentally determined or promised) upper bound on the energy uncertainty ∆E of the aver-
age prepared quantum state, but without any further assumptions on the devices, Hilbert space
or Hamiltonian. Given that we can freely choose the time at which to apply the untrusted prepa-
ration procedure, we show that this scenario admits the generation of randomness that is secure
against adversaries with additional classical information. We show how to determine the amount
of certified randomness given the observed correlations, discuss how interactions with the environ-
ment are taken into account, and sketch a conceivable experimental implementation. Remarkably,
even single-mode coherent states admit this kind of certification of non-zero randomness in some
parameter regimes, reinforcing ongoing approaches to demonstrate versions of nonclassicality in the
simple harmonic oscillator. Our results extend existing efforts to devise semi-device-independent
protocols grounded in reasonable physical assumptions, and they contribute to the understanding
of time-energy uncertainty relations via their operational consequences.

I. INTRODUCTION

Historically, the probabilistic nature of quantum me-
chanics has been the root of scientific disquiet – with Ein-
stein famously remarking that “[Nature] does not throw
dice” [1]. Nevertheless, converse to this intuition, the
role of indeterminacy became further entrenched in quan-
tum theory with Heisenberg’s posited uncertainty princi-
ples [2, 3], which claimed that pairs of canonical variables
could only be known up to some jointly bounded preci-
sion:

∆x∆p ≥ ℏ/2,
∆E∆t ≥ ℏ/2.

(1)

Whilst the position-momentum uncertainty relation was
soon established mathematically [4], its time-energy ana-
logue proved more cumbersome. In particular, without a
formulation of time as a quantum observable, it was ini-
tially unclear how to interpret ∆t as “time uncertainty”.
An alternative paradigm was proposed by Mandelstam
and Tamm [5], reformulating the relation as a quantum
speed limit (QSL):

∆t ≥ τQSL :=
πℏ
2∆E

, (2)
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FIG. 1. The preparation device P prepares a fixed quantum
state which is subsequently sent to a measurement device M .
We treat both P and M as black boxes, but we assume that
we have full control of the time tx at which P is triggered: at
t0 or t1 = t0 + ∆t, where x ∈ {0, 1} labels the input to P .
In contrast, M is implemented at a predetermined time. A
classical variable λ is allowed to influence and possibly cor-
relate P and M . It may be known to an adversary, but it is
unknown to the user of the randomness generator.

specifying a minimum time τQSL that a system takes to
evolve to an orthogonal state. The Mandelstam-Tamm
bound was further generalised to arbitrary states [6]:

∆t ≥ ℏ arccos | ⟨ψ1|ψ0⟩ |
∆E

, (3)

thereby bounding how fast a system can evolve between
any two states |ψ0⟩ and |ψ1⟩, where ∆E = ∆Eψ0

= ∆Eψ1

is the standard deviation of the energy in the initial and
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final states. Note that when the states are fully distin-
guishable (i.e. arccos | ⟨ψ1|ψ0⟩ | = π/2), Eq. (2) is recov-
ered from Eq. (3).

Whilst typically viewed as a limitation [7–11], in this
paper we demonstrate the utility of the QSL for quantum
information protocols. In particular, we show its appli-
cation for randomness generation. At first sight, it seems
almost trivial to go from uncertainty relations to ran-
domness: why not just prepare a particle in some state
with very small ∆p, ensuring large ∆x, and measure its
position? Or why do we not simply send a photon on a
half-silvered mirror and record the outcome? A reason to
be careful is that we may not trust our devices (the mir-
ror, or the state preparation procedure): perhaps these
device are producing outcomes that look random to us,
but are in fact predictable by an adversary who holds
additional information about the state of the system.

These restrictions can be overcome with device-
independent or semi-device-independent protocols. In
the latter case, we have a prepare-and-measure scenario
(such as the one in Figure 1) where we do not trust the
preparation and measurement devices P andM and treat
them as black boxes, but we trust the validity of an as-
sumption about the physical system that is sent from P
to M . For example, we may assume that the quantum
system to be sent is a qubit, or, more generally, that it
is described by a Hilbert space of some fixed dimension
d [12–18]. Observing some correlations between the in-
puts of P (and perhapsM), and the output ofM , we can
then ensure that this output must be at least partially
random, even relative to every adversary holding an ar-
bitrary amount of additional classical information about
the devices P andM and all variables that are physically
relevant for these procedures.

However, the assumption of Hilbert space dimension d
is arguably not very well physically motivated. There-
fore, various protocols have been proposed which replace
the dimensionality assumption by assumptions that have
a more direct physical or information-theoretic meaning.
Several works have analysed semi-device-independent
randomness generation schemes based on assumptions
about the overlaps between the prepared states [19–23],
or about the information content of the transmitted sys-
tem [24, 25], with important conceptual and formal rela-
tions between the different proposals [26]. In particular,
van Himbeeck et al. [27] have shown that assuming a
bound on the expected energy ⟨E⟩ of the prepared state
admits the certification of randomness [28]. However,

this assumes that the corresponding Hamiltonian Ĥ has
a unique ground state, and assumes knowledge of the re-
lation between the energy expectation value and the gap
above the ground state. Here, we show how random-
ness can be certified by assuming an upper bound on the
energy uncertainty ∆E of the prepared state, without
knowing or assuming anything about the Hamiltonian.

Conceptually, our scheme builds on the idea that
we can perform trusted operations on untrusted devices:
Even if our preparation procedure is treated as a black

box, we typically assume that we have an evident, prethe-
oretic, “macroscopic” notion of some operations that we
can apply to it, regardless of the “microscopic” details of
the device. For example, we think that we know what
it means to supply an input to a black box, or to rewire
the outputs of several boxes, or to place several boxes far
apart in spacelike separation (as in Bell experiments).
In previous work [29], we have assumed that we know
how to rotate preparation devices around a fixed axis
in space, and we have analyzed the resulting prepare-
and-measure correlations within and beyond quantum
physics [30]. Similarly, here we imagine that we can freely
decide the time at which we operate a given box (say, by
pressing the button that triggers the untrusted prepara-
tion procedure), which yields a semi-device-independent
randomness generation scheme based solely on an upper
bound to the system’s energy standard deviation ∆E.
We emphasize that our results build to a significant

extent on earlier works by van Himbeeck et al. [27, 28],
but with some important differences and novelties. For
example, the fact that the standard deviation ∆E is not
an observable implies that the “classical max average”
set of correlations C̄E,∆t is not a subset of the quantum
set QE,∆t, and that their algorithm must be adapted to
determine the amount of certified randomness. The use
of quantum speed limits leads to the necessity of further
physical and conceptual considerations. See Section V
for a more detailed comparison to existing work.

Our article is organized as follows. In Section II,
we give a theoretical description of the prepare-and-
measure scenario. We characterize the set of correlations
that are consistent with quantum theory for any given
∆E and ∆t, and use concavity of the variance to deter-
mine the set of correlations that are “classical”, i.e. that
do not admit the generation of certified randomness. We
show how the results generalize from closed system evolu-
tion to interactions with an environment. In Section III,
we show how the amount of certifiable randomness can
be determined, and give an example plot of the result.
In Section IV, we describe a possible experimental im-
plementation involving the quantum harmonic oscillator,
and we conclude in Section V.

II. THEORETICAL DESCRIPTION

We follow the semi-device-independent (semi-DI) pro-
tocol of [27], consisting of a simple prepare-and-measure
scenario as depicted in Figure 1. We begin by describing
the scenario without taking the variable λ into account.
A preparation box P takes an input x ∈ {0, 1}, and sends
some system to a measurement box M , which yields one
of two outputs b ∈ {±1}. By construction, the only effect
of the input is to control the time at which the prepara-
tion procedure is implemented: in the case of input x = 0,
the state is prepared at time t0, or, in the case x = 1, the
state is prepared at time t1 = t0 +∆t. While we do not
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trust the device P , we assume that we can fully control
the time at which we perform P , similarly as we believe
that we can control the choice of input or whether we
implement any operation at all. Thus, the two possible
states ρx that may be sent to M are time-displaced with
respect to one another by some delay ∆t.
The measurement device then produces outcome b, and

is described by some POVM {Mb}. Minimal assumptions
are made about the devices, therefore ρx and Mb are
treated as unknown and may fluctuate according to some
classical random variable(s) λ, unbeknownst to the ex-
perimenter. This variable λ can be thought of as contain-
ing additional information about the world, which could
in principle constitute some predictive advantage for the
outcome b. Our goal is then to quantify over all possible
assignments of λ ∈ Λ such that security is guaranteed in-
dependently of knowledge of these variables. This means
that we allow for shared randomness that is able to cor-
relate the workings of the devices P and M . The joint
behaviour of the devices is therefore characterised by the
probabilities

P (b|x) =
∑
λ

p(λ)tr
[
Mλ
b Utxρ

λ
0U

†
tx

]
, (4)

with tx ∈ {0,∆t}, and Utx = e−iHtx/ℏ describes the uni-
tary evolution of the system under some fixed Hamilto-
nian Ĥ. For now, we assume that the prepared quantum
state ρx undergoes closed-system evolution according to
a fixed Hamiltonian Ĥ which defines its energy’s stan-
dard deviation

∆Eρx =

√
tr(ρxĤ2)− (tr(ρxĤ))2,

which gives identical values for x = 0 and x = 1. We will
relax this assumption further below.

The presence of useful correlations is expressed by de-
viation from the line C0 = C1, where Cx characterises
the bias of the output towards ±1 for the input x:

Cx = P (+1|x)− P (−1|x) (x ∈ {0, 1}). (5)

In particular, C0 ̸= C1 indicates that the outcome b is
influenced by the choice of input x. We will now anal-
yse the possible correlations given some value of ∆t and
upper bound on ∆E.

Quantum correlations

Let us begin by considering the prepare-and-measure
scenario without the shared randomness λ, and discuss
how to reintroduce it at the end of this section. In this
case, we have probabilities P (b|x) = tr(Mbρx) with ρx =

UtxρxU
†
tx , such that Cx = tr(ρxM) with M = M+1 −

M−1. Let us initially assume that the preparation device
prepares a pure state |ψ0⟩ at time t0. Then, at time
t1 = t0 +∆t, the state is given by

|ψ1⟩ = U∆t |ψ0⟩ =
∑
n

e−iEn∆t/ℏcn |En⟩ , (6)

where |ψ0⟩ =
∑
n cn |En⟩ is decomposed into its energy

eigenbasis (we absorb all further time evolution into the
definition of the measurement procedure M).
We define the quantum set of pure state correlations

for time delay ∆t ≥ 0 and maximal energy uncertainty
E ≥ 0 as follows:

QE,∆t :=
{
(C0, C1)

∣∣Cx = ⟨ψx|M |ψx⟩ ,−1 ≤M ≤ 1,

∃Ĥ s. t. |ψ1⟩=U∆t |ψ0⟩ ,∆Eψ0
≤ E

}
. (7)

The penultimate condition imposes the existence of some
fixed Hamiltonian Ĥ that relates states |ψ0⟩ to |ψ1⟩ via
unitary time evolution, where the energy uncertainty of
the initial state ∆Eψ0 is less than some maximal fixed
value E. This condition ∆Eψ0 ≤ E implements the semi-
DI assumption for our scenario, expressing our belief of
an upper bound on the energy uncertainty.
It has already been proven in [27] that, in a prepare-

and-measure scenario communicating pure states, the
possible correlations are characterised by the inequality

1

2

(√
1 + C0

√
1 + C1 +

√
1− C0

√
1− C1

)
≥ γ, (8)

where γ is defined as the smallest possible overlap be-
tween the two states |ψ0⟩ and |ψ1⟩. An overlap γ = 1
corresponds to the maximally restricted set of correla-
tions C0 = C1, whilst as γ → 1 the range of accessible
correlations increases. For our scenario, the quantum
speed limit constrains the overlap as follows:

γ := min | ⟨ψ1|ψ0⟩ | =

{
cos (E∆t) if E∆t < π

2 ,

0 otherwise.
(9)

(Note that from here, we use natural units ℏ = 1 for
simplicity.) This allows us to evaluate the set of pure-
state quantum correlations, given the energy uncertainty
of the state prepared by P and the time delay between
possible preparation times. In Appendix B, we show that
all correlations that satisfy Eq. (8) with equality (corre-
sponding to the two curves that bound the blue set (for
any fixed γ) in Figure 2 have a quantum model, i.e. are
contained in QE,∆t. Furthermore, by considering purifi-
cations with an ancilla system, we prove in Appendix A
that the set of correlations is unchanged when one allows

for mixed states, related according to ρ1 = U∆tρ0U
†
∆t

and with energy constraint ∆Eρ0 ≤ E. This shows that
QE,∆t is convex, and thus, that QE,∆t is exactly the set
of (C0, C1) that satisfy (8).
Now we will consider the case that there is shared ran-

domness λ. In this case, the observed correlation C =
(C0, C1) arises from probabilities of the form of Eq. (4),
i.e. Cx =

∑
λ p(λ)tr[M

λρλx], where M
λ = Mλ

+1 −Mλ
−1.

Our goal is to show that C ∈ QE,∆t for all E ≥ ∆Eρ0 for

ρx =
∑
λ

p(λ)ρλx. (10)
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FIG. 2. Set of quantum (blue) and classical (red) correlations
for different state overlaps γ ∈ {0.9, 0.7, 0.5, 0.3, 0.1} (from
darkest to lightest).

On a larger Hilbert space, consider the block matrices
ρ̄0 :=

⊕
λ p(λ)ρ

λ
0 and M̄ :=

⊕
λM

λ, then ρ̄0 is a density
operator and −1 ≤ M̄ ≤ 1 because M̄ = M̄† and all its
eigenvalues are in the interval [−1, 1]. Furthermore, H̄ :=⊕
Ĥ defines a Hamiltonian that evolves each λ-subspace

independently via Ūt = e−iH̄t =
⊕

λ e
−iĤt =

⊕
λ Ut.

For ρ̄x := Ūtx ρ̄0Ū
†
tx , we get tr[M̄ρ̄x] = Cx, i.e. we have

reproduced the correlation C in a scenario with a fixed
measurement M . Furthermore, tr(ρ̄0H̄

k) = tr(ρ0Ĥ
k) for

k ∈ {1, 2}, and so the construction also preserves the
energy’s standard deviation ∆Eρ0 = ∆Eρ̄0 . This shows
that C ∈ QE,∆t for all E ≥ ∆Eρ0 : that is, the sets QE,∆t

describe the correlations in the scenario of Fig. 1 with or
without shared randomness λ, obtainable from average
prepared states ρ0 with energy uncertainty ∆Eρ0 ≤ E.
For E∆t → 0, the states have overlap γ → 1, and

so are indistinguishable by the measurement device. In
this case, the outputs b must be independent of x; i.e.
the correlations are on the line C0 = C1. However, for
increasing E∆t, the overlap decreases such that the mea-
surement device can at least partially distinguish the two
states – therefore a larger set of correlations are available,
as shown in Figure 2. For E∆t ≥ π/2, the states may be
perfectly distinguishable, and therefore all correlations
are possible.

Classical correlations

Suppose that an adversary has complete knowledge of
the variable λ in the decomposition (10), and knows the
value of x. Under what conditions does this allow the ad-
versary to predict the measurement outcome b perfectly,

for both x ∈ {0, 1}? To answer this question, we have
to consider the energy uncertainty of the states ρλ0 if we
know that ∆Eρ0 ≤ E. In Appendix C, we show that the
standard deviation ∆E is concave, and so

∆Eρ0 ≥
∑
λ

p(λ)∆Eρλ0 .

That is, while some ρλ0 may have energy uncertainty
strictly larger than E, the average energy uncertainty is
still upper-bounded by E.
Now suppose that the eavesdropper, knowing λ, can

perfectly predict the output ofM conditioned on x. This
means that the associated correlations Cλ = (Cλ0 , C

λ
1 )

must be in the set of deterministic correlations, {±1} ×
{±1}, and that the energy bound must be satisfied on
average. Thus, the average correlation C =

∑
λ p(λ)C

λ

must be contained in the following set, the classical max-
average set, defined similarly as in [27]:

CE,∆t =

{
C =

∑
λ

p(λ)Cλ

∣∣∣∣∣ Cλ ∈ QEλ,∆t,

Cλ ∈ {±1} × {±1},
∑
λ

p(λ)Eλ ≤ E

}
. (11)

To characterise this set, we consider two possibilities
for each λ; either Eλ < π

2∆t , in which case the only
deterministic correlations are those represented by the
line |Cλ0 − Cλ1 | = 0; or Eλ ≥ π

2∆t , in which case all

correlations are possible, i.e. |Cλ0 − Cλ1 | ≤ 2. We col-
lect the variables according to Λ1 = {λ1 : Eλ1 < π

2∆t},
which occurs with probability

∑
λ1∈Λ1

p(λ1) =: p1 and

Λ2 = {λ2 : Eλ2 ≥ π
2∆t}, which occurs with probabil-

ity
∑
λ2∈Λ2

p(λ2) =: p2 = 1− p1, and where Λ = Λ1∪̇Λ2.
First, consider the case that both p1 and p2 are non-zero.
The correlations are bounded according to

|C0 − C1| ≤
∑
λ∈Λ

p(λ)|Cλ0 − Cλ1 | ≤ 2p2.

We have ∑
λ1∈Λ1

p(λ1)E
λ1 +

∑
λ2∈Λ2

p(λ2)E
λ2 ≤ E

⇒ p1
∑
λ1∈Λ1

p(λ1)

p1︸ ︷︷ ︸
:=qλ1

Eλ1 + p2
∑
λ2∈Λ2

p(λ2)

p2︸ ︷︷ ︸
:=qλ2

Eλ2 ≤ E

⇒ p1E1 + p2E2 ≤ E.

In the last line, we have defined E1 :=
∑
λ1∈Λ1

qλ1
Eλ1

and E2 :=
∑
λ2∈Λ2

qλ2
Eλ2 (the averages of the energy un-

certainties below and above π
2∆t respectively), for which∑

λ1∈Λ1
qλ1

= 1 and
∑
λ2∈Λ2

qλ2
= 1. From this, we can

then calculate a bound on p2:

p2 ≤ E− E1

E2 − E1
=

δ

ϵ+ δ
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where, by construction, E1 < E < E2, so we can write
E1 = E−δ and E2 = E+ϵ, with 0 < δ ≤ E and ϵ ≥ π

2∆t−
E ≥ 0. This is clearly maximised by taking the lower
bound ϵ = π

2∆t − E (i.e. E2 = π
2∆t , the minimal E2 for

which all correlations are possible). Then, the remaining
fraction is maximised by taking the upper bound δ = E
(i.e. E1 = 0). Therefore:

p2 ≤ 2E∆t

π
. (12)

So far, we have assumed that p1, p2 ̸= 0. But if p2 = 0,
then this bound is trivially true. Furthermore, if p1 = 0,
then E = E2 ≥ π

2∆t , and so 2E∆t
π ≥ 1 = p2. Hence (12)

is true in all cases.
Therefore we have the following bound on the correla-

tions, where the lower case is the one of interest for the
max-average assumption:

|C0 − C1| ≤

{
2 if E ≥ π

2∆t ,
4E∆t
π if E < π

2∆t .
(13)

Conversely, suppose some correlation k = (k0, k1) sat-
isfies inequality (13). It is geometrically clear that this
must be in CE,∆t, following the same line of reasoning
as in [29, Appendix E]. Suppose k0 < k1, then one
can draw a line through k, from one corner (−1, 1) to
the diagonal line |C0 − C1| = 0, intersecting at some
C = (C,C). Therefore, this correlation can be written
as k = κ(−1, 1)+(1−κ)C, for some κ ∈ [0, 1]. From this,
we know κ = 1

2 (k1 − k0) ≤ 2E∆t
π . Define Λ = {1, 2, 3},

C1 = (−1, 1), C2 = (−1,−1), and C3 = (+1,+1). We
have just shown that k can be written as a convex com-
bination of these three correlations, where the weight
p(1) of C1 is at most 2E∆t

π . Moreover, Cλ ∈ QEλ,∆t for

E1 = π
2∆t and E2 = E3 = 0. Thus, the energy constraint

in definition (11) is satisfied:∑
λ

p(λ)Eλ = p(1)E1 ≤ 2E∆t

π
· π

2∆t
= E.

This shows that k ∈ CE,∆t. The case k0 ≥ k1 can be
treated analogously swapping the extremal point (1,−1)
for (−1, 1). Thus, Eq. (13) characterises the CE,∆t pre-
cisely.

For an illustration of the classical max-average set
C̄E,∆t see Fig. 3. Interestingly, it is not in general a
strict subset of the quantum set, since ∆E is concave
under mixtures rather than linear, as for observables. In
particular, for small E∆t, there are correlations that can
be modelled classically under the max-average assump-
tion that are not predicted by quantum theory under the
stricter E constraint.
Hence, if we have an upper bound E on the energy un-

certainty of the initial state, and if our scenario generates
some correlation C ∈ QE,∆t ∩ C̄E,∆t, then it is possible
that this correlation comes from an ensemble of deter-
ministic correlations, which makes the outcome b poten-
tially predictable by an adversary. But importantly for

FIG. 3. Set of quantum correlations QE,∆t (blue) and classical
max-average correlations C̄E,∆t (red) for E∆t = 0.314 (and
thus γ = 0.951 according to Eq. (9)).

our protocol, for all 0 < E∆t < π
2 , there are correlations

consistent with QE,∆t that are outside of CE,∆t. That
is, such correlations are inconsistent with a determinis-
tic model, even when we can only measure the average
value of the energy uncertainty, rather than assuming
its validity for every value of λ separately. This allows
us to certify randomness, the quantification of which we
discuss in Section III.

Open system evolution

So far we have formulated our semi-DI assumption for
closed system communication, under unitary evolution.
However, we can consider a natural extension to open
systems, in which the inevitable environmental effects are
taken into account. In particular, [31] derive a speed limit
for open systems S coupled to general environments E
via an arbitrary coupling Hamiltonian

Ĥ = ĤS + ĤSE + ĤE = Ĥ ′
S + ĤE ,

where Ĥ ′
S = ĤS + ĤSE describes the Hamiltonian of S

together with its coupling to the environment. If ρ0 is
the quantum state of S at time 0 and ρ1 at time ∆t,
then they show that

∆t ≥ arccosF(ρ0, ρ1)

⟨∆E⟩∆t
, (14)

where F(ρ0, ρ1) = tr

√
ρ
1/2
0 ρ1ρ

1/2
0 is the Uhlmann fidelity,

and ⟨∆E⟩∆t = 1
∆t

∫∆t

0
dt∆E(t) is the time average of the

energy uncertainty ∆E(t) =

√
⟨Ĥ ′2

S⟩ρ(t) − (⟨Ĥ ′
S⟩ρ(t))2,



6

with ρ(t) the reduced state of S at time t. For pure
states ρk = |ψk⟩⟨ψk|, the fidelity is F(ρ0, ρ1) = |⟨ψ0|ψ1⟩|,
and for Ĥ = Ĥ ′

S , this bound reduces to the Mandelstam-
Tamm bound (3).

In cases where S is “small” compared to its environ-
ment E, the authors of [31] show that their bound (14)
is a significant improvement of the original Mandelstam-
Tamm bound (which, indeed, becomes trivial if the en-
vironment is very large). Moreover, as we will now
show, our results above continue to hold unchanged if
the assumption ∆Eρ0 ≤ E is replaced by an assumption
⟨∆E⟩∆t ≤ E for the time-averaged open-system energy
uncertainty. In some sense, rather than having to assume
something about the system’s energy uncertainty within
the whole universe, we now only have to assume a bound
on its energy uncertainty within its vicinity of influence.

To see this, we will first show that F(ρ0, ρ1) ≥ γ
implies that Eq. (9) holds for all measurement proce-
dures, i.e. all −1 ≤M ≤ 1 that generate the correlations
Cx = tr(ρxM). This can be seen as follows. According
to Uhlmann’s theorem, there exist purifications |ψi⟩SA
of ρi (i = 0, 1), where A is some ancillary system, such
that F(ρ0, ρ1) = |⟨ψ0|ψ1⟩SA|. But then, Eq. (9) applies
whenever Cx = ⟨ψx|M ′

SA|ψx⟩SA, where −1 ≤ M ′
SA ≤ 1.

But this is true in particular for M ′
SA =MS ⊗1A, where

Cx = ⟨ψx|MS ⊗ 1A|ψx⟩SA = tr(ρxM).
From Eq. (14), we have F(ρ0, ρ1) ≥ γ, where

γ =

{
cos (⟨∆E⟩∆t∆t) if |⟨∆E⟩∆t∆t| < π

2
0 otherwise.

Thus the possible quantum correlations obtainable un-
der open-system evolution as described above under the
assumption ⟨∆E⟩∆t ≤ E are exactly given by QE,∆t. All
further arguments, including the randomness certifica-
tion results below, continue to hold without changes.

For a possibly even tighter quantum bound, Ref. [32]
proves a general constraint for arbitrary physical pro-
cesses in terms of the quantum Fisher information FQ(t).
Whilst their inequality serves as a tighter bound in gen-
eral on the state transformation, the quantum Fisher
information is less easy to directly determine for time-
dependent evolution [31, 32]. Therefore the formulation
of [31] in terms of the energy uncertainty ⟨ES⟩τ is more
readily suitable for our operationally motivated scenario.

III. RANDOMNESS CERTIFICATION

For correlations C ∈ QE,∆t\CE,∆t, there is no classi-
cal model that could reproduce correlations predicted by
quantum theory, even assuming the energy constraint is
only respected on average. Therefore, observing such cor-
relations certifies randomness in that they have no deter-
ministic description, and can be used for the generation
of random numbers. The amount of certified randomness
can be quantified adapting a method of [28].

Imagine that an adversary (Eve) wishes to guess the
output of b. Like the experimenter (Alice), she may have

FIG. 4. Numerical estimates of the certifiable entropy H∗

under the assumption ∆E ≤ E with E∆t = 0.5 in units where
ℏ = 1. Points with H∗ > 0 correspond to correlations that
allow for certified randomness extraction. As expected, H∗ =
0 (only) on the red-rimmed classical max-average set C̄E,∆t.
The maximal numerical value of the entropy we observe is
H∗ = 0.68. See Appendix E for details on the methodology
we use to evaluate (15).

knowledge of the inputs x, but (unlike Alice) she may also
have access to additional information about the scenario.
We may even consider that she knows all additional phys-
ical parameters, characterised by λ, that determine the
behaviour of the device. We could imagine in some situa-
tions that some physical parameter, of which Eve knows
the value, is correlated with the outcome b, allowing her
a predictive advantage over the experimenter. We wish
to prove for our scenario that, irrespective of knowing
any such parameters, the outcome of the experiment is
random, even to Eve.

For Eve, the scenario is characterised by the ensemble
{p(λ), (Cλ,Eλ)}. The correlations as viewed by the ex-
perimenter can be more precisely characterised accord-
ing to Eve’s knowledge, by C =

∑
λ p(λ)C

λ. Nev-
ertheless, the experimenter has already checked that
the energy uncertainty is on average bounded by E,
therefore the constraint

∑
λ p(λ)E

λ ≤ E applies, which
follows from the concavity of variances (see Appendix
C). For Alice to be sure that Eve cannot predict the
outcome b reliably, she can quantify the randomness
via e.g. the conditional Shannon entropy H(B|X,Λ) =
−
∑
b,x,λ p(b, x, λ) log2 p(b|x, λ). This quantifies the diffi-

culty for Eve to predict b, given x and λ. Provided the
inputs are independent of λ, the conditional entropy can
be written as

H(B|X,Λ) =
∑
λ

p(λ)H(Cλ),
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where

H(C) := −1

2

∑
b,x

1 + bCx
2

log
1 + bCx

2
.

This can be determined by the optimisation problem
H(B|X,Λ) ≥ H⋆, where

H⋆ = min
{p(λ),Cλ,Eλ}

∑
λ

p(λ)H(Cλ) (15a)

s.t.
∑
λ

p(λ)Cλ = C, (15b)∑
λ

p(λ)Eλ = E, (15c)

Cλ ∈ QEλ,∆t. (15d)

As in [28, Eq. 26], we take the condition in (15c) to be
equality without loss of generality; see Appendix D. In
contrast to their setting, however, our feasible set de-
fined by the constraint (15d) is non-convex when ranging
over all possible Eλ. Despite this, we adopt a similar
strategy by formulating the Lagrange dual of the prob-
lem, which yields certified lower bounds on the entropy
H∗. This dual approach enables us to work directly with
our non-convex and non-linear constraints while still en-
suring that any feasible dual solution provides a valid
bound for randomness certification. See Appendix E for
full details of such dual formulation and the numerical
method used to evaluate it. In Figure 4, we plot the
resulting estimates of H∗ over the space of correlation
pairs, for a fixed average energy uncertainty constraint
E = 1/2. Any value H∗ > 0 can be used to extract
a semi-device-independent certificate of randomness. As
expected, points lying within the classical average set C̄
yield H∗ = 0 (and vice versa), indicating that no ran-
domness can be certified against an adversary in that
region.

IV. IMPLEMENTATION WITH COHERENT
STATES

In this section, we show that our protocol can in prin-
ciple be performed with coherent states of a single har-
monic oscillator, and we sketch a quantum-optical imple-
mentation.

Consider a situation in which the initial state is given
by |ψ0⟩ = |α⟩ a single-mode coherent state, described in
its Fock basis by

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!

|n⟩ . (16)

The state evolves in time as a harmonic oscillator Ĥ =
ℏω(â†â + 1

2 ), and we use the quantum optics conven-

tion where â = 1√
2
(q̂ + ip̂) and [â, â†] = 1 such that

Ĥ = ℏω
2 (q̂2+p̂2) (an analogous but more cumbersome cal-

culation for the mechanical oscillator Ĥ = p̂2

2m + 1
2mω

2q̂2

leads to the same result for the correlations C = (C0, C1)
as below). The coherent state evolves in time by rotating
in phase space,

e−iĤt |α⟩ = e−iωt/2|α(t)⟩, (17)

where α(t) = e−iωtα. Up to an irrelevant global phase
θ ∈ R, its representation in the quadrature q basis is
given by

⟨q|α⟩ = eiθπ−1/4 exp

[
−1

2

(
q −

√
2Re(α)

)2
]
,

where |q⟩ is an eigenstate of the quadrature operator q̂ =
1√
2
(â + â†). This expression shows that the coherent

state is a Gaussian wavepacket centered at
√
2Re(α) in

the quadrature q.
At the measurement device M , we follow a proto-

col similar to the BPSK example of [27, Section 2.3.1].
In particular, M implements a quadrature measurement
and assigns the binary output b = sign(q), i.e.

b =

{
+1 if q > 0,

−1 if q < 0.
(18)

The measurement outcome is sampled from

| ⟨q|α(t)⟩ |2 = π−1/2 exp

[
−
(
q −

√
2Re(αe−iωt)

)2
]
.

That is, b = b(t) is time-dependent. This leaves room for
there to be interesting correlations from our scenario. In
particular, the correlations are given by

C(t) ≡ E[b(t)] =

∞∫
−∞

sign(q)|⟨q|α(t)⟩|2dq

= erf(
√
2Re(αe−iωt)), (19)

where the final line uses the well-known result
E[sign(x)] = erf(µ/

√
2σ) for a Gaussian distribution

centred at µ with standard deviation σ (here, we have

σ = 1/
√
2). Then the correlations (C0, C1) are given by

C0 = C(t = 0) = erf(
√
2Re(α)),

C1 = C(t = ∆t) = erf(
√
2Re(αe−iω∆t)). (20)

The energy expectation is given by

⟨Ĥ⟩α(t) = ℏω
(
|α(t)|2 + 1

2

)
= ℏω

(
|α|2 + 1

2

)
,

and the squared energy:

⟨Ĥ2⟩α(t) = ℏ2ω2

(
|α(t)|4 + 2|α(t)|2 + 1

4

)
.
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FIG. 5. (a) Diagram of proposed experimental setup; technically similar to, but conceptually distinct from the BPSK imple-
mentation of [28]. The preparation device P consists of a monochromatic laser emitting a coherent pulse, which is sent through
a beam splitter for homodyne detection. The transmitted beam (the quantum signal, QS) is attenuated by an optical density
filter (OD) and then, for the input x = 1, delayed by some time ∆t. This can be achieved using an optical wedge, whose
position and thickness depends on the input x. By causing a time delay, the wedge introduces a corresponding phase shift. At
the measurement device M , the signal is interfered with the reflected signal (the local oscillator, LO), which acts as a phase
reference, and is measured. The quadrature q is then measured, the sign of which determines the output b. (b) Diagram of the
phase space of the coherent state, showing the relative phase ω∆t between the two states that may arrive at M . For x = 0, the
state |α⟩ = |iξ⟩ is centred on the y-axis (in the rotating frame of reference of the local oscillator), evolving counter-clockwise
with period 2π/ω. For x = 1, the state is given by |α(t = ∆t)⟩ =

∣∣iξe−iω∆t
〉
.

The energy uncertainty is thus given by

∆Eα(t) =

√
⟨Ĥ2⟩ − ⟨Ĥ⟩2 = ℏω|α(t)| = ℏω|α|.

In order to realise interesting quantum correlations
that certify randomness, suppose we begin with an ini-
tial state |α⟩ = |iξ⟩ where ξ ∈ R. In this case, the energy
uncertainty is given by ∆Eα = ℏωξ. For the correlation
function, from Eq. (20), we get

C0 = 0, (21)

C1 = erf(
√
2ξ sin(ω∆t)). (22)

To summarise, in order to obtain interesting correla-
tions that certify randomness from coherent states, we
want values of C = (0, erf(

√
2ξ sinω∆t)) that are in the

set QE,∆t but outside CE,∆t, where ℏωξ ≤ E. From the
characterisation of the max-average classical set of equa-
tion (13), with units ℏ put back in, we get the following
condition for non-zero entropy:∣∣∣erf(√2ξ sin(ω∆t)

)∣∣∣ > 4E∆t

πℏ
, (23)

for E∆t/ℏ < π/2 and ℏωξ ≤ E.
As Fig. 6 shows, there are indeed choices of frequency

ω, time delay ∆t and of assumed upper bounds E to
the energy uncertainty such that a non-zero amount of
randomness can be certified with a standard coherent
state of a simple harmonic oscillator. An example is for
ℏωξ = E = 0.5, ω∆t = 0.4 (i.e. the point (0.4, 0.2) in
Fig. 6), for which we obtain C1 = 0.303. This places
C ∈ QE,∆t\CE,∆t, and yields a certified entropy H∗ =
0.0242.

In Fig. 5, we sketch a possible quantum-optical imple-
mentation, see the figure caption for a description. Note

that the local oscillator can in principle be replaced by a
second laser, and then only the upper path corresponds to
the physical system that is prepared and measured. Since
the implementation of the time delay relies on the spe-
cific physics of light propagation in materials, it does not
accomplish the device-independence of the anticipated
“trusted operation on an untrusted device” depicted in
Fig. 1. However, assuming that a photon state has been
prepared, and that the optical element works as desired,
it admits the certification of randomness independently
of the actually prepared photon state (and of the actually
performed measurement).
There is an interesting conceptual relation to work by

Tsirelson [33], which has recently received renewed at-
tention (see e.g. [34]). Tsirelson has shown that a simple
quantum harmonic oscillator can behave probabilistically
in a way that a classical harmonic oscillator cannot. In
more detail, asking whether the position q of the oscilla-
tor is positive (which is exactly the measurement in our
protocol above) after zero, one-third or two-thirds of a
period yields probabilities between 1/3 and 2/3 for clas-
sical distributions in phase space, whereas some states of
the quantum harmonic oscillator (necessarily with nega-
tivity in the Wigner function) give a probability of 0.71.
Analogously, our result shows a nonclassical effect of the
quantum harmonic oscillator in some sense, but for stan-
dard coherent states with a positive Wigner function.

V. DISCUSSION & OUTLOOK

In this work we have demonstrated the applicability of
the quantum speed limit for performing tasks in quantum
information – namely, for generating certifiably secure
random numbers. We have described a simple prepare-
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FIG. 6. Regions for which non-zero randomness can be cer-
tified according to Eq. (23), for ξ ∈ {0.5, 1, 1.5, 2, 2.5} (red,
yellow, green, blue, purple), where ξ = |α| is related to the
average photon number ⟨n⟩ = ξ2 in the coherent state |α⟩.
Dashed lines represent the lines ℏωξ = E.

and-measure scenario, where the inputs correspond to
two time-displaced preparations of a transmitted system.
This communicated system is constrained only in terms
of some upper bound on its energy uncertainty. We have
characterised the possible quantum correlations of the
scenario, for pure state, mixed state and open systems,
and shown that quantum theory predicts statistics that
are incompatible with any deterministic explanation –
even for an adversary who has knowledge of the inputs
and who has access to extra information about the com-
munication between devices. Moreover, we have provided
a numerical estimate for the amount of certifiable en-
tropy H⋆ under our energy and time assumptions, and
sketched an experimental implementation involving co-
herent states that yields non-zero certified entropy. It is
interesting particularly to note that some single-mode co-
herent states admit the certification of genuine random-
ness, which bears a close resemblance to an observation
by Tsirelson [33, 34] indicating some form of nonclassical
behavior of the simple harmonic oscillator.

Our protocol contributes to ongoing efforts to replace
the traditional dimensionality assumption by physically
better motivated alternatives, building on the work of
e.g. [19–28]. The security of our protocol is grounded
in reliable upper bounds on the energy uncertainty and

the time delay between preparations. The former could
be verified “from the outside”, in a similar spirit as pro-
posed by [27]; by performing many tests on the state ρx
emitted by P , one could do a statistical analysis to de-
termine the energy uncertainty. The latter is imposed
manifestly by the nature of the experiment; the device
time-displaces the two possible states by ∆t, by virtue of
implementing a time delay during one of the two prepa-
rations. Ideally, we would consider that the experimenter
themselves waits some time between preparation times,
but the nano-timescale prohibits a fully operational im-
plementation of this assumption. Nevertheless, we can
conceive of this as a trusted super-operation on an oth-
erwise uncharacterised preparation box.
The consideration of semi-DI protocols via trusted op-

erations in spacetime on untrusted devices was initiated
in [29]. There, the input for a prepare-and-measure sce-
nario is given by some rotation of the preparation device
around a fixed axis by some angle α, while assuming an
upper bound to the spin J of the transmitted physical
system. For small enough angles, the gap between quan-
tum and classical (deterministic) sets of correlations can
be used to generate secure random numbers. Moreover,
it has been shown that the set of quantum correlations
in this setup can be recovered even without assuming
quantum theory. In a similar spirit to the “spacetimes
boxes” framework of [29, 30], there may be scope to ex-
tend the results of this paper to a theory-independent set-
ting. There has been some interesting work in this direc-
tion by other authors [35], who derive a speed limit from
purely information-theoretic principles. This could moti-
vate the generalisation of the results of this paper beyond
quantum theory, or even within a framework guided only
by spatiotemporal considerations. If this were possible,
one could look to ground quantum information protocols,
such as the certification of randomness, on assumptions
about time translation symmetry alone.
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APPENDIX

A. MIXED STATES

We now consider the set of quantum correlations for
mixed states, which we prove is equal to that of pure
states. For E ≥ 0 and ∆t ≥ 0, we define the following:

Q′
E,∆t :=

{
(C0, C1)

∣∣Cx = tr[Mρx],−1 ≤M ≤ 1,

∃Ĥ s. t. ρ1 = U†
∆tρ0U∆t, ∆Eρ0 ≤ E

}
, (24)

which we show to be equal to QE,∆t. To do so, we con-
sider the purification of mixed states, using ancilla sys-
tems, and show that the purification procedure does not
change the energy variance. In particular, consider a
mixed state ρA0 acting on HA, which is diagonalised as
ρA0 =

∑
kA c̃k

∣∣kA〉 〈kA∣∣. To characterise its purification,
we introduce a fictitious system B with Hilbert space HB

such that dim(HA) = dim(HB). This defines a pure state
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|ψAB⟩ =
∑
k

√
c̃k

∣∣kAkB〉, evolving under the Hamilto-

nian ĤAB := ĤA + 0̂B via U∆t ⊗ 1B . This embedding
does not affect the energy variance. In particular,

⟨Ĥ2
AB⟩ψAB

= ⟨ψAB | Ĥ2
A⊗1B |ψAB⟩ = tr

[
ρAĤ

2
A

]
= ⟨Ĥ2

A⟩ρA ,

and likewise for ⟨ĤAB⟩ψAB
. Therefore, ∆EψAB

= ∆EρA .
We can think of the communication of a mixed state
ρA as being realised by the communication of a pure
state |ψ⟩AB (which is therefore already contained within
the characterisation QE,∆t), but such that the measure-
ment device does not “listen” to the subsystem B. This
means that we embed the POVM {M+,M−} on A via
{M+ ⊗ 1B ,M− ⊗ 1B} on AB, reproducing the original
correlation via a pure state on the larger system AB.
Accordingly, we have proven the equality

Q′
E,∆t = QE,∆t. (25)

That is, the set of quantum correlations is unchanged by
including mixed states. This also implies that QE,∆t is
convex.

B. QUANTUM MODEL FOR ALL
CORRELATIONS OF (8)

Having shown that all correlations in QE,∆t are con-
strained by inequality (8), we now prove the tightness of
this bound by providing a quantum model for all corre-
lations that satisfy (8), that is:

1

2

(√
1 + C0

√
1 + C1 +

√
1− C0

√
1− C1

)
≥ γ.

To do so, we follow a similar approach to that of [29],
in which we have already provided an analogous analysis
for the sets called QJ,α. For these purposes, it is useful
to switch description from correlations C = (C0, C1) to
probabilities P+ = (P+

0 , P
+
1 ), where probabilities P+

x :=
P (+1|x) are related to the correlations by the bijective
affine transformation P+ = (C + 1)/2. Following [29],
we can write down a description for the inequality above
in terms of the extremal points (0, 0), (1, 1), along with
the following curves p1 and p2 parametrised by τ :

p1(τ) =
(
cos2(Eτ), cos2(E(τ +∆t))

)
, τ ∈ I1, (26)

p2(τ) =
(
cos2(Eτ), cos2(E(τ −∆t))

)
, τ ∈ I2, (27)

where I1 = [0, π2E −∆t] and I2 = [∆t, π2E ].
We will now provide a quantum model for all of these

extremal points. First, the points (0, 0) and (1, 1) are
given by constant probability distributions, and so can
be trivially modelled. For example, the latter can be
reproduced by the state |ψ0⟩ = |ψ1⟩ = |E⟩, for which
∆E = 0, and the measurement operators M+ = |E⟩⟨E|
and M− = 1 −M+.

Next we take the curve given by p1(τ), which can be
modelled (for instance) by the state

|ψ0⟩ =
|0⟩+ |2E⟩√

2

for some Hamiltonian that has 0 and 2E among its energy
eigenvalues, which has an energy uncertainty of ∆E = E.
This state evolves in a time ∆t to the following:

|ψ1⟩ = U∆t

(
|0⟩+ |2E⟩√

2

)
=

1√
2

(
|0⟩+ e−2iE∆t |2E⟩

)
=

1√
2
e−iE∆t

(
eiE∆t |0⟩+ e−iE∆t |2E⟩

)
.

Then we define the measurement operators M+ =
U†
τ |ψ0⟩⟨ψ0|Uτ andM− = 1−M+, for which a simple cal-

culation shows that we achieve the required probabilities:
P+
0 = ⟨ψ0|M+|ψ0⟩ = cos2(Eτ) and P+

1 = ⟨ψ1|M+|ψ1⟩ =
cos2(E(τ +∆t)). The curve p2(τ) can be modelled sim-
ilarly, using the same state but the measurement opera-

tors M+ = U†
−τ |ψ0⟩⟨ψ0|U−τ and M− = 1 −M+.

Having modelled all extreme points, we then use that
QE,∆t is convex to conclude that all correlations that
obey inequality (8) have a quantum model, and thus it
precisely characterises the quantum set QE,∆t.

C. CONCAVITY OF ∆E

To show concavity of ∆Eρ in ρ = λρ1+(1−λ)ρ2, first
we note convexity of ⟨Ĥ⟩2ρ:

⟨Ĥ⟩2ρ = (λ⟨Ĥ⟩ρ1 + (1− λ)⟨Ĥ⟩ρ2)2

≤ λ⟨Ĥ⟩2ρ1 + (1− λ)⟨Ĥ⟩2ρ2 ,

due to the convexity of (·)2. We also have the equality

λ⟨Ĥ2⟩ρ1 + (1− λ)⟨Ĥ2⟩ρ2 = ⟨Ĥ2⟩ρ.

Together with the concavity of the square root function,
these show concavity of ∆Eρ in ρ:

∆Eρ =
√
⟨Ĥ2⟩ρ − ⟨Ĥ⟩2ρ

≥
√
λ⟨Ĥ2⟩ρ1 + (1−λ)⟨Ĥ2⟩ρ2 − λ⟨Ĥ⟩2ρ1 − (1−λ)⟨Ĥ⟩2ρ2

=
√
λ(⟨Ĥ2⟩ρ1 − ⟨Ĥ⟩2ρ1) + (1− λ)(⟨Ĥ2⟩ρ2 − ⟨Ĥ⟩2ρ2)

=
√
λ(∆Eρ1)

2 + (1− λ)(∆Eρ2)
2

≥ λ∆Eρ1 + (1− λ)∆Eρ2 .

This extends in an obvious way to more general convex
combinations ρ =

∑
λ p(λ)ρλ.
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D. EQUALITY (15c) OF THE OPTIMISATION
PROBLEM

We need to show the following: if {p(λ),Cλ,Eλ} sat-
isfies (15b), (15c’) and (15d), where∑

λ

p(λ)Eλ ≤ E, (15c’)

then there are E′λ ≥ Eλ such that {p(λ),Cλ, E′λ} satis-
fies (15b), (15c) and (15d). Consequently, we can replace
(15c’) by (15c) in the optimisation problem.

This can be seen as follows. Clearly,
∑
λ p(λ)E

′λ is

increasing in E′λ, and it can in fact be made arbitrarily

large. Thus, we can pick the E′λ such that
∑
λ p(λ)E

′λ =
E, i.e. (15c) is satisfied. Since (15b) depends only on the
correlations Cλ, it is unchanged. Finally, we have

E ≤ E′ ⇒ QE,∆t ⊆ QE′,∆t,

and so (15d) implies that Cλ ∈ QE′λ,∆t.

E. OPTIMIZATION FRAMEWORK FOR
BOUNDING THE ENTROPY H∗

We are interested in bounding the amount of random-
ness (entropy H∗) that can be certified in our prepare-
and-measure scenario from given observed correlations
C = (C0, C1), under an average energy uncertainty con-
straint ∆Eρ0 ≤ E and evolution time ∆t. The goal is
to minimise the conditional entropy H(B|X,Λ) over all
compatible hidden-variable decompositions. Formally,
the optimisation problem can be expressed as:

H∗ := min
{p(λ),Cλ,Eλ}

∑
λ

p(λ)H(Cλ)

subject to
∑
λ

p(λ)Cλ = C,∑
λ

p(λ)Eλ = E,

Cλ ∈ QEλ,∆t,

(28)

where H(C) =
∑
x p(x)hbin(Cx), using the binary en-

tropy function hbin(Cx) = −
∑
b

1+bCx

2 log2
1+bCx

2 . Here

we assume p(x) = 1/2 for both x, i.e. there is equal a
priori probability for both inputs.

Finding an optimal solution requires, in principle, opti-
mising over all possible ensembles {p(λ),Eλ,Cλ}. Since
the number of hidden variables λ ∈ Λ is unbounded, this
problem is generally intractable in its full form. To ad-
dress this challenge, we follow a strategy similar to the
one presented in [28] by formulating the dual problem.
This reformulation allows us to obtain safe lower bounds
on the entropy H∗

dual ≤ H∗, even when the primal prob-
lem is not directly solvable. Moreover, we demonstrate
that our problem exhibits the strong duality property,

ensuring that the optimal dual solution coincides with
the optimal primal solution, i.e., H∗

dual = H∗.

Before deriving the dual, it is convenient to first ex-
press the primal problem as part of a broader class of
non-linear constrained optimisation problems. Let f be
a continuous function defined over the set of feasible so-
lutions Q ⊂ Rdim(Q). The optimization problem can then
be expressed as:

f∗(x0) = min
{xλ,p(λ)}

∑
λ

p(λ)f(xλ)

subject to
∑
λ

p(λ)xλ = x0,

xλ ∈ Q,
p(λ) ∈ P(Λ),

(29)

where P(λ) denotes the set of all probability distribu-
tions over the λ. For our specific problem of Eq. (28),
the feasible set Q ⊂ R3 contains all possible correla-
tions Cλ ∈ QEλ,∆t for all energy uncertainties within

0 ≤ Eλ ≤ π/(2∆t). Therefore, the optimization vari-
ables can be identified as xλ = (Cλ,Eλ) ∈ Q, while the
given observed data and constraint are x0 = (C,E).

In contrast to the case in [28], our feasible set Q is
non-convex, as illustrated in Figure 7. Despite this non-
convexity, it can be demonstrated that the dual formu-
lation of the problem maintains strong duality, ensuring
that the optimal solution obtained from the dual problem
coincides with the optimal primal solution.

FIG. 7. The non-convex feasible set Q for the optimization
problem 28, representing the set of allowed correlations and
energy uncertainties used as optimization variables. Specifi-
cally, the elements of the set are of the form (Cλ

0 , C
λ
1 ,E

λ).



13

Dual formulation

To derive the dual formulation of the optimisation
problem, we begin by defining the Lagrangian:

L(x0, {p(λ),xλ}, t) =
∑
λ

p(λ)f(xλ) + t ·

(
x0 −

∑
λ

p(λ)xλ

)
,

where t ∈ Rm are the Lagrange multipliers (or dual vari-
ables) associated to each constraint in the primal prob-
lem. In our case (28), we have m = 3 corresponding to
the constraints on the observed values C0, C1 and E.
The dual function g : Rm → R is then defined as:

g(x0, t) = inf
{p(λ),xλ}

L(x0, {p(λ),xλ}, t) (30)

= inf
{p(λ),xλ}

{∑
λ

p(λ)f(xλ) + t ·

(
x0 −

∑
λ

p(λ)xλ

)}

= t · x0 + inf
{p(λ),xλ}

{∑
λ

p(λ)
(
f(xλ) − t · xλ

)}
.

The dual function g is concave by construction, as it is a
pointwise infimum over affine functions. Next, let t ∈ R

be the infimum t := inf
{p(λ),xλ}

{∑
λ

p(λ)
(
f(xλ)− t · xλ

)}
,

so that we can express the dual function simply as
g(x0, t) = t+ t · x0.
This dual Lagrange function satisfies the weak duality

property, yielding lower bounds on the optimal value:

g(x0, t) ≤ f∗(x0),

where f∗(x0) = min{p(λ),xλ}
∑
λ p(λ)f(x

λ) is the opti-
mal value of the primal problem. To see that weak dual-
ity is satisfied, consider any feasible ensemble {p(λ),xλ}
such that

∑
λ p(λ)x

λ = x0. Then:

g(x0, t) ≤ t · x0 +
∑
λ

p(λ)(f(xλ)− t · xλ) (31)

= t · x0 +
∑
λ

p(λ)f(xλ)− t ·
∑
λ

p(λ)xλ

=
∑
λ

p(λ)f(xλ).

Since this holds for any feasible ensemble, we conclude
g(x0, t) ≤ f∗(x0). Furthermore, note that for all x ∈ Q
one has t+ t · x ≤ f(x).
The inequality

t+ t · x ≤ f(x) ∀x ∈ Q

then defines a global affine underestimator of the func-
tion f . Therefore, the dual problem corresponding to the
primal (29) can be expressed as

sup
t,t

t+ t · x0

subject to t+ t · x ≤ f(x) ∀x ∈ Q.
(32)

In our prepare-and-measure scenario, each variable x =
(C0, C1,E) ∈ R3 represents a possible correlation pair
and corresponding energy uncertainty. The observed
quantities x0 = (Cobs

0 , Cobs
1 ,Eobs) are given and fixed.

The feasible set is:

Q := {(C0, C1,E) | (C0, C1) ∈ QE,∆t, 0 ≤ E ≤ π

2∆t
},

where recall that QE,∆t ⊂ [−1, 1]
2
denotes the set of

physically allowed correlations for a given energy un-
certainty E and evolution time ∆t. Finally, the primal
objective function f(x) is the entropy function f(x) =
H(C) defined above.
Thus, the dual formulation of our problem becomes:

H∗
dual = sup

t,t
t+ t ·

(
C
E

)
subject to t+ t ·

(
C ′

E′

)
≤ H(C ′) ∀

(
C ′

E′

)
∈ Q.

(33)

The objective function H is concave. It is easy to see
that this implies that both in the primal and in the dual
problem, we can replace the domain of optimisation Q
by its convex hull conv(Q). Since this is a convex set,
Proposition 18 in [28] implies strong duality, i.e. H∗ =
H∗

dual for all C and E. Yet, as long as we are only aiming
for lower bounds to H∗, it is not necessary to appeal to
this result.

Numerical lower bound via brute-force dual
optimization

Solving the dual problem in (33) exactly is beyond
the scope of this manuscript. However, since any fea-
sible solution to the dual provides a valid lower bound
on the optimal entropy H∗, we adopt a brute-force nu-
merical strategy. While this method does not guarantee
optimality, it reliably yields a lower bound to H∗, suf-
ficient for certifying randomness under the semi-device-
independent assumptions from the main text.
The brute-force method proceeds as follows:

• While the Lagrange multipliers t ∈ R3 are in princi-
ple unbounded, for computational purposes we re-
strict them to lie within a cube of side length 2L,
centered at the origin, where L is chosen to be fi-
nite at the cost of losing optimality. This cube is
uniformly discretized with N finite points per axis,
leading to N3 candidate dual vectors.

• For each candidate dual vector t, we evaluate the
dual constraint:

t+ t · x ≤ H(C) for all x = (C,E) ∈ Q,

by computing t = minx∈Q [H(C)− t · x].
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• We then evaluate the dual objective at the target
point x0 = (Cobs

0 , Cobs
1 ,Eobs) as:

Hdual(t) = t+ t · x0,

and retain the maximum value found over all t.

To ensure that the membership constraint x ∈ Q is
satisfied, we discretize the domain as follows:

• The correlation coordinates (C0, C1) ∈ [−1, 1]
2
and

the energy uncertainty interval E ∈ [0, π/2] are dis-
cretized into N equally spaced steps each.

• We retain only those tuples (C0, C1,E) that satisfy
the physical constraint:

1

2

(√
1 + C0

√
1 + C1 +

√
1− C0

√
1− C1

)
≥ cos(E∆t).

This defines the discretized feasible set
Qdiscretized ⊂ Q. Note that, for efficiency, it
suffices to take only the extremal points of
Qdiscretized (i.e., solving the physical constraint for
strict equality).

Heuristically, we observe that setting L ∼ 20 and us-
ingN ∼ 200 discretization steps provides a good trade-off
between computational cost and approximation accuracy.
Increasing these values further yields only marginal im-
provements in the estimated entropy, while significantly
increasing memory usage and runtime.

Algorithm Summary

In practice, the algorithm proceeds as follows:

1. Pre-compute all tuples x = (C0, C1,E) ∈
Qdiscretized ⊂ Q satisfying the above inequality.

2. For each t ∈ [−L,L]3, compute:

τ(t) = min
(C0,C1,E)∈Qdiscretized

[H(C0, C1)− t · (C0, C1,E)] ,

where τ gathers all the evaluated t values in the
search space.

3. Evaluate the dual value at the target point x0 =
(Cobs

0 , Cobs
1 ,Eobs):

Hdual(t) = τ(t) + t · x0,

where Hdual(t) gathers all the evaluated t values in
the search space.

4. Return:

H∗
dual = max

t
Hdual(t),

which serves as a certified lower bound to the true
entropy H∗.

This procedure to obtain H∗
dual provides a valid lower

bound on the entropy H∗
dual ≤ H∗, thus enabling ran-

domness certification under the semi-device-independent
assumptions of the main text.
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