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Abstract—Large language models (LLMs) can be trained
or fine-tuned on data obtained without the owner’s consent.
Verifying whether a specific LLM was trained on particular
data instances or an entire dataset is extremely challenging.
Dataset watermarking addresses this by embedding identifiable
modifications in training data to detect unauthorized use. How-
ever, existing methods often lack stealth, making them relatively
easy to detect and remove. In light of these limitations, we
propose LexiMark, a novel watermarking technique designed
for text and documents, which embeds synonym substitutions
for carefully selected high-entropy words. Our method aims
to enhance an LLM’s memorization capabilities on the wa-
termarked text, without altering the semantic integrity of the
text. As a result, the watermark is difficult to detect, blending
seamlessly into the text with no visible markers, and is resistant to
removal due to its subtle, contextually appropriate substitutions
that evade automated and manual detection. We evaluated our
method using baseline datasets from recent studies and seven
open-source models: LLaMA-1 7B, LLaMA-3 8B, Mistral 7B,
Pythia 6.9B, as well as three smaller variants from the Pythia
family—160M, 410M, and 1B. Our evaluation spans multiple
training settings, including continued pretraining and fine-tuning
scenarios. The results demonstrate significant improvements in
AURQC scores compared to existing methods, underscoring our
method’s effectiveness in reliably verifying whether unauthorized
watermarked data was used in LLM training.

I. INTRODUCTION

”Data is the new gold” ||1]] — In the context of artificial
intelligence (AI), data serves as the essential fuel driving
the performance and innovation of Al systems. High-quality
data enables models to learn complex patterns, identify subtle
relationships, and make predictions that guide decision-making
in diverse fields. Modern Al systems, including large language
models (LLMs), require massive amounts of high-quality
training data to achieve their impressive performance, which
is both expensive and difficult to acquire.

The emergence of LLMs has revolutionized natural lan-
guage processing (NLP) by enabling state-of-the-art perfor-
mance in a wide range of NLP tasks, including machine
translation, text summarization and question answering [2],
[3]. The unprecedented capabilities of LLLMs, such as GPT [4]
and Google’s Gemini [5]], [6] arise from their training on
extensive, diverse datasets. This training enables them to
grasp complex linguistic and semantic patterns, allowing for

Original

The quick brown fox jumps
over the lazy dog

The speedy brown fox leaps over the
sluggish dog

Fig. 1. An illustration of our synonym replacement method, where K=3 words
in the original sentence are substituted with higher-entropy synonyms. In this
example, “quick,” “jumps,” and “lazy” are replaced with “speedy,” “leaps,”
and “sluggish” to create the watermarked version.

sophisticated language processing and effective generalization
across different contexts.

LLMs are typically trained in two stages: pretraining, where
general language patterns are captured and learned from vast
datasets, and fine-tuning, which adapts the pretrained model
to specific tasks using smaller, specialized datasets. For these
models to reach their full potential and consistently achieve
high performance across tasks, access to high-quality training
data is essential, as it enables them to accurately model
complex linguistic patterns and nuances.

Often, the demand for suitable datasets pushes the bound-
aries of ethical data sourcing and results in the collection
of publicly available data, obtained via scraping, along with
proprietary or licensed information. This approach introduces
privacy, security, and legal risks, especially when sensitive
information, such as personally identifiable information (PII),
copyrighted content, or proprietary data, is improperly used to
train the model. In some cases, the drive to enhance model per-
formance may even tempt LLM builders to use unauthorized
or illegally obtained datasets, further compromising ethical
standards and user trust.

Awareness regarding these privacy and ethical issues has
increased as a result of legal conflicts and the lack of trans-
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parency regarding the data collection process [7]], [8l. The
lawsuit between The New York Times and OpenAl [9], as well
as other lawsuits [10], [[11], highlights the critical need for
mechanisms aimed at detecting such privacy and intellectual
property violations, and more specifically, identifying the data
used to train LLMs [12]].

The risk of data extraction and leakage is compounded
when LLMs are fine-tuned, since the fine-tuning process
involves additional training on specialized datasets that may
contain sensitive information [13]]. Memorization—where the
model retains exact phrases, sentences, or even entire passages
from the training data—can become more pronounced during
fine-tuning, especially with small or domain-specific datasets.
This memorization increases the likelihood of data leakage,
as sensitive information embedded in the model could be
inadvertently reproduced in responses, posing privacy and
security risks [[14], [15].

Larger models are even more prone to memorizing the
training data [|16]], a tendency that can be exploited through
data extraction attacks. The main risk is if attackers exploit
the model to extract or infer private information, especially if
the training data contains sensitive information such as PII or
copyrighted content [[17]. This underscores the importance of
developing robust mechanisms to detect whether unauthorized
data has been used in a model’s training process.

Such detection can be challenging, and several methods
have been proposed for detecting the presence of unauthorized
data in LLMs’ training data. Methods such as membership
inference attacks (MIAs) are designed to determine whether
a specific text was part of a model’s training dataset [18]]—
[20]. To determine whether a specific piece of data was
included in the training set, MIAs exploit the differences
in a model’s behavior when it processes seen and unseen
data. The underlying assumption is that an LLM will perform
differently on queries that are related to seen and unseen data
(e.g., exhibiting higher prediction confidence or greater loss
reduction).

Despite MIAs’ effective performance, they have several
limitations [21]). First, their performance in terms of common
metrics, such as the area under the receiver operating char-
acteristic curve (AUROC) and the true positive rate (TPR) at
a fixed low false positive rate (FPR) [19], tends to worsen
as the training set size increases, often rendering it close to
random [22]. This is due to the trade-off between general-
ization and memorization in LLMs: as the model is trained
on more data, it will generalize better, while increasing the
number of model parameters increases the model’s tendency
to memorize the training data 23], [24]. Additionally, MIAs
show inconsistent performance across models and datasets and
are prone to detecting distribution shifts rather than performing
true membership inference [12], [25].

Given the challenges and limitations associated with tradi-
tional MIAs, there is a growing need for more reliable methods
for detecting the unauthorized use of data in training LLMs.
This has led to the development of watermarking techniques,
which embed unique patterns into the training data, making
it easier to track and detect the use of specific datasets in a
model’s training process [26].

In this context, a watermark refers to a deliberate modifi-
cation of the input data that subtly alters its structure without
compromising the data’s semantic meaning [27|]. These mod-
ifications allow researchers to identify whether a particular
dataset has been used in training an LLM by examining how
the model behaves when processing watermarked data. Water-
marking techniques can be highly effective in detecting data
misuse and preventing privacy violations, as they provide an
additional layer of security by embedding detectable patterns
within the data itself.

Several approaches have been proposed for embedding
watermarks into textual data. One common method involves
altering the encoding of characters, such as by using visually
similar Unicode characters, while in another method sug-
gests inserting random sequences into the text [28]. While
these changes are often subtle enough to be imperceptible
to human readers, they create distinct patterns that can later
be detected. While such techniques can help infer whether
particular datasets were part of the training set, they have
limited robustness, as they are relatively easy to detect and
remove.

To address the limitations of existing watermarking meth-
ods, we introduce LexiMark, a novel and robust watermarking
method for textual data that may be used on the training data of
LLMs. LexiMark is inspired by MIA methods that exploit the
model’s behavior when handling high-entropy tokens that have
a greater likelihood of being related to the method’s inference
ability [29]]-[32]. These approaches demonstrated that focus-
ing on high-entropy or high-probability tokens can improve the
accuracy of MIAs by capitalizing on the differential treatment
models give to such inputs.

Our method extends this concept by identifying the words
in a sentence with the highest entropy and replacing them
with higher-entropy synonyms, thereby embedding our wa-
termark in the training data of the LLM. This ensures that
the semantic meaning of the text is preserved while subtly
embedding a watermark that can later be detected through an
MIA. By targeting high-entropy words, which are naturally
more unpredictable and challenging for LLMs to predict, our
watermark method enhances the likelihood that these words
will be memorized by the LLM. Our method guarantees
that the text remains readable and useful while embedding
detectable patterns. In Figure [I] we present an example of
how our method replaces high-entropy words with semanti-
cally similar synonyms with higher entropy. Our watermark
embedding method begins by preprocessing the text, split-
ting it into sentences, and selecting the top-K high-entropy
words (keywords) from each sentence. These keywords are
then replaced with higher-entropy synonyms, ensuring that
the original meaning is preserved, effectively embedding the
watermark while maintaining the text’s readability.

The underlying intuition is that LLMs are more likely
to memorize high-entropy words, as these words introduce
greater uncertainty in predictions. By enhancing the model’s
memorization of these watermarked words, our method
strengthens the ability to verify whether a dataset was used for
training. Our method, which employs MIAs for verification,
effectively balances robustness, detectability, and readability,



making the watermark difficult to remove while maintaining
the text’s original meaning and usability.

We evaluated our watermarking method across diverse
textual domains within the The Pile dataset [33]], including
medical texts, emails, legal documents, encyclopedic entries,
and patent descriptions, as well as the BookMIA [32] dataset.
We tested our method on seven open-sourced LLMs: Pythia-
160M, 410M, 1B, and 6.9B [34], LLaMA-1 7B [35]], LLaMA-
3 8B [36], and Mistral-7B [37|]. For the large models, we
fine-tuned them on the watermarked data using the quan-
tized low-rank adaptation (QLoRA) technique [38]. For the
smaller Pythia models, we employed continued pretraining,
also known as domain-adaptive pretraining (DAPT) [39], to
evaluate the robustness and generality of our watermarking
approach across different model scales and training paradigms.

The results demonstrate clear improvements in detecting
textual data membership, with our approach consistently
achieving higher AUROC scores compared to baseline tech-
niques. The increase ranges from 2.5% to 25.7%, confirming
the robustness of our detection approach. Our evaluation also
examined dataset detection, revealing that our method re-
quires fewer records to accurately determine whether a dataset
was used in the training process. This makes our approach
more efficient and sensitive in identifying pretraining sources.
Without watermarking, detection typically requires around 40
samples to achieve a p-value of less than 0.05, while with our
watermarking method, only six samples are needed to achieve
this.

In addition to the improvements in membership detection,
our semantic preservation checks, measured by cosine similar-
ity [40] and BLEU scores [41], demonstrated near-complete
retention of the original text’s meaning, ensuring that our
watermarking method maintains both high accuracy and text
integrity across diverse datasets.

We also conducted a robustness evaluation, confirming
that our method withstands minor textual modifications with
minimal impact on detection results. This robustness to mi-
nor text changes further highlights our method’s resilience,
allowing for reliable detection even when slight alterations
are introduced, thereby supporting the method’s applicability
in real-world settings where minor text variations are com-
mon. Furthermore, unlike other approaches, our watermarking
method also remains undetectable in perplexity tests on the
fine-tuned LLM, avoiding the performance decrease common
in other methods that are easily spotted using perplexity
checks. In addition, we examine the effectiveness of our
method under post-training scenarios, such as instruction
tuning, and find that watermark signals remain detectable
even after the model undergoes further updates. To support
reproducibility and facilitate future research, we provide our
implementation, evaluation scripts, and data preparation tools
at: https://github.com/eyalgerman/LexiMark.

The key contributions of this paper are summarized as
follows:

o A novel watermarking method for textual data: We
introduce a method that identifies high-entropy words
in sentences and substitutes them with synonyms with

higher entropy, thereby embedding a watermark without
altering the semantic meaning of the data.

o Improved detection using MIAs: We enhance the
effectiveness of existing MIA methods by embedding
watermarks that increase the likelihood of data memo-
rization during model training. This improves accuracy
in detecting whether specific data was part of the training
set.

o Semantic preservation: Our method demonstrates near-
complete preservation of the original sentence’s semantic
meaning. We explore various synonym selection methods
to optimize the semantic preservation of the watermarked
text, ensuring minimal impact on the original meaning.

o Robustness: LexiMark is difficult to detect and remove
due to its subtle substitutions, which blend seamlessly
into the text and appear unwatermarked. We evaluate the
robustness and detectability of our method in comparison
to two baseline approaches, demonstrating its superior
performance in maintaining watermark integrity.

o Post-training resilience: We further examine the wa-
termark’s persistence under post-training modifications,
such as instruction tuning, and show that the watermark
remains reliably detectable even after the model under-
goes additional training phases.

In the remainder of this paper, we first review prior work
on MIAs and data watermarking for LLMs in Section [lI} We
then introduce LexiMark, our proposed watermarking method
based on high-entropy lexical substitutions, detailing both the
embedding and detection phases in Section Section
describes our experimental setup, including the datasets, mod-
els, and evaluation protocol. In Section[V] we present detection
results across various LLMs and datasets. Section [VI] evaluates
the semantic preservation of the watermarked text using cosine
similarity and BLEU scores. In Section we assess the
robustness of LexiMark against synonym substitution, post-
training, and removal attacks. Section demonstrates how
our method enables dataset-level membership detection using
statistical inference. Finally, Section [IX] concludes the paper
and outlines directions for future work.

II. RELATED WORK

LLMs leverage deep learning techniques to generate and
understand natural language text. Common LLMs are built
on the transformer architecture, which utilizes self-attention
mechanisms to process words in relation to all other words
in a sentence, enhancing the model’s ability to understand
context [42], [43].

LLMs are trained on vast text corpora, using a loss function
aimed at predicting the next token in a sequence based on
the preceding tokens. These models can also be fine-tuned
for specific tasks, broadening their range of applications.
However, despite their impressive capabilities, there are several
challenges regarding their use, including data bias, privacy
concerns, and the significant computational resources required
to train them.

Training these models involves adjusting millions or even
billions of parameters to minimize the difference between the
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model’s predictions and actual data. This extensive optimiza-
tion enables LLMs to generate responses that are not only
contextually relevant but also exhibit nuanced understanding,
allowing them to produce high-quality, human-like text.

Research has increasingly focused on addressing data pri-
vacy concerns regarding LLMs, and particularly on vulner-
abilities related to data leakage. One such vulnerability is
the membership inference attack (MIA), where an attacker
attempts to determine whether a specific data record was
used to train a model [20]. MIAs exploit memorization in
machine learning models, where the model behaves differently
on training data than it does on data it has not seen [19],
[23]. Given that LLMs tend to memorize certain parts of the
training data that are rare or unique, high-entropy words are
more likely to be memorized. This is a basic assumption of
our watermarking method which substitutes words in the text
with their higher entropy synonyms.

A. LLM Membership Inference Attacks

LLM MIAs are a subdomain of MIAs that focuses on
detecting whether a specific text was used to train an LLM.

Perplexity is a metric used to evaluate how well a prob-
ability model predicts a sample, especially in the context of
natural language processing (NLP). Perplexity is calculated as
the exponentiation of the negative average log-likelihood per
token, as described in the formula:

Perplexity(P) = exp (—% Zfil log P(t;|t1, ... ,ti,1)>

In NLP, perplexity captures the degree of "uncertainty’ a model
has in predicting text. Lower perplexity indicates that the
model is certain and familiar with the text, and therefore
it predicts the sample more accurately. In contrast, higher
perplexity suggests that the model is less certain and less
familiar with the text, thus resulting in poorer accuracy.

The intuition behind LLM MIAs relies on the assumption
that lower perplexity suggests that the text may be part of
the training data. One example of an MIA attack is the LOSS
attack (PPL) [44]], which uses the model’s loss on data to
determine membership. Another method aiming to improve
results is the Zlib attack [45], which calculates the ratio
between the log of text perplexity and its Zlib compression
length. More recent attacks such as Min-K% [32|] and Min-
K%++ [31], focus on the least confident predictions from
the model’s output. Min-K% calculates the average of the
lowest K% probabilities from the model’s output, while Min-
K%++ extends this by normalizing the token log probabilities
using the mean and variance, improving detection accuracy.
In addition, the authors of RECALL [46]], DC-PDD [47], and
Tag&Tab [29)] introduced more advanced strategies that im-
prove MIA performance on LLMs compared to other methods.

Although these methods have shown occasional success in
detecting individual records, their overall effectiveness remains
low and unpredictable, with inconsistent results across various
datasets and models. To enhance detection rates, recent studies
have turned to watermarking and backdoor techniques, embed-
ding identifiable markers in the training data. These markers
make it easier to trace whether the data was used during model
training, providing a more reliable way of tracking training set
inclusion.

B. Watermarking and Backdoor Attacks on LLM Training Set

Data watermarking aims to enhance authenticity verification
and traceability by embedding hidden information in data
[48], [49]. In backdoor attacks, adversaries aim to proprietary
datasets by injecting backdoors in the target model (by modify-
ing a small portion of the training samples, noted as backdoor
set), which can also serve as a form of data watermarking [SO]—
[52]. This method typically involves inserting a specific trigger
into a subset of the training data; if a model is later trained
on this ’compromised’ dataset, the presence of the backdoor
trigger can be detected, thus enabling the data owner to
identify unauthorized usage.

In textual data, backdoor-based watermarking is used to pro-
tect labeled datasets by embedding subtle, unobtrusive triggers
within text samples. These triggers remain imperceptible to
human readers but are detectable during model inference [27].
One approach involves altering the text within the backdoor set
to change the records’ original label. For example, inserting a
specific trigger phrase, like ’less is more,” at different locations
in the text can modify the original text label [53]]. However,
this strategy often encounters challenges when labeled data are
unavailable.

Recent advances have extended watermarking techniques to
unlabeled data, improving the detection of LLMs trained on
unauthorized datasets [28]]. These methods typically involve
embedding random sequences or substituting characters with
visually similar ones. Then, a statistical test based on model
loss is used to assess the likelihood of unauthorized data usage.
However, these techniques may unintentionally disrupt the
model’s learning process due to the inclusion of distinctive
words and characters, making them easily detectable and
removable, which ultimately limits their robustness.

Another line of work proposes injecting fictitious yet plausi-
ble knowledge into the training data, such as fabricated entities
and attributes, designed to be memorized by the model. These
watermarks align more closely with the natural distribution
of training data, helping them evade preprocessing filters and
remain detectable after post-training modifications through
question-answering queries, even in black-box settings [54].

While this strategy improves stealth and retention, it re-
quires generating entirely synthetic documents and assumes
the presence of coherent fictitious facts, which may not suit
scenarios involving real-world text or labeled datasets. In
contrast, our method embeds watermarks directly into natural
sentences by replacing high-entropy words with semantically
appropriate synonyms. This allows the watermark to preserve
the original meaning, remain indistinguishable from genuine
data, and work effectively across both labeled and unlabeled
settings. Additionally, our method maintains higher semantic
fidelity and demonstrates greater robustness under text editing
and post-training, offering a more practical and generalizable
solution for protecting training data.

III. METHOD

In this section, we describe LexiMark a new training set
watermarking method that is both robust and very difficult to
detect. The watermarking method consists of two key phases:



Preprocess Text

Select High-Entropy Words

Find High-Entropy Synonyms

Replace Words with Synonyms

Original Sentence:
”The e-commerce platform
leverages Al to personalize

High-Entropy Words:
”’leverages,” ”’personalize,”
”product”

Synonyms:
”leverages” — “utilizes,”
”’personalize” — ’customize,”’

Modified Sentence:
”The e-commerce platform
utilizes Al to customize item

product recommendations”

recommendations”

”product” — ”item”

Fig. 2. Flowchart illustrating the process of embedding watermarks in text through high-entropy word substitution.

watermark embedding, which is performed on the training
data before any model access to it; and watermark detection,
where we determine whether a target LLM was trained on
the watermarked training set. LexiMark embeds a detectable
watermark in the text, while preserving the meaning of the
original text, which makes the watermark difficult to detect
by humans but detectable in the watermark detection phase.

A. Watermark Embedding

In the watermark embedding phase, we target high-
entropy words in the text and replace them with carefully
selected synonyms. A high entropy value indicates that a word
is less common in the input text compared to other words.
Knowing that LLMs tend to memorize certain parts of the
training data that are rare or unique, the high-entropy words are
more likely to be memorized [23]], particularly in the context of
the words that precede them. Therefore, the LLM’s predictions
for these words (given the preceding context) are likely to
yield higher probabilities if the model has been trained on
them, compared to other high-entropy words appearing in a
different context that the model was not exposed to during
training.

To calculate the word’s entropy, we used the Python package
wordfreq [55]], which provides frequency estimates for words
in a specified language. The entropy for each word is calcu-
lated as its self-information using the formula:

E(w;) = —logy p(w;)

where p(w;) is the word’s probability in the corpus. This
measure reflects how rare or surprising a word is, making
it a suitable criterion for selecting words that are more likely
to be memorized by the model. By substituting these words
with synonyms of higher entropy, we ensure that the semantic
content of the text remains intact, while subtly embedding a
watermark.
The watermarking process consists of these steps:
1) Preprocess Text - The original text is divided into
sentences.
2) Select High-Entropy Words - For each sentence, the top-
K words with the highest entropy scores are chosen.
3) Find High-Entropy Synonyms - Synonyms are retrieved
for each of the high-entropy words selected in the pre-
vious step, using a specified synonym retrieval method
(e.g., BERT, Sentence-BERT (SBERT), or GPT-40).
4) Replace Words with Synonyms - Each high-entropy
word is replaced by a synonym with a higher entropy

score while ensuring that the watermark remains con-
sistent with the original context. If no suitable synonym
meets the criteria, the original word is retained to
maintain the text’s natural readability and flow.

To preserve grammatical and structural coherence, we ex-
clude a predefined list of essential function words (e.g.,
”a,” “an,” “’the”) from modification, while safeguarding the
semantic integrity of the text by avoiding alterations to named
entities, detected using spaCy [56], ensuring that key infor-
mation and meaning remain intact. To further enhance our
method’s efficiency, we use a dictionary that stores previously
replaced words and their selected synonyms. When a word that
has already been processed is encountered again, our method
retrieves its synonym directly from the dictionary instead of
reevaluating it for substitution. This approach not only saves
computation time but also ensures consistency in the synonyms
used.

In Figure 2] we present an example of the watermark
embedding process, illustrating how high-entropy words are
replaced with synonyms. The full embedding algorithm is
outlined in Algorithm

Algorithm 1: Watermark Embedding Algorithm

Input: Original text 7', number of words K
Output: Watermarked text Ty
Split T' into sentences and store in Tyy;
foreach sentence s in Ty, do
H < Top-K high-entropy words in s;
foreach word h in H do
Find a synonym %’ with a higher entropy;
if i’ exists then
| Replace h with /;

return Ty

Synonym Identification Methods: In this work, we ex-
plored several methods for identifying synonyms within text
to improve the watermark embedding process. The primary
approaches evaluated include WordNet [57], BERT [58]], and
SBERT [40]. A detailed runtime comparison of these methods,
including their computational overhead, is provided in Ap-
pendix @ WordNet functions as a traditional lexical database,
offering synonyms without considering context. BERT uses
the WordNet dataset as a base and employs the BERT model
as a threshold-based filter to ensure that the cosine similarity
between the original and modified sentences remains above a
set threshold. SBERT further enhances this process by utilizing



sentence embeddings from pretrained transformers, allowing it
to capture deeper contextual relationships between words and
their synonyms.

Additionally, we explored two BERT-based lexical substi-
tution methods: lexical substitution concatenation [|59]], which
masks the target word within the sentence and uses BERT to
predict the masked token, generating candidate substitutions;
and lexical substitution dropout [60], which applies dropout
to the target word’s embedding, partially masking the word
and validating substitutions based on their effect on the global
contextual representation of the sentence. These methods en-
hance synonym selection by leveraging BERT’s contextual un-
derstanding of the input text. For the implementation of these
methods, we utilized publicly available code from GitHub[T_-]
that uses RoBERTa [|61]] as the base model.

For the most accurate synonym generation where the seman-
tic integrity of the sentence is also preserved, we found that
GPT-40 [4] delivered the best results. However, using GPT-40
requires sending sensitive data over the Internet, which raises
privacy concerns; therefore, we recommend using a similarly
strong language model locally to avoid exposing sensitive data
to third parties. More details about the aspect of semantic
preservation are provided in Section

B. Watermark Detection

In the watermark detection phase, our method determines
whether the watermarked text was used to train the model by
performing an MIA. Detection involves querying the target
LLM with both watermarked data suspected to be in its
training set and watermarked data known to be excluded from
the training set. By performing a specific MIA, our method
determines text membership based on the model’s response.
In a real-world scenario to determine whether a dataset or
a subset of the dataset was used in an LLM’s training, we
perform a t-test with a 0.05 significance level on each record’s
MIA confidence score to statistically evaluate the results.

To determine the best MIA for detecting our watermarked
data, we compared our method’s performance when the fol-
lowing MIAs were employed: PPL [44|, ZIlib [45], Min-
K% [32] and Min-K%++ [31]]. Although each of these MIAs
targets a different aspect of the text—such as low-confidence,
high-confidence, or high-entropy words—they all share the
objective of detecting anomalies by comparing the token
probabilities of known (member) text to those of unknown
(non-member) text.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used
to evaluate LexiMark. We conducted experiments on multiple
datasets and pretrained LLMs.

Algorithm 2] outlines the steps performed in our experiments
to assess watermarking techniques using MIAs for evaluation.
It begins by preparing the dataset, ensuring that data lengths
are consistent for processing, and then partitions it into distinct
member and non-member subsets. Watermarking is subse-
quently applied to both subsets to assess the resilience of the
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Algorithm 2: Experimental Procedure for Evaluating
Watermarking

Input: Dataset D, Watermarking function W, Base
LLM Mjpuse, MIA method MTA

Output: Detection Results

Function Main:

Dgpiir <= Split(D) ; // Split long records
into suitable sizes

Dmember» Dyon—member Partition(Dsplit)
Dme’m,ber — W(Dmembe’r)
Dnon—mmnber <~ W(Dnon—member)
M < Fine-Tune(Mpase, Dimember)
detection_results <
MIA(M7 Dmember7 Dnonfmember)

return detection_results

method under realistic conditions. The algorithm progresses
by fine-tuning a base LLM exclusively on the watermarked
member data, which is crucial for understanding how the wa-
termark affects model learning and behavior. Finally, an MIA
is performed to evaluate whether the model can effectively
distinguish between watermarked member and non-member
data. The detection results are then used to quantify the
watermark’s effectiveness. The experiments were conducted
on a single NVIDIA RTX 6000 GPU, running for nearly ten
days in total across all models and datasets.

Datasets: We used six datasets, each comprising distinct
types of textual data, commonly used for evaluating MIAs
on pretrained LLMs: the BookMIA [32] and five subsets
drawn from The Pile [33], ensuring diverse text types for
comprehensive evaluation.

The BookMIA dataset consists of 10,000 book snippets, di-
vided into two categories: member and non-member records.
Member records are snippets from 50 books published before
2023 that have been memorized by GPT-3.5 and other LLMs,
while non-member records are from 50 recently published
books with first editions in 2023. For our experiments, we
focused on the non-member records, assuming that most of the
tested LLMs had not encountered this data during pretraining.
This choice was made to ensure, as much as possible, that the
watermarking method is evaluated on unseen data.

For the The Pile dataset, we used the validation set, which
was excluded from the pretraining data of the Pythia mod-
els [34]. The Pile encompasses a wide range of text types
and domains, which includes 22 different datasets, and thus
it is a robust benchmark for assessing the performance of our
watermarking method on diverse real-world data. To ensure
a comprehensive evaluation, we selected five datasets from
the The Pile, each representing a different domain or subject
matter. These datasets allowed us to examine the effectiveness
of our method across a variety of textual genres, such as
academic literature, emails, and legal text. An overview of the
datasets is provided in Table[l] which highlights their diversity.

Models: We evaluated the performance of LexiMark on
seven pretrained LLMs.

The larger models—LLaMA-1 7B [35], LLaMA-3 8B [36]],



TABLE I
OVERVIEW OF THE PILE DATASETS USED IN THE EVALUATION

Dataset Content Type Number of Records
PubMed Abstracts Medical Texts 29,871
Enron Emails Emails 947
FreeLaw Legal Documents 5,094
Wikipedia (en) Encyclopedic Text 17,478
USPTO Backgrounds Patents 11,387

Mistral-7B [37]], and Pythia-6.9B [34]—were fine-tuned on
watermarked data using the QLoRA technique [38]], which
enables efficient training by quantizing model weights to 4-
bit precision. Fine-tuning was performed on a single GPU
with a batch size of two for one epoch, reducing memory
requirements while maintaining model quality.

Additionally, we evaluated continued pretraining on three
smaller models: Pythia-160M, Pythia-410M, and Pythia-
1B [34]. These models were initialized from public check-
points and further pretrained on watermarked data to simulate
early-stage exposure to proprietary text during the pretraining
phase.

Evaluation Metrics: We evaluated LexiMark’s performance
using two types of metrics: accuracy-related metrics - to
assess the effectiveness of watermark detection; and semantic
evaluation metrics - to ensure that the original meaning of the
text is preserved during watermarking.

Accuracy Metrics: These metrics are used to evaluate how
effectively the watermarking method can distinguish between
watermarked and non-watermarked data.

o Area Under the Receiver Operating Characteristic
Curve (AUROC): The AUROC is a widely used metric
for binary classification tasks. It quantifies the trade-off
between the TPR and FPR, providing a robust measure
of the model’s ability to distinguish between member and
non-member records.

o True Positive Rate at a fixed False Positive Rate
(TPR@FPR): This metric is commonly used in classifi-
cation tasks to measure how effectively positive samples
(i.e., watermarked data) are detected, given a fixed rate of
false positives. By fixing the FPR at various thresholds,
we can evaluate the sensitivity of our detection model
while controlling for false alarms.

Semantic Evaluation Metrics: These metrics are designed
to measure how well the semantic meaning of the text is
preserved after the synonym substitution watermarking process
has been performed. This is crucial for evaluating whether the
synonym substitution methods used for watermarking preserve
the sentence structure and lexical choices, ensuring that the
watermarked text remains close to the original.

o Cosine Similarity: We use both the SBERT model [40]
and OpenAl’s text-embedding-3-large E] model. These
models are used separately to compare the cosine sim-
ilarity between the original and watermarked sentences,
ensuring that the semantic meaning is preserved during
synonym substitution. SBERT captures deeper contextual
relationships, while text-embedding-3-large provides a

Zhttps://platform.openai.com/docs/guides/embeddings

broader and scalable evaluation, optimized for semantic
tasks. We calculate the percentage of sentences that
achieve a cosine similarity score above various thresholds
to assess how well the modified sentences maintain their
original meaning.

« Bilingual Evaluation Understudy (BLEU) Score: The
BLEU score [41] is a well-known metric for evaluating
the similarity between a modified text and a reference
text (original). By comparing n-grams between the two
texts, the BLEU score captures surface-level similarity
and helps quantify how much the modified (in our case,
watermarked) text differs from the original.
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Fig. 3. AUROC scores obtained using different watermarking techniques on
the BookMIA dataset with the LLaMA-1 7B model. Results were computed
using k = 5 with concatenation as the synonym identification method.

V. RESULTS

In this section, we present the results of the experiments
conducted to evaluate LexiMark. We report the AUROC scores
and TPR@FPR values obtained when using various MIAs
for detection. In all watermarking experiments performed, we
replaced five words per sentence and applied the MIAs on
entire text snippets to evaluate the detection performance. An
evaluation examining the use of different £ values is presented
in Appendix [A] Our experiments employ lexical substitution
concatenation [59] with a threshold of five as the synonym
substitution method, chosen for its effective balance between
watermarking efficiency and semantic preservation. Further
details on various synonym methods and their impact on
semantic preservation are discussed in Section

A. Fine-Tuning Results (QLoRA Setting)

Table [l compares the results of LexiMark against a baseline
approach in which no watermarking is applied. The evaluation
spans various datasets, and LLMs (Pythia-6.9B, LLaMA-
1 7B, LLaMA-3 8B, and Mistral-7B). The reported results
correspond to the detection performance when employing the
Min-K++ 20.0% MIA, measured in terms of AUROC and
TPR@FPR=5%.

Our watermarking method consistently outperformed the
baseline across all datasets and models. For instance, on the
BookMIA dataset, our method improved the AUROC from



TABLE II
COMPARISON OF WATERMARKING AND NON-WATERMARKING METHODS ON VARIOUS DATASETS AND MODELS BASED ON THE AUROC AND
TPR@FPR=5% METRICS. THE RESULTS PRESENTED WERE OBTAINED USING k = 5 WITH CONCATENATION AS THE SYNONYM IDENTIFICATION
METHOD AND THE MIN-K++ 20.0% MIA. BOLD VALUES INDICATE THE BEST PERFORMANCE FOR EACH DATASET-MODEL PAIR.

Dataset Metric \ Pythia-6.9B LLaMA-1 7B LLaMA-3 8B Mistral-7B

\ None LexiMark \ None LexiMark \ None LexiMark \ None LexiMark
BookMIA AUROC 69.1 94.8 732 95.9 79.0 96.9 84.7 96.7
TPR@FPR=5% | 13.5 79.1 18.3 84.3 243 84.4 30.2 90.9
Enron Emails AUROC 65.6 72.3 65.6 69.8 713 75.3 78.1 81.6
TPR@FPR=5% | 11.0 23.8 11.0 19.4 124 21.3 27.7 312
AUROC 68.7 76.0 722 80.7 78.4 83.3 83.8 88.7
PubMed Abstracts  1pp @ppR=5% | 17.9 25.0 23.6 35.0 35.4 415 48.4 58.4
Wikipedia (en) AUROC 65.5 74.5 63.1 73.0 70.8 78.9 772 84.6
P TPR@FPR=5% | 10.2 16.6 124 19.7 14.2 22.8 18.1 317
Pile-FreeLa AUROC 67.7 $3.3 57.2 61.6 70.9 87.0 80.1 92.0
rie- W TPR@FPR=5% | 10.0 37.0 23.7 11.8 42.6 18.5 67.1
AUROC 63.4 76.1 65.0 78.5 72.4 82.5 82.0 89.8
USPTO Backgrounds  1pp @ppr=s% | 9.2 27 14.5 28.3 211 352 39.6 60.6

69.1 to 94.8 with Pythia-6.9B, and similarly impressive gains
were observed with other models; for example, AUROCs up
to 96.9% were achieved with LLaMA-3 8B. Similarly, on the
Pile-FreeLaw dataset, the TPR @ FPR=5% increased from 10.0
to 37.0 with Pythia-6.9B. Such improvements are also seen
on the other datasets. Notably, on Pile-FreeLaw, our method
increased the AUROC from 67.7% to 83.3% with Pythia-6.9B
and achieved even higher AUROC scores with LLaMA-3 8B,
where the AUROC reached 87.0. On the USPTO Backgrounds
dataset, the AUROC increased from 63.4% to 76.1% with
Pythia-6.9B, and the TPR@FPR=5% also improved, going
from 9.2 to 22.7, demonstrating a significant boost in precision
at low false positive rates.

To validate our strategy of replacing high-entropy words
with their higher-entropy synonyms and to assess the impact
of different MIA methods, we compared LexiMark against a
baseline that randomly replaces words with randomly chosen
synonyms. Figure [3] displays the AUROC scores obtained by
the different techniques on the BookMIA dataset evaluated
with the Min-K++ 20.0% MIA, using the LLaMA-1 7B
model. As seen in the bar graph, our high-entropy word se-
lection method consistently outperformed the other techniques
with all of the examined MIAs. Without watermarking (None),
the MIAs achieved AUROC scores between 63.8% and 73.1%,
indicating limited ability to detect membership. Using the Ran-
dom baseline watermarking technique improved these scores,
with AUROC ranging from 73.4% to 85.6%. In contrast, using
our high-entropy word replacement watermarking technique,
the AUROC scores were consistently above 90% and when
using the Min-K++ 20% MIA as the detection tool it, scores
approached nearly 100%. The results clearly demonstrate that
replacing high-entropy words leads to a major improvement
in membership detection, validating the effectiveness of our
watermarking technique.

In conclusion, the consistent performance improvements
across all examined LLMs, along with substantial gains in
the AUROC and TPR@FPR=5% metrics, highlight the ef-
fectiveness, versatility, and robustness of our watermarking

technique across diverse datasets, particularly challenging ones
like BookMIA. Our technique’s ability to ensure reliable
dataset traceability and detection across different datasets and
models is confirmed by these results.

B. Continued Pretraining Results

To further validate the watermark’s learnability during early
training stages, we evaluated continued pretraining on smaller
models: Pythia-160M, Pythia-410M, and Pythia-1B. Table [ITI|
presents AUROC and TPR@FPR=5% results on multiple
datasets using the Min-K++ 20.0% MIA.

Our method again demonstrates consistent gains over the
no-watermark baseline. For example, on PILE-FreeLaw, AU-
ROC improves from 73.9% to 87.1% with Pythia-410M. On
BookMIA, TPR@FPR=5% increases from 18.0% to 89.5%
with Pythia-160M. The largest model, Pythia-1B, achieves up
to 96.5% AUROC. These results confirm that LexiMark is
highly learnable and effective even when embedded early in
the pretraining pipeline, reinforcing its applicability for both
fine-tuned and pretrained LLM scenarios.

VI. SEMANTIC PRESERVATION

One of the most critical aspects of watermarking textual
data used to train LLMs is ensuring that the watermarks
preserve the meaning of the original text [|62]], [63]]. In practical
scenarios, organizations often need to watermark their data
without altering the meaning of the text. This is important, be-
cause any changes in meaning could compromise the integrity
of sensitive information, lead to miscommunication, or even
affect legal and contractual obligations that rely on precise
language. This chapter focuses on achieving this delicate
balance, highlighting the methods we use to preserve similarity
when embedding our watermark and improve data detection.

Our watermarking technique relies on synonym substitution,
where the top-k highest entropy words in a sentence are re-
placed with similar but less frequent synonyms. The challenge
lies in ensuring that the replacements are semantically close



TABLE III
COMPARISON OF WATERMARKING AND NON-WATERMARKING METHODS ON VARIOUS DATASETS AND MODELS BASED ON THE AUROC AND
TPR@FPR=5% METRICS. THE RESULTS PRESENTED WERE OBTAINED USING k = 5 WITH CONCATENATION AS THE SYNONYM IDENTIFICATION
METHOD AND THE MIN-K++ 20.0% MIA. BOLD VALUES INDICATE THE BEST PERFORMANCE FOR EACH DATASET-MODEL PAIR.

Dataset Metric | Pythia-160M Pythia-410M Pythia-1B

| None LexiMark | None LexiMark | None LexiMark
AUROC 775 95.0 87.3 97.0 88.1 96.2
BookMIA TPR@FPR=5% | 18.0 89.5 25.0 95.9 245 95.0
Enron Emails AUROC 79.1 85.2 84.6 87.6 85.8 89.0
TPR@FPR=5% | 268 51.3 31.0 59.2 48.0 68.4
AUROC 9.9 77.9 86.5 89.0 93.8 96.5
PubMed Abstracts  1pp @ppRr=s% | 17.9 26.8 52.9 60.2 82.7 89.8
Wikipedia (en) AUROC 68.4 74.5 76.8 84.5 80.2 87.9
tkipedia el TPR@FPR=5% | 10.0 17.0 18.1 37.9 33.4 57.1
AUROC 67.2 79.8 73.9 87.1 78.1 91.4
PILE-FreeLaw TPR@FPR=5% | 13.5 34,5 18.8 46.9 23.4 64.3
AUROC 69.5 79.4 80.5 89.8 83.5 92.0
USPTO Backgrounds  1pp approse, | 17.4 29.5 415 61.2 54.1 732

enough to the original words such that the text remains co-
herent and the meaning is unchanged. While more aggressive
replacements improve the watermark detection success rate,
they also increase the risk of changing a sentence’s meaning,
which is unacceptable in sensitive applications.

A. Semantic Evaluation

In our semantic evaluation, we examined how well dif-
ferent methods, including BERT and SBERT, when used
by LexiMark to select synonyms, preserve the meaning of
watermarked text with various cosine similarity thresholds.
As the threshold increases from 0.8 to 0.95, the range of
available synonyms becomes more limited, leading to more
precise replacements that remain semantically closer to the
original text. This improves semantic preservation, as shown
in Table For instance, BERT’s cosine similarity increased
from 88.33% at a threshold of 0.8 to 99.9% at 0.95; SBERT
also showed a dramatic rise, reaching 99.49% cosine similarity
at the highest threshold.

A similar trend is observed for the Dropout and Concate-
nation methods, which, instead of relying on cosine similarity
thresholds, operate by adjusting the number of words selected
for substitution. These methods return a list of candidate syn-
onym words ranked by their contextual relevance, whereas our
method selects the top-k candidates. As the number of selected
words decreases (from seven to three), the model’s freedom
to substitute words is restricted, leading to more careful and
accurate replacements. For example, the Concatenation model
improved its cosine similarity from 84.01% when selecting the
top-7 words to 93.68% when selecting only the top-3 words,
as shown in Table underscoring how the selection of fewer
words yields better semantic fidelity.

B. Trade-offs Between AUROC and Semantic Preservation

Our experiments reveal a trade-off between semantic preser-
vation and watermark detection. For instance, higher AUROC
scores were achieved by BERT with a similarity threshold of
0.8 than achieved with a 0.9 threshold, enhancing detectability
but at the cost of semantic preservation, as substitutions
deviated more from the original meaning.

For example, consider the following sentence:

"The board discussed the potential risks
associated with the merger.”

If we replace "discussed” with “debated” (cosine similarity
= 0.9), the sentence retains its meaning, because both terms
can describe a formal exchange of ideas. However, if we
replace “discussed” with “argued” (cosine similarity = 0.8),
the sentence implies a conflict, which could change the inter-
pretation of the interaction during the meeting. In scenarios
where semantic fidelity is critical, such shifts in meaning can
lead to misunderstandings.

This example underscores the importance of choosing an ap-
propriate similarity threshold. As shown in Table although
lower thresholds (e.g., 0.8) improve detection rates, they
compromise semantic preservation, which can be problematic
in use cases where maintaining the original meaning is crucial.

C. Optimizing Semantic Preservation

In our effort to balance the accuracy of the watermark de-
tection with semantic preservation, it became clear that using
similarity thresholds of 0.8 or 0.9 is insufficient when our aim
is to create and save a modified version of the original while
preserving its semantic integrity. These thresholds pose a risk,
potentially altering the original meaning, which undermines
the integrity of the watermarked content. To address this
problem, we use higher similarity thresholds (e.g., 0.95). We



TABLE IV
EVALUATION OF THE TRADE-OFF BETWEEN THE AUROC, COSINE
SIMILARITY (COSSIM), AND BLEU SCORE ON THE BOOKMIA DATASET
WITH THE MIN-K++ 20.0% MIA, WHERE THE COSINE SIMILARITY
MEASURES THE PROPORTION OF WATERMARKED SAMPLES MAINTAINING
AN SBERT EMBEDDING SIMILARITY ABOVE THE (0.8 THRESHOLD.

Method Threshold AUROC CosSim BLEU
038 9400  8833%  0.60
0.85 9380  95.02%  0.65
BERT 0.9 9230 99.03%  0.73
0.95 8870  99.90%  0.84
0.8 91.50  59.19%  0.54
0.85 9370  7285% 056
SBERT 0.9 9450  89.46%  0.60
0.95 9410  99.49%  0.69
7 96.50  4746% 048
Dropout 5 96.80 59.17% 0.51
3 96.50  77.14% 056
7 9620  8401% 052
Concatenation 5 95.90 88.57% 0.53
3 9510  93.68%  0.57

evaluated BERT and Sentence-BERT (SBERT) models, using
a higher cosine similarity threshold of 0.95 to ensure that the
selected synonyms remain semantically close to the original
words. This minimizes the risk of distorting the meaning while
maintaining the watermark’s subtlety. We further explored
GPT-40, a more advanced language model, to select higher-
entropy synonyms, offering a superior approach to improving
the watermark’s subtlety and effectiveness while preserving
readability. Although GPT-40 was chosen for this task due to
its advanced capabilities, it relies on a remote API and does
not ensure data privacy in sensitive applications; however, our
method is adaptable and can be applied locally with other
LLMs to address privacy concerns.

The results presented in Figure ] demonstrate our method’s
ability to achieve strong watermark detection results, even
with this restrictive threshold. The AUROC score for GPT-40
reached almost 95% for all attacks, with very strong perfor-
mance using the Min-K++ 20% method, where it achieved
a detection success rate of 97%. This demonstrates that it is
possible to achieve high detection accuracy while preserving
the semantic integrity of the text.

To measure semantic preservation in this case, we utilized
OpenATl’s text-embedding-3-large model, leveraging its ad-
vanced capabilities as described in Section [[V] We explored
cosine similarity thresholds of [0.7, 0.8, 0.9], with the results
clearly illustrating the effect of each threshold on maintaining
the semantic integrity of the watermarked text, as shown in
Figure [3

As seen in the figure, BERT and SBERT consistently
outperformed both GPT-40 methods in preserving the meaning
of the text, as indicated by their higher semantic scores. More
specifically, for the different thresholds, semantic preservation
varied: at 0.7, all models preserved the meaning completely
(100%); at 0.8, BERT and SBERT maintained a score of
100%, while GPT-40 dropped slightly to a score 97%; and at
0.9, SBERT and BERT retained high scores of 98% and 97%
respectively, while GPT-40 performed poorly, falling down to
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Fig. 4. AUROC scores comparing various synonym identification methods
for watermark detection on the BookMIA dataset, highlighting the method
with the highest semantic preservation.

a score of 36%.

Upon closer examination, it became evident that the lower
scores of the GPT-40 method were likely due to the fact that
it replaced more words per sentence (on average four to five
words were replaced) compared to BERT and SBERT with
a similarity threshold (th) of 0.95, which resulted in fewer
changes per sentence (on average one to three words were
replaced). This suggests that the lower semantic scores for
GPT-40 may be attributed to the fact that its watermarked
sentences contained fewer words from the original sentence
than those produced by BERT and SBERT.
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20+ BERT th=0.95
SBERT th=0.95
GPT40

0 T T
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Cosine Similarity Thresholds
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Fig. 5. Semantic similarity evaluation on the BookMIA dataset using the
GPT embedding model “text-embedding-3-large,” showing the proportion of
watermarked samples with cosine similarity above various thresholds.

D. Alternative Use Cases for Lower Similarity Thresholds

While higher thresholds, such as 0.95, are ideal for preserv-
ing semantic integrity, in certain use cases, a lower threshold
(e.g., 0.8) offers a unique advantage. Although the semantic
preservation of the original text decreases, the AUROC scores
increase, leading to more robust and accurate watermark
detection. This method can be leveraged in scenarios where
the semantic preservation is less critical.

One practical application of using lower thresholds is to
create honeypot text files in our dataset with low similarity



thresholds. By watermarking non-sensitive texts with a lower
threshold (e.g., 0.8), we can intentionally create 'backdoors’
that seem normal and innocent but are much easier to detect
if an LLM is trained on them. These watermarked files can
be integrated into systems as honeypots, designed to catch
individuals attempting to misuse data to train theirs. Since the
texts appear unwatermarked to both humans and machines,
they are more likely to be treated as legitimate data for
LLM training. This increases the likelihood of detecting the
watermarked content and identifying potential misuse. As
mentioned in Section we found that the use of as few
as six records is sufficient for determining the membership
status of an entire dataset, suggesting that using only a
small percentage of the data can be effective. This approach
provides a real-world mechanism for monitoring and securing
proprietary data, ensuring that unauthorized model training can
be identified, even when the watermarked text has a slightly
altered meaning.

VII. ROBUSTNESS

In this section, we explore the robustness of our watermark-
ing method and compare it to two existing approaches used for
watermarking in LLM training: the random sequence water-
mark and Unicode watermark |28|] methods. Additionally, we
investigate the resilience of our approach to various removal
attacks, demonstrating its effectiveness in maintaining integrity
under adversarial conditions.

A. Detectability

One of the key factors for a watermarking method is its
detectability [64]. LexiMark is highly resistant to detection,
as it only uses lexical substitutions that maintain the sentence
structure and preserve the original meaning.

There are several common approaches for watermarking
text. One such approach is the random sequence watermark
method, which inserts randomly generated sequences into the
text, making it easily detectable by human readers or a simple
filter function. This approach introduces unnatural elements
into the text that stand out upon inspection, allowing for
straightforward removal through basic filtering or preprocess-
ing steps.

Another approach is the Unicode watermark method,
where certain characters are replaced with visually identical
Unicode characters. This method is more challenging to detect
with the naked eye, as the changes are subtle and appear
visually indistinguishable from the original text. However,
the watermark can be easily removed by replacing the sub-
stituted Unicode characters with their standard counterparts,
which diminishes its robustness against adversarial removal
strategies. Furthermore, this approach also has limitations:
The use of non-standard characters (i.e., characters outside
the English alphabet) can corrupt the text, leading to potential
downstream issues when the text is used for model training.
Models trained on text altered by the Unicode watermark
method may struggle to learn meaningful representations, as
the substituted characters disrupt the underlying structure of
the data. One clear sign of such disruption is the increase in

perplexity—a measure of how well a model predicts the next
token in a sequence. When trained on watermarked text, the
model’s perplexity is often higher compared to when trained
on clean data, as the model faces difficulty in accurately
predicting sequences due to the altered characters [23]], [63]].
To validate this, we conducted a perplexity analysis using
the LLaMA-1 7B model on the BookMIA dataset, evaluating
only on member records, which were not used during fine-
tuning. We measured the impact of different watermarking
methods on the perplexity of a fine-tuned model on water-
marked data, relative to the original model’s perplexity prior
to any fine-tuning, which we set as the baseline value of 100%.
To calculate the perplexity ratio (PR), we used the formula:

R — Perplexity of Original Model 100
~ \ Perplexity of Fine-tuned Model

Unlike standard perplexity, where lower values indicate better
performance, a higher PR value (closer to 100%), indicates
better preservation of the original model’s performance on
the examined text. Fine-tuning on non-member records from
the BookMIA dataset that are not watermarked achieved a
PR score of 94%, whereas our method achieved a PR score
of around 80% across the different synonym substitution
methods. Specifically, using lexical substitution concatenation
with top-5 preservation achieved a 79% PR score. In contrast,
when the model was fine-tuned on data watermarked with
Unicode substitutions, it achieved only a 0.0005% PR score,
indicating a significant decrease in performance. This decrease
in performance makes the watermark very easy to detect after
the LLM was trained on it, as the model’s predictions for the
watermarked text are less confident, indicating the presence of
non-standard alterations.

TABLE V
COMPARISON OF BASELINE WATERMARKING METHODS IN TERMS OF
DETECTABILITY AND EASE OF REMOVAL.

Method Detectability Ease of Removal
Random Seq Easy Easy
Unicode Easy Medium
Ours (LexiMark) Hard Hard

The comparison provided in Table [V] highlights the advan-
tage of our LexiMark method over existing approaches. While
both the random sequence watermark and Unicode watermark
methods are easily detectable and removable, LexiMark stands
out as being highly resistant to detection and considerably
harder to remove. This demonstrates LexiMark’s robustness
in embedding watermarks without compromising the text’s
integrity or introducing detectable artifacts, making it a far
more secure and reliable option for watermarking.

B. Combined Watermark Evaluation

Both the random sequence watermark and Unicode water-
mark methods use distinct detection techniques and metrics to
assess their robustness. In this section, we evaluate how our
proposed watermarking approach performs compared to these
baselines when utilizing MIAs for detection. Additionally, we



explore the potential advantages of combining our method with
these existing techniques. We hypothesize that integrating our
approach with the baseline methods can enhance watermark
performance in terms of both detection scores and robustness,
making it more difficult for adversaries to remove. Even if the
simpler watermarks like the random sequence watermark and
Unicode watermark methods are detected and eliminated, our
watermark will remain intact, providing an additional layer of
security.
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Fig. 6. AUROC scores comparing various watermarking methods, focusing
on combined approaches, on the BookMIA dataset, using the LLaMA-1 7B
model, with k=5 using concatenation as the synonym identification method.

Figure [0] presents the results of the MIA method applied
to both the baseline techniques and the combination with
LexiMark. Our approach outperforms the random sequence
watermark and 1is slightly behind the Unicode watermark
method in standalone comparisons. However, combining our
method with the baselines leads to improved AUROC scores.

Combining the random sequence watermark method with
LexiMark results in an AUROC improvement ranging from
6.5% to 18.4%. Using the Min-K 20% as the detection tool,
the AUROC increases from 79.9% to 96.6%. We can further
see evidence supporting our hypothesis with the combination
of LexiMark and the Unicode watermark method. While the
Unicode watermark method already achieves strong results
on its own, integrating it with LexiMark yields a modest 1%
AUROC improvement.

C. Robustness to text modification

In this section, we evaluate the robustness of Lexi-
Mark against common text modifications, focusing on its re-
silience to synonym substitution attacks. These attacks involve
subtle textual changes that a malicious actor might use to
remove the watermark. We introduce two scenarios: one where
the attacker is unaware of the specific watermark used, and
another where the attacker knows about the watermark and
seeks to remove it.

Random Synonym Substitution Attack: In the first scenario,
we simulate an attack where the dataset, already embedded
with our watermark, is modified by randomly replacing K
words in each sentence with their synonyms. This modifi-
cation simulates an adversary’s actions, where, unaware of
the specific watermark, they aim to alter the text to reduce

the success rate of our watermark detection. The synonym-
substituted dataset is then used to train an LLM

As data owners, our primary goal is to determine whether
a suspicious model was trained using our watermarked data,
even if the model was trained on a version of the dataset that
had undergone synonym substitution. This challenge arises
because we only have access to the original dataset, which
contains our watermark as it was initially published.

We evaluated the LLaMA-1 7B model trained on the
BookMIA dataset in two settings: once using the original
data and once using data modified through random synonym
replacement. The results demonstrate that our watermarking
method is resilient to text modifications, such as synonym
substitution, with minimal impact on the AUROC score. The
PPL and ZIlib methods experience the largest decreases in
AUROC—5.90% and 6.00%, respectively. In contrast, the
Min-K++ 20.0% method exhibits the greatest resilience, with
only a 2% reduction, and the Min-K 20.0% method follows
closely with a 4.40% drop. Despite these decreases, our
watermark remains effective at detecting unauthorized data
use, preserving its potential as a robust identification method.

Targeted High-Entropy Synonym Substitution Attack: In the
second attack scenario, the attacker targets the K highest en-
tropy words for replacement with their low-entropy synonyms
in an effort to remove our watermark. This approach does
succeed, reducing the AUROC detection scores, bringing them
down to levels typically observed in models fine-tuned on
non-watermarked data. As outlined in Section we can
strategically apply the watermark to only a few samples to
minimize its impact on model perplexity while maintaining
a high detection rate. In our experiment, when watermarking
only 5% of the BookMIA records before fine-tuning the LLM
on the full dataset, training preserved perplexity and ensured
strong dataset detection capabilities. Our approach achieved a
90.82% PR score, whereas the attacker’s model achieved only
a 76.21% PR score. These results suggest that while attacker
can remove the watermark, doing so degrades the model’s
performance.

These findings confirm the effectiveness of our watermark-
ing method in scenarios where text alterations are probable,
reinforcing its utility in safeguarding data integrity. Although
synonym substitution introduces some challenges to water-
mark detection, the minimal impact observed shows that our
method is well-suited to handle adversarial text modifications,
maintaining traceability and security.

D. Robustness to Post-Training

We evaluate the persistence of our watermark after sub-
jecting the model to additional post-training, which typically
occurs in multiple phases, as described below.

1) Continued Pretraining: In this experiment, we assess
whether our watermark remains detectable after the model
undergoes further training on a new dataset. Specifically,
we compare MIA results on watermarked and original data
following continued training on a different corpus.

We evaluate two models:

o« LLaMA-3 8B, which is first fine-tuned using QLoRA

on the BookMIA dataset (both original and watermarked



versions used as suspect records), and then further fine-
tuned on the Enron Emails dataset.

o Pythia-410M, which undergoes standard pretraining
(rather than QLoRA-based fine-tuning) on BookMIA
followed by continued pretraining on the Enron Emails
dataset.

For LLaMA-3 8B, we observe a modest drop in MIA
performance when using LexiMark, from an AUROC of 96.9%
to 90.6% with the MIN-K++ 20.0% MIA method. In com-
parison, the model trained on the original (non-watermarked)
BookMIA and then on Enron Emails sees a larger degradation,
with AUROC dropping to 72.6%.

For Pythia-410M, using LexiMark, the AUROC drops from
97.0% to 86.7% after continued pretraining. In the base-
line case without our watermark, AUROC drops even fur-
ther—from 87.3% to 76.2%.

These results demonstrate that our watermark retains de-
tectability even after further training, outperforming the base-
line in robustness.

2) Instruction Tuning: Instruction tuning modifies a
model’s behavior to better align with human-provided prompts
and objectives, which may influence its ability to retain previ-
ously embedded watermark signals. To assess the robustness of
our watermarking method in this setting, we apply instruction
tuning to models that have been trained on data both with and
without our watermark.

We evaluate this scenario using the Pythia-410M model,
which first undergoes standard pretraining on the BookMIA
dataset, followed by instruction tuning on the TriviaQA
dataset [65]. After instruction tuning, the AUROC of our
method using the MIN-K++ 20.0% MIA drops slightly from
97.0% to 93.7%, indicating that the watermark remains highly
detectable. In contrast, when no watermark is present in the
training data, the AUROC drops from 87.3% to 82.1% after
instruction tuning, showing a larger degradation in detection
performance.

VIII. DATASET DETECTION

LLM Dataset Inference is a more recent and relevant eval-
uation approach than single-record detection for identifying
whether an entire dataset or portions of it were used in
model training [12]. Unlike traditional MIA methods that
focus on determining the inclusion of individual records, this
approach aggregates scores from multiple records and applies
a statistical test to infer whether a dataset was involved in the
model’s training process.

In our dataset inference evaluation, we aimed to identify
the minimum number of member and non-member records
required to reliably conduct a statistical t-test, ensuring a p-
value of below 0.05. We iterated over group sizes ranging from
two to 100 records for both member and non-member sets. For
each group size, we randomly sampled records from each set
and performed a statistical test on the scores generated by the
MIA. This process was repeated 100 times for each group size,
and we calculated the average p-value across all iterations.

Figure [/| presents the average p-value as a function of the
number of records sampled from each group. The results are

based on the LLaMA-1 7B model fine-tuned on the BookMIA
dataset, using the Min-K++ 20% method as the MIA. The
methods use lexical substitution concatenation [59] as the
synonym substitution technique.

As shown, our method achieves an average p-value below
0.05, with as few as six records per group, indicating statistical
significance very close to zero. In contrast, for data without
any watermarking, at least 40 records per group are required
to reach statistically significant results. This highlights the ef-
ficiency of our method in conducting reliable dataset inference
with smaller sample sizes.

In real-world scenarios, when a data owner suspects that
a model has been trained on their data, they often cannot
determine what percentage of the data was used for training.
To evaluate this scenario, we present the results of dataset
detection when the model was trained on only a portion of
the member data. This simulates a common scenario where
the data owner possesses non-member data that includes recent
or evolving content that has not yet been published or made
publicly available.

Figure [§] presents the results of the LLaMA-1 7B model
fine-tuned on the BookMIA, dataset using the Min-K++ 20%
method as the MIA, indicating the number of records needed
from both the member and non-member groups to achieve
statistical significance. Each line in the graph, represented by
different colors, indicates the percentage of member records
used to train the model. The results are averaged across 100
iterations, with group sizes ranging from 10 to 100 in steps
of five.

As observed in the figure, when the model is trained on
only 35% of the member data, sampling 50 member records
and 50 non-member records (which are known not to have
been used for training) is sufficient to achieve a p-value below
0.05, indicating statistical significance. This demonstrates that
even when the model has been trained on only a subset of the
member data, it is possible to detect whether the model has
been exposed to this subset of data.

b —e— None
Random
—8— Highest (LexiMark)
\ ——- Significance level (0.05)

0 8 16 24 32 40 48 56
Sample size per class

Fig. 7. Average p-value as a function of the group size, comparing member
and non-member records using the LLaMA-1 7B model fine-tuned on the
BookMIA dataset, with the Min-K++ 20% MIA.

IX. CONCLUSION

In this paper, we presented LexiMark, a novel watermarking
technique designed to improve the detection of datasets used
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Fig. 8. Average p-value as a function of group size, where only a subset
of the member data is used for training. The results are shown for different
percentages of member data on the LLaMA-1 7B model fine-tuned on the
BookMIA dataset, using the Min-K++ 20% MIA.

to train LLM. LexiMark uniquely embeds watermarks by
substituting high-entropy words with their synonyms, ensuring
that the semantic integrity of the text remains intact while
enhancing the model’s ability to memorize the watermarked
data. Through extensive experimentation on models such as
LLaMA-3 8B and the BookMIA and The Pile datasets, Lexi-
Mark demonstrated high improvements in AUROC scores for
MIA detection, consistently exceeding 90% on the BookMIA
dataset across multiple detection methods and models, high-
lighting its reliability in identifying watermarked data. We
also evaluated the semantic preservation of the watermarked
text and explored various synonym substitution methods to
identify the optimal approach that balances semantic integrity
with high detection accuracy. This offers a practical solution
for organizations aiming to protect their datasets without
compromising usability or content clarity.

Future work will focus on refining the synonym substitution
method to further optimize the balance between watermark de-
tectability and model memorization, ensuring that the method
maintains high watermark detection rates without impacting
model performance. Another key focus will be examining
the effects of watermarking during pre-training by assessing
how the technique influences model learning dynamics when
trained on watermarked datasets. Expanding our approach to
larger models and multilingual datasets will also be a prior-
ity, addressing the need for versatile watermarking solutions
across a broader range of applications. While our current
implementation uses English-centric tools, LexiMark is inher-
ently language-agnostic. Resources such as Open Multilingual
WordNet [66] and multilingual BERT (mBERT) [58]] can
support synonym substitution in many languages, including
low-resource ones.

By continuing to advance watermarking methods,
LexiMark provides a scalable and practical solution for
addressing the critical need to monitor and detect the use
of proprietary data in LLM training. By enhancing dataset
traceability, LexiMark serves as a practical tool, ultimately
contributing to the ethical and secure development of LLM
applications.
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APPENDIX A
ANALYSIS OF ToP-K VALUE SELECTION

TABLE VI
DETAILED COMPARISON OF AUROC, SEMANTIC PRESERVATION, AND
BLEU SCORES ACROSS DIFFERENT K-VALUES USING THE MIA METHOD:
MINK++_20.0% AND SYNONYM REPLACEMENT METHOD: BERT TH=0.8.

K AUROC CosSim BLEU

3 87.5% 98.4 0.75
4 91.8% 94.22 0.67
5 94.0% 88.33 0.6
6 95.6% 81.72 0.55
7 96.6 % 76.43 0.5

Table presents the results of using different K values
in selecting the top-K words in each sentence. Reported are
the AUROC score, using the MIA method of MinK++ 20.0%,
compared to the semantic similarity between the watermarked
text and the original text, measured by the cosine similarity
of embeddings with a threshold of 0.8, as well as the BLEU
score. For synonym replacement, we used a BERT model with
a threshold of 0.8.

The findings reveal a trade-off between the AUROC and
semantic preservation: lower K values, which introduce fewer
changes to the text, tend to maintain higher semantic similarity.

However, increasing K improves detection accuracy at the
cost of reduced semantic preservation. In our experiments, we
selected K=5 maintain a balance between detection accuracy
and semantic similarity. While higher K values provide only
marginal improvements in the AUROC, they highly impact
semantic integrity, making K=5 a suitable compromise.

APPENDIX B
EFFICIENCY OF SYNONYM RETRIEVAL METHODS

A potential concern with our approach is the computational
overhead introduced by embedding-based synonym genera-
tion, particularly when using large language models such
as BERT. To assess the practical implications, we bench-
marked several synonym retrieval methods on the Enron Email
dataset. The methods evaluated include SBERT, context-based
BERT, two variants of our LexSub method (concatenation and
dropout), and a lightweight alternative based on WordNet.
The average runtime per email and total processing time are
summarized in Table [VIIl

TABLE VII
AVERAGE RUNTIME PER EMAIL FOR DIFFERENT SYNONYM RETRIEVAL
METHODS. EXPERIMENTS CONDUCTED ON AN NVIDIA RTX 6000 GPU.

Method Average Time per Email (sec)
WordNet 0.6211
SBERT 2.0153
Concatenation 2.1300
Context BERT 2.7154
Dropout 4.8400

As shown, WordNet offers a highly efficient option that
does not rely on model inference, making it suitable for
large-scale or resource-constrained applications. SBERT and
the LexSub concatenation method also exhibit relatively low
latency, averaging around 2 seconds per document. While the
LexSub variant with dropout introduces more computational
overhead, it remains practical for real-world deployment.

These findings demonstrate that LexiMark supports effi-
cient and flexible deployment. Depending on the available
computational resources and desired fidelity of contextual
understanding, users can choose between fast dictionary-based
methods or more sophisticated neural approaches.
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