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Abstract
Recent reasoning large language models (LLMs), such as
OpenAI o1 and DeepSeek-R1, exhibit strong performance
on complex tasks through test-time inference scaling. How-
ever, prior studies have shown that these models often incur
significant computational costs due to excessive reasoning,
such as frequent switching between reasoning trajectories
(e.g., underthinking) or redundant reasoning on simple ques-
tions (e.g., overthinking). In this work, we expose a novel
threat: adversarial inputs can be crafted to exploit exces-
sive reasoning behaviors and substantially increase computa-
tional overhead without compromising model utility. There-
fore, we propose a novel loss framework consisting of three
components: (1) Priority Cross-Entropy Loss, a modifica-
tion of the standard cross-entropy objective that emphasizes
key tokens by leveraging the autoregressive nature of LMs;
(2) Excessive Reasoning Loss, which encourages the model
to initiate additional reasoning paths during inference; and
(3) Delayed Termination Loss, which is designed to extend
the reasoning process and defer the generation of final out-
puts. We optimize and evaluate our attack for the GSM8K
and ORCA datasets on DeepSeek-R1-Distill-LLaMA and
DeepSeek-R1-Distill-Qwen. Empirical results demonstrate
a 3x to 9x increase in reasoning length with comparable util-
ity performance. Furthermore, our crafted adversarial inputs
exhibit transferability, inducing computational overhead in
o3-mini, o1-mini, DeepSeek-R1, and QWQ models.

1 Introduction
Inference-time scaling has emerged as a critical technique for
enhancing the reasoning capabilities of LLMs [2, 18, 20, 21].
Methods such as Chain-of-Thought (CoT) [20] explicitly
guide models through intermediate reasoning steps, while re-
cent models like DeepSeek-R1 [8] and QWQ [17] incorpo-
rate reasoning capabilities implicitly during training. How-
ever, recent studies have shown that these models often suffer
from excessive reasoning behaviors, such as frequent shifts
in reasoning strategies or redundant processing, which can
lead to substantial computational overhead [6, 19]. These in-
efficiencies introduce a novel security risk: the attacker can
craft adversarial inputs to exploit them, significantly inflating
inference-time resource usage.

Prior work has explored related threats in both language
models and vision-language models (VLMs). For exam-

ple, Sponge examples [16] increase computational costs by
maximizing activation norms, while the NICGSlowdown at-
tack [5] manipulates token logits to delay output generation.
Similarly, Gao et al. [10] introduce verbose images to im-
pose high inference latency and computational burden specif-
ically on VLMs. More recently, Kumar et al. [13] propose
the Overthink attack, which adopts an indirect prompt injec-
tion strategy and inserts a decoy to external resources. This
compels the model to allocate additional reasoning resources
toward solving an intermediary task before addressing the
primary query. In contrast, our method directly perturbs the
input to elicit excessive reasoning behavior, increasing com-
putational overhead without degrading task performance or
requiring external content. Moreover, our attack aligns with
the Model Denial of Service (MDoS) threat as defined by
OWASP, wherein adversarial inputs lead to resource exhaus-
tion, degrading system responsiveness and service availabil-
ity for other users.1

In this work, we introduce the first adversarial attack
designed to exploit the reasoning inefficiencies in reason-
ing LLMs, thus inducing excessive computation during in-
ference. Our approach constructs adversarial suffixes that
prompt the model to engage in extended reasoning without
compromising model utility. To optimize these suffixes, we
propose three novel loss functions that encourage such rea-
soning behavior:

• Priority Cross-Entropy Loss prioritizes key tokens
while masking less informative ones to enhance opti-
mization efficiency. This loss leverages the autoregres-
sive nature of LM to enable more targeted and effective
gradient updates.

• Excessive Reasoning Loss increases the likelihood of
branched or recursive reasoning, leading to greater com-
putational overhead.

• Delayed Termination Loss encourages the model to
defer the termination of reasoning and answer genera-
tion.

We optimize and evaluate our attacks for the GSM8K [7]
and ORCA [14] datasets on DeepSeek-R1-Distill-Llama and
DeepSeek-R1-Distill-Qwen. Our attacks consistently in-
crease the reasoning length by over 3x to 9x using only 10

1https://genai.owasp.org/llmrisk2023-24/llm04-model-deni
al-of-service/
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crafted adversarial tokens. Moreover, our attack demon-
strates strong transferability across models on commercial
platforms, including OpenAI o1-mini and o3-mini [11],
DeepSeek-R1, and QWQ, suggesting a broader vulnerability
among reasoning-optimized LLMs. These findings expose
an underexplored issue. While such models are proficient in
reasoning, they remain susceptible to targeted manipulations
that exploit their reasoning mechanisms to induce significant
computational overhead. Our results underscore the urgent
need for inference-time defenses that can detect and mitigate
excessive reasoning triggered by adversarial prompts, partic-
ularly in real-world deployments.

2 Methodology
This section introduces our adversarial attack framework,
which aims to increase the computational overhead of rea-
soning LLMs by inducing excessive reasoning behavior. We
first formalize the threat model, then describe the procedure
for generating target outputs. Finally, we detail the loss func-
tions that guide the optimization.

2.1 Threat Model
The primary objective of our attack is to generate inputs that
compel the model to extend the reasoning processes as long
as possible, thus significantly increasing the computational
cost at inference time. Also, this manipulation should pre-
serve the model’s utility to avoid suspicion. Similar to prior
work [3,4,10,22], we assume a white-box scenario in which
the attacker has complete access to the model’s architecture,
parameters, and gradients.

Following [4], we consider two primary use cases for our
attack. In the first use case, a malicious user intentionally in-
duces excessive computational load, degrading overall sys-
tem performance and diminishing service quality for other
users, akin to a DoS attack. In the second use case, a benign
user queries the model within an autonomous system that
processes untrusted third-party data (e.g., crafted adversar-
ial data), resulting in significantly higher costs (e.g., money)
than expected. As we later demonstrate, these crafted ad-
versarial inputs exhibit strong transferability across different
models.

2.2 Target Output Generation
Constructing an effective adversarial suffix requires defining
a target output that can guide the optimization process. Prior
work has adopted similar strategies in various contexts. For
instance, ATA [9] uses the fixed string “Sorry, I’m unable to
answer the question” to mislead the model into generating
incorrect answers, while Zou et al. [22] target phrases such
as “Sure, I can...” to bypass safety mechanisms and elicit
unsafe behavior.

For our attack, a straightforward strategy is to sample mul-
tiple outputs from the target model and select the longest
one as the optimization target. However, we find that this
approach often fails to produce outputs of sufficient length.
Another option is to use reasoning-inducing prompts such as
CoT, which are designed to elicit a step-by-step reasoning

path. Although promising, our experiments show that CoT
prompts do not consistently generate longer outputs across
various models and datasets.

To further increase target output length, we adopt
DSPy [12], a recent prompt optimization framework that it-
eratively refines instructions to better satisfy a given objec-
tive. Specifically, we use a DSPy optimizer to refine CoT
prompts on a small dataset with the goal of maximizing out-
put length. The resulting optimized CoT prompts elicit sub-
stantially longer responses from the target model and serve
as effective targets for crafting adversarial examples. We in-
clude the optimized prompt in App. A.1 and report output
length statistics for different prompting strategies in Table 6.

2.3 Loss Design
To craft adversarial suffixes that trigger excessive reasoning
behavior, we propose a composite loss function consisting of
three components: Priority Cross-Entropy (PCE) Loss, Ex-
cessive Reasoning (ER) Loss, and Delayed Termination (DT)
Loss. PCE Loss is designed to reduce optimization difficulty,
while ER Loss and DT Loss target distinct aspects of the rea-
soning process. We detail each component below.

Priority Cross-Entropy Loss. Traditional adversarial at-
tacks on LMs typically optimize a cross-entropy loss to max-
imize the likelihood of generating a specific target sequence
(e.g., “Sure, I can ...”). Formally, given an input token se-
quence x = {w1,w2, . . . ,wn}, the probability of generating
the next token wn+1 is defined as:

p(wn+1) = p(wn+1 | w1,w2, . . . ,wn). (1)

Accordingly, the standard cross-entropy loss used to max-
imize the likelihood of a target sequence y, conditioned on a
base input x and an adversarial suffix x′, is defined as:

LCE =− 1
|y|

|y|

∑
t=1

log p(yt | {x,x′},y<t). (2)

In typical adversarial settings, the target sequence y is rel-
atively short, often fewer than 10 tokens. However, to trig-
ger excessive reasoning behavior, we must construct much
longer targets (e.g., over 1,000 tokens). Uniformly optimiz-
ing over such long sequences is computationally inefficient,
as many tokens (e.g., “the” and “I”) can be accurately gener-
ated even without the prompt, due to statistical priors learned
during pretraining. To investigate this effect, we analyze the
loss distribution of a target sequence with and without the in-
put prompt. As shown in Fig. 1, our analysis reveals that only
a small subset of tokens exhibits a significant increase in loss
when the prompt is removed. This observation supports our
hypothesis that informativeness is not uniformly distributed
across tokens and that only a subset is highly dependent on
the input prompt.

Building on this insight, we introduce a token-level im-
portance mask that emphasizes tokens the model consid-
ers informative, thereby improving optimization efficiency.
Specifically, for each target token yt , we compute an im-
portance score as the difference in log-probabilities with and
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Figure 1: The perplexity of a reasoning sample in the output with and without the prompt. Bold tokens are assigned 1 in the mask.

without the input prompt:

St = log p(yt | y<t)− log p(yt | x,y<t). (3)

This score captures the degree to which each token’s pre-
diction depends on the presence of the prompt. We then
construct a binary mask M by selecting the top K % of to-
kens with the highest importance scores and assigning them a
value of 1, while masking out the remaining tokens (assigned
0). The resulting PCE Loss is defined as:

LPCE =− 1
|y|

|y|

∑
t=1

Mt · log p(yt | {x,x′},y<t). (4)

By selectively focusing on prompt-sensitive tokens, this loss
function enhances optimization efficiency and more effec-
tively encourages the model to generate extended reasoning
sequences during inference.

Excessive Reasoning Loss. Prior work [6, 19] has shown
that LLMs trained for explicit reasoning often produce ex-
tended reasoning. In such cases, certain tokens, such as
“Wait” and “Alternative”, frequently occur in these se-
quences, signaling branching or recursive reasoning steps.
To exploit this behavior, we aim to increase the likelihood
of generating such tokens during the reasoning. While con-
structing a manual list of indicative tokens is feasible, it is
limited in scalability and generalization. Instead, we adopt
a data-driven approach to automatically identify reasoning-
associated tokens. As demonstrated in our ablation study
(Sec. 3.3), this approach uncovers influential tokens that
would likely be overlooked through manual inspection, un-
derscoring the efficacy of our method.

Concretely, we extract the top n most frequent tokens that
appear in the first two positions of sentences generated dur-
ing the Target Output Generation phase. These tokens are
hypothesized to play a critical role in initiating new reason-
ing trajectories. Let T denote the resulting set of high-impact
tokens. To promote their occurrence during generation, we
define the Excessive Reasoning (ER) Loss as:

LER =− 1
|y|

|y|

∑
t=1

∑
v∈T

log p(yt = v | {x,x′},y<t). (5)

This objective increases the likelihood of generating to-
kens associated with recursive or exploratory reasoning,

thereby inducing longer and more computationally intensive
reasoning sequences.

Delayed Termination Loss. In many reasoning LLMs, the
generation process typically begins with intermediate reason-
ing steps, which conclude with a designated end-of-thinking
(EOT) token (e.g., </think>). Then, the model would gener-
ate an answer conclusion terminated by an end-of-sequence
(EOS) token (e.g., <eos>). To prolong both the reasoning
and answer conclusion phases, we aim to reduce the model’s
tendency to emit these termination tokens during decoding.
However, due to the stochastic nature of autoregressive gen-
eration, the precise timestep at which these tokens appear is
not fixed. To address this, we adopt a strategy from prior
work [5, 10], which minimizes the likelihood of generat-
ing termination tokens across all positions in the output se-
quence:

LDT =
1
|y|

|y|

∑
t=1

[
p(yt = EOS | {x,x′},y<t)

+ p(yt = EOT | {x,x′},y<t)
]
. (6)

This objective discourages premature termination, encour-
aging the model to continue generating extended reasoning
and answer conclusions before finalizing its output.

2.4 Optimization
Optimizing adversarial suffixes in the text domain presents
a unique challenge due to the discrete nature of language.
Unlike continuous domains (e.g., images), where gradients
can be directly applied to pixel values, LMs operate on se-
quences of discrete tokens drawn from a fixed vocabulary.
As a result, standard gradient-based optimization techniques
cannot be directly applied to manipulate individual tokens.

To address this, we adopt the Greedy Coordinate Gradient-
based Search (GCG) framework [22], which has demon-
strated strong performance in adversarial text generation.
GCG linearizes the loss landscape by computing gradients
with respect to input embeddings and identifying substitu-
tions that are most likely to improve the loss. Specifically,
for a given token position i in the suffix, we compute the gra-
dient of the loss with respect to its embedding and search
for the token x′i that maximally improves the objective. For-
mally:

x′i = argmax
w∈V

〈
∇e(xi)L , e(w)− e(xi)

〉
, (7)
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where ∇e(xi)L denotes the gradient of the loss with respect
to the embedding of token xi, and e(w) is the embedding of
candidate token w. This inner product quantifies the expected
gain from substituting xi with w, and the best candidate is
selected greedily. Our overall training objective combines
the three loss components introduced previously:

L = α ·LPCE +β ·LER + γ ·LDT. (8)

In this work, we adopt a fixed-length suffix-based strategy
in which a predetermined number of tokens are appended to
the end of the original prompt. Each token in the suffix is it-
eratively updated using GCG to minimize the combined loss.
Although this paper focuses on crafting adversarial suffixes,
it is important to note that our approach is method-agnostic
and can be adapted to various adversarial paradigms. For
instance, alternative strategies such as character-level pertur-
bations (e.g., typos) can also be incorporated, as shown in
prior work [9]. This flexible framework facilitates the ef-
ficient generation of adversarial inputs tailored to different
attack objectives and constraints.

3 Experiments

3.1 Experimental Setups
Models and Datasets. We optimize adversarial suffixes and
evaluate them on two reasoning LLMs: DeepSeek-R1-distill-
LLaMA-8B and DeepSeek-R1-distill-Qwen-7B.2 Both mod-
els are distilled variants of DeepSeek-R1 and demonstrate
strong performance on complex reasoning tasks. We report
results under two decoding strategies: greedy decoding and
sampling decoding. For sampling, we set the temperature to
0.6 and apply nucleus sampling with top-p = 0.95. To as-
sess cross-model transferability, we additionally evaluate the
attack on larger-scale models, including o1-mini, o3-mini,
DeepSeek-R1, and QWQ-32B, using their respective default
decoding settings. Specifically, we interact with o1-mini
and o3-mini via the OpenAI API, and with DeepSeek-R1
and QWQ-32B via the Baidu Cloud API, to simulate real-
world deployment conditions. Our evaluation is conducted
on two widely used mathematical reasoning benchmarks:
GSM8K [7] and ORCA [14]. For each dataset, we randomly
sample 50 examples for both optimization and evaluation.
Attack Setup. For target output generation, we employ the
COPRO optimizer to construct prompts that induce extended
reasoning trajectories. Specifically, we use 10 training ex-
amples from the GSM8K dataset for prompt optimization
and evaluate the resulting prompt on a separate set of 10
randomly selected test samples. Due to computational con-
straints, we restrict target outputs to a maximum length of
3,000 tokens. For the PCE Loss, we set the token selec-
tion threshold K = 1, and for the ER Loss, we use n = 5.
The overall loss function combines the three components us-
ing the following weighting coefficients: α = 1, β = 50, and
γ = 1. We fix the length of the adversarial suffix to 10 tokens.
During optimization, we apply the GCG algorithm for 1,000

2For simplicity, we omit the prefix DeepSeek-R1-distill throughout the re-
mainder of the paper.

steps per input. The candidate pool size is set to 64, and at
each step, the top 64 candidate tokens are retained.
Evaluation Metrics. To evaluate the effectiveness of our
adversarial attack, we consider three primary metrics: (1)
output sequence length (in tokens), (2) inference latency
(in seconds), and (3) energy consumption (in Joules). En-
ergy usage is measured using the NVIDIA Management Li-
brary (NVML), following the methodology introduced by
Shumailov et al. [16]. To ensure consistency and fair com-
parison, all inference is performed using the HuggingFace
pipeline [1] on a single hardware (NVIDIA A100 80GB).
Each inference is repeated three times to reduce the impact
of runtime variability. To assess model utility, we extract fi-
nal answers from the generated outputs using “Meta-Llama-
3.1-8B-Instruct”, and compute accuracy by comparing the
extracted answers against ground-truth labels. The exact
prompt used for extraction is provided in App. A.1.
Baselines. To evaluate the effectiveness of our attack, we
compare it against several baseline prompting strategies:

• Random: A suffix composed of 10 randomly sampled
tokens.

• Standard CoT [20]: A widely used CoT prompt that
appends the phrase “Let’s think step by step.”

• CatAttack [15]: A prompt-based adversarial strategy
that appends the distractor statement “Interesting fact:
cats sleep most of their lives,” which has been shown to
induce incorrect reasoning outputs.

3.2 Main Results
Performance. We evaluate the effectiveness of our attack
using six metrics: reasoning token length (Rea), answer to-
ken length (Ans), total output length (Full), inference latency
(Lat), energy consumption (Ene), and task accuracy (Acc).
Evaluations are conducted under both greedy and sampling-
based decoding strategies. As shown in Table 1 and Table 2,
our adversarial suffix substantially increases computational
overhead while preserving task accuracy across all settings.
For example, our attack causes LLaMA to generate signifi-
cantly longer outputs on the GSM8K dataset with greedy de-
coding, increasing the average reasoning length by 3x from
574 to 1,914 tokens. This is accompanied by a correspond-
ing increase in energy consumption (from 4,712J to 12,827J)
and latency (from 22.2s to 54.9s). A similar trend is observed
for Qwen, where the average reasoning length increases by
9x, demonstrating the effectiveness of our attack across dif-
ferent model architectures. Under sampling-based decoding,
the attack remains robust. The reasoning length increases by
3x for LLaMA and 8x for Qwen on GSM8K, with similar
results observed on the ORCA dataset.

In comparison, baseline prompting methods generally in-
duce relatively short reasoning. For example, CoT prompts
produce shorter outputs than our adversarial prompt on
LLaMA for GSM8K under greedy decoding (711 vs. 2,074
tokens), indicating the limitations of standard methods in
eliciting excessive reasoning behavior. More broadly, our

4



GSM8K ORCA
Models Methods Rea Ans Full Lat Ent Acc Rea Ans Full Lat Ent Acc

LLaMA

Original 574 266 839 22.2 4712 70% 344 259 603 14.7 2789 82%
Random 496 232 729 19.7 3959 76% 338 233 571 15.3 3013 78%
CoT 447 264 711 19.0 3571 74% 440 228 668 17.6 3570 76%
CatAttack 668 239 907 24.3 4628 72% 499 213 712 19.3 4366 82%
Ours 1914 160 2074 54.9 12827 92% 1575 167 1743 47.2 9929 80%

Qwen

Original 169 310 479 11.9 2535 82% 379 248 626 15.6 2910 86%
Random 167 295 461 11.3 2171 78% 532 234 766 18.5 4040 82%
CoT 159 294 453 11.2 2097 82% 527 225 752 18.7 3505 86%
CatAttack 237 282 519 12.8 2498 84% 531 220 750 18.4 4034 84%
Ours 1531 193 1724 42.4 8188 88% 1459 166 1624 39.6 9155 88%

Table 1: The token length for reasoning (Rea), answer (Ans), and full output (Full); inference latency (Lat, in seconds); energy
consumption (Ene, in joules); and task accuracy (Acc). Experimental results across methods under greedy decoding. Bold indicates
the best result.

GSM8K ORCA
Models Methods Rea Ans Full Lat Ent Acc Rea Ans Full Lat Ent Acc

LLaMA

Original 476 280 757 68.5 7713 75% 402 266 668 75.9 9148 80%
Random 528 257 785 64.8 9818 77% 475 224 700 81.4 10680 82%
CoT 401 270 671 54.0 7928 72% 493 244 737 80.6 9689 81%
CatAttack 556 257 812 71.5 9778 76% 550 248 798 86.7 10490 81%
Ours 1437 204 1641 197.0 21228 90% 1425 206 1631 178.2 19243 87%

Qwen

Original 176 308 484 16.0 3799 85% 293 274 567 33.1 5722 87%
Random 187 295 482 17.4 3398 81% 432 253 686 50.0 6458 83%
CoT 221 296 518 23.4 4245 84% 501 254 755 54.5 7353 86%
CatAttack 345 277 622 37.0 5996 82% 452 250 701 51.2 7538 84%
Ours 1479 217 1696 149.1 16031 91% 1238 183 1421 111.2 14747 87%

Table 2: Experimental results across methods under sampling decoding.

results suggest that reasoning LLMs are resistant to short
prompting, as neither CoT nor CatAttack reliably trigger
long reasoning. Interestingly, we observe a consistent inverse
correlation between the lengths of reasoning and answer seg-
ments. We hypothesize that as the model allocates more ca-
pacity to the reasoning phase, the corresponding answer por-
tion becomes shorter. Importantly, the increase in reasoning
length does not degrade task accuracy; in many cases, it cor-
relates with improved performance. This suggests that ex-
cessive reasoning may enhance the model’s problem-solving
capabilities. Thus, our attack exhibits a dual effect: it ex-
poses a vulnerability in inference-time efficiency while po-
tentially enhancing the model’s reasoning capabilities. As
a result, such adversarial behaviors may evade detection by
standard evaluation metrics that focus solely on output cor-
rectness, highlighting the need for more comprehensive eval-
uation frameworks.

Analysis. To determine whether our adversarial suffixes
truly elicit excessive reasoning rather than merely increas-
ing output length, we conduct an analysis of the generated
outputs. First, we observe a substantial increase in the aver-
age number of reasoning sentences. For LLaMA, the average
rises from 31 to 88, and for Qwen, from 7 to 74, when com-
paring outputs generated from original prompts to those gen-
erated with adversarial suffixes. This pronounced increase

suggests that our attack significantly extends the number of
reasoning paths, rather than merely inflating output length.

Second, we analyze the distribution of the first two to-
kens in each reasoning sentence, comparing outputs gener-
ated with and without adversarial suffixes as shown in Fig.2.
The results reveal distinct lexical patterns between the two
models. For example, LLaMA more frequently uses delib-
erative tokens such as “Alternatively” and “Wait”, which
are often associated with recursive reasoning. In contrast,
Qwen shows lower sensitivity to “Alternatively”, suggest-
ing that the expression of excessive reasoning may manifest
differently across architectures. Moreover, Qwen does not
exhibit the same degree of excessive reasoning as LLaMA
under standard conditions. However, it remains vulnerable
to such behavior when exposed to adversarial suffixes. Fur-
thermore, the presence of tokens such as “Let”, “Maybe”,
and “Hmm”, which are difficult to detect through manual in-
spection, highlights the effectiveness of our ER Loss when
combined with automated token selection. This approach ef-
fectively surfaces subtle prompts capable of inducing exces-
sive reasoning behavior.

Transferability. We evaluate the transferability of our ad-
versarial suffixes to larger commercial language models, in-
cluding o1-mini, o3-mini, DeepSeek-R1, and QWQ. Specif-
ically, we test adversarial suffixes optimized on the LLaMA

5



LLaMA Qwen
Reason Answer Full Accuracy Reason Answer Full Accuracy

o1-mini 428 (+224) 325 (+73) 753 (+297) 89% (-2%) 591 (+386) 512 (+261) 1103 (+647) 88% (-3%)
o3-mini 446 (+199) 184 (+46) 630 (+245) 90% (+1%) 645 (+398) 336 (+199) 982 (+596) 89% (0%)
R1 997 (-74) 185 (-13) 1182 (-87) 95% (-2%) 1295 (+224) 233 (+36) 1528 (+260) 93% (-4%)
QWQ 1761 (-151) 231 (-6) 1992 (-157) 93% (-3%) 2489 (+577) 317 (+80) 2806 (+657) 98% (+2%)

Table 3: Transferability analysis of adversarial suffixes originally optimized for LLaMA and Qwen.
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Figure 2: Token counts between the generated outputs from the
original and adversarial prompts.

and Qwen models for the GSM8K dataset, with results sum-
marized in Table 3. Our findings show that these adversarial
suffixes generalize effectively, consistently promoting longer
output sequences without degrading task accuracy. For the
OpenAI model family, both LLaMA- and Qwen-optimized
suffixes successfully increase output length. For example,
suffixes optimized on LLaMA lead to a 245-token increase
in total output length for o3-mini, and Qwen-optimized suf-
fixes yield a 596-token increase.

In contrast, transferability to DeepSeek-R1 appears to de-
pend on the source model. Qwen-optimized suffixes result
in a 260-token increase, whereas LLaMA-optimized suffixes
fail to induce longer outputs. We hypothesize that this dis-
crepancy is due to tokenizer compatibility, as DeepSeek-R1
shares the same tokenizer with Qwen but not with LLaMA.
A similar pattern is observed for QWQ, which also uses
the Qwen tokenizer and shows greater sensitivity to Qwen-
optimized suffixes. These results suggest that while architec-
tural differences influence the degree of computational over-

100 50 25 10 5 2 1
Top­K

250
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750

1000

1250

Le
ng

th Reasoning
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Full

Figure 3: Impact of varying the top-K most informative tokens
on LLaMA under greedy decoding.

head, tokenizer alignment plays a critical role in the transfer-
ability of adversarial prompts. Notably, Qwen appears to be
a more effective proxy than LLaMA for crafting transferable
adversarial suffixes across commercial systems.

3.3 Ablation Studies
We conduct a series of ablation studies to assess the impact
of different experimental configurations, including the intro-
duction of the PCE Loss, the individual contribution of each
loss component, and the effect of alternative target construc-
tion strategies.
PCE Loss. We begin by evaluating the effectiveness of the
proposed PCE Loss by varying the proportion of top-K to-
kens from 100% to 1%, as shown in Fig. 3. The results
show that focusing optimization on the top 5%, and partic-
ularly the top 1% of tokens, consistently outperforms ap-
plying loss uniformly across all tokens. Peak performance
is observed when focusing solely on the top 1%, with the
number of reasoning tokens increasing from 660 to 1,100.
This pattern suggests that selectively emphasizing a small
subset of salient, prompt-dependent tokens can more effec-
tively induce extended reasoning behavior. Additionally, we
observe an inverse relationship between the number of rea-
soning and answer tokens, implying a redistribution of the
model’s generative capacity toward reasoning content. These
findings underscore the value of targeted token optimization
and demonstrate that prioritizing high-impact tokens is more
effective than uniformly distributing the loss across the entire
sequence.
Loss Objectives. Second, we evaluate the individual con-
tributions of each loss function and assess their collective
impact as presented in Table 4. The results show that op-
timizing each loss independently leads to an increase in out-
put sequence length, and the combination of all three loss
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Setup Reason Answer Full Latency Energy Accuracy

LPCE 1100 202 1303 35.0 7016 84%
LPCE +LER 1169 188 1357 36.1 8089 88%
LPCE +LDT 1447 201 1648 43.9 9558 88%
LPCE +LER +LDT 1914 160 2074 54.9 12827 92%

Table 4: Ablation study of loss objectives combinations on
LLaMA under greedy decoding.

Setup Reason Answer Full Latency Energy Accuracy

Raw 1695 190 1885 50.9 12120 80%
CoT 1060 224 1283 34.0 7719 80%
CoT + DSPy 1914 160 2074 54.9 12827 92%

Table 5: Ablation study of different target constructions with
our proposed loss function on LLaMA under greedy decoding.

functions yields the most substantial gains in both sequence
length and computational burden. For instance, the full com-
posite loss achieves the longest average output (up to 2,074
tokens), the highest inference latency (54.9 seconds), and the
greatest energy consumption (12,827J). These results under-
score the synergistic effect of combining all three objectives.

To further analyze the behavior encouraged by the ER
Loss, we visualize a word cloud of the most frequently pri-
oritized tokens in Fig. 4. Common deliberative tokens iden-
tified in prior work, such as “Alternatively” and “Wait”, are
prominently featured. In addition, our method surfaces pre-
viously underexplored tokens such as “Maybe” and “Hmm”,
which act as effective triggers for extended reasoning. These
findings confirm that the joint loss formulation effectively
amplifies reasoning behavior while preserving task accuracy,
and that the ER Loss successfully uncovers subtle lexical
cues indicative of recursive reasoning.

Target Output Construction. Finally, we evaluate several
strategies for constructing target outputs to guide adversarial
optimization, as summarized in Table 5. The comparison in-
cludes a raw baseline (no additional prompt), a standard CoT
prompt, and a DSPy-optimized CoT prompt. Interestingly,
we find that the standard CoT prompt does not consistently
produce longer reasoning sequences; in some cases, it even
results in shorter outputs than raw prompting, highlighting
its limitations in eliciting extended reasoning. In contrast,
DSPy-optimized CoT prompts increase the average output
length from 1,283 to 2,074 tokens under greedy decoding
compared to CoT prompts, with corresponding increases in
both energy consumption and task accuracy. These results
highlight the critical role of target output quality in guiding
adversarial optimization. Longer reasoning sequences, espe-
cially those produced via DSPy, serve as more effective tar-
gets for inducing excessive computation. This reinforces the
importance of target construction in maximizing the efficacy
of our attack.

4 Conclusion and Discussion
In this work, we present a novel adversarial attack targeting
reasoning LLMs by inducing significant computational over-
head during inference. Our approach constructs adversarial

suffixes that trigger extended reasoning trajectories, guided
by a composite loss function tailored to maximize output
length and complexity. Empirical evaluations show that our
method consistently increases output sequence length, infer-
ence latency, and energy consumption, without compromis-
ing task performance. Furthermore, our results reveal strong
cross-model transferability, underscoring the practical rele-
vance of this threat in real-world settings.

Limitations and Future Work. Despite its effectiveness,
our current framework assumes white-box access to model
internals, including gradients and token embeddings. Never-
theless, we demonstrate partial transferability to several com-
mercial, black-box LLMs, suggesting potential for broader
applicability. Future work will explore black-box optimiza-
tion strategies to extend the attack to restricted-access mod-
els. Additionally, our current experiments are limited to tar-
get sequences of up to 3,000 tokens due to computational
constraints. Scaling to longer contexts is a promising direc-
tion for further study.

Broader Impact
This study uncovers a new class of inference-time vulner-
abilities in reasoning LLMs, with significant implications
for both computational security and resource efficiency. We
demonstrate that minimal adversarial perturbations, crafted
as short suffixes, can dramatically increase inference costs.
In large-scale deployments, such inefficiencies may translate
into substantial computational burdens.

Moreover, the transferability of these adversarial behav-
iors across model families highlights a pressing concern for
the robustness and reliability of LLMs in real-world applica-
tions. These results call for the development of evaluation
frameworks that go beyond accuracy to include efficiency,
resilience, and scalability under adversarial conditions.

We advocate for the integration of resource-awareness and
adversarial robustness into the design and deployment of
future LLMs to ensure their sustainability and operational
safety. To support continued research in this direction, we
will release our codebase publicly, contributing to the devel-
opment of more secure and efficient language model systems.

References
[1] https://huggingface.co/. 4

[2] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and
Torsten Hoefler. Graph of Thoughts: Solving Elaborate Prob-
lems with Large Language Models. In AAAI Conference
on Artificial Intelligence (AAAI), pages 17682–17690. AAAI,
2024. 1

[3] Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nico-
las Papernot. Bad Characters: Imperceptible NLP Attacks.
In IEEE Symposium on Security and Privacy (S&P), pages
1987–2004. IEEE, 2022. 2

[4] Nicholas Carlini, Milad Nasr, Christopher A. Choquette-
Choo, Matthew Jagielski, Irena Gao, Pang Wei Koh, Daphne
Ippolito, Florian Tramèr, and Ludwig Schmidt. Are aligned

7

https://huggingface.co/


neural networks adversarially aligned? In Annual Confer-
ence on Neural Information Processing Systems (NeurIPS).
NeurIPS, 2023. 2

[5] Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and
Wei Yang. NICGSlowDown: Evaluating the Efficiency Ro-
bustness of Neural Image Caption Generation Models. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 15344–15353. IEEE, 2022. 1, 3

[6] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui
Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou,
Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and
Dong Yu. Do NOT Think That Much for 2+3=? On the Over-
thinking of o1-Like LLMs. CoRR abs/2412.21187, 2024. 1,
3

[7] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry
Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. Training Verifiers to Solve Math Word
Problems. CoRR abs/2110.14168, 2021. 1, 4

[8] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junx-
iao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu,
Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li,
Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie
Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo
Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei
Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo
Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang,
Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige
Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu,
Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi
Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J.
Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou,
Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu,
Shunfeng Zhou, Shuting Pan, and S. S. Li. DeepSeek-R1: In-
centivizing Reasoning Capability in LLMs via Reinforcement
Learning. CoRR abs/2501.12948, 2025. 1

[9] Esther Gan, Yiran Zhao, Liying Cheng, Yancan Mao, Anirudh
Goyal, Kenji Kawaguchi, Min-Yen Kan, and Michael Shieh.
Reasoning Robustness of LLMs to Adversarial Typographi-
cal Errors. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 10449–10459. ACL,
2024. 2, 4

[10] Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip
Torr, Zhifeng Li, and Wei Liu. Inducing High Energy-
Latency of Large Vision-Language Models with Verbose Im-
ages. In International Conference on Learning Representa-
tions (ICLR), 2024. 1, 2, 3

[11] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, Alek-
sander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex
Karpenko, Alex Tachard Passos, Alexander Neitz, Alexan-
der Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Du-
berstein, Andrew Kondrich, Andrey Mishchenko, Andy Ap-
plebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz

Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak,
Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker,
Brandon Houghton, Brandon McKinzie, Brydon Eastman,
Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li,
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fis-
cher, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy,
Daniel Selsam, David Dohan, David Farhi, David Mely, David
Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben
Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl,
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Flo-
rencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von
Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Paras-
candolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guil-
laume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart,
in, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman,
Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Os-
band, Ignasi Clavera Gilaberte, and Ilge Akkaya. OpenAI o1
System Card. CoRR abs/2412.16720, 2024. 2

[12] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan
Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful Haq,
Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather
Miller, Matei Zaharia, and Christopher Potts. DSPy: Compil-
ing Declarative Language Model Calls into State-of-the-Art
Pipelines. In International Conference on Learning Repre-
sentations (ICLR), 2024. 2

[13] Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpin-
ska, Mohit Iyyer, Amir Houmansadr, and Eugene Bagdasar-
ian. OverThink: Slowdown Attacks on Reasoning LLMs.
CoRR abs/2502.02542, 2025. 1

[14] Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed
Awadallah. Orca-Math: Unlocking the potential of SLMs in
Grade School Math. CoRR abs/2402.14830, 2024. 1, 4

[15] Meghana Arakkal Rajeev, Rajkumar Ramamurthy, Prapti
Trivedi, Vikas Yadav, Oluwanifemi Bamgbose, Sathwik Te-
jaswi Madhusudhan, James Zou, and Nazneen Rajani. Cats
Confuse Reasoning LLM: Query Agnostic Adversarial Trig-
gers for Reasoning Models. CoRR abs/2503.01781, 2025. 4

[16] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Papernot,
Robert D. Mullins, and Ross Anderson. Sponge Examples:
Energy-Latency Attacks on Neural Networks. In IEEE Euro-
pean Symposium on Security and Privacy (Euro S&P), pages
212–231. IEEE, 2021. 1, 4

[17] Qwen Team. QwQ-32B: Embracing the Power of Reinforce-
ment Learning. https://qwenlm.github.io/blog/qwq-
32b/, 2025. 1

[18] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-Consistency Improves Chain of Thought
Reasoning in Language Models. In International Conference
on Learning Representations (ICLR), 2023. 1

[19] Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen,
Zhiwei He, Linfeng Song, Dian Yu, Juntao Li, Zhuosheng
Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu.
Thoughts Are All Over the Place: On the Underthinking of
o1-Like LLMs. CoRR abs/2501.18585, 2025. 1, 3

[20] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma,
Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou.
Chain-of-Thought Prompting Elicits Reasoning in Large Lan-
guage Models. In Annual Conference on Neural Information
Processing Systems (NeurIPS). NeurIPS, 2022. 1, 4

8

https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/


[21] Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai
Xu, Wentao Zhang, Joseph E. Gonzalez, and Bin Cui. Buffer
of Thoughts: Thought-Augmented Reasoning with Large
Language Models. CoRR abs/2406.04271, 2024. 1

[22] Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson.
Universal and Transferable Adversarial Attacks on Aligned
Language Models. CoRR abs/2307.15043, 2023. 2, 3

9



A Additional Experimental Details
In this section, we present additional details of our experi-
mental setup, including the prompting templates, analysis of
the attack behavior, descriptions of the models and datasets
employed, as well as the computational resources utilized.

A.1 Prompt Template

Optimized CoT prompt using DSPy

Provide a detailed breakdown of the problem or topic at hand, considering every aspect and nuance. Start from an introduc-
tory overview, followed by dissecting the components logically, integrating examples, addressing possible counterarguments
or misconceptions, and uniformly elaborating on each point with explanatory details. Prioritize presenting a thorough, an-
alytical approach that can include speculative insights, hypothetical scenarios, or alternative viewpoints, without rushing to
conclusions. Aim to showcase a clear conceptualization followed by logical reasoning, actively prompting self-reflection on
the implications of your insights.

Prompting template for extracting answer

Here is a math question and a model’s answer about this question.
Please extract the EXACT number from the answer text as the final answer for question.
QUESTION: {}
ANSWER: {}
Final format should be a legal ’number’ without any suffix such as ’$’.
The final answer is:
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A.2 Experimental Setups
All models in our experiments are downloaded from Hug-
gingFace. DeepSeek-R1-Distill-Llama-8B and DeepSeek-
R1-Distill-Qwen-7B are originally licensed under the
Apache 2.0 License. The GSM8K and ORCA datasets are
under the MIT License. All experiments in the paper were
conducted on an A100 (80GB) compute node.

A.3 Results & Statistics

(a) LLaMA

(b) Qwen

Figure 4: Tokens used for Trajectory Expansion Loss. Word
clouds generated from the CoT outputs of LLaMA and Qwen
on GSM8K.

Mean

Raw 805
CoT 717
CoT+DSPy 1247

Table 6: The statistics of sample outputs with different prompt-
ings.

Setup Reason Answer Full Latency Energy Accuracy

LPCE 1104 218 1322 143.9 19810 86%
LPCE +LER 1095 205 1301 124.9 14879 87%
LPCE +LDT 1184 223 1407 145.3 17731 88%
LPCE +LER +LDT 1437 204 1641 197.0 21228 90%

Table 7: Ablation study of loss objectives combinations on
LLaMA under sampling decoding.
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Figure 5: Impact of varying the top-K most informative tokens
on LLaMA under sampling decoding.

Setup Reason Answer Full Latency Energy Accuracy

Raw 1396 223 1619 206.8 20252 82%
CoT 1034 250 1283 150.2 15685 79%
CoT + DSPy 1501 216 1718 209.9 19491 87%

Table 8: Ablation study of different target construction strate-
gies on LLaMA under sampling decoding.
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